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Abstract——As numerous distributed energy resources (DERs) 
are integrated into the distribution networks, the optimal dis‐
patch of DERs is more and more imperative to achieve transi‐
tion to active distribution networks (ADNs). Since accurate 
models are usually unavailable in ADNs, an increasing number 
of reinforcement learning (RL) based methods have been pro‐
posed for the optimal dispatch problem. However, these RL 
based methods are typically formulated without safety guaran‐
tees, which hinders their application in real world. In this pa‐
per, we propose an RL based method called supervisor-projec‐
tor-enhanced safe soft actor-critic (S3AC) for the optimal dis‐
patch of DERs in ADNs, which not only minimizes the opera‐
tional cost but also satisfies safety constraints during online exe‐
cution. In the proposed S3AC, the data-driven supervisor and 
projector are pre-trained based on the historical data from su‐
pervisory control and data acquisition (SCADA) system, effec‐
tively providing enhanced safety for executed actions. Numeri‐
cal studies on several IEEE test systems demonstrate the effec‐
tiveness and safety of the proposed S3AC.

Index Terms——Reinforcement learning (RL), safety constraint, 
optimal dispatch, active distribution network (ADN), distribut‐
ed energy resource (DER).

I. INTRODUCTION 

AS large-scale distributed energy resources (DERs) are 
integrated into the distribution networks, the distribu‐

tion networks are gradually transforming into active distribu‐
tion networks (ADNs). Traditional passive control strategies 
can no longer effectively manage these new DERs and may 

cause severe security problems [1] - [3]. Therefore, to take 
full advantage of the DERs and ensure the safe operation of 
power system, an optimal dispatch is necessary in ADN op‐
eration.

Till now, the optimal dispatch of DERs including electric 
vehicles [4], energy storage devices [5], photovoltaic (PV) 
inverters [6], and wind farms [7], [8] is usually formulated 
as a P/Q coordinated optimization problem, which can be ef‐
ficiently solved by some optimization methods. While these 
methods realize the optimal dispatch of DERs, most of them 
depend on complete and accurate models of ADNs, which 
are unaffordable to maintain for ADN operators [9], [10]. 
Therefore, to overcome model mismatch of the ADNs, deep 
reinforcement learning (RL) based methods have been wide‐
ly adopted in power system operation, such as volt-var con‐
trol [11], [12], optimal power flow [13], secondary control 
[14], and energy management [15].

Besides, as an efficient data-driven approach, the RL 
based method can also help solve the complex computation‐
al problems, which have been recently studied in some nov‐
el scenarios of the power system. For example, researchers 
in [16] design a joint electricity− carbon trading framework 
to reduce carbon emission through trading and demand re‐
sponse, in which an improved RL algorithm is utilized to de‐
velop the optimal trading strategy. In [17], researchers devel‐
op a bottom-up Energy Internet architecture, in which the op‐
eration of each microgrid is achieved by a curriculum learn‐
ing enhanced RL based method. In [18], researchers propose 
an RL based method for the carbon-oriented optimal schedul‐
ing of electric vehicle aggregators in a complex distribution 
network, achieving lower cost and carbon emission with a 
higher efficiency.

However, when applying these RL based methods to real-
world ADNs, safety becomes a critical concern. Because of 
the trial-and-error nature of RL algorithms and the lack of 
safety considerations, the RL agent may generate numerous 
unsafe actions and cause disastrous consequences. In order 
to satisfy the safety constraints, a number of constrained RL 
algorithms have been proposed recently, which can be rough‐
ly divided into four categories.

1) Prior knowledge based algorithms. These constrained 
RL algorithms utilize a partially known system model or oth‐
er useful information to construct a safe action region, which 
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is updated periodically with the latest collected data. During 
the interaction with real-world entities, every executed action 
is strictly confined to this region [19], [20].

2) Reward shaping algorithms. In these algorithms, a pen‐
alty term for corresponding safety constraints is added to the 
reward received by the RL agent. When the safety con‐
straints are violated, the RL agent will receive a negative re‐
ward. With the help of the added penalty term, the RL agent 
finally learns a relatively safe policy [21], [22].

3) Lagrangian algorithms. These algorithms can be regard‐
ed as an upgrade of the reward shaping ones, which formu‐
late the Lagrangian function of the constrained optimization 
problem and iteratively update the policy of RL agent and 
Lagrangian multipliers to reach the optimal safe policy 
[23]-[25].

4) Constrained policy optimization. During the process of 
policy optimization, the policy of RL agent is restricted to a 
safe policy region using line search or projection. And the 
safe policy region is estimated based on the collected infor‐
mation when the safety constraints are violated [26], [27].

Some pioneering works also introduce the above con‐
strained RL algorithms to develop data-driven safe control in 
power systems. For example, researchers in [28] incorporate 
Lagrangian algorithm with multi-agent RL based method to 
address the voltage safety constraints in ADNs. In [29], re‐
searchers utilize constrained policy optimization to achieve 
safe optimal operation in distribution networks. In [30], re‐
searchers add a barrier function as the penalty term in the re‐
ward received by the agent to keep it away from unsafe ac‐
tions. In [31], researchers train an additional network to pre‐
dict the frequency of the microgrid and a guidance network 
is utilized to promote safe learning.

Despite the great success of the above constrained RL al‐
gorithms, safety remains a critical concern for their further 
applications in real-world ADNs. Though these algorithms 
achieve the operational safety after online interactions, their 
safety during online interactions is not guaranteed. In addi‐
tion, due to the absence of necessary “safety examination” 
and “safety modification” process, an unsafe action generat‐
ed by the RL agent cannot be filtered out, which may cause 
unexpected consequences in real practice. Therefore, an ac‐
tion filter mechanism that provides enhanced safety during 
online interactions is indispensable to improve the applicabil‐
ity of current RL based methods.

To address the problems, we propose a safe RL based 
method called supervisor-projector-enhanced safe soft actor-
critic (S3AC) for the optimal dispatch in ADNs, which en‐
sures operational safety when interacting with real-world 
ADNs. As shown in Fig. 1, compared with a simple RL 
based method, the ADN controller in the proposed S3AC in‐
cludes three main components: an RL agent, a supervisor, 
and a projector. The RL agent observes the states of the 
ADN and generates actions. The supervisor examines wheth‐
er the generated actions are safe and the projector modifies 
the actions when necessary. Instead of directly executing gen‐
erated actions on the real-world ADN, the supervisor and 
projector as the action guard successfully filter out unsafe 
ones, which provide enhanced safety for executed actions. 

To ensure the operational safety, the proposed S3AC consists 
of two stages: offline pre-training and online training & exe‐
cution. In the offline stage, the supervisor and projector are 
pre-trained using the historical data from supervisory control 
and data acquisition (SCADA) system to formulate the ac‐
tion guard. Then, in the online stage, the ADN controller is 
transferred to interact with the real-world ADN and the per‐
formance of the RL agent is further enhanced.

In addition, due to poor data quality in ADN, considering 
possible outliers in historical measurements from SCADA 
system, the supervisor is formulated with a robust Gaussian 
process regression (GPR) and the neural network based pro‐
jector is trained using the robust supervisor. A detailed de‐
scription of the proposed S3AC will be presented in Section 
III. The unique contributions of this paper are summarized 
as follows.

1) A novel safe RL based method called S3AC is pro‐
posed to provide enhanced safety by introducing a supervi‐
sor and a projector. During online interactions, actions gener‐
ated by the RL agent are first examined by the supervisor. If 
an action is determined unsafe by the supervisor, the projec‐
tor projects it into a safe one with the minimum modifica‐
tion. This method efficiently filters out unsafe actions and 
ensures operational safety, which greatly enhances the appli‐
cability of current RL algorithms.

2) In order to address the model mismatch in ADNs, we 
leverage the historical data and propose a two-stage training 
mechanism under the scheme of the proposed S3AC. In the 
offline stage, the introduced supervisor and projector are 
first pre-trained using the historical data from SCADA sys‐
tem, which is completely data-driven. With only hundreds of 
instances, the supervisor achieves accurate predictions, based 
on which the neural network of projector successfully proj‐
ects unsafe actions with the minimum modification.

3) Considering possible outliers in historical measure‐
ments, the data-driven supervisor is formulated with a robust 
GPR, which dynamically trims bad data in training samples. 
Compared with traditional GPR, this robust GPR effectively 
prevents interference from possible outliers, thus realizing a 
more accurate estimation of voltage magnitudes and branch 
power flow. The comprehensive experiments demonstrate the 
robustness of the robust GPR and safety of the proposed 
S3AC.

The remainder of this paper is organized as follows. Sec‐

Offline pre-training

SCADA system

RL agent

Supervisor

Projector

ADN controller ADN controller
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Real-world ADN
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Projector
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Fig. 1.　Scheme of proposed S3AC.
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tion II formulates the optimal dispatch problem in ADNs, 
and introduces the Markov decision process (MDP) and the 
soft actor-critic (SAC) RL algorithm used in this paper. Sec‐
tion III introduces the components and process of the pro‐
posed S3AC in detail. Section IV demonstrates the safety 
and effectiveness of the proposed S3AC and analyzes the re‐
sults of different test cases. Finally, Section V states the con‐
clusion and directions for future research.

II. PRELIMINARIES 

In this section, we first formulate the optimal dispatch 
problem of DERs in ADNs. Then, the settings of the MDP 
in this paper are explained. Lastly, we briefly introduce the 
SAC RL algorithm used in the proposed S3AC.

A. Formulation of Optimal Dispatch Problem

An ADN can be described as an undirected graph 
 (,  ), where  and  are the collections of nodes and 
branches, respectively. The DERs considered in this paper in‐
clude micro gas turbines, PV inverters, and energy storage 
devices.

The power flow functions of ADN are shown as:

Pit =Vit∑
jÎ

Vjt( )Gij cos θijt +Bij sin θijt     "iÎ (1)

Qit =Vit∑
jÎ

Vjt( )-Bij cos θijt +Gij sin θijt     "iÎ (2)

where Pit and Qit are the active and reactive power injected 
into node i during time step t, respectively; Vit and Vjt are 
the voltage magnitudes at nodes i and j during time step t, 
respectively; Gij and Bij are the real and imaginary parts of 
the corresponding element in the admittance matrix of ADN, 
respectively; and θijt is the voltage phase difference between 
nodes i and j during time step t.

Considering micro gas turbines, PV inverters, and energy 
storage devices, the power injection Pit and Qit can also be 
expressed as:

Pit =P mt
it +P PV

it +P es
it -P load

it (3)

Qit =Qmt
it +QPV

it +Qes
it -Qload

it (4)

where the superscripts mt  PV  es, and load denote the mi‐
cro gas turbines, PV inverters, energy storage devices, and 
power loads, respectively.

Without loss of generality, the DERs mentioned above are 
all controllable in this paper. We assume that the PV invert‐
ers operate in the maximum power point tracking (MPPT) 
mode, whose active power generation is time-varying and re‐
active power generation is under control. During time step t, 
the objective of the ADN operator is to minimize the opera‐
tional cost by properly setting P mt

it  P
es
it  Q

mt
it  Q

PV
it  and Qes

it:

min∑
t = 0

T ( )∑
iÎ

C mt
i ( )t +∑

iÎ
C es

i ( )t +C0( )t (5)

C mt
i (t ) = ρmt

i P mt
it (6)

C es
i (t ) = ì

í
î

ρes
idis P es

it       P
es
it ³ 0

-ρes
ich P es

it    P
es
it < 0

(7)

C0(t ) = ì
í
î

ρbuyt P0t    P0t ³ 0

ρsellt P0t    P0t < 0
(8)

where C mt
i (t ) is the generation cost of the micro gas turbine 

at node i during time step t; C es
i (t ) is the charging or dis‐

charging cost of the energy storage device at node i during 
time step t; C0(t ) is the cost of buying electricity from the 
transmission network; ρmt

i  is the cost coefficient of the micro 
gas turbine at node i; ρes

ich and ρes
idis are the charging and dis‐

charging cost coefficients of the energy storage device at 
node i, respectively; ρbuyt and ρsellt are the prices of buying 
and selling electricity during time step t, respectively; and T 
is the length of an episode.

The constraints of micro gas turbines are shown as:

P mt
imin £P mt

it £P mt
imax    "iÎ (9)

Qmt
imin £Qmt

it £Qmt
imax    "iÎ (10)

-Ridown £P mt
it -P mt

it - 1 £Riup    "iÎ (11)

where Ridown and Riup are the maximum ramp-down and 
ramp-up rates, respectively; and the subscripts min and max 
represent the minimum and maximum values, respectively.

The constraints of PV inverters are shown as:

(P PV
it ) 2

+ (QPV
it ) 2

= (S PV
it ) 2

£ (S PV
imax ) 2

    "iÎ (12)

where S PV
imax is the installed capacity.

The constraints of energy storage devices are shown as:

P es
imin £P es

it £P es
imax    "iÎ (13)

Qes
imin £Qes

it £Qes
imax    "iÎ (14)

SOC es
imin £ SOC es

it £ SOC es
imax    "iÎ (15)

SOC es
it =

ì

í

î

ïïïï

ïïïï

SOC es
it - 1 -

P es
itDt
η

    P es
it ³ 0 "iÎ

SOC es
it - 1 - ηP es

itDt    P es
it < 0 "iÎ

(16)

where SOC es
it is the state of charge of energy storage device 

at node i during time step t; Dt is the interval between two 
time steps; and η is the charging/discharging efficiency.

To ensure the safe operation of ADN, the voltage safety 
constraint (17) and branch capacity constraint (18) should be 
satisfied.

Vmin £Vit £Vmax    "iÎ (17)

(P brch
ijt ) 2

+ (Qbrch
ijt ) 2

= (S brch
ijt ) 2

£ (S brch
max ) 2

    "ijÎ  (18)

where P brch
ijt  and Qbrch

ijt  are the active and reactive power flows 
of branch ij during time step t, respectively; and S brch

ijmax is the 
capacity of branch ij.

B. MDP

To apply RL algorithms in ADN operation, the optimal 
dispatch problem can be described as an MDP [32]. In MDP, 
an agent interacts with the environment, whose main compo‐
nents are defined by a tuple (pγ), where  is the 
state space of the environment;  and  are the observation 
space and action space of the agent, respectively; p is the 
state transition probability;  is the reward function; and 
γÎ [01] is the discount factor for future rewards. It should 
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be noted that the complete state space of the environment  
is often inaccessible in reality. Instead, the observation space 
 obtained by the agent is a partial observation of . In this 
paper, we replace oÎ with sÎ and treat the unobserved 
states as noises according to the usual notation. During the 
interaction, the agent receives the observation of the environ‐
ment stÎ and chooses an action atÎ. After the action is 
executed on the environment, the environment transfers to 
the next state st + 1Î based on the unknown state transition 
probability p:  ´ ´® [0¥). Then, a reward rt =
 (statst + 1 ) is received by the agent, where the reward 
function :  ´ ´® measures the performance of the 
agent in this transition.

The goal of the agent is to learn a policy π that optimizes 
its expected discounted reward J (π ):

max
π

 J (π ) =Eτ~π( )∑
t = 0

T

γtrt (19)

where the policy π of agent is an action probability distribu‐
tion in state st , i. e., at~π ( × |st ); and τ~π is the trajectory 
when the agent applies policy π to the environment.

To better illustrate the following SAC RL algorithm, we 
define an action value function Qπ(sa) in this section.

Qπ(sa) =Eτ~π( )∑
t = 0

T

γtrt |s0 = sa0 = a (20)

where Qπ(sa) is the expected discounted reward after tak‐
ing action a in state s with policy π.

Concerning a constrained MDP, when an agent interacts 
with the environment, the constraints can be divided into 
three parts: environment constraints, action constraints, and 
state constraints. The environment constraints are characteris‐
tics of the environment itself. The action constraints require 
the actions executed by the agent to be in a certain range. 
And the state constraints require the states of the environ‐
ment to be safe enough. For the optimal dispatch problem 
described above, the power flow functions (1)- (4) are envi‐
ronment constraints, which are automatically satisfied by the 
physical system. The equipment constraints (6) - (16) are ac‐
tion constraints, which can be easily satisfied by appropriate‐
ly setting the action space of the agent. The safety con‐
straints (17) and (18) are state constraints, which are the 
main concern of the ADN operator and the focus of the pro‐
posed S3AC.

C. SAC

In this paper, the SAC RL algorithm is used for the de‐
sign of RL agent [33]. It should be noted that any other RL 
algorithms can be easily implemented in our safe RL based 
method, we choose SAC here for its strong ability for explo‐
ration. Under the well-known actor-critic framework, SAC 
utilizes an actor network and a critic network to approximate 
its policy and the value function. The actor network πθ, 
which consists of two subnetworks μθ and σθ, optimizes the 
policy with parameters θ. μθ and σθ share the same input lay‐
er and hidden layers, and output the mean value and stan‐
dard deviation of the action distribution. The critic network 
Qπ
ϕ approximates the value function Qπ with parameters ϕ.

In SAC, when the RL agent interacts with the environ‐
ment, it stores transitions (statrtst + 1 ) in a replay buffer 
RL. Then, the neural networks of SAC are trained periodi‐
cally with a batch of transition data RL randomly sampled 
from the buffer. The parameters ϕ of the critic network are 
optimized by minimizing the loss function  (ϕ):

 (ϕ) = 1

||RL

∑
statrtst + 1ÎRL

( )Qπ
ϕ( )stat - yt

2

(21)

where yt is the target value of Qπ
ϕ(stat ), which can be calcu‐

lated using the Bellman equation:

yt = rt + γ ( )Qπ
ϕ'( )st + 1at + 1 - α log πθ( )at + 1|st + 1 (22)

where at + 1~πθ(st + 1 ); Qπ
ϕ' is the target critic network intro‐

duced to stabilize the training process, whose parameters ϕ' 
are delayed parameters of ϕ and gradually updated using 

ϕ'¬ λϕ'ϕ + (1 - λϕ')ϕ'; and the term -log πθ(at + 1|st + 1 ) is intro‐

duced by SAC to encourage the exploration of the RL agent, 
which effectively avoids overfitting to local optimal policies; 
and α is the corresponding coefficient of this term.

After the calculation of  (ϕ), the parameters ϕ are updat‐
ed using gradient descent:

ϕ¬ ϕ - λϕÑϕ (ϕ) (23)

With the help of critic network, the parameters θ of the ac‐
tor network are optimized by minimizing the loss func‐
tion  (θ ):

 (θ ) = 1

||RL
( )-Qπ

ϕ( )stat + α log πθ( )at|st (24)

where at~πθ(st ), and then parameters θ are also updated us‐
ing gradient descent:

θ¬ θ - λθÑθ (θ ) (25)

In the equations above, λϕ' λϕ and λθ are the learning 

rates of the corresponding parameters.

III. METHODS 

In this section, we innovate a safe RL based method, 
S3AC, for the optimal dispatch problem, which can effective‐
ly ensure the operational safety in ADN. This method con‐
sists of two stages: offline pre-training and online training & 
execution. In the offline stage, the supervisor and projector 
are pre-trained with historical data from the SCADA system. 
Then, in the online stage, the ADN controller interacts with 
the real-world ADN. The pre-trained supervisor and projec‐
tor ensure the actions to be executed are safe enough.

A. MDP Setup for RL Agent

First, we formulate the optimal dispatch problem of ADN 
as an MDP, which can be efficiently optimized by the SAC. 
The definitions of state space, action space, and reward func‐
tion are designed as follows.

1) State space: the state sRL of the MDP is mainly based 
on the measurements in ADN, which is defined as 

(PmtPPVP esP loadQmtQPVQesQloadVSOC es ), where each 
element in bold is the vector of corresponding variables.
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2) Action space: the action aRL of the MDP is based on 
controllable devices in ADN, and the upper and lower 
bounds of the action space satisfy equipment constraints (6)-
(16). For DERs considered in this paper, the action aRL is de‐
fined as (PmtP esQmtQPVQes ).

3) Reward function: the reward function is based on the 
objective function and safety constraints of the optimal dis‐
patch problem in ADN, which consists of the instant opera‐
tional cost Rc, voltage violation rate VVR, and branch capaci‐
ty violation rate SVR:

rRLt =-βRLc Rc(t ) - βRLV ×VVR (t ) - βRLS × SVR (t ) (26)

Rc(t ) =∑
iÎ

C mt
i ( )t +∑

iÎ
C es

i ( )t +C0( )t (27)

VVR (t ) =∑
iÎ ( )[ ]Vit -Vmax

2

+
+ [ ]Vmin -Vit

2

+
(28)

SVR (t ) =∑
ijÎ  

é
ë

ù
û( )S brch

ijt - S brch
max S brch

max

2

+
(29)

where βRLc, βRLV, and βRLS are the corresponding coeffi‐
cients; and [ × ]+ is the rectified linear unit function defined 

as [ x ]+ =max ( x0). If the safety constraints (17) and (18) 

are satisfied, we have VVR (t ) = 0 and SVR (t ) = 0.

B. Pre-training of Supervisor

As mentioned before, simply reward shaping as (26) can‐
not provide safety guarantees for actions to be executed, so 
the supervisor and projector are introduced in the proposed 
S3AC. The supervisor is pre-trained in the offline stage us‐
ing historical data from SCADA system, whose role is to ex‐
amine whether aRL generated by the RL agent is safe 
enough. In this paper, the supervisor is formulated with a ro‐
bust GPR to approximate the voltage magnitudes and branch 
power, which is robust to outliers in historical measurements.

In traditional GPR, the relationship between its input x 
and output y is modeled as a regression y = f ( x ) + ϵn, where 
f ( x ) is the underlying model; and ϵn is a homoscedastic 
Gaussian noise. The objective of traditional GPR is to infer 

the underlying model based on a batch of data {( x iyi )}n

i = 1
, 

where n is the data size. Assume the underlying model f ( x ) 
is a Gaussian process with zero mean value and kernel func‐

tion k ( xx'), and then f = { f ( x i )}n

i = 1
 follows a multivariate 

Gaussian distribution f~N ( × |0k ), where k is the covariance 

matrix determined by kij = k (x ix j ).
When given a new input x*, using the maximum likeli‐

hood estimation, the traditional GPR provides the posterior 

prediction of f ( x* ), including the mean value f ̂* =E ( )f ( )x*  

and variance σ 2
* = var ( )f ( x* ) . For a detailed description of 

the traditional GPR, please refer to [34].
Although traditional GPR achieves accurate approximation 

in theory, it can be severely biased when the data are con‐
taminated, especially when there exist outliers in historical 
measurements, which is not reliable for safe operation. So, 

we utilize a robust GPR introduced in [35], which consists 
of shrinking, concentrating, and reweighting stages.

In the shrinking and concentrating stage, first train the 

standard GPR with the full batch of data {( x iyi )}n

i = 1
 and cal‐

culate the estimated mean value f ̂i, variance σ 2
i , and normal‐

ized residual r'i = | yi - f ̂i | /σi for each point. Then, retrain the 

GPR using the δn points with the smallest residuals and up‐

date the estimated { f ̂iσir'i} for each point, where δ is the 

preserving fraction. The retrain and update step is repeated 
for nsh + ncc times. The preserving fraction δ shrinks from 1 
to a trimming parameter δ1 in the first nsh iterations and re‐
mains constant for the next ncc iterations. Besides, because 
the variance of a 1 - δ trimmed sample underestimates the ac‐
tual variance of the underlying sample, the corrected normal‐

ized residual is expressed as ri = || yi - f ̂i ( )σi c . Here, c =

δ Fχ 2
3
( χ 2

1δ ) is a consistency factor, where Fχ 2
3
 is the cumula‐

tive distribution function of the χ 2
3 distribution; and χ 2

1δ is 
the δ-quantile of the χ 2

1 distribution.
In the reweighting stage, remove the data points with r 2

i >
χ 2

1δ2
 and retrain the GPR with the remaining samples, where 

δ2 is a reweighting parameter. The process of the robust 
GPR is summarized in Algorithm 1.

In the proposed S3AC, we use the robust GPR to approxi‐
mate the voltage magnitudes and branch power. The input of 
the supervisor is x = (PPVP loadQloadPmtP esQmtQPVQes ), 
and output of the supervisor includes two parts: V and Sbrch. 

Algorithm 1: process of robust GPR

Input: {( xiyi )}n

i = 1
 δ1 δ2 nsh and ncc

Output: trimmed samples {( xiyi )}
iÎ I

, trained GPR hyperparameters Θ, 

and consistency factor c
1 for j = 0 to nsh + ncc do
2  if j = 0 then
3   I = {12n}
4   c = 1
5  else
6   if j £ nsh then
7    δ = 1 - (1 - δ1 ) j ( )nsh + 1

8   else
9    δ = δ1

10    end if
11    I = {i | ri £ δ - quantile ( )r }
12    c = δ Fχ 2

3
( χ 2

1δ )
13   end if
14 Θ = gp_optimize{( xi yi )}

iÎ I

15 f̂σ2 = gp_predict ({xi}
n

i = 1

|
|
||||{ }( )xi yi

iÎ I
Θ )

16 r = | y - f̂ | ( )σ c

17 end for

18 I = {i | r 2
i £ χ

2
1δ2

}
19 c = δ2 Fχ 2

3 ( χ 2
1δ2 )

20 Θ = gp_optimize{( xiyi )}
iÎ I

21 Return {( xiyi )}
iÎ I

 Θ and c
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With the input x, the estimated mean values and variances 
for voltage magnitudes of all nodes are denoted as f̂V( x ) and 
σ 2

V( x ), respectively; the estimated mean values and variances 

for branch power of all branches are denoted as f̂S( x ) and 
σ 2

S ( x ), respectively. After the pre-training of the supervisor, 
it can be transferred online to examine whether aRL is safe 
enough.

C. Pre-training of Projector

After the pre-training of the supervisor, the next step in 
the offline stage is the pre-training of the projector. As 
shown in Fig. 2, the projector dataset p is generated by the 
well pre-trained supervisor in the previous step. 

The input of the projector is the same as that of the super‐
visor, i. e., x = (PPVP loadQloadPmtP esQmtQPVQes ), which 

is the load and power generation in this ADN. To better illus‐
trate the role of the projector, we divide the input x into two 
parts: the uncontrollable part x-a = (PPVP loadQload ) and the 

controllable part aRL = (PmtP esQmtQPVQes ), i. e., x = ( x-a 

)aRL . The output of the projector is defined as Da =

(DPmtDP esDQmtDQPVDQes ), which is modification to the 

controllable part. In the proposed S3AC, the role of the pro‐
jector is to project the action generated by the RL agent aRL 
to aRL +Da with the minimal modification, so that the action 
after modification is safe enough for ADN operation. We de‐
note x after modification as x͂, i.e., x͂ = ( x-aaRL +Da). There‐

fore, the optimization problem for the projector can be for‐
mulated as:

min Ex~p
 Da

2 (30)

s.t.

f̄V( )x͂ £Vmax    "f̄V( )x͂ Î f̄V( )x͂ (31)

-
f

V
( )x͂ ⩾Vmin    " -

f
V
( )x͂ Î

-
f

V
( )x͂ (32)

f̄S( )x͂ ⩽S brch
max     "f̄S( )x͂ Î f̄S( )x͂ (33)

f̄V( x͂ ) = f̂V( x͂ ) + dσV( x͂ ) (34)

-
f

V
( x͂ ) = f̂V( x͂ ) - dσV( x͂ ) (35)

f̄S( x͂ ) = f̂S( x͂ ) + dσS( x͂ ) (36)

where d is the size of the confidence interval predicted by 
the supervisor. In this paper, we choose d = 3. In the pro‐
posed S3AC, we formulate the projector with a neural net‐
work with parameters ξ. During its training process, the loss 
function  (ξ ) is also calculated based on a batch p random‐
ly sampled from p:

 (ξ ) = 1

||p

∑
xÎp

é

ë

ê
êê
ê
ê
ê
 Da

2
+ βpV ∑

f̄V( )x͂ Î f̄V( )x͂

[ ]f̄V( )x͂ -Vmax

2

+
+

βpV ∑
-
f

V
( )x͂ Î

-
f

V
( )x͂

é
ë

ù
ûVmin - -

f
V
( )x͂

2

+
+

ù

û

ú
úú
ú
ú
ú

βpS ∑
f̄S( )x͂ Î f̄S( )x͂

é
ë

ù
û( )f̄S( )x͂ - S brch

max S brch
max

2

+
(37)

where βpV and βpS are the coefficients great enough to en‐
force the projector to satisfy these constraints.

Then, parameters ξ are updated using gradient descent:

ξ¬ ξ - λξÑξ (ξ ) (38)

After the pre-training of projector, it can be transferred on‐
line to project aRL.

D. Online Training & Execution

After the offline pre-training, we can transfer the RL 
agent, the supervisor, and the projector to online training & 
execution. In the online stage, the ADN controller interacts 
with the real-world ADN. Because of the random explora‐
tion process, the RL agent could generate unsafe actions dur‐
ing this interaction, and this is where the added supervisor 
and projector start to function.

As shown in Fig. 3, in the online stage, we formulate the 
optimal dispatch of real-world ADN as an MDP. During the 
interaction, the RL agent first receives the observation of the 
ADN sRL and generates an action aRL. Then, based on sRL 
and aRL, the supervisor formulates its input x to examine 
whether aRL is safe enough. If the estimated voltage magni‐
tudes f̂V( x ) and branch power f̂S( x ) are within a safe range, 
aRL is determined safe and executed directly on the real-
world ADN. The real-world ADN transfers it to next state 
and generates a reward rRL as feedback. The RL agent stores 
this transition information (sRLaRLrRL ) in its replay buffer 

for SAC learning.
If the action is determined unsafe (f̂V( x ) or f̂S( x ) is out of 

safe range) by the supervisor, then x is sent to the projector, 
which gives Da as output. The action executed on the real-
world ADN is aRL +Da, which is safe enough. The real-
world ADN transfers to the next state and generates a re‐
ward as feedback. Besides the transition information 

(sRLaRL +DarRL ), the RL agent also stores penalty informa‐

tion (sRLaRLpenalty) in the replay buffer, which indicates 

aRL is an unsafe action under sRL, where penalty is a negative 
number with a large absolute value. With help of the penal‐

Historical data

SCADA system

Load and generation

 measurements

Voltage and branch

 power measurements

Supervisor 

(input: x; output: V and Sbrch) Projector 

(input: x; output: Δa)

Robust GPR

Supervisor dataset
Projector dataset Dp

Generate situations

Neural network

Offline pre-training

Fig. 2.　Offline pre-training stage of proposed S3AC.

1489



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 12, NO. 5, September 2024

ty, the RL agent converges to a safe policy more quickly. If 
needed, the supervisor and projector can be updated periodi‐
cally by the ADN operator in the control center with the lat‐
est collected data, so they can effectively approximate the 
current state of the system.

Note that the proposed S3AC is not only useful for the op‐
erational safety in ADN optimal dispatch, but for a variety 
of safety constraints in different problems. In other model-
free power system dispatch problems, the operators only 
need to find an efficient supervisor and an appropriate pro‐
jector to help filter out unsafe actions.

IV. NUMERICAL STUDY 

In this section, numerical simulations are conducted on 
IEEE 33-bus [36], 69-bus [37], and 141-bus [38] test sys‐
tems to validate the effectiveness and safety of the proposed 
S3AC. The steady-state distribution network RL environ‐
ment is built under the scheme of the toolkit Gym [39] us‐
ing the power flow functions. The branch capacity of the 
three systems are 3.2 MVA, 7.2 MVA, and 25.0 MVA, re‐
spectively, and voltage limitations are [0.95, 1.05]. Specific 
parameters of DERs in the three test systems are listed in Ta‐
ble I. More detailed configurations concerning the test sys‐
tems are shown in the Supplementary Material.

A. Evaluation of Supervisor and Projector

In the offline stage of the proposed S3AC, the robust 
GPR based supervisor is trained with δ1 = 0.5δ2 = 0.975nsh =
2ncc = 2. The numbers of instances for training supervisors 
in the three test systems are 800, 1000, and 1600, respective‐
ly. To verify the robustness of the robust GPR, we add nor‐
mal distribution noise in half of the historical data to repre‐
sent possible measurement errors or outliers. We compare ro‐
bust GPR with traditional GPR, which is trained with the 
contaminated data without sample trimming.

The average and maximum normalized absolute errors of 
the predicted voltage magnitudes | f̂V( x ) -V | and branch 

power || f̂S( )x - Sbrch S brch
max  are shown in Table II. As shown 

in Table II, the supervisor only needs hundreds of instances 
to achieve accurate predictions. And the maximum normal‐
ized absolute errors of predicted voltage magnitudes and 
branch power flow are small enough to generate the projec‐
tor dataset and examine whether an action generated by RL 
agent is safe for ADN operation. In addition, compared with 
traditional GPR, the robust GPR effectively avoids the inter‐
ference caused by outliers, which achieves higher approxima‐
tion accuracy.

After the pre-training of supervisor, the projector is then 
pre-trained with the dataset generated by the supervisor. In 
this paper, the neural network of the projector is trained with 
2.0×105 instances generated by the supervisor. After its con‐
vergence, we randomly sample 100 load and power genera‐
tion situations to test the projector. The average norm of the 
action modification  Da

2
, VVR, and SVR calculated by su‐

TABLE Ⅱ
PERFORMANCE OF SUPERVISOR IN OFFLINE STAGE

IEEE 
test 

system

33-bus

69-bus

141-bus

Parameter

|| f̂V( x ) -V

|| f̂S( x ) - Sbrch S brch
max

|| f̂V( x ) -V

|| f̂S( x ) - Sbrch S brch
max

|| f̂V( x ) -V

|| f̂S( x ) - Sbrch S brch
max

Robust GPR

Mean

3.17×10-4

1.04×10-2

3.12×10-4

7.53×10-3

4.52×10-4

3.59×10-3

Maximal

3.93×10-3

1.05×10-1

4.06×10-3

1.13×10-1

7.07×10-3

9.51×10-2

Traditional GPR

Mean

4.05×10-3

3.30×10-2

3.57×10-3

1.83×10-2

3.86×10-3

8.94×10-3

Maximal

4.41×10-2

4.28×10-1

3.19×10-2

4.13×10-1

3.35×10-2

3.16×10-1

TABLE I
PARAMETERS OF DERS IN THREE IEEE TEST SYSTEMS

IEEE 
test 

system

33-bus

69-bus

141-bus

DER type

Micro gas 
turbine

PV inverter

Energy 
storage device

Micro gas 
turbine

PV inverter

Energy 
storage device

Micro gas 
turbine

PV inverter

Energy 
storage device

Number

2

2

2

2

2

2

2

4

1

Parameter

Active power: 1.5 MW
Reactive power: 1.5 Mvar

Capacity: 0.85 MVA
Active power: 0.75 MW

Active power: 0.3 MW
Reactive power: 0.3 Mvar

Active power: 3.0 MW
Reactive power: 3.0 Mvar

Capacity: 1.8 MVA
Active power: 1.5 MW

Active power: 0.6 MW
Reactive power: 0.6 Mvar

Active power: 6.0 MW
Reactive power: 6.0 Mvar

Capacity: 4.8 MVA
Active power: 4.0 MW

Active power: 1.2 MW
Reactive power: 1.2 Mvar

Connected 
bus No.

18, 33

22, 25

21, 24

18, 58

35, 46

34, 45

23, 55

49, 89,
116, 123

91

Replay buffer

Update with SAC
Transition information,

 penalty information

RL agent

Action: a
RL

Supervisor: 

estimate voltage and 

branch power

Is supervisor safe?

Ya
RL

Executed action

Input: x

N

Projector

a
RL

+Δa

Real-world ADN

Action guard

Observation

Fig. 3.　Online training & execution stage of proposed S3AC.
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pervisor of the state after modification in these 100 situa‐
tions are listed in Table III.

From the results listed in Table III, we observe that in the 
final stage of the pre-training, all of the projectors converge 
to a stable performance, which are able to use a relatively 
small modification on the action to ensure the operational 
safety.

B. Setup of Proposed and Benchmark Methods

To verify the effectiveness of the proposed S3AC, we first 
formulate the SAC Lagrangian (SAC-L) without supervisor 
and projector as a state-of-the-art constrained RL baseline, 
which iteratively updates the policy of RL agent and La‐
grangian multipliers to reach the safe optimal policy. In addi‐
tion, to test the robustness of the robust GPR based supervi‐
sor, we formulate S3AC with traditional GPR, i. e., S3AC 
non-robust (S3AC-NR), whose supervisor is trained with the 
contaminated data without sample trimming. The hyperpa‐
rameters of RL agents are listed in Table IV. A mixed-inte‐
ger second-order cone programming (MISOCP) based on 
DistFlow [40] of the ADN is also implemented for compari‐
son, which could be considered a theoretically optimal re‐
sult. The details of MISOCP are presented in the Supplemen‐
tary Material.

All of the RL agents are implemented in Python with the 
deep learning framework PyTorch. The MISOCP utilizes the 
commercial solver Gurobi. Experiments are run on a comput‐
er with a 2.3 GHz Intel Core i7-10875H CPU and 16 GB 
RAM. Due to the stochastic property of RL algorithms, we 

use three independent random seeds for each group of exper‐
iments.

C. Evaluation of Proposed S3AC

After the pre-training stage and algorithm setup, the ADN 
controller can be transferred to interact with the real-world 
ADN. We select PV and load data of one test day to test the 
training effect of the proposed S3AC, S3AC-NR, SAC-L, 
and MISOCP, whose profiles are also depicted in the Supple‐
mentary Material. Figures 4-6 display how these methods 
perform on this test day as the online training progresses in 
IEEE 33-bus system, 69-bus system, and 141-bus system, re‐
spectively, including total operational cost of the day and 
step average VVR. The mean values and standard deviations 
(std.) are presented as solid lines and filled areas, respective‐
ly. 

The total operational cost and step average VVR on this 
test day after convergence are listed in Table V. The maxi‐
mum violation of safety index (step average SVR and step 
average VVR) on this test day during online training is listed 
in Table VI. The best performance among these methods is 
marked in bold.

First, by comparing the convergence rate of these meth‐
ods, it can be observed from Figs. 4-6 that the proposed 
S3AC converges as quickly as SAC-L, which indicates the 
introduced supervisor and projector won’ t deteriorate the 
normal training process of the RL agent.

Meanwhile, for their final performance, both the proposed 
S3AC and SAC-L converge to a relatively low operational 
cost near the theoretically optimal result from MISOCP, 
which verifies the effectiveness of the model-free RL algo‐
rithms on the optimal dispatch problems in ADNs. With ap‐
propriate RL algorithm and MDP settings, the RL agent 
could achieve excellent performance comparable with tradi‐
tional model based methods.

TABLE IV
HYPERPARAMETERS OF RL AGENTS

Hyperparameter

Optimizer

Non-linearity

Replay buffer size

Batch size

Number of hidden layers

Number of hidden units

Number of episode steps

γ

λϕ'

λϕ

λθ

α

Value

Adam

ELU

8000

256

2

256

96

0.99

5.0×10-3

1.0×10-3

1.0×10-4
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10

20

30

40

50

60

O
p
er

at
io

n
al

 c
o
st

 (
$
)

10.9

0 5000 7500 10000 12500 15000 17500 20000

0.002

0.004

0.006

0.008

0.010

V
V
R

Proposed S3AC; S3AC-NR; SAC-L; MISOCP

Step
2500

Fig. 4.　Test results of proposed S3AC and benchmark methods in IEEE 
33-bus system.

TABLE Ⅲ
PERFORMANCE OF PROJECTOR IN OFFLINE STAGE

Test system

33-bus

69-bus

141-bus

 Da
2

0.607

0.749

1.040

VVR

9.60×10-8

6.65×10-7

1.36×10-6

SVR

0

0

0
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As for S3AC-NR in our experiments, its supervisor is for‐
mulated using traditional GPR, which is trained with the con‐
taminated data without sample trimming. As demonstrated 
above, this supervisor cannot accurately approximate the 
voltage and branch power of the ADN, based on which the 
projector cannot give suitable action modifications either. 
These improper information from the supervisor and inappro‐
priate modifications from the projector finally affect the nor‐
mal interaction of the RL agent and worsen its training pro‐
cess. As can be observed from Figs. 4-6, the training process 
for S3AC-NR is much more unstable, and its final perfor‐
mance also degrades.

When we apply model-free RL algorithms to real-world 
ADNs, the safety is a critical concern. It can be observed 
from Figs. 4-6 that SAC-L finally converges to a safe policy, 
which verifies the effectiveness of this constrained RL algo‐
rithm. However, at the beginning of the online interaction, 
unsafe actions are still generated and cause significant volt‐
age violations. In real-world ADNs, these violations may 
lead to serious consequences.

However, with the help of the introduced supervisor and 
projector, the proposed S3AC becomes the safest one from 
the beginning, which keeps VVR at the lowest level, greatly 
improving the applicability of RL algorithms. Additionally, 
for S3AC-NR, since the supervisor and projector cannot pro‐
vide accurate estimation and correct modification, its perfor‐
mance on safety index is even worse than SAC-L in some 
cases, which again confirms the importance of the robust 
GPR.

Since the main concern of this paper is the safety of RL 
based methods, we also list the maximum violations during 
online interaction in Table VI. For all the cases, the pro‐
posed S3AC achieves the lowest VVR, which is one or two 
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Fig. 6.　Test results of proposed S3AC and benchmark methods in IEEE 
141-bus system.

TABLE V
ONLINE PERFORMANCE AFTER CONVERGENCE OF PROPOSED S3AC AND 

BENCHMARK METHODS

Test 
system

33-bus

69-bus

141-bus

Method

S3AC

S3AC-NR

SAC-L

MISOCP

S3AC

S3AC-NR

SAC-L

MISOCP

S3AC

S3AC-NR

SAC-L

MISOCP

Operational cost ($)

Mean

15.4

15.0

15.3

10.9

37.5

39.4

37.5

31.4

134

161

132

120

Std.

0.895

0.877

0.548

0.378

0.166

0.894

2.781

20.615

1.584

VVR

Mean

0

0

4.98×10-6

0

0

0

0

0

0

9.36×10-5

0

0

Std.

0

0

7.05×10-6

0

0

0

0

1.12×10-4

0

TABLE Ⅵ
MAXIMAL VIOLATIONS DURING ONLINE INTERATION OF PROPOSED S3AC 

AND BENCHMARK METHODS

Test 
system

33-bus

69-bus

141-bus

Method

S3AC

S3AC-NR

SAC-L

S3AC

S3AC-NR

SAC-L

S3AC

S3AC-NR

SAC-L

SVR

Mean

6.05×10-3

6.81×10-1

2.38×10-1

1.53×10-5

5.43×10-1

1.23×10-1

1.26×10-5

2.84×10-3

1.87×10-2

Std.

7.48×10-3

5.95×10-1

1.45×10-1

8.68×10-6

2.33×10-1

1.05×10-1

1.77×10-5

2.89×10-3

1.23×10-2

VVR

Mean

4.57×10-4

4.12×10-2

1.14×10-2

9.67×10-4

9.53×10-2

1.07×10-2

9.25×10-3

7.20×10-2

8.33×10-2

Std.

1.17×10-4

3.09×10-2

8.45×10-3

1.55×10-4

4.28×10-2

4.30×10-3

1.47×10-3

3.01×10-2
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Fig. 5.　Test results of proposed S3AC and benchmark methods in IEEE 
69-bus system.
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orders smaller than other RL based methods. These results 
verify the enhanced safety of the proposed S3AC during on‐
line training & execution.

The computational speed is another important indicator of 
applicability for data-driven dispatch methods. Therefore, we 
test the average computation time of one step for the pro‐
posed S3AC and SAC-L, which are listed in Table VII.

As can be observed from the results, the computation time 
of SAC-L only includes forward calculation of the actor net‐
work, which is the fastest in all cases. When the generated 
action aRL is safe, the computation time for the proposed 
S3AC includes forward calculation of the actor network and 
examination of the supervisor. And when the generated ac‐
tion aRL is unsafe, the computation time for the proposed 
S3AC also includes action modification of the projector. The 
introduced supervisor and projector increase the online com‐
putation time. In addition, from the above comparison re‐
sults, the main computation time of the proposed S3AC 
comes from the robust GPR based supervisor, which predicts 
the voltage magnitude of each node and power flow of each 
branch in the ADN.

However, since the real-time dispatch of ADNs is usually 
minute-level, this computation time, which only takes milli‐
seconds, is completely sufficient for real practice. Moreover, 
the ADN operator can select only critical buses and branches 
for safety examination, so that computation time for the su‐
pervisor can be further reduced.

V. CONCLUSION 

The ADN is a safety-critical system, so the safety of the 
RL agent policies is a major concern to achieve the optimal 
dispatch in ADNs without accurate network models. One of 
the key novelties of the proposed S3AC is the introduction 
of the supervisor and projector. In the offline stage, the su‐
pervisor and projector are pre-trained with a small amount 
of historical data from the SCADA system. In the online 
stage, the supervisor and projector provide enhanced safety 
for every action executed on the real-world ADN. In addi‐
tion, the supervisor in the proposed S3AC is formulated 
with a robust GPR, which is robust to outliers in measure‐
ments. Numerical studies on IEEE 33-bus, 69-bus, and 141-
bus test systems have verified the safety and effectiveness of 
the proposed S3AC.

In future work, the application of the proposed S3AC to 
other safety critical problems, such as transient voltage sta‐
bility, is also a possible research direction.
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