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Abstract——The accurate prediction of photovoltaic (PV) power 
generation is significant to ensure the economic and safe opera‐
tion of power systems. To this end, the paper establishes a new 
digital twin (DT) empowered PV power prediction framework 
that is capable of ensuring reliable data transmission and em‐
ploying the DT to achieve high accuracy of power prediction. 
With this framework, considering potential data contamination 
in the collected PV data, a generative adversarial network is 
employed to restore the historical dataset, which offers a pre‐
requisite to ensure accurate mapping from the physical space to 
the digital space. Further, a new DT-empowered PV power pre‐
diction method is proposed. Therein, we model a DT that en‐
compasses a digital physical model for reflecting the physical 
operation mechanism and a neural network model (i.e., a paral‐
lel network of convolution and bidirectional long short-term 
memory model) for capturing the hidden spatiotemporal fea‐
tures. The proposed method enables the use of the DT to take 
advantages of the digital physical model and the neural net‐
work model, resulting in enhanced prediction accuracy. Finally, 
a real dataset is conducted to assess the effectiveness of the pro‐
posed method.

Index Terms——Photovoltaic power prediction, digital twin, hy‐
brid prediction, data recovery.

I. INTRODUCTION 

WITH the increasing integration of PV power genera‐
tion, its nonlinearity, periodicity, and volatility pose 

great challenges to the stable operation of power systems. 
The uncertainty of the PV power generation and the random‐
ness of the power demand may lead to the imbalance be‐
tween the power supply and demand. Accurate prediction 
models can mitigate the impacts of uncertainty of PV power 

generation, improve power system stability, and reduce the 
maintenance costs of additional equipments [1]-[3].

Currently, several studies on PV power prediction have 
been proposed, which can be roughly divided into three cate‐
gories: ① physical methods; ② statistical methods; and ③ 
artificial intelligence (AI) -based methods. The concept of 
physical methods is to use physical models to construct the 
relationship between PV power output and other factors such 
as numerical weather prediction (NWP) data [4], sky images 
[5], and satellite images [6]. The concept of statistical meth‐
ods is to apply statistical principles such as Bayesian model 
averaging (BMA) [7], exponential smoothing [8], and autore‐
gressive integrated moving average (ARIMA) [9] to extract 
correlations and variation patterns from historical data. Both 
physical and statistical methods have the advantage of ob‐
taining stable PV power prediction. However, it is very diffi‐
cult to establish a physical model that can obtain high-accu‐
racy prediction results for every prediction scenario, since 
there exist several hidden features that are hard to capture 
via mechanism analysis. Meanwhile, statistical methods 
mainly focus on using historical data of power generation, 
which ignores weather conditions and results in limited pre‐
diction accuracy [10].

To cope with shortcomings of physical and statistical 
methods, the AI-based methods for PV power generation 
have been proposed and gained significant attentions. For in‐
stance, convolutional neural networks (CNNs) were used for 
extracting spatial features [11] - [13], while long short-term 
memory (LSTM) networks were used for extracting tempo‐
ral features [14]-[16]. CNNs do not fully consider the tempo‐
ral characteristics of the input data, and LSTM networks 
have limited ability to capture the causal relationships be‐
tween input factors. To address this issue, hybrid models 
based on CNN and LSTM were proposed in [17] and [18]. 
Additionally, graph neural networks (GNNs) [19], [20], par‐
ticularly graph convolutional networks (GCNs) [21], [22], 
are often combined with graph modeling methods to explore 
the causal relationships among input factors [23]. Neverthe‐
less, GNNs and GCNs primarily focus on the neighboring in‐
formation of nodes and have limited modeling capabilities 
for time-series data, which may pose challenges when deal‐
ing with the graphs with complex topological structures. Re‐
cently, generative adversarial networks (GANs) with capabili‐
ties in image restoration and data completion have also been 
used to address PV power prediction problems. In [24], a 
generator based on recurrent neural network (RNN) was em‐
ployed to predict solar power, while a CNN discriminator 
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was utilized to enhance the prediction accuracy of the gener‐
ator. However, when the training data are unbalanced or sam‐
ples are scarce, it may lead to unreliable power prediction re‐
sults generated by a GAN.

The aforementioned PV power prediction models are built 
up on the assumption that the dataset is complete [11]-[24]. 
In fact, varying degrees of pollution are usually observed in 
the collected measurement data, which may be caused by da‐
ta logger failures, communication network failures, and inac‐
curate instruments, etc. Learning samples with these unex‐
pected pollutants may lead to the bias in prediction results. 
To address this issue, the PV power generation is predicted 
based on a recursive long short-term memory network in 
[25], which considers the possible quality problems of the 
dataset. The missing data are estimated using a recursive pro‐
cess. However, the robustness of the method is reduced 
when the testing data loss rate significantly differs from the 
training data loss rate. Moreover, this method does not con‐
sider the continuous missing data patterns in the dataset. In 
[26], a super-resolution perception CNN was employed to re‐
cover missing data, and a stochastic configuration network 
(SCN) was utilized for PV power prediction. However, the 
quality of data recovery needs to be improved, which subse‐
quently affects the accuracy of PV power prediction. In addi‐
tion, even if the dataset is complete, there may exist data im‐
balance. In [27], data augmentation methods, e.g., noise in‐
jection, color space transformations, and mixing of images, 
were used to expand a small amount of sky image data un‐
der cloudy conditions. Meanwhile, the CNN was used to pre‐
dict short-term PV output. In [28], the dataset was augment‐
ed with complementary exogenous features including the pe‐
riodic properties of the production, altitude, azimuth, and ir‐
radiance of solar, and clear and overcast days, etc. Then, a 
hybrid neural network model was proposed to predict PV 
power generation.

The aforementioned AI-based methods have yielded re‐
markable outcomes. However, there exist two challenges. On 
the one hand, although the consideration of data recovery is 
presented in [25] and [26], the implementation of these meth‐
ods is challenging; meanwhile, the quality of the recovered 
data is insufficient. To address this issue, a potential method 
is the utilization of the GAN. It is a framework for training 
parameter generation models, which is capable of learning 
arbitrarily complex probability distributions. The success of 
GANs in image restoration [29] and traffic data completion 
[30] serves as inspiration for applying GANs to learn the dis‐
tribution of PV data, thus tackling the challenging task of re‐
covering large-scale historical data. On the other hand, these 
AI-based methods [11]-[26] are predominantly developed us‐
ing historical data such as power generation and meteorolo‐
gy data, without taking into account the specific physical 
characteristics of the PV system itself. It should be noted 
that the actual state of the PV power station, particularly the 
physical condition of the PV panels, significantly impacts 
the power generation process. To address this issue, the DT 
technology provides an alternative solution. The DT refers to 
the construction of a virtual system in a virtual space that 
utilizes physical models and operational historical data to ac‐

curately represent and map the physical entity or process 
[31]. The advantages of DTs can be divided into the follow‐
ing three points: ① the DT is an accurate virtual simulation 
of a real-world entity, process, or system, which allows us to 
perform various tests, predictions, and optimizations in a vir‐
tual environment without actually manipulating real-world 
objects. It results in saved time and money [32]; ② the DT 
is capable of sharing information with the physical entities 
in real time, resulting in the information synchronization. 
This is helpful to make fast and accurate decision-making 
[33]; and ③ the DT can leverage the digital physical models 
to describe the behavior of real systems and combine with 
data-driven machine learning methods to achieve accurate 
modeling and prediction of real systems [34]. These advan‐
tages make DT become an innovative method and tool that 
can be applied to multiple fields. For instance, a two-level 
hierarchical learning process using the real-time model state 
stored on the DT server was proposed in [35], aiming to en‐
hance the machine learning (ML)-based product design on a 
DT-aided Internet of Things (IoT) platform. An intelligent 
context-aware medical system was implemented in [36] by 
using a DT-based framework. Meanwhile, an electrocardio‐
gram (ECG) heart rhythms classifier model was built by us‐
ing ML to diagnose heart disease and detect heart problems. 
In addition, the DT was also used for product quality predic‐
tion [37], intelligent transportation [38], and smart home 
[39]. Although the DT has gained broad applications, it has 
not been applied to PV power prediction. Based on the ad‐
vantages of the DT, our aim is to jointly create the digital 
physical model to reflect the inherent mechanism of PVs 
and use the neural networks to capture the hidden features 
that are hard to be modeled by physical model. In the sense, 
we can create a high-fidelity DT to reflect the reality well 
by taking advantages of physical knowledge and learned da‐
ta knowledge, resulting in enhanced prediction accuracy. 
However, no attention has so far been paid to this aspect.

To tackle those challenges, this paper establishes the DT 
empowered PV power prediction framework and proposes a 
DT-empowered PV power generation prediction method. The 
main contributions are described as follows.

1) We propose a new DT-empowered PV power prediction 
framework, which is composed of a physical layer, a data 
transmission layer, a DT layer, and a service layer, while de‐
fining the detailed functionality of each layer. This is a uni‐
versal reference framework that enables the integration of 
the DT to empower the PV power prediction.

2) To ensure accurate mapping from the physical to the 
digital space, a GAN is employed to restore the historical da‐
taset, considering potential data contamination in the collect‐
ed PV data. This restoration process serves as a prerequisite 
for reliable data analysis and prediction within the DT frame‐
work.

3) A DT-empowered PV power prediction method is pro‐
posed, where the DT is constructed with a digital physical 
model and a parallel CNN and bidirectional long short-term 
memory (CNN-BiLSTM) model. The proposed method cap‐
tures both the physical operation mechanism and hidden spa‐
tiotemporal features, leveraging the strengths of both models 
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to increase the prediction accuracy.
The remainder of this paper is summarized as follows. 

Section II presents the DT-empowered PV power prediction 
framework. Section III provides the DT-empowered predic‐
tion method within the proposed framework. Section IV pres‐
ents the simulations to evaluate the performance of the pro‐
posed method. Finally, Section V concludes this paper.

II. DT-EMPOWERED PV POWER PREDICTION

FRAMEWORK 

Figure 1 shows the proposed DT-empowered PV power 
prediction framework, which is composed of a physical lay‐
er, a data transmission layer, a DT layer, and a service layer. 
The variables in Fig. 1 will be explained in Section III.

A. Physical Layer

This layer refers to physical objects in the real world such 
as PV panels and sensors. The layer will collect and store de‐
vice parameters, the PV power generation data, and the mete‐
orological data. Device parameters include short-circuit cur‐
rent ISC, open-circuit voltage UOC, data at the maximum pow‐
er point (current Im, voltage Um, and the maximum power 
P0m), and volt-ampere characteristic curve of the PV panel. 
According to different sampling time points, historical datas‐
ets can be expressed as:

Dxp =[Dxp (1)Dxp (2)Dxp (nT )]T (1)

X =[X(1)X(2)X(nT )]T (2)

P =[P(1)P(2)P(nT )]T (3)

where Dxp ( j) is the historical data including temperature, 
wind speed, solar radiation, relative humidity, and PV power 
generation, etc., collected at the jth sampling; Dxp ( j)={X( j) 
P( j)}; nT is the time dimension of the data; and X( j) and 
P( j) are the historical meteorological data and historical PV 
power generation data collected at the jth sampling time 
point, respectively.

B. Data Transmission Layer

This layer serves as the connection channel between the 
physical and virtual spaces, enabling the collection and trans‐
mission of relevant data information from the PV power sta‐
tion. During data collection, the loss of data packets is possi‐
ble, leading to incomplete time series data in the analysis of 

historical PV power generation data. To address this issue, 
we propose the utilization of a GAN for data recovery, 
which will be discussed in Section III-A. The historical data 
restored by GAN and the parameter data of PV panels, sen‐
sors, and other devices are transmitted from the physical 
space to the virtual space at one time, participating in the 
construction of the DT model of the PV power station. The 
real-time weather data are transmitted in real time from the 
physical space to the virtual space, which enables participate 
in the power prediction of the DT layer.

C. DT Layer

As the main part of this paper, this layer focuses on creat‐
ing the DT model and using it to achieve PV power genera‐
tion. In order to accurately reflect the real world and create 
a high-fidelity DT model, it is necessary to consider the 
physical characteristics of the PV system and extract the in‐
herent relationships within the historical data simultaneously. 
In the virtual space, we set up a digital physical model that 
can reflect the physical operation mechanism and a parallel 
CNN-BiLSTM model to capture hidden spatiotemperal fea‐
tures. These components are combined using a fusion formu‐
la to accomplish the prediction of PV power. The detailed 
DT modeling process and the prediction procedure will be 
discussed in Section III-B and Section III-C, respectively.

D. Service Layer

This layer receives the prediction results from the DT lay‐
er to meet diverse services such as: ① providing reference 
for energy dispatch and optimization; ② optimizing the 
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charging/discharging control for battery; and ③ facilitating 
demand response programs.

III. DT-EMPOWERED PV POWER PREDICTION METHOD 

Within the proposed framework, we propose the DT-em‐
powered PV power prediction method that contains three 
phases: ① data preparation phase; ② DT modeling phase; 
and ③ power prediction phase. Figure 2 illustrates the over‐
all flowchart. Next, we proceed to elaborate the design of 
each phase.

A. Data Preparation Phase

The data preparation phase is performed at the data trans‐
mission layer. In this phase, the data transmission layer re‐
trieves pertinent data from the PV power station. The histori‐
cal meteorological and power data are fed into the GAN. 
Subsequently, the recovered historical data and device param‐
eters are transferred from the physical layer to the DT layer 
at one time to participate in the construction of DT model. 
Real-time weather data are transmitted from the physical lay‐
er to the DT layer, which are used for subsequent PV power 
prediction.
1)　Tensor Modeling of Historical Data

Historical weather and power data collected from PV sites 

are combined and modeled as a tensor.
Firstly, c adjacent vectors Dxp1 Dxp2Dxpc are estab‐

lished for Dxp, with a time interval of one sampling interval, 
i. e., 15 min. The adjacent vectors X1X2Xc and P1 
P2Pc adjacent to X and P are also established. For exam‐
ple, Dxp2 ={X2P2 }= [Dxp (2)Dxp (3)Dxp (l + 1)]T has two 
adjacent vectors Dxp (1)={X(1)P(1)}=[Dxp (1)Dxp (2) 
Dxp (l)]T and Dxp (3)={X3P3 }=[Dxp (3)Dxp (4)Dxp (l + 2)]T, 
where l is the time step of the vector. It means that each vector 
contains data of l sampling time points. The corresponding ad‐
jacent vectors M1M2Mc of the mask matrix can also be 
obtained by using its procedure.

We represent Si as the ith training sample input into the 
GAN. Then, we have:

Si =[DxpiDxp(i+ 1)DxpjP j P j P j] (4)

where SiÎRl ´ l, SiÎ S, and S is the set of all training sam‐
ples input into GAN; i < j, and j - i + 1 = ë ûl/(nx + 1) . f = l%(nx +
1) is the number of padding vectors P j, where nx is the num‐
ber of meteorological factors, and % is to obtain the value 
of remainder. An binary mask matrix M with the same shape 
as S is created to mark the positions of missing elements. 
For the missing elements in S, the corresponding elements 
in M are set to be 0; meanwhile, the rest of elements are set 
to be 1.

After modeling the historical data into a tensor, the prob‐
lem of historical data recovery becomes the recovery of 
missing elements in the tensor.
2)　Data Recovery

To achieve effective data recovery, we employ the GAN 
consisting of a generator and a discriminator, which is capa‐
ble of learning the temporal features of the data and captur‐
ing the intrinsic relationship between meteorological data 
and power data. The generator uses a CNN-based encoder-
decoder structure. The encoder takes the missing dataset S0 =
SM as input and generates the latent feature representation 
of S0, where  is the dot product operator. Then, the decod‐
er obtains the latent feature representation and outputs 

-
S, 

which includes the recovered part of the missing data. Fur‐
thermore, to maximize the utilization of the reliable data that 
are already presented in set S0 during the data generation 
process, a U-net is adopted in the generator to enhance fea‐
ture extraction. The discriminator takes the restored matrix 

-
S 

and the original complete matrix S as inputs. The generator 
is trained to generate the restored matrix 

-
S, while discrimina‐

tor is trained to judge whether the quality of the missing da‐
ta recovery is realistic enough. The employed generator and 
discriminator network structures are shown in Fig. 3 and 
Fig. 4, respectively. Through the game between the genera‐
tor and the discriminator, effective data recovery can be 
achieved.
3)　Loss Function of GAN

Based on the description of the model structure, the loss 
function of the generator and discriminator is proposed.

The loss function of generator includes the adversarial 
loss and the recovery loss. The adversarial loss is defined 
based on the output of discriminator, which represents the 
quality of recovery of missing data, i.e.,
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La =-ESM [D(
-
S)] (5)

where D(×) is the discriminant value of the output of discrimi‐
nator. The recovery loss is defined as the masked root-mean-
squared error (RMSE) between 

-
S and S. Since La has al‐

ready dealt with the missing data part, the recovery loss 
mainly focuses on the part of intact data. The mathematical 
expression of the recovery loss is given by:

Lr =ESM[ ] SM - S̄M (6)

Next, the loss function of the generator is defined as:

LG =La +Lr (7)

The objective of the discriminator is to maximize the dis‐
criminative value of real historical data and minimize the dis‐
criminative value of the output of the generator. Therefore, 
the loss function of the discriminator is defined as:

LD =-ES [D(S)]+ESM [D(S̄)] (8)

B. DT Modeling Phase

In order to build a virtual model at the DT layer that can 
accurately reflect the process of PV power generation in the 
real world, we receive the device parameters and the histori‐
cal dataset after the data recovery from the transmission lay‐
er. First, we construct a digital physical model to simulate 
the internal mechanism of PV panel power generation. Then, 
a parallel CNN-BiLSTM model is built and trained to ex‐
tract the inherent characteristics of meteorological factors 
and PV power generation. Eventually, a combination formu‐
la is applied to connect the two models to form the DT mod‐
el.
1)　Digital Physical Model

This part is composed of the underlying physical model 
and the power deviation correction module. Specifically, the 

PV power plant is a device designed to convert solar radia‐
tion into direct current electricity. It primarily consists of so‐
lar cells, which are semiconductor thin films that directly 
generate electricity when exposed to sunlight of a specific ir‐
radiance. These solar cells can produce voltage and current 
when connected in a circuit. The power output of solar cells 
varies due to fluctuations under weather conditions. Solar ra‐
diation plays a crucial role in determining the power output. 
Higher temperatures can reduce the efficiency of power gen‐
eration components, while strong winds can help to reduce 
the temperature of solar cells, thereby increasing power gen‐
eration. This behavior can be effectively modeled using an 
equivalent circuit.

The formula for describing the output current of a single 
diode equivalent circuit is given by:

I = Ipv - Ish - Id (9)

where Ipv is the photocurrent generated by the battery due to 
incident solar radiation; Ish is the short-circuit current caused 
by leakage at the edge of the battery and the formation of 
metal bridges; and Id is the diode current that comes from 
the Shockley equation. The mathematical expressions of Ish 
and Id are given by:

Ish =
IRs +V

Rsh
(10)

Id = I0

é

ë

ê
êê
ê ù

û

ú
úú
úexp ( )q(IRs +V )

AbTm

- 1 (11)

where V is the voltage drop across the battery due to inci‐
dent solar radiation; Rs is the series resistance; Rsh is the 
shunt resistance; I0 is the reverse saturation current; q is the 
electron charge; A is the ideality factor of the diode; b is the 
Boltzmann constant; and Tm is the actual temperature of the 
PV module defined as:

Tm = T +
G

μ0 + μ1ν
(12)

where T is the ambient temperature; G is the real-time irradi‐
ance; μ0 is the irradiance-induced shading effect; μ1 is the ef‐
fect of wind speed; and ν is the real-time wind speed.

The generated power of the solar cell, denoted as P0, is 
calculated as:

P0 =VI (13)

There exist five unknown parameters, i.e., Ipv, I0, Rs, Rsh, 
and A. By establishing five equations based on the short-cir‐
cuit current ISC, open-circuit voltage UOC, the maximum pow‐

er P0m =Um Im, 
dP
dV

= 0 at the maximum power point, and 

dI
dV

=-
1

Rsh

 at the short-circuit point, the unknown parame‐

ters can be obtained. With those components, a physical 
model of the PV power station can be constructed. The input 
data are T, G, and ν, while the output data are I, V, and P0.

Based on the predicted PV power data obtained from the 
aforementioned underlying physical model, the model consid‐
ers only environmental temperature, real-time irradiance, and 
real-time wind speed as inputs. However, this method fails 
to account for the complex practical conditions of the PV 
power station and other weather factors, leading to certain 
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Fig. 3.　Generator network structure.
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deviations in the prediction results. To address this issue, a 
deviation correction process is introduced. In this process, 
the similarity in PV power output under the influence of ex‐
ternal climate conditions is taken into account, considering 
different seasons and sampling times within a day. By calcu‐
lating and storing the difference between the output power 
of the underlying physical model and the actual historical 
power, it is possible to determine a correction value. This 
correction value is then used to adjust the predicted power 
from the underlying physical model, resulting in more accu‐
rate prediction results within the digital physical model. To 
implement the deviation correction, the historical weather da‐
ta that have been restored through the use of GAN are em‐
ployed as input to the underlying physical model. Let P0 =
[P0 (1)P0 (2)P0 (nT )]T represent the output power, and P 
is the actual power. The difference between the predicted 
power and the actual power of the underlying physical mod‐
el can be calculated as:

θ =P0 -P =[θ(1)θ(2)θ(nT )]T    θÎRnT (14)

According to (14), the revised value, denoted as E =
[E(1)E(2)E(nT )]T, can be calculated as:

E(0)= 0 (15)

E(i)=
βE(i - 1)+ (1 - β)θ(i)

1 - β i (16)

where β is an adjustable hyperparameter between 0 and 1.
As the historical dataset used for constructing the digital 

physical model typically contains a large amount of data, 
spanning more than one year, it is essential to fully utilize 
this dataset while ensuring the stability of the revised value 
calculation. To achieve this, the calculation result of the re‐
vised value is averaged on a yearly basis, resulting in Ē =
[Ē(1)Ē(2)Ē(365t)]T. The formula for calculating the ele‐
ments in the Ē array is expressed as:

Ē( j)=

ì

í

î

ï
ïï
ï

ï
ïï
ï
ï
ï

1
m∑i = 1

m

E( j + (i - 1)´́ 365t)       1 £ j £ j0

1
m - 1∑i = 1

m -- 1

E( j + (i - 1)´́ 365t)     j0 < j £ 365t
(17)

where j0 = nT%(365t); m = é ùnT /(365t)  and é ù×  is used to round 
up to an integer; and t is the number of data sampling times 
per day.

After Ē is obtained, the power value of the corrected out‐
put power at the jth sampling time point, representing the pre‐
dicted power of the digital physical model, can be calculated 
as:

P͂D ( j)=P0 ( j)- Ē( j) (18)

2)　Parallel CNN-BiLSTM Model
To capture the underlying relationships among diverse me‐

teorological data and the temporal dependencies within the 
data, we propose a parallel CNN-BiLSTM model, as depict‐
ed in Fig. 4. The parallel CNN-BiLSTM network can simul‐
taneously process different parts of the input data and fully 
leverage the capabilities of parallel computing. This signifi‐
cantly enhances computational efficiency and speeds up both 
model training and inference processes. Furthermore, the par‐
allel CNN and BiLSTM layers facilitate the extraction and 

integration of data features concurrently. This enables us to 
capture the information pertaining to various aspects of the 
data and to provide a potent model representation, thereby 
improving prediction accuracy. To be specific, the CNN com‐
ponent is employed to extract intrinsic features between differ‐
ent data types within a defined time step. Meanwhile, the BiL‐
STM is utilized to capture deeper temporal features by consid‐
ering the information from both the “forward” and “back‐
ward” directions. The parallel architecture of the CNN and 
BiLSTM allows independent extraction of intrinsic features 
from various data types and deeper temporal features from the 
input data. These features are then concatenated into a final 
feature vector, which is used for predicting PV power genera‐
tion.

Tensor modeling is conducted on the recovered historical 
meteorological data and historical power data, denoted as Xr 
and Pr, respectively. Meanwhile, the predicted power of the 
neural network model is defined as P͂N:

Xr =[Xr (1)Xr (2)Xr (nT )] (19)

Pr =[Pr (1)Pr (2)Pr (nT )] (20)

P͂N =[P͂N (1)P͂N (2)P͂N (nT )] (21)

Xr (i)=[xr (i - L)xr (i - L + 1)xr (i - 2)xr (i - 1)]T (22)

where Xr (i)ÎRL ´ nx is the input data required to predict the 
power at the ith sampling time point; xr (i) is the meteorologi‐
cal data collected at the ith sampling time point; Pr (i) is the 
power at the ith sampling time point; P͂N (i) is the predicted 
power by the parallel CNN-BiLSTM model; and L is the 
time step of the input data of the parallel CNN-BiLSTM 
model. Note that Xr (i) contains the time-series data. After 
normalization, it is viewed as the grayscale image and 
served as the input of Conv2D. In addition, Xr (i) is flattened 
and served as the input of BiLSTM. The loss function is set 
to be:

RMSE =
1
N∑i = 1

N

(P͂N (i)-Pr (i))2 (23)

where N is the batch of samples for each training.
3)　Combination Formula of PV Power Prediction Results

In order to leverage the advantages of the digital physical 
model and the parallel CNN-BiLSTM model, we design the 
combination formula that is a linear combination of the pre‐
diction results form the two models. The combined result is 
used as the final predicted PV power. We define PD and PN 
to represent the predicted values of the digital physical mod‐
el and the parallel CNN-BiLSTM model. The difference θ1 
between the real power and the predicted power from the 
digital physical model as well as the difference θ2 between 
the real power and the predicted power from the parallel 

Conv2D; BiLSTM; Flatten; FC; Output

X
r
(i) P

N
(i)

~

Fig. 5.　Structure of parallel CNN-BiLSTM model.

1477



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 12, NO. 5, September 2024

CNN-BiLSTM model can be calculated as (24) and (25), re‐
spectively:

θ1 =PD -P =[θ1 (1)θ1 (2)θ1 (nT )]T (24)

θ2 =PN -P =[θ2 (1)θ2 (2)θ2 (nT )]T (25)

In order to reduce the amount of data, maximize the use 
of recovered historical data, and avoid the contingency of 
calculation results, the above two difference values are aver‐
aged annually. The calculation formula is given by:

θ̄κ ( j)=

ì

í

î

ï
ïï
ï

ï
ïï
ï
ï
ï

1
m∑i = 1

m

θ ( j + (i - 1)´ 365t)   1 £ j £ j0

1
m -- 1∑i = 1

m -- 1

θ ( j + (i - 1)´ 365t)    j0 < j £ 365t
(26)

where κ = 1 or 2.
According to (26), we can obtain the averaged differences 

θ̄1 and θ̄2 as:

θ̄1 =[θ̄1 (1)θ̄1 (2)θ̄1 (365t)]T (27)

θ̄2 =[θ̄2 (1)θ̄2 (2)θ̄2 (365t)]T (28)

where θ̄1 ( j)Î θ̄1; and θ̄2 ( j)Î θ̄2.
The combined formula of the power prediction results is 

defined as:

P̂( j)=w1 ( j)PD ( j)+w2 ( j)PN ( j) (29)

where w1 and w2 are the weight coefficients of the predicted 
power from the digital physical model and the parallel CNN-
BiLSTM model, respectively. The mathematical definitions 
of the weight coefficients are designed as:

w1 ( j)=
kθ̄ 2

2 ( j)

θ̄ 2
1 ( j)+ kθ̄ 2

2 ( j)
(30)

w2 ( j)=
θ̄ 2

1 ( j)

θ̄ 2
1 ( j)+ kθ̄ 2

2 ( j)
(31)

where k > 0 is a hyperparameter.

C. Power Prediction Phase

After finishing the phases of data preparation and DT 
modelling, we proceed the final power prediction phase. Tak‐
ing the real-time weather data as input, we use the digital 
physical model and the parallel CNN-BiLSTM model to cal‐
culate the prediction results P̂D and P̂N. Then, the final pre‐
dicted power P̂ =w1 P̂D +w2 P̂N is obtained through the calcu‐
lation of the combined formula of the power prediction re‐
sults.

Remark 1: the data augmentation method is a kind of data 
preprocessing technique for expanding training data through 
a series of transformations and extensions of the original da‐
taset to generate new training samples. Distinguished from 
the data augmentation methods, the DT focuses on creating 
the data counterpart of the physical systems to provide simu‐
lation and analysis. In the aspect of solving the prediction 
problem, the data augmentation method enables the exten‐
sion of training data to deal with the data imbalance and im‐
prove the prediction accuracy. In this paper, the DT is used 
to create digital physical models that reflect the intrinsic 
mechanisms of physical systems, and use machine learning 
models to capture hidden features that are difficult to ana‐

lyze based on physical models. This enables the integration 
of physical knowledge and data-driven methods to achieve 
accurate modeling and prediction of real systems. In this pa‐
per, we have complete real dataset without the requirement 
of generating new dataset. Thus, we intend to introduce DT 
to increase the prediction accuracy.

IV. SIMULATIONS

A. Preparation
1)　Dataset

The real dataset comes from the global intelligent evolu‐
tion simulation experiment platform and engineering demon‐
stration application project of distributed information energy 
system at Northeastern University in China. This dataset con‐
tains historical records of relevant information on power gen‐
eration and weather conditions. Specifically, it covers the pe‐
riod between 2016 and 2018 and includes the data recorded 
from 08:00 a.m. to 17:00 p.m. daily. The sampling interval 
is 15 min. The data types include temperature, wind speed, 
solar irradiance, relative humidity, and PV output power. 
The first 24 months and the last 12 months of the historical 
dataset are taken as training and testing samples, respective‐
ly. The time dimension of the data, the number of meteoro‐
logical factors, and the data sampling frequency per day are 
nT = 40515, nx = 12, and t = 37, respectively. To handle the 
missing and abnormal data, invalid data are identified and 
set to be zero in the mask matrix M. In order to eliminate 
data dimensions and enhance data features, the historical da‐
taset is normalized and then inputted into the GAN for data 
recovery to improve the quality of the dataset.
2)　Network Parameters

The parameters of the generator and discriminator net‐
works are listed in Tables I and II, respectively.

TABLE I
PARAMETERS OF GENERATOR NETWORK

Layer

1

2

3

4

5

6

7

8

Part

Convolution

Convolution

Attention

Convolution

Deconvolution

Attention

Deconvolution

Deconvolution

Kernel size

4 ´ 4

3 ´ 3

4 ´ 4

4 ´ 4

3 ´ 3

4 ´ 4

Number

16

32

64

64

64

32

TABLE II
PARAMETERS OF DISCRIMINATOR NETWORK

Layer

1

2

3

4

5

6

Part

Convolution

Convolution

Convolution

Attention

Convolution

Convolution

Kernel size

3 ´́ 3

3 ´́ 3

5 ´́ 5

3 ´́ 3

4 ´́ 4

Number

8

16

32

64

1
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The generator takes input data with a time step of l = 92 
and nx + 1 = 13, resulting in j -- i + 1 = 7 and f = 1. The convolu‐
tional layers in the generator network employ SAME pad‐
ding with a stride of s = 2. Similarly, the convolutional layers 
in the discriminator network also adopt SAME padding, 
with a stride of s = 2, except for the last convolutional layer, 
which has a stride of s = 1. The Adam optimizer is used for 
the GAN with the activation function Leaky ReLU and keep-
probability of 0.8. The input data of the parallel CNN-BiL‐
STM model in the DT layer have a time step of l = 12 and 
nx = 12. We chose the batch size as 64, the epochs as 50, and 
the learning rate as 0.0002. The parameters of the parallel 
CNN-BiLSTM model are shown in Table III, where the con‐
volutional layer has no padding (i. e., p = 0) with a stride 
of s = 1.

3)　Performance Evaluation Metrics for Prediction
We evaluate the accuracy of PV power prediction models 

by using the RMSE and the mean absolute error (MAE), 
which are defined as:

RMSE =
1
n∑i = 1

n

(P i - P̂ i )
2 (32)

MAE =
1
n∑i = 1

n

|| P i - P̂ i (33)

where P i is the measured PV power at the ith sampling time; 
P̂ i is the corresponding predicted value; and n is the total 
number of samples.
4)　Determination of Hyperparameters

The hyperparameter β of the deviation correction module 
in the digital physical model and the hyperparameter k in the 
combination formula of power prediction results are deter‐
mined by using the grid searching method. The decision prin‐
ciple of β and k is that the higher the accuracy of the predict‐
ed power, the better the determination of hyperparameters. It 
means that the hyperparameter should be determined to mini‐
mize the RMSE. The searching results for RMSE of β and k 
are shown in Fig. 6 and Fig. 7, respectively. Specifically, it 
can be observed from Fig. 6 that the optimal value of hyper‐
parameter β is 0.8061. When β is 0, RMSE is 12.360. As β 
increases to 0.8061, RMSE decreases to 9.669. As β further 
increases to 1, RMSE increases to 17.291. According to Fig. 
7, the optimal value of hyperparameter k is 0.9809. When k 
is 0, RMSE is 5.367. As k increases to 0.9809, RMSE de‐
creases to 4.293. As k further increases to 2, RMSE increas‐
es to 4.596.

B. Performance Evaluation and Comparison Analysis

In this case study, we focus on evaluating the performance 
of the proposed DT-empowered PV power prediction method 
by comparing with several baselines. The baselines include 
CNN [11], LSTM [14], CNN-LSTM [18], and GCN [22]. 
We compare the prediction accuracy of those methods for 
different weather types (i.e., sunny, rainy, and extreme weath‐
er) and different seasons (i. e., spring, summer, autumn, and 
winter). Meanwhile, typical days are selected as shown in 
Table IV.

The results of PV power prediction on typical days using 
the proposed method and baselines are presented in Fig. 8. 
The comparison of performance evaluation metrics using the 
proposed method and baselines, including all prediction re‐
sults of the testing set, is shown in Table V. In order to com‐

TABLE III
PARAMETERS OF PARALLEL CNN-BILSTM MODEL

Part

Conv2D 1

Conv2D 2

Conv2D 3

BiLSTM 1

BiLSTM 2

FC 1

FC 2

Kernel size or hidden size

4 ´ 4

4 ´ 4

3 ´ 3

64

64

128

64

Number of convolutional kernels

6

6

8

0 0.2 0.4 0.6 0.8 1.0
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β
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Fig. 6.　Searching result for RMSE of β.
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(0.9809, 4.293)
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4.2

4.5

4.8

5.1

5.4

Fig. 7.　Searching result for RMSE of k.

TABLE IV
TYPICAL DAYS IN 2018

Weather type

Sunny

Rainy

Extreme

Winter

January 9

January 10

January 11

January 12

January 2

January 5

January 19

January 21

January 3

January 4

January 27

February 19

Spring

April 7

April 8

April 9

April 10

April 16

April 29

May 17

May 27

March 7

April 5

April 23

May 5

Summer

July 13

July 14

July 15

July 16

July 2

July 3

July 4

July 24

June 28

July 6

July 22

August 17

Autumn

October 27

October 28

October 29

October 30

October 14

October 15

October 16

October 21

November 5

November 7

November 8

November 26
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prehensively compare the predictive performance of the pro‐
posed method, Tables VI and VII list the values of RMSE 
and MAE after performing the proposed method and base‐
lines in different weather types and seasons, respectively. 

Meanwhile, Table VIII presents the values of RMSE and 
MAE after performing the proposed method and baselines 
on all testing samples. The following conclusions can be 
drawn.

1) The proposed method obtains the lowest RMSE and 
MAE values compared with the baselines, regardless of the 
season and weather conditions. The lowest RMSE value 
means that the prediction performance of the proposed meth‐
od is the most stable and the error fluctuation range is small. 
The lowest MAE value denotes that the difference between 
the predicted results of the proposed method and the actual 
observed values are the smallest.

2) In comparison to the LSTM and CNN models, the pro‐
posed method is capable of extracting spatio-temporal fea‐

tures from the dataset more effectively and has stronger abili‐
ties in mining data features. Compared with the CNN-LSTM 
model, the proposed method considers not only the inherent 
hidden features of weather and power data, but also takes in‐
to account the practical conditions of PV panels and other 
devices. For the GCN, it relies primarily on the adjacency re‐
lationships of nodes, which limits information propagation 
and leads to lower prediction accuracy. Consequently, the 
prediction accuracy of the proposed method is significantly 
superior to that of baselines.
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Fig. 8.　Results of PV power prediction on typical days using proposed method and baselines. (a) Sunny in spring. (b) Rainy in spring. (c) Extreme weath‐
er in spring. (d) Sunny in summer. (e) Rainy in summer. (f) Extreme weather in summer. (g) Sunny in autumn. (h) Rainy in autumn. (i) Extreme weather in 
autumn. (j) Sunny in winter. (k) Rainy in winter. (l) Extreme weather in winter.
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C. Ablation Analysis

In order to further demonstrate the effectiveness of the 
proposed method, ablation analysis is conducted in this case 
study. Figure 9 shows the prediction results for three differ‐
ent weather types under ablation analysis, where one typical 
day is selected for each weather type in four seasons.

Tables IX and X show the ablation analysis results in dif‐
ferent weather types and seasons, respectively, with the digi‐
tal physical model and the parallel CNN-BiLSTM model. 
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Fig. 9.　Prediction results for three different weather types under ablation 
analysis. (a) Sunny. (b) Rainy. (c) Extreme.

TABLE V
COMPARISONS OF PERFORMANCE EVALUATION METRICS USING PROPOSED 

METHOD AND BASELINES

Season

Spring

Summer

Autumn

Winter

Weather 
type

Sunny

Rainy

Extreme

Sunny

Rainy

Extreme

Sunny

Rainy

Extreme

Sunny

Rainy

Extreme

Evaluation 
indicator

RMSE

MAE

RMSE

MAE

RMSE

MAE

RMSE

MAE

RMSE

MAE

RMSE

MAE

RMSE

MAE

RMSE

MAE

RMSE

MAE

RMSE

MAE

RMSE

MAE

RMSE

MAE

DT

5.4841

3.8838

6.9357

5.0822

3.6891

2.3016

4.2208

3.2375

5.4557

3.5505

4.2045

2.7993

3.9254

2.8185

3.3121

2.2533

2.7799

1.5666

4.9257

3.6179

3.0111

1.7395

3.0069

1.9092

CNN

13.8077

7.3492

12.8645

7.9312

9.3243

5.3195

7.0925

4.3243

12.8795

8.0703

13.2859

7.4703

10.3079

5.6227

11.1165

6.3080

6.1071

3.4169

12.4006

7.7115

6.4340

4.1226

5.6353

3.3758

LSTM

9.1976

5.3634

10.2409

5.9123

7.4335

4.3060

6.6126

4.2353

10.3968

5.9831

9.5298

5.4042

6.8957

4.4287

8.2280

4.7879

4.8034

2.6687

7.9110

5.3117

5.3785

3.3040

3.7990

2.6538

CNN-
LSTM

7.6780

5.3930

8.0464

5.2222

5.6493

3.2325

5.5649

3.4159

8.6488

4.8015

7.7692

4.4423

6.2815

4.0632

6.9399

4.4101

3.6499

2.0296

6.6768

4.3161

4.7058

2.5032

3.3466

2.1242

GCN

11.3677

5.2880

11.7896

6.2912

8.7926

5.0059

7.7595

5.1515

13.4175

7.7678

12.3455

7.0225

8.5103

4.7555

9.8849

5.4118

5.7009

3.1732

9.4003

6.2213

6.0889

3.8803

5.1164

3.0018

TABLE VII
VALUES OF RMSE AND MAE AFTER PERFORMING PROPOSED METHOD AND 

BASELINES IN DIFFERENT SEASONS

Season

Spring

Summer

Autumn

Winter

Evaluation 
indicator

RMSE

MAE

RMSE

MAE

RMSE

MAE

RMSE

MAE

DT

5.2201

3.4201

4.5776

3.1776

3.1688

2.1688

3.6216

2.4216

CNN

11.2352

7.1627

10.9193

6.6673

8.9542

5.3829

7.7566

4.9165

LSTM

8.2694

4.7939

8.6484

5.3002

6.3748

3.5284

5.1221

3.7249

CNN-
LSTM

6.1115

4.1282

7.4751

4.1911

4.9967

3.2643

4.9871

2.8665

GCN

9.8017

5.6451

9.6631

6.7146

7.7242

4.4611

6.6926

4.1703

TABLE VIII
COMPARISONS OF VALUES OF RMSE AND MAE AFTER PERFORMING 

PROPOSED METHOD AND BASELINES ON ALL TESTING SAMPLES

Method

DT

CNN

LSTM

CNN-LSTM

GCN

RMSE

4.2934

9.8195

6.9598

5.8476

9.1588

MAE

2.7841

6.2591

4.4019

3.7675

5.3338

TABLE VI
VALUES OF RMSE AND MAE AFTER PERFORMING PROPOSED METHOD AND 

BASELINES IN DIFFERENT WEATHER TYPES

Weather 
type

Sunny

Rainy

Extreme

Evaluation 
indicator

RMSE

MAE

RMSE

MAE

RMSE

MAE

DT

4.6787

3.3787

4.7853

2.7853

3.3973

2.1973

CNN

11.7701

6.2900

11.4384

6.4790

8.7974

5.3658

LSTM

7.7518

4.5375

8.6185

4.9233

6.5928

3.8859

CNN-
LSTM

6.6092

4.2887

7.0423

4.1279

5.2062

3.1043

GCN

9.3590

5.2065

10.4900

5.8891

8.2042

4.7576
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And Table XI shows the ablation analysis results in all test‐
ing samples.

The results indicate that the combined version achieves 
the highest prediction accuracy compared with the digital 
physical model and the parallel CNN-BiLSTM model. This 
is because the proposed method takes advantages of both the 
physical characteristics of PV power station and the inherent 
data features between meteorological and power data. This 
method enables better simulation of real-world PV power 
generation processes and achieves accurate PV power predic‐
tion.

V. CONCLUSION 

In the paper, we have established a DT-empowered PV 
power prediction framework to achieve reliable data trans‐
mission and power prediction with high accuracy. We have 
designed the use of GAN for data recovery from historical 
data, which is capable of significantly improving the quality 
of constructing a DT virtual power station. This enhances 
the reliability of mapping from the physical space to the digi‐
tal space. We have proposed a new DT-empowered PV pow‐
er prediction method. By integrating the digital physical 
model and the parallel CNN-BiLSTM model, the proposed 

method effectively enhances the prediction accuracy for PV 
power generation. Finally, the testing results on the real data‐
set from Northeastern University show that the proposed 
method can achieve higher prediction accuracy that the base‐
lines in different scenarios. In the future work, we would 
like to investigate the integration of federated learning to en‐
hance the privacy of the proposed method.
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