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Abstract——Fault diagnosis (FD) for offshore wind turbines 
(WTs) are instrumental to their operation and maintenance 
(O&M). To improve the FD effect in the very early stage, a con‐
dition monitoring based sample set mining method from super‐
visory control and data acquisition (SCADA) time-series data is 
proposed. Then, based on the convolutional neural network 
(CNN) and attention mechanism, an interpretable convolutional 
temporal-spatial attention network (CTSAN) model is pro‐
posed. The proposed CTSAN model can extract deep temporal-
spatial features from SCADA time-series data sequentially by: ① a convolution feature extraction module to extract features 
based on time intervals； ② a spatial attention module to ex‐
tract spatial features considering the weights of different fea‐
tures; and ③ a temporal attention module to extract temporal 
features considering the weights of intervals. The proposed CT‐
SAN model has the superiority of interpretability by exposing 
the deep temporal-spatial features extracted in a human-under‐
standable form of the temporal-spatial attention weights. The ef‐
fectiveness and superiority of the proposed CTSAN model are 
verified by real offshore wind farms in China.

Index Terms——Offshore wind turbine (WT), gearbox, fault di‐
agnosis (FD), attention mechanism, interpretability, temporal-
spatial feature.

I. INTRODUCTION 

WIND energy has received worldwide attention due to 
its cleanness and sustainability, and plays an impor‐

tant role in the energy market [1]. Offshore wind power is 
richer compared with onshore wind power [2]. However, off‐
shore wind turbines (WTs) face the following specific chal‐

lenges: ① harsher environment, changeable sea conditions, 
and the developing trend of larger-scale units lead to a high‐
er failure rate of offshore WTs; and ② due to the limitation 
of meteorological and transportation conditions, the accessi‐
bility of offshore WTs is poor, the maintenance cycle is 
long, and their operation and maintenance (O&M) costs can 
reach up to 25% of the total revenue [2].

Therefore, the fault diagnosis (FD) for offshore WTs is 
critical for reducing O&M costs and enhancing the overall 
generated power.

In recent years, scholars have conducted extensive explora‐
tion and research on the FD for offshore WTs, mainly includ‐
ing model-based methods [3] - [5] and data-driven methods 
[6]-[14]. Among them, the model-based methods establish a 
FD model by utilizing the correlation between sensor data 
and system stage of WTs. However, the diagnosis accuracy 
of the FD model is significantly susceptible to variations in 
system variables. Besides, as WTs evolve rapidly in size and 
functionality, the applications of quantitative model analysis 
have become increasingly difficult and even impracticable 
[15]. In contrast, the data-driven methods avoid the need for 
exact physical models of WTs. These methods are based on 
the manipulation of voluminous datasets gathered by WT 
sensors, the extraction of pivotal features via intelligent algo‐
rithms, and the utilization of classification functions to real‐
ize FD [16]. For example, the multi-layer perceptron (MLP) 
model is implemented for FD in bearings, marking one of 
the earliest applications of machine learning (ML) in the do‐
main of FD for offshore WTs [6]. In [7], a sequential feature 
selection algorithm is utilized to ascertain predictive vari‐
ables from supervisory control and data acquisition (SCA‐
DA) time-series data, subsequently facilitating multi-fault 
FD for WT gearboxes via support vector machines (SVMs). 
In [8], the Gaussian process regression is employed to ex‐
tract fault features and the random forest (RF) technology is 
used for FD, improving the computational efficiency while 
maintaining the diagnosis accuracy. However, the algorithms 
above are fundamentally shallow ML algorithms and become 
incapable to handle the SCADA data of offshore wind pow‐
er. On the one hand, the SCADA data of offshore wind pow‐
er characterized by non-stationarity, non-linearity, and high-
noise pose limitations to the diagnosis accuracy of these ML 
algorithms. On the other hand, the SCADA data of offshore 
wind power are unable to circumvent the “curse of dimen‐
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sion”, i. e., the SCADA system generates a vast amount of 
historical data. With the escalation in data dimensions, the 
model computation cost increases significantly, adversely im‐
pacting the model generalization and diagnosis performance.

In contrast, due to the superiority in hierarchical structure 
extraction and deep feature representation, deep learning 
(DL) methods have gradually become the mainstream in the 
field of FD for WT. For instance, an FD methodology based 
on the generalized model-agnostic meta-learning (MAML) is 
proposed, which employs multi-kernel efficient channel atten‐
tion to construct a channel interaction feature encoder, there‐
by facilitating multi-fault FD effectively [9]. To capture the 
variable space differences between fault and normal features, 
a multi-scale convolution neural network (CNN) architecture 
that extracts multi-scale features to facilitate FD for WT 
gearboxes are proposed [10]. To capture the temporal fea‐
tures of SCADA data during the FD process, the robust 
memory capabilities of long short-term memory (LSTM) net‐
works in multi-variable time-series prediction is leveraged to 
identify potential WT fault types [11]. In [12], a WT FD 
methodology is proposed based on the temporal-spatial fu‐
sion neural network, which extracts multi-scale spatial char‐
acteristics among different variables of SCADA data through 
multi-convolution kernels of varying sizes, and then LSTM 
is employed to learn temporal features. In [13], a deep echo 
state network and multi-scale convolution residual network 
are utilized to propose a spatio-temporal multi-scale neural 
network (STMNN) with parallel feature extraction, achieving 
superior multi-type FD. In [14], the variability of WT opera‐
tion state is considered and an FD method is proposed based 
on temporal-spatial features and neighboring operation state, 
reducing the incidence of FD resulting from sudden changes 
in WT operation.

Although DL-based FD methods have significantly en‐
hanced the diagnosis performance by extracting temporal-
spatial features, there are still some challenges. Firstly, exist‐
ing studies such as CNN-based methods in [10]-[13] can on‐
ly extract local features but cannot easily achieve complete 
and dynamic feature extraction. When extracting temporal 
correlations among data, the undifferentiated information 
compression in the hidden layers weakens the temporal dif‐
ferences of the input information, failing to highlight the ef‐
fects of key historical information. Secondly, the fault devel‐
opment of WTs is commonly a gradual process of normal 
state to early fault to fault [17], [18]. That is, early fault 
may appear earlier than the moment of being detected by the 
SCADA system. Thus, existing FD studies based on SCADA 
data are incapable of mining early fault in sample datasets 
and making the warning early before the fault happens. Most 
importantly, existing DL-based FD methods are often re‐
ferred to as black box, lacking interpretability and the ability 
of presenting temporal-spatial correlations extracted from 
SCADA data in a human-understandable format [19]. Conse‐
quently, it is challenging to ascertain whether the model has 
captured the key features, hindering its deployment in practi‐
cal applications [20]. So far, only a few studies have paid at‐
tention to the interpretability of FD by DL-based methods 
[21]. For example, the attention weights of transformer mod‐

el are utilized to achieve an interpretable rotating machinery 
FD [22]. A rotating machinery FD is proposed to achieve 
the interpretability of fault types and motor feature signals 
through attention weight parameterization [23]. To our best 
knowledge,  the interpretable DL has not been employed in 
FD for offshore WTs, and no study has designed a temporal-
spatial interpretable diagnosis model.

To address the challenges above, firstly, this paper designs 
an early fault sample set mining method from SCADA data, 
and then proposes an interpretable convolutional temporal-
spatial attention network (CTSAN) model based on CNN 
and attention mechanism of early FD for offshore WTs. The 
feasibility and superiority of the proposed CTSAN model 
are verified in a real offshore wind farm in China. The main 
contributions of this paper are summarized as follows.

1) An early fault sample set mining method based on con‐
dition monitoring technology for SCADA time-series data is 
proposed, which supplies the FD model with sufficient WT 
early fault sample sets.

2) A CTSAN model is proposed. It can not only diagnose 
WT early faults accurately by capturing critical temporal-spa‐
tial correlations from the SCADA time-series data, but also 
be interpretable by presenting the temporal-spatial correla‐
tions in the form of corresponding attention weights.

The rest of this paper is arranged as follows. Section II in‐
troduces the proposed early fault sample set mining method. 
On this basis, Section III presents the interpretable FD pro‐
cess based on the proposed CTSAN model, while Section IV 
expounds the complete flowchart of the proposed FD for off‐
shore WTs. Finally, in Section V, two real cases are used to 
verify the effectiveness and superiority of the proposed CT‐
SAN model in terms of accuracy and interpretability, and the 
conclusions are drawn in Section VI.

II. EARLY FAULT SAMPLE SET MINING METHOD

The condition monitoring technology through the extrac‐
tion of monitoring-sensitive indicators can be used to divide 
the WT health into normal state and early fault stage bound‐
aries, enabling the recognition of early faults [24], [25]. This 
paper employs this technology, where the actual starting 
point of the fault is determined by establishing the normal 
behavior model (NBM) of the target modeling parameters 
and monitoring the output residual error using the exponen‐
tially weighted moving average (EWMA) control chart.

A. Description of WT Fault Process

The WT health can be divided into three stages, i.e., nor‐
mal state, early fault, and fault stages [18], as shown in Fig. 
1. Assume t1 as the dividing point (i. e., the actual starting 
point of the fault) between the normal state and early fault 
stages. When the fault intensifies and an obvious fault phe‐
nomenon appears, e.g., the temperature exceeding the limit, 
the SCADA system detects the fault at t2. After the fault re‐
moval, the internal stability of the WT is restored and values 
of all variables return to normal state at t3.

Through the SCADA alarm log and O&M log, the prior 
knowledge of the WT faults can be determined to study the 
fault case. By querying the occurrence and disappearance 
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time of the specific fault code, t2 and t3 can be determined. 
Since t1 cannot be easily determined, existing FD models 
mainly take t2 as the dividing point to mine the fault sample 
set. If the fault sample set is mined based on the SCADA da‐
ta between t2 and t3, it is difficult to start FD at an early 
stage, which not only threatens the safety of WT health, but 
also increases the O&M cost of WTs. Therefore, if t1 is de‐
termined, the fault sample sets can be mined based on the 
data between t1 and t3, and the FD model can then effective‐
ly diagnose the early fault.

B. NBM

NBM is a widely used data-driven condition monitoring 
strategy. Based on the input parameters of the FD model, the 
NBM of the target modeling parameters is built according to 
the SCADA time-series data of normal operation, and the 
output values are predicted. By comparing the residual be‐
tween the actual parameter value and the predicted value, 
the component condition monitoring is realized. This paper 
implements the NBM based on convolutional neural network 
and gated recurrent unit (CNN-GRU) method [26] and veri‐
fies it through experiments. Compared with shallow and oth‐
er DL-based models, the NBM achieves better condition 
monitoring performance.

Since the NBM is based on SCADA time-series data, the 
NBM process for time-series data will be introduced first. 
Taking a single sample set as an example, y(t) is the mea‐
sured value of the target modeling parameter at time t. Set 
X ={X (1)X (2)X (T)} as the input sequence of other operat‐
ing and environmental parameter data at the corresponding 
time, the NBM process of SCADA time-series data can be 
expressed as:

ŷ(T)= fθ (X )= fθ (x(1)x(2)x(T) ) (1)

where x(t)={x(t)
1 x

(t)
2 x(t)

i x(t)
m } is the set of measured val‐

ues of m input features at time t, x(t)
i  is the measured value 

of the ith variable at time t; ŷ(T) is the target modeling param‐
eter at time T; fθ (×) is the model function; and X =
{x(1)x(2)x(T)} is the sequence of input variables from time 
1 to T.

C. Monitoring Based on EWMA Control Charts

The NBM is used based on normal operational data of 
WT. Under the normal state stage, the residual between the 
actual value and predicted value of the target modeling pa‐
rameter fluctuates around the zero-mean value [25], so the 
change of the output residual can reveal a potential fault. 
The output residual at time t can be calculated by:

Rt = y(T)
t - ŷ(T)

t (2)

where y(T)
t  is the actual value of target modeling parameter at 

time t; and ŷ(T)
t  is the predicted value of target modeling pa‐

rameter at time t.
To effectively filter out noises and improve the accuracy, 

the EWMA control chart is used to monitor the output resid‐
ual sequence of the test set [27]. The EWMA value at time t 
can be expressed as:

EWMAt =
ì
í
î

λRt + (1 - λ) ·EWMAt - 1    t > 0

Rmean                                     t = 0
(3)

where Rmean is the mean value of output residuals under all 
normal working conditions; and λ is the weight of historical 
data on current EWMA value (assumed as 0.2 in this paper 
[27]). The time window of EWMA control chart is the 
length of the test set.

Because the fault of WT is usually accompanied by the in‐
crease of the actual value of the target modeling parameter, 
which leads to the increase of the output residual, this paper  
only focuses on the upper control limit (UCL) of the EW‐
MA control chart to monitor the gearbox and identify its ab‐
normal stage [28].

UCL(t)=Rmean +Kσ
λ[1 - (1 - λ)2t ]

2 - λ
(4)

where UCL(t) is the UCL value at time t; σ is the standard 
deviation of the output residual; and K is the threshold coef‐
ficient, which is assumed to be 3 in this paper [27].

The data sampling and labeling process of SCADA data is 
shown schematically in Fig. 2. As the WT has the trend of 
early fault, the output residual of the target modeling param‐
eters gradually rises, leading to the rise of the EWMA value. 
t1 is defined as the time that the EWMA value reaches the 
UCL, i. e., the time the WT changes from the normal state 
stage to the early fault stage, as shown in Fig. 2.

D. Data Sampling and Labeling

After determining t1, t2, and t3, set the total length of the 
SCADA sequence as R and the number of variables as m. 
Now, the early fault data sequence between t1 and t2 can be 
expressed as XF1 ={x(t1 )x(t1 + 1)x(t2 )}ÎRm ´(t2 - t1 ). Likewise, 
the fault sequence data between t2 and t3 are given by XF2 =
{x(t2 )x(t2 + 1)x(t3 )}ÎRm ´(t3 - t2 ) while the normal sequence da‐
ta between 1 - t1 and t3 -R are defined as XNormal =
{x(1)x(2)x(t1 )}{x(t3 )x(t3 + 1)x(R)}, where  is the union 
function. Then, the sample set can be obtained by a sliding 
window. Set L, and K as the length and step size of sliding 

Normal sample set; Fault sample set

System detected time;EWMA value; UCL

Timet2t1 t3

EWMA

value

(output

residual)

Normal state Early fault Fault Normal state

Fig. 2.　Sampling and labeling process of SCADA data.

System detected timeMonitored variable;

Normal state Early fault Fault Normal state

Timet2t1 t3

EWMA

value

(output

residual)

Fig. 1.　Assumed process of WT health.
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window, respectively. The obtained N sample sets are 
{S1S2SN }, where S1 ={x(1)x(2)x(L)}ÎRL ´m, S2 =
{x(1+K)x(2+K)x(L +K)}ÎRL ´m, and so on.

The error classification is most likely to occur in the early 
fault stage [18]. Therefore, to ensure that the FD model can 
effectively detect early fault, the early fault sample set of SF1 
is made by XF1 at a high sampling rate (small steps) and the 
fault sample set of SF2 is made by XF2 at a low sampling rate 
(large steps). Merging the above two sample sets to form the 
overall fault sample sets, let SF = SF1 SF2, the corresponding 
true label indicates the fault label. The normal sample set of 
SNormal is made by XNormal at a specific sampling rate and its 
corresponding true label is 0, which means the normal stage. 

III. INTERPRETABLE FD PROCESS BASED ON PROPOSED

CTSAN MODEL 

An interpretable CTSAN model is proposed and applied 
in this paper. The structure characteristics of the proposed 
CTSAN model enable it to extract deep temporal-spatial fea‐
tures from the SCADA time-series data. At the same time, 
the extracted temporal-spatial features can be presented in 
the form of temporal and spatial attention weights, directly 
determining the parameter or time interval that contributes 
most to classification, and realizing the interpretability with‐
in the model.

The proposed CTSAN model contains four sequentially 
connected feature extraction modules: ① convolution feature 
extraction module; ② spatial attention module; ③ temporal 
attention module; and ④ classification module.

Figure 3 shows the structure of the proposed CTSAN 
model. As observed from Fig. 3, the convolution feature ex‐
traction module extracts features C based on intervals from 
the SCADA input sequence. Then, the spatial attention mod‐
ule extracts the global spatial features C′ of all intervals con‐
sidering the spatial attention weight. Later, the global spatial 
features of all intervals C′ are sent to the temporal attention 
module to extract the global temporal-spatial features C″, 
considering the weight of each interval. Finally, C″  is sent 
to the classification module to extract the predicted label cor‐
responding to the input sequence.

A. Convolution Feature Extraction Module

To reduce the computational complexity, the CNN is used 
to extract the key features based on time interval from the in‐
put multi-variate time series to transform the model focus 
from the huge number of time points to less intervals. Tak‐
ing a single sample set S1 as an example, the input sequence 
of multi-variate time series X ={x(1)x(2)x(T)}ÎRm ´ T with a 
length of T and m variables is used as the input of convolu‐
tion feature extraction module. A 1-D CNN with a convolu‐
tion kernel size of 1 ´E is applied for each input sequence 
xi ={x(1)

i x
(2)
i x(T)

i }ÎR1 ´ TiÎ(1m) after each convolution 
operation. Sliding the kernel forward E steps in the time do‐
main ensures that the intervals do not overlap. Through the 
above operation, the length of the interval is set to be E, and 
the sequence is divided into n = T E intervals. Each variable 
sequence has its own convolution module of CNNi. Taking 
the input sequence xi as an example, the operation process 
of convolution module CNNi (xi ) can be expressed as:

ci =CNNi (xi ) (5)

where ci ={c(1)
i c

(2)
i c( j)

i }ÎRn ´ J is the feature sequence ex‐
tracted from the ith variable sequence. To ensure the convolu‐
tion operation can extract rich features at different levels, J 
filters are applied to extract J dimensional feature sequences 
from the variable sequence. c( j)

i ÎRJ ´ 1 is the J-dimensional 
feature extracted from the j th interval of the ith variable se‐
quence. By convolving the sequence of m input variable, the 
time interval based J-dimensional feature C ={c1c2 
cm }ÎRm ´ n ´ J is determined.

B. Spatial Attention Module

The spatial attention module determines the contribution 
of each input variable in each interval to the classification 
based on the spatial attention mechanism. The time interval 
based J-dimensional feature CÎRm ´ n ´ J extracted by convolu‐
tion feature extraction module is taken as the input of this 
module. By applying spatial attention mechanism to all input 

Feature 1

Feature m

…

…

Interval 1 Interval 2 …

Interval 1

Interval n

Spatial

attention weight

m×J

m×n×J

J×1m×1

ReLU Softmax
Linear

Temporal

attention weight

n×J×1
J×1n×1

ReLU Softmax
Linear

Linear

For each interval (1, 2, …, n)

SoftmaxClassfication result

...

…

...

…

…

…
…

…

J filters

Interval 1 Interval n

n

CNN feature extraction

SCADA input sequence

For all intervals

…

…
.........

...

...
...

...

Convolution feature extraction module

Spatial attention module

Temporal attention module

Classfication module

............

C

n

m
J

c , jÎ{1, 2, …, n}( j)

c ( j)
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C" βC'

×

×

m

Fig. 3.　Structure of proposed CTSAN model.
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variables in each interval, the contribution of each input vari‐
able is measured in the current interval, and the global spa‐
tial feature considering the attention weight of each input 
variable is obtained.

The c( j)={c( j)
1 c

( j)
2 c( j)

m }ÎRm ´ J extracted by the convolu‐
tion feature extraction module in Section III-A is sent to the 
spatial attention module to quantify the spatial attention 
weight corresponding to each input variable of the current in‐
terval [29].

e( j)= ζ (Wsc
( j)+ bs ) (6)

where e( j)={e( j)
1 e

( j)
2 e( j)

m }ÎRm ´ 1; ζ is the sigmoid activa‐
tion function; WsÎRJ ´ 1 is the trainable coefficient; and 
bsÎRJ ´ 1 is the bias. Each spatial attention weight is normal‐
ized by:

α( j)
i =

exp(e( j)
i )

∑
i = 1

m

e( j)
i

(7)

where α( j)
i ÎR1 ´ 1 is the normalized attention weight of each 

input variable in the current interval and is allowed to meet 
the probability distribution with the sum of the weights be‐
ing 1; and exp(×) is the exponential function.

The normalized spatial attention weight is multiplied by 
the measured value of its corresponding input variable to en‐
hance or weaken the ith input variable and obtain the global 
spatial feature of the current interval c′ ( j)ÎRn ´ J ´ 1, consider‐
ing the weight of each input variable.

c′ ( j)=∑
i = 1

m

α( j)
i c( j)

i (8)

The spatial features of each interval are applied to the spa‐
tial attention module in turn. C′={c′ (1)c′ (2)c′ (n)}ÎRJ ´ n is 
the global spatial feature sequence of all intervals.

C. Temporal Attention Module

The temporal attention module determines the contribution 
of each interval to the classification based on the temporal 
attention mechanism, and then extracts and fuses the tempo‐
ral features. By applying the temporal attention mechanism 
to the spatial features of all intervals, the contribution of 
each interval to the classification is measured, and the global 
temporal and spatial features considering the attention 
weight of each interval are obtained.

The extracted global spatial feature sequence of all inter‐
vals by the spatial attention module, i.e., C′, is applied to the 
temporal attention module to quantify the temporal attention 
weight corresponding to each interval.

l = σ(WTC′+ bT ) (9)

where l ={l(1)l(2)l(n)}ÎRn ´ 1; WTÎRJ ´ 1 is the trainable co‐
efficient parameter of the temporal attention module; and 
bTÎRn ´ 1 is the bias of the temporal attention module. The 
interval attention weight is normalized by:

β( j)=
exp(l( j) )

∑
n = 1

n

l(n) (10)

where β( j)ÎR1 ´ 1 is the normalized interval attention weight 
of each interval and is allowed to meet the probability distri‐

bution, with the sum of the weights being 1.
The normalized interval attention weights are then multi‐

plied by the corresponding interval spatial attention to 
strengthen or weaken the global space feature of the j th inter‐
val from:

C″=∑
j = 1

n

β( j)c′ ( j)
(11)

where C″ÎRJ ´ 1 is the global temporal-spatial feature consid‐
ering the weight of each input variable.

D. Classification Module

The global temporal-spatial feature C″ is used to find the 
predicted label ŷ(T), corresponding to the current sequence X.

ŷ(T)= Softmax(WFC″+ bF ) (12)

where WFÎRJ ´P is the trainable coefficient parameter of the 
classification module; bFÎRP ´ 1 is the bias of the classifica‐
tion module; and P is the number of predicted labels .

Assuming θ as the set of coefficients in the CTSAN mod‐
el, the cross-entropy loss function can be minimized for the 
training target by iteratively updating the coefficients of each 
module to finally get the trained proposed CTSAN model in 
the form of:

J( ŷyθ)=-
1
N ∑

k = 1

N

[yk ln( ŷk )+ (1 - yk )ln(1 - ŷk )] (13)

where N is the number of the sample sets; yk is the true la‐
bel; and ŷk is the predicted label.

E. Interpretability

The proposed CTSAN model employs a clear mechanism 
that assigns weights to spatial variables and time intervals, 
thereby determining their respective importance. This mecha‐
nism facilitates the extraction of critical temporal-spatial fea‐
tures from multi-dimensional SCADA time-series data, and 
the extracted features are presented as normalized interval at‐
tention weights, which directly identify the most significant 
variables or time intervals for fault classification. The tempo‐
ral-spatial interpretability of the proposed CTSAN model 
can be supported from both instance and global perspectives. 
For instance, the interpretability is assessed by examining 
the heatmaps of each category, determining the contributions 
of each input variable within each time interval to the classi‐
fication. For global interpretability, the interpretability is 
evaluated by observing the heatmaps and analyzing the trend 
of the weights of input variables and time intervals.
1)　Instance Interpretability

For the input instance sample sets, on the one hand, the spa‐
tial attention weight, denoted as α ={α(1)α(2)α(n)}ÎRm ´ n, is 
output from the spatial attention module. α( j)=
{α( j)

1 α
( j)
2 α( j)

m }ÎR1 ´m signifies the importance of each in‐
put variable within the jth time interval. On the other hand, 
the normalized interval attention weight, denoted as β =
{β(1)β(2)β(n)}ÎR1 ´ n, is output from the temporal attention 
module, representing the significance of each time interval.
χ = αβ ={α(1)β(1)α(2)β(2)α(n)β(n)}ÎRm ´ n can be interpreted 
as the cumulative contribution of each input variable across 
all time intervals to the classification.
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2)　Global Interpretability
Global sample sets are acquired from a time period pre‐

ceding a fault event through sampling. These sample sets are 
subsequently input into the trained proposed CTSAN model 
to simulate the global diagnosis process for SCADA data. 
By examining the predicted fault categories and correspond‐
ing temporal-spatial attention weight fluctuations at each 
time point, the contributions of input variables and time in‐
tervals to the fault classification by the proposed CTSAN 
model are analyzed. For the input global sample sets, the 

global spatial attention weight ϕ =∑
j = 1

n

α( j)β( j)ÎR1 ´ n is defined 

as the aggregated importance of each input variable across 
all time intervals, thereby measuring the contribution of each 
parameter to the fault classification. Concurrently, the tempo‐
ral attention weight β ={β(1)β(2)β(n)}ÎR1 ´ n, obtained from 
the temporal attention module, determines the significance of 
each time interval, assessing their respective contributions to 
the fault classification.

IV. IMPLEMENTATION STEPS AND PERFORMANCE INDICES 

A. Flow Chart of Interpretable FD for Offshore WT

Based on the proposed CTSAN model, combined with da‐
ta preparation and early fault sample set mining, the flow 
chart of a complete FD process can be obtained in 3 steps, 
as schematically illustrated in Fig. 4.

Step 1: data preparation. According to the O&M logs and 
the SCADA alarm logs, the prior knowledge of the WT fault 
is obtained to study the fault cases. The corresponding datas‐

et is obtained from the SCADA system.
Step 2: early fault sample set mining. The normal opera‐

tion dataset is obtained for training through data preprocess‐
ing, and the NBM process is conducted to obtain the predict‐
ed value of the target modelling parameters based on Sec‐
tion II-B. Then, the early fault starting point is determined 
according to the monitoring process in Section II-C. Finally, 
according to EWMA control chart, the fault and normal sam‐
ple set mining and labeling are done, respectively.

Step 3: FD. FD model is trained by the proposed CTSAN 
model of Section III to yield diagnosis results.

B. FD Evaluation Indicators

To evaluate the accuracy of the proposed CTSAN model, 
the common performance evaluation indices of accuracy 
(ACU), precision (P), recall (R) and F1-score (F1) are used 
for the model, while the indices of accuracy, macro-P 
(MAP), macro-R (MAR), and macro-F (MAF) are used for 
multi-class models [13]. These indices are mathematically de‐
scribed as:

ACU =
TP + TN

TP +FN +FP + TN
(14)

ì

í

î

ï
ïï
ï

ï
ïï
ï

P =
TP

TP +FP

MAP =
1
n∑

i = 1

n

Pi

(15)
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MAR =
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n∑
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n
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(16)
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F1 =
2PR
P +R

MAF =
2·MAP·MAR
MAP +MAR

(17)

where TP, TN, FP, and FN are the true positive, true nega‐
tive, false positive, and false negative, respectively.

V. PERFORMANCE EVALUATION 

The performance of the proposed CTSAN model is evalu‐
ated on a 12-month dataset, collected from the SCADA sys‐
tem of Donghai Bridge offshore wind farm in Shanghai, Chi‐
na, in 2018. The wind farm contains 34 WTs. The WT is 3 
MW doubly-fed induction generator and the type is SL3000. 
Each WT is equipped with a SCADA time-series data for 
condition monitoring and records over 50 readings on differ‐
ent WT components with a sampling frequency of 30 s. 
Twenty three variables are used for condition monitoring test 
in this paper, as summarized in Table I [25].

A. Data Preparation

This paper focuses on two types of faults: ① Fault 1 is 
the fault of high outlet water temperature of generator; and ② Fault 2 is gearbox fault.

Fault 1 and Fault 2 are usually accompanied by the rise of 
generator shaft temperature and abnormal rise of gearbox oil 
temperature, respectively. 

O&M logs

and SCADA

alarm logs

SCADA

dataset

Prior

knowledge

of WT faults

Trained model

Normal behavior

modeling

EMWA

control chart

Sample set

mining and

labeling

Classfication

result

Interpretable

heatmap
Proposed

CTSAN

model

FD sample set

Fault 1

Fault 2

Normal
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…

Sensor m

CM dataset
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Step 2: early fault sample set mining

Fig. 4.　Flow chart of complete FD process.
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Table II shows the alarm logs of WT-18, in which fault 
codes 0 and 3987 represent no fault and Fault 1, respective‐
ly. The corresponding O&M logs of WT-18 are shown in Ta‐
ble III. The alarm log of WT-20 does not show any fault 
while Fault 2 is determined by referring to its O&M logs, as 
shown in Table IV. Through these data, it can be concluded 
that WT-18  experiences Fault 1 on May 14 while WT-20 ex‐
periences Fault 2 around December 12.

B. Early Fault Sample Set Mining

1)　Data Processing
The PLC status code provided by the SCADA system of‐

fers a guide for healthy data extraction [30]. There are total‐
ly 12 PLC codes indicating different WT operating modes. 
Among them, the observations with PLC status code 7 (run‐
ning) are extracted to construct the healthy dataset.

For WT-18, the SCADA time-series data collected in 
April are used as training set to train the NBM while the da‐
ta in May are used as the test set. For WT-20, the data col‐
lected in November are used as training set while the data in 
December are used as the test set. The overview of condi‐
tion monitoring set is shown in Table V.

2)　Fault 1: Early Fault Sample Set Mining
Monitoring the test set of WT-18, it can be observed that 

when its generator experiences Fault 1, the temperature of 
motor shaft rises in a short time, so its temperature Tmd is se‐
lected as the target modeling parameter of NBM. Figure 5 
shows the fitting situation of Tmd and control charts of EW‐
MA in the overall range of WT-18.

In this process, t1 is detected as 6.75 hours before t2. Fig‐
ure 5(a) shows that the actual value of Tmd in the early fault 
stage is significantly abnormal compared with the predicted 
value under normal conditions. At the same time, Fig. 5(b) 
shows that EWMA value in the early fault stage is as obvi‐

TABLE I
VARIABLE OF SCADA TIME-SERIES DATA OF WTS

Variable

Control cabinet temperature

Generator rotation speed

Pitch motor torques of WTs 1-3

Pitch motor temperatures of WTs 1-3

Pitch angles of WTs 1-3

Impeller rotational speed

Active power

Cabin temperature

Ambient temperature

Motor winding temperatures of WTs 1-3

Shaft temperature of motor non-drive side

Shaft temperature of motor drive side

Grid current

Wind speed

Gearbox oil temperature

Notation

Tcc

Sg

Tqp1 Tqp2 and Tqp3

Tqpm1 Tqpm2 and Tqpm3

Ap1 Ap2 and Ap3

Si

Pa

Tc

Ta

Tmw1 Tmw2 and Tmw3

Tmn

Tmd

I

Sw

Tgo
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00:00

May 16

12:00

May 17

00:00

May 14

00:00

May 14

12:00
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00:00

May 15

12:00

May 16

00:00

May 16

12:00

May 17

00:00
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(a)
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EWMA value
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Overlimit

Time

(b)

t1 t2

Fig. 5.　Monitoring results of WT-18. (a) Fitting situation of Tmd. (b) Con‐
trol charts of EWMA.

TABLE II
ALARM LOGS OF WT-18

Date

May 14

May 14

May 14

⁝

May 15

May 15

Time

20:59:30

21:00:00

21:00:30

⁝

12:00:00

12:00:30

Fault code

0

3987

3987

⁝

3987

0

TABLE III
O&M LOGS OF WT-18

Date

May 14

May 15

Shutdown reason

Fault 1

Fault 1

Treatment

Remote restart

Replace water-cooling fin of 
generator and add antifreeze

TABLE V
OVERVIEW OF CONDITION MONITORING SET

Fault

Fault 1

Fault 2

Data set

Train

Test

Train

Test

Amount

86400

11520

86400

20160

WT No.

WT-18

WT-18

WT-20

WT-20

Date

April 1-April 30

May 14-May 17

November 1-November 30

December 5-December 11

TABLE IV
O&M LOGS OF WT-20

Date

December 12

December 14

December 15

Shutdown reason

Impeller overspeed 
failure

Abnormal impact 
inside gearbox

Abnormal impact 
inside gearbox

Consequence

Wind is too strong to go out to sea

Abnormal sound inside gearbox

Teeth broken in the secondary 
planetary gear and large ring gear
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ous as those in the fault stage, indicating the necessity of 
early FD. As observed from Fig. 5, the EWMA value ex‐
ceeds the limit between 14: 15 on May 14 and 13: 00 on 
May 15. Therefore, t1 is assumed as 14:15 on May 14 as the 
starting point of early fault stage for Fault 1. In addition, the 
system detects the fault at 21:00 on May 14 when the WT is 
transitioned into the fault stage. Therefore, t2 is assumed as 
21:00 on May 14 as the starting point of the fault stage.
3)　Fault 2: Early Fault Sample Set Mining

Monitoring the test set of WT-20, it can be observed that 
when the gearbox experiences a fault, the temperature of oil 
rises in a short time [27], so the temperature Tgo is selected 
as the target modeling parameter of NBM. Figure 6 shows 
the fitting situation of Tgo and control charts of EWMA in 
the overall range of WT-20.

Figure 6(a) shows that from 06:00 on December 7, Tgo is 
significantly abnormal compared with the predicted value un‐
der normal working conditions. At the same time, Fig. 6(b) 
shows that its EWMA value crosses the threshold significant‐
ly for 2 days, verifying that the NBM condition monitoring 
method is effective and can maintain continuous attention to 
the trend of early fault. However, the fault is not detected by 
the SCADA data in the whole monitoring interval, which re‐
flects the great limitations of the existing fault monitoring 
features of SCADA system. The EWMA value exceeds the 
limit between 06:00 on December 7 and 09:15 on Decem‐
ber 9. Therefore, t1 is assumed as 06:00 on December 7 as 
the starting point of the early fault stage of Fault 2. Since 
the system does not detect any faults in the overall monitor‐
ing interval, according to the results of WT-18, it is assumed 
here that the early fault stage will turn into the fault stage 6 
hours later. Therefore, t2 is assumed as the starting point of 
fault stage at 12:00 on December 7.

C. FD Analysis

1)　Sample Set Mining and Labeling
Considering the starting and ending points of fault data as‐

sumed above, the normal operational process is 2 weeks be‐
fore each fault. Set the window length L = 100, and the nor‐
mal and fault sample sets are sampled by sliding window 
method. The sliding step of the normal, early fault, and fault 
stages are assumed as 50, 5, and 10, respectively.

The overview of FD sample set is shown in Table VI. 
First, the sample sets of Fault 1 and the normal stage before 
Fault 1 are selected for single-fault FD verification. Then, 
the sample sets of Fault 1, Fault 2, the normal stage before 
Fault 1, and the normal stage before Fault 2 are considered 
for a multi-fault FD verification. The remaining normal and 
fault sample sets are combined to a test set under the condi‐
tion where the sample sets maintain a quantity balance and 
avoid biased results.

Tables VII and VIII show an overview of the single-fault 
and multi-fault sample sets, respectively. To reduce influence 
of different dimensions of input variables on the calculation 
results, the input set is then normalized and applied to the 
FD model.

TABLE VI
OVERVIEW OF FD SAMPLE SET

Stage

Fault 1

Fault 2

Normal stage 
before Fault 1

Normal stage 
before Fault 2

Sample amount

468

436

805

807

WT No.

WT-18

WT-20

WT-18

WF20

Time period

14:15 on May 14 to 
13:00 on May 15

06:00 on December 7 to 
00:00 on December 8

00:00 on May 1 to 
00:00 on May 13

00:00 on November 22 to 
00:00 on December 6

50.0

52.5

55.0

47.5

45.0

10

15

5

-5

0

T
g

o
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℃
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UCL

Overlimit
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Fig. 6.　Monitoring results of WT-20. (a) Fitting situation of Tgo. (b) Con‐
trol charts of EWMA.

TABLE VII
OVERVIEW OF SINGLE-FAULT SAMPLE SET

Sample set

Train

Train

Test

Test

Type

Fault 1

Normal stage before Fault 1

Fault 1

Normal stage before Fault 1

Sample amount

374

374

94

431

TABLE VIII
OVERVIEW OF MULTI-FAULT SAMPLE SET

Sample set

Train

Train

Train

Train

Test

Test

Test

Test

Type

Fault 1

Fault 2

Normal stage before Fault 1

Normal stage before Fault 2

Fault 1

Fault 2

Normal stage before Fault 1

Normal stage before Fault 2

Sample amount

374

348

722

722

94

88

890

890
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2)　Model Parameter Setting
In this paper, the proposed CTSAN model is configured 

with a sequence length of 100, and the convolution module 
is designed with a kernel size of 1 ´ 10 and a stride of 10. 
Consequently, each sample set is segmented into 10 distinct 
time intervals. The number of filters is set to be 16. Given 
the intensive computational requirements for training the pro‐
posed CTSAN model, a Windows 10 server equipped with 
advanced hardware and software specifications is leveraged 
to facilitate the training process. The hardware configuration 
of the server includes an NVIDIA RTX 3090 graphics card 
with 24 GB of memory. CUDA version 11.3 and the Py‐
Torch DL framework is employed. The detailed settings of 
the proposed CTSAN model is comprehensively outlined in 
Table IX.

3)　Classification Performance Analysis
To verify the effectiveness and reliability of the proposed 

CTSAN model, a comparative analysis against different mod‐
els (i.e., the shallow ML model MLP [6] and DL model ST‐
MNN [13]) is conducted and all temporal-spatial features are 
extracted from the SCADA data. In the experiments, all mod‐
els are configured with a batch size of 64. The Adam opti‐
mizer is employed during the training process, with an ini‐
tial learning rate of 0.01 and a total of 300 training itera‐
tions. The MLP is structured with three fully-connected lay‐
ers, featuring a hidden layer dimension of 128, and utilizes 
the Softmax activation function for fault classification. The 
architecture of the STMNN, as detailed in [13], integrates a 
deep echo stage network and a multi-scale deep residual 
CNN with convolution kernels of sizes 1, 3, 5, and 7, facili‐
tating the fusion of temporal-spatial features. To account for 
the inherent randomness in the model training process and to 
ensure fairness, all the results are the average performance 

of three tests.
The performance evaluations are firstly conducted on a 

single-fault sample set. Figure 7 illustrates the confusion ma‐
trices for a single-fault test (Fault 1) based on different mod‐
els, comparing the performance of two models with the pro‐
posed CTSAN model. In the matrix, 0 and 1 represent the 
normal and fault stages of the sample sets, respectively. The 
upper left and lower right corners of the matrix display the 
TP and TN of the sample sets while the lower left and upper 
right corners display FP and FN of the sample sets. The 
higher TP and TN illustrate a better classification perfor‐
mance by the FD model. It is evident that MLP has the low‐
est TP, suggesting a risk of overlooking true fault sample 
sets. Conversely, the proposed CTSAN model and the ST‐
MNN yield the highest TP, indicating the successful diagno‐
sis of all sample sets for Fault 1. However, the STMNN 
model tends to misclassify more normal sample sets, result‐
ing in higher maintenance costs for offshore WTs compared 
with the proposed CTSAN model. Therefore, the proposed 
CTSAN model demonstrates superior fault classification ac‐
curacy.

Table X lists the performance evaluation indices of differ‐
ent models for Fault 1 to evaluate the diagnosis accuracy. As 
can be observed, the proposed CTSAN model has the high‐
est accuracy across all evaluation indices. For instance, com‐
pared with the MLP, the proposed CTSAN model has im‐
proved the detection ACU and R by 12% and 13.5%, respec‐
tively. This superior performance is attributed to the pro‐
posed CTSAN model’s comprehensive exploitation of the in‐
herent spatiotemporal features in SCADA data. Furthermore, 
when compared with the STMNN model, the proposed CT‐
SAN model has improved F1 and recall by 0.2% and 0.4%, 
respectively. This suggests that the temporal-spatial dual at‐
tention adopted makes the extraction of temporal-spatial fea‐
tures of the model more comprehensive and effective, result‐
ing in more stable diagnosis.

To further explore the performance of the proposed CT‐
SAN model for multi-fault FD, Fig. 8 shows the confusion 

TABLE X
PERFORMANCE EVALUATION INDICES OF DIFFERENT MODELS FOR FAULT 1

Model

MLP

STMNN

Proposed CTSAN

ACU (%)

85.5

97.5

97.9

P (%)

98.6

100.0

100.0

R (%)

83.5

97.0

97.4

F1 (%)

90.5

98.5

98.7

TABLE IX
DETAILED SETTINGS OF PROPOSED CTSAN MODEL

Model setting

Batch size

Training epoch

Learning rate

Input sequence length

Number of convolution 
feature extraction modules

Convolution feature 
extraction module

Output dimension of 
convolution module

Spatial attention module

Output dimension of spatial 
attention module

Temporal attention module

Output dimension of 
temporal attention module

Classification module

Single-fault

64

300

0.01

100

8

Kernel size: 1×10
Stride: 10
Filter: 16

64×8×10×16

Activation: Softmax
Filter: 16

64×8×10

Activation: Softmax
Filter: 10

64×8×1

Activation: Softmax
Output: 64×2

Multi-fault

64

300

0.01

100

16

Kernel size: 1×10
Stride: 10
Filter: 16

64×16×10×16

Activation: Softmax
Filter: 16

64×16×10

Activation: Softmax
Filter: 10

64×16×1

Activation: Softmax
Output: 64×3

360 71

5 89

418 13

0 94

420 11

0 94
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Fig.7.　Confusion matrices for single-fault test based on different models. 
(a) MLP model. (b) STMNN model. (c) Proposed CTSAN model.
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matrices for multi-fault test based on the MLP and STMNN, 
as well as that based on the proposed CTSAN model. In the 
matrix, 0, 1, and 2 represent the normal state, Fault 1, and 
Fault 2 stages of the sample sets, respectively. As observed 
from Fig. 8, the proposed CTSAN model has the highest TP 
and TN amongst all models, indicating it has the best classifi‐
cation performance in all tests. Table XI lists the perfor‐
mance evaluation indices of different models for multi-fault 
FD and shows that the FD accuracy of all three models de‐
creases. Among them, the MLP, constrained by its simplistic 
architecture and limited feature fitting of the SCADA time-
series data, records a mere 79.9% in diagnosis accuracy. 
Conversely, the proposed CTSAN model has a diagnosis ac‐
curacy of 96.7%, outperforming the MLP and STMNN by 
16.8% and 0.9%, respectively. It can diagnose Fault 1 and 
Fault 2 effectively. As for the detection index recall, the pro‐
posed CTSAN model achieves an MAR value of 98.4%, re‐
flecting the minimal incidence of missed detections and dem‐
onstrating its robust capacity to discern between sample sets 
of fault and normal stages. The proposed CTSAN model us‐
es CNNs to extract key features based on time intervals 
from the input multi-variate SCADA time-series data, shift‐
ing the focus of the model from numerous time points to 
fewer time intervals. Subsequently, the weight distribution 
mechanism of temporal-spatial attention is utilized to obtain 
a more effective feature representation. Based on the tempo‐
ral-spatial feature representation focused by the attention 
weights, the classification module can better model the tem‐
poral-spatial features among multi-variate SCADA time-se‐
ries data. Compared with STMNN, which also extracts tem‐
poral-spatial features, this further enhances the adaptability 
of the proposed CTSAN model for multi-fault FD of off‐
shore WTs.

4)　FD Time Performance
For FD, it is crucial to achieve a balance between the ac‐

curacy and response time, as a shorter response time gives 
the offshore WT maintenance system more time to react. 

Consequently, it is imperative to examine the FD time of dif‐
ferent models. Table XII delineates the training time of the 
proposed CTSAN model and the other two models on both 
single-fault and multi-fault sample sets, in addition to the 
single sample set FD time. As indicated in Table XII, the 
MLP exhibits the shortest training time due to its compara‐
tively simple structure. However, this simplicity also con‐
strains its discriminative capacity of FD for offshore WT, re‐
sulting in the accuracy of FD is only at average level. The 
STMNN characterized by its temporal-spatial feature extrac‐
tion demonstrates the longest training time in both sample 
sets, specifically 216.35 s and 246.63 s, thereby incurring a 
significantly higher computational cost than the proposed 
CTSAN model. This is attributed to the design of the deep 
echo stage network of STMNN, which extracts SCADA 
time-series features at one scale at a time, and the extraction 
of features at multi-scale must await the completion of the 
feature extraction of the previous time scale.

For the practical applications of FD for offshore WTs, the 
online FD response speed is often more important than the 
offline training speed. As can be observed from Table XII, 
the FD  time of the three models is less than 3 ms, which to 
some extent reflects the advantages of data-driven methods, 
providing more reaction time for offshore WT maintenance 
personnel. Among them, the proposed CTSAN model has a 
faster online FD speed compared with the STMNN. In de‐
tail, the single sample set FD time of the proposed CTSAN 
model and STMNN are 1.74 ms and 1.77 ms, respectively, 
which enables the proposed CTSAN model to deliver diagno‐
sis results in a significantly shorter time, making it particu‐
larly suitable for real-time FD for offshore WTs.

D. Interpretability Performance

The interpretability of attention mechanism is manifested 
in the degree of importance assigned to the features corre‐
sponding to attention weights. The features with higher 
weights typically have a more decisive influence on the diag‐
nosis results. To validate the interpretability of the proposed 
CTSAN model, the learned weights for both temporal and 
spatial attention are visualized. The reasonableness of atten‐
tion weights is also explained by integrating domain-specific 
knowledge, such as offshore WT fault logs and anomalous 
behavior of monitored variables.
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Fig. 8.　Confusion matrices for multi-fault test based on different models. 
(a) MLP model. (b) STMNN model. (c) Proposed CTSAN model.

TABLE XI
PERFORMANCE EVALUATION INDICES OF DIFFERENT MODELS FOR 

MULTI-FAULT FD 

Model

MLP

STMNN

Proposed CTSAN

ACU (%)

79.9

95.8

96.7

MAP (%)

67.2

88.1

90.2

MAR (%)

86.1

96.7

98.4

MAF (%)

75.5

92.2

94.1

TABLE XII
COMPARISON OF MODEL DIAGNOSIS TIME

Fault type

Single-fault

Multi-fault

Model

MLP

STMNN

Proposed 
CTSAN

MLP

STMNN

Proposed 
CTSAN

The minimum 
single epoch 

training time (s)

0.16

0.67

0.41

0.21

0.77

0.49

Total train‐
ing time (s)

51.94

216.35

142.61

68.71

246.63

154.89

Single sample 
set FD time 

(ms)

1.27

2.43

1.74

1.32

2.51

1.77
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1)　Instance Interpretability Analysis
Figure 9 shows the actual input variable values and inter‐

pretable heatmaps of different sample sets, as well as the inter‐
pretability analysis of an instance sample set. The vertical and 
horizontal axes represent m input variables and n intervals, re‐
spectively, while the color density illustrates the weight of at‐
tention and the contribution of each input variable in each in‐
terval to the classification. When the WT is at the normal state 
stage, the actual input variable values do not fluctuate signifi‐
cantly, as observed from Fig. 9(a). Also, as observed from Fig. 
9(c), the weight of input variables such as Tqp1, Tqp2, Tqp3, and 

Tmn at each interval is slightly higher than that of other vari‐
ables. The proposal has not captured any abnormal condi‐
tions from the sample set and thus, it classifies the sample set 
as normal stage. When the WT shows an early fault trend with 
Tgo, Tmd rises rapidly, and Tmn is also high, as observed from 
Fig. 9(b). Under this condition, as observed from Fig. 9(d), the 
weights of Tmd and Tmn in the last four intervals are signifi‐
cantly higher than that of other variables, indicating that the 
proposed CTSAN model detects abnormal conditions of the 
two variables from the sample set, and based on this, the 
sample sets are classified (i.e., Fault 1).

2)　Global Interpretability Analysis
Figure 10 illustrates the results of global sample sets. Figure 

10(a) shows the prediction of the proposed CTSAN model, in 
which 0 and 1 denote the normal and fault stages, respectively. 
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Fig. 9.　Actual input variable values and interpretable heatmaps of different sample sets. (a) Normal state stage. (b) Fault 1. (c) Attention weight of normal 
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Figure 10(b) shows the temporal dimension of heatmap 
and represents a continuous change process of the temporal 
attention weight, in which the color density illustrates the at‐
tention weight of each interval in the sample sets at different 
time points and their contribution to the classification.

Figure 10(c) shows the spatial dimension of heatmap and 
presents a continuous change process of the overall spatial 
attention weight. When the WT has the trend of an early 
fault, as observed from Fig. 10(a), the proposed CTSAN 
model flags a change from normal state stage to fault stage. 
When the WT shows the trend of an early fault, the tempo‐
ral attention weight of the end interval rises to 0.2 (much 
higher than that of other intervals), and temporal attention 
weight contribution to fault classification is higher. Then, 
when the WT changes from the early fault stage to the fault 
stage, the weight of each interval in the sample set and the 
contribution to the classification are almost the same. After 
the WT fault is removed, the input variables return to be nor‐
mal initial values at the end of the sample set interval, and 
the proposed CTSAN model correctly flags a return to nor‐
mal stage. Again, the attention weight of these variables at 
the interval end and the attention weight contribution to the 
classification is higher. By matching domain knowledge with 
the heatmaps, it is verified that the proposal successfully ex‐

tracts the deep temporal-spatial features from the SCADA 
time-series data of FD for WTs.

VI. CONCLUSION 

An interpretable CTSAN model of FD for offshore WTs 
is proposed in this paper. By focusing on a real wind farm 
system, the success of the proposed CTSAN model in detect‐
ing the faults is accurately validated. This is demonstrated 
through two real faults observed in the real system, by com‐
paring the results of the proposed CTSAN model to the actu‐
al fault and O&M logs in the real system. This paper illus‐
trates that the proposed CTSAN model can dynamically ex‐
tract the key deep temporal-spatial features through the avail‐
able SCADA time-series data, thus improving its FD classifi‐
cation performance. This paper also demonstrates that the 
proposed CTSAN model is interpretable and shows the ex‐
tracted deep temporal-spatial features in a human-understand‐
able form, making the evaluation more reliable for practical 
implementation. The conducted comparisons against two ex‐
isting models also have numerically proven the superiority 
of the proposed CTSAN model.

FD for WTs requires the collection of a large amount of 
data, including mechanical, electrical, and meteorological da‐
ta, etc. The types of the data are variable, such as thermal 
imaging from drone inspections, low-frequency SCADA da‐
ta, and high-frequency mechanical vibration data. Therefore, 
how to apply the attention mechanism to cross-domain focus 
on multimodal data, extract features with high discriminabili‐
ty and sensitivity to FD from multiple source features, and 
integrate the characteristics of algorithms from different do‐
mains will be the research focus for the next step in imple‐
menting interpretable FD for WTs.

REFERENCES

[1] F. R. Badal, P. Das, S. K. Sarker et al., “A survey on control issues in 
renewable energy integration and microgrid,” Protection and Control 
of Modern Power Systems, vol. 4, no. 1, pp. 1-27, Jan. 2019.

[2] Z. Ren, A. S. Verma, Y. Li et al., “Offshore wind turbine operations 
and maintenance: a state-of-the-art review,” Renewable and Sustain‐
able Energy Reviews, vol. 144, no. 1, p. 110886, Jul. 2021.

[3] H. Sanchez, T. Escobet, V. Puig et al., “Fault diagnosis of an ad‐
vanced wind turbine benchmark using interval-based ARRs and observ‐
ers,” IEEE Transactions on Industrial Electronics, vol. 62, no. 6, pp. 
3783-3793, Jun. 2015.

[4] Y. Qiu, Y. Feng, J. Sun et al., “Applying thermophysics for wind tur‐
bine drivetrain fault diagnosis using SCADA time-series data,” IET Re‐
newable Power Generation, vol. 10, no. 5, pp. 661-668, May 2016.

[5] A. Mojallal and S. Lotfifard, “Multi-physics graphical model-based 
fault detection and isolation in wind turbines,” IEEE Transactions on 
Smart Grid, vol. 9, no. 6, pp. 5599-5612, Nov. 2018.

[6] S. Yang, W. Li, and C. Wang, “The intelligent fault diagnosis of wind 
turbine gearbox based on artificial neural network,” in Proceedings of 
2008 International Conference on Condition Monitoring and Diagno‐
sis, Beijing, China, Apr. 2008, pp. 1327-1330.

[7] D. Zhang and Z. Qian, “Probability warning for wind turbine gearbox 
incipient faults based on SCADA time-series data,” in Proceedings of 
2017 Chinese Automation Congress (CAC), Jinan, China, Oct. 2017, 
pp. 3684-3688.

[8] M. Mansouri, R. Fezai, M. Trabelsi et al., “A novel fault diagnosis of 
uncertain systems based on interval Gaussian process regression: appli‐
cation to wind energy conversion systems,” IEEE Access, vol. 8, pp. 
219672-219679, Dec. 2020.

[9] J. Lin, H. Shao, X. Zhou et al., “Generalized MAML for few-shot 
cross-domain fault diagnosis of bearing driven by heterogeneous sig‐
nals,” Expert Systems with Applications, vol. 230, p. 120696, Nov. 

0
1
2
3
4
5
6
7
8
9

P
re

d
ic

te
d

la
b
el

T
im

e 
in

te
rv

al

V
ar

ia
b
le

1

Tcc

Sg

Tqp1

Tqp2

Tqp3

Tpm1

Tpm2

Tpm3

Si

Tc

Tmn

Tmd

Tgo

Tgb

Input data

(c)

0 790 1580 2370 3160 3950 4740 5530 6320 7110 7900 8660

Input data

(a)

0 2370 4740 7110 8660

0 2370 4740 7110 8660

Input data

(b)

0

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200
Color density

0

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Color density

Fig. 10.　Results of global sample sets. (a) Prediction of model. (b) Tempo‐
ral dimension of heatmap. (c) Spatial dimension of heatmap.

1470



SU et al.: FAULT DIAGNOSIS BASED ON INTERPRETABLE CONVOLUTIONAL TEMPORAL-SPATIAL ATTENTION NETWORK FOR OFFSHORE...

2023.
[10] Z. Xu, M. Bashir, Y. Yang et al., “Multisensory collaborative damage 

diagnosis of a 10 MW floating offshore wind turbine tendons using 
multi-scale convolutional neural network with attention mechanism,” 
Renewable Energy, vol. 199, pp. 21-34, Nov. 2022.

[11] C. Zhang, D. Hu, and T. Yang, “Anomaly detection and diagnosis for 
wind turbines using long short-term memory-based stacked denoising 
autoencoders and XGBoost,” Reliability Engineering & System Safety, 
vol. 222, p. 108445, Jun. 2022.

[12] Y. Pang, Q. He, G. Jiang et al., “Spatio-temporal fusion neural net‐
work for multi-class fault diagnosis of wind turbines based on SCA‐
DA time-series data,” Renewable Energy, vol. 161, pp. 510-524, Dec. 
2020.

[13] Q. He, Y. Pang, G. Jiang et al., “A spatio-temporal multiscale neural 
network approach for wind turbine fault diagnosis with imbalanced 
SCADA time-series data,” IEEE Transactions on Industrial Informat‐
ics, vol. 17, no. 10, pp. 6875-6884, Oct. 2021.

[14] X. Qian, T. Sun, Y. Zhang et al., “Wind turbine fault detection based 
on spatial-temporal feature and neighbor operation state,” Renewable 
Energy, vol. 219, p. 119419, Dec. 2023.

[15] H. Habibi, I. Howard, and S. Simani, “Reliability improvement of 
wind turbine power generation using model-based fault detection and 
fault tolerant control: a review,” Renewable Energy, vol. 135, p. 877-
896, May 2019.

[16] N. Freire and A. Cardoso, “Fault detection and condition monitoring 
of PMSGs in offshore wind turbines,” Machines, vol. 9, p. 260, Oct. 
2021.

[17] P. Bangalore and M. Patriksson, “Analysis of SCADA time-series data 
for early fault detection, with application to the maintenance manage‐
ment of wind turbines,” Renewable Energy, vol. 115, pp. 521-532, 
Jan. 2018.

[18] S. Wei, X. Zhang, F. Yang et al., “Early-fault warning and diagnosis 
of offshore wind DFIG based on GRA-LSTM-Stacking model,” Pro‐
ceedings of the CSEE, vol. 41, pp. 2373-2383, Apr. 2021.

[19] T. Sun, G. Yu, M. Gao et al., “Fault diagnosis methods based on ma‐
chine learning and its applications for wind turbines: a review,” IEEE 
Access, vol. 9, pp. 147481-147511, Oct. 2021.

[20] R. Dwivedi, D. Dave, H. Naik et al., “Explainable AI (XAI): core 
ideas, techniques, and solutions,” ACM Computing Surveys, vol. 55, 
no. 9, pp. 1-33, Sept. 2023.

[21] S. Chaudhari, V. Mithal, G. Polatkan et al., “An attentive survey of at‐
tention models,” ACM Transactions on Intelligent Systems and Tech‐
nology, vol. 12, no. 5, pp. 1-32, Oct. 2021.

[22] Y. Xiao, H. Shao, M. Feng et al., “Towards trustworthy rotating ma‐
chinery fault diagnosis via attention uncertainty in transformer,” Jour‐
nal of Manufacturing Systems, vol. 70, pp. 186-201, Oct. 2023.

[23] Y. Li, Z. Zhou, C. Sun et al., “Variational attention-based interpretable 
transformer network for rotary machine fault diagnosis,” IEEE Trans‐
actions on Neural Networks and Learning Systems, vol. 35, no. 5, pp. 
6180-6193, May 2024.

[24] H. Zhao, H. Liu, H. Liu et al., “Condition monitoring and fault diag‐
nosis of wind turbine generator based on stacked autoencoder net‐
work,” Automation of Electric Power Systems, vol. 42, no. 11, pp. 102-
108, May 2018.

[25] X. Su, Y. Shan, C. Li et al., “Spatial-temporal attention and GRU 
based interpretable condition monitoring of offshore wind turbine gear‐
boxes,” IET Renewable Power Generation, vol. 16, no. 2, pp. 402-
415, Feb. 2022.

[26] Z. Kong, B. Tang, L. Deng et al., “Condition monitoring of wind tur‐
bines based on spatio-temporal fusion of SCADA time-series data by 
convolutional neural networks and gated recurrent units,” Renewable 
Energy, vol. 146, pp. 760-768, Jul. 2020.

[27] L. Wang, Z. Zhang, H. Long et al., “Wind turbine gearbox failure 
identification with deep neural networks,” IEEE Transactions on In‐
dustrial Informatics, vol. 13, no. 3, pp. 1360-1368, Jun. 2017.

[28] D. Zhang, L. Qian, B. Mao et al., “A data-driven design for fault de‐
tection of wind turbines using random forests and XGboost,” IEEE Ac‐
cess, vol. 6, pp. 21020-21031, Apr. 2018.

[29] M. T. Luong, H. Pham, and C. D. Manning. (2015, Aug.). Effective 
approaches to attention-based neural machine translation. [Online]. 
Avaulable: https://aclanthology.org/D15-1166/

[30] L. Wei, Z. Qian, and H. Zareipour, “Wind turbine pitch system condi‐
tion monitoring and fault detection based on optimized relevance vec‐
tor machine regression,” IEEE Transactions on Sustainable Energy, 
vol. 11, no. 4, pp. 2326-2336, Oct. 2020.

Xiangjing Su received the Ph.D. degree in electrical engineering from Cur‐
tin University, Perth, Australia, in 2015. He was a Visiting Fellow with the 
University of New South Wales, Sydney, Australia, between 2018 and 2020. 
He is currently working as the Guangming Scholar at Shanghai University 
of Electric Power, Shanghai, China. His research interests include distribu‐
tion system planning and operation and offshore wind farm operation and 
maintenance.

Chao Deng received the B.E. degree in electrical engineering from Hebei 
Agricultural University, Baoding, China, in 2021, and the M. S. degree in 
electrical engineering from Shanghai University of Electric Power, Shang‐
hai, China, in 2024. His research interests include offshore wind turbine 
fault diagnosis, power cyber-physical system security, and machine learning.

Yanhao Shan received the B.E. and M.S. degrees in electrical engineering 
from Shanghai University of Electric Power, Shanghai, China, in 2018 and 
2021, respectively. He is currently working as an Engineer at Yantai Power 
Supply Company, State Grid Shandong Electric Power Co., Ltd., Yantai, 
China. His research interests include condition monitoring of offshore wind 
power.

Farhad Shahnia received the Ph. D. degree in electrical engineering from 
the Queensland University of Technology, Brisbane, Australia, in 2012. He 
is currently an Associate Professor with Murdoch University, Perth, Austra‐
lia. His research interests include application and control of power elec‐
tronic converters in distribution system and microgrid.

Yang Fu received the Ph.D. degree in electrical engineering from Shanghai 
University, Shanghai, China, in 2007. He is currently a Professor and the 
Vice President of Shanghai University of Electric Power, Shanghai, China. 
His research interests include offshore wind power planning and operation 
and new power system analysis and optimization.

Zhaoyang Dong received the Ph.D. degree from University of Sydney, Syd‐
ney, Australia, in 1999. He is currently a Professor of power engineering 
with Nanyang Technological University, Singapore, and a Singapore Power 
Group endowed Professor of power engineering. His previous roles include 
a SHARP Professor of energy systems, the inaugural Director of University 
of New South Wales Digital Grid Future Institute and University of New 
South Wales, Sydney, Australia, the Director of the ARC Research Hub for 
Integrated Energy Storage Systems, the Head of the School of Electrical 
and Information Engineering, University of Sydney, and the Ausgrid Chair 
Professor and the Director of the Ausgrid Centre for Intelligent Electricity 
Networks. His research interests include power system planning and stabil‐
ity, smart grid, smart city, renewable energy system, and energy market.

1471


