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Abstract——The increasing integration of renewable energy 
sources (RESs) presents significant challenges for the safe and 
economical operation of power grids. Addressing the critical 
need to assess the effect of RES uncertainties on optimal sched‐
uling schemes (OSSs), this paper introduces a convex hull based 
economic operating region (CH-EOR) for power grids. The CH-
EOR is mathematically defined to delineate the impact of RES 
uncertainties on power grid operations. We propose a novel ap‐
proach for generating the CH-EOR, enhanced by a big-M pre‐
processing method to improve the computational efficiency. Per‐
formed on four test systems, the proposed big-M preprocessing 
method demonstrates notable advancements: a reduction in av‐
erage operating costs by over 10% compared with the box-con‐
strained operating region (BC-OR) derived from robust optimi‐
zation. Furthermore, the CH-EOR occupies less than 11.79% of 
the generators’ adjustable region (GAR). Most significantly, af‐
ter applying the proposed big-M preprocessing method, the 
computational efficiency is improved over 17 times compared 
with the traditional big-M method.

Index Terms——Convex hull, big-M preprocessing method, eco‐
nomic operating region (EOR), renewable energy source (RES), 
uncertainty.

NOMENCLATURE

A. Indices and Sets

Ψt Economic operating region (EOR) at time step 
t

Ψ conv
t Convex hull based economic operating region 

(CH-EOR) at time step t

Ψ High-dimensional EOR considering all Ψt

Ψ conv High-dimensional CH-EOR considering all 
Ψ conv

t

ϒW Uncertainty set of active power output by re‐
newable energy sources (RESs)

ΩGΩSΩW Sets of dispatchable generators (DGs), energy 
ΩDΩL storage systems (ESSs), RESs, loads, and 

transmission lines

ΩT Set of time steps from 1 to T

Ωdim
t Dimension set of CH-EOR at time step t

Ωleffac
t Set of facets left for the next iteration at time 

step t

Ωtotfac
t Set of all generated facets of convex hull at 

time step t

Ωcurfac
t Set of current generated facets of convex hull 

at time step t

Ωtotver
t Set of all generated extending points at time 

step t

γ Index of dimension

i Index of DGs

iγ Index of DGs corresponding to dimension γ

j Index of RESs

l Index of transmission lines

min, max The minimum and maximum values

r Index of loads

s Index of ESSs

t Index of time steps

V conv Set of vertices of Ψ conv

B. Parameters

ξ δN
dim
t

ϑ N dim
t -dimension vector, whose ϑth element 

equals δ and others are zero

ηcha
s ηdis

s Charging and discharging efficiencies of ESS s

π G
li π

W
lj  π

S
ls Power transfer distribution factors associated  

π D
lr with DG i, RES j, ESS s, and load r 

ai, bi, ci Cost coefficients of DG i

ccha
s , cdis

s Small positive coefficients associated with 
charging and discharging power of ESS s
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{cf k
γtdf k

t } The kth facet in Ωleffac
t  or Ωcurfac

t , where cf k
γt is 

the coefficient and df k
t  is the offset

cf k
t , dft Vectors consisting of cf k

γt and df k
t , where cf k

t =
[cf k

γt ] and dft =[df k
t ]

cft Matrix consisting of cf k
t , cft =[cf k

t ]

E max
s Rated capacity of ESS s

f max
l The maximum transmission capacity of line l

M A large enough constant
NTNGNS Numbers of scheduling time steps, DGs, ESSs,
NWND RESs, and loads
N dim

t Dimension of CH-EOR at time step t
N leffac

t Number of facets in Ωleffac
t

pD
rt Active power demand of load r at time step t

pGmin
i , pGmax

i The minimum and maximum active power 
outputs of DG i

pSmax
s The maximum charging and discharging pow‐

er of ESS s
RDi, RUi Ramp-down and ramp-up limits of DG i

-W jt
-
W jt Lower and upper bounds of active power out‐

put by RES j at time step t

C. Decision Variables

θ Vector of binary variables, θ =[θ i ], θiÎ{01},  
"i

λv Vectors of Lagrangian multipliers
e Vector of stored energy of ESS, e =[est ]"s"t

pchapdis Vectors of charging and discharging power of 
ESS, where pcha =[pcha

st ] and pdis =[pdis
st ], "s"t

pG Vector of active power output by DG, pG =
[pG

it ]"i"t

pdim
Gt , p

0dim
Gt Vectors of pG

iγt
 and p0G

iγt
 where pdim

Gt =[pG
iγt

], 

p0dim
Gt =[p0G

iγt
]"iγÎΩ

dim
t

pW
jt Active power output by RES j at time step t

pWcur
jt Curtailed power of RES j at time step t

x Vector consisting of pcha
st , pdis

st , est, and pWcur
jt  

i.e., x =[pcha
st p

dis
st estp

Wcur
jt ], "s "j "t

I. INTRODUCTION 

THE escalating greenhouse gas emissions from fossil fu‐
els have intensified global environmental challenges. In 

response, countries and regions like the European Union [1], 
the United States [2], and China [3] have set ambitious 
goals to achieve carbon neutrality by 2050, 2050, and 2060, 
respectively. These commitments catalyze the rapid growth 
of renewable energy sources (RESs). However, the inherent 
less predictability of RESs [4] poses risks to the operating 
security of power grids, and even leads to the curtailment of 
RESs. The effective scheduling of the dispatchable compo‐
nents in power grids is crucial to mitigate these risks. Cur‐
rent studies primarily focus on day-ahead scheduling (specif‐
ic to certain RES scenarios) and security regions (often over‐
looking economic aspects). This paper addresses this gap by 
developing a convex hull based economic operating region 
(CH-EOR). The CH-EOR represents a global set of optimal 

scheduling schemes (OSSs) under RES uncertainties, aiding 
real-time power grid scheduling.

Worldwide scholars have employed various optimization 
methods to improve the power grid resilience to RES uncer‐
tainties. These methods include two-stage robust optimiza‐
tion [5], two-stage stochastic optimization [6], combination 
of robust and stochastic optimization [7], distributionally ro‐
bust optimization [8], and multi-stage robust optimization 
[9] methods. Each method aims to optimize day-ahead sched‐
uling for power grids integrated with RESs. Additionally, 
[10] and [11] explore reserve scheduling in coupled transmis‐
sion and distribution grids, as well as in hybrid AC-DC 
grids. In [12], a local integrated electricity-heat market is de‐
signed among multiple smart energy hubs under RES uncer‐
tainties. However, the above studies predominantly concen‐
trate on specific scenarios and do not offer comprehensive 
insights into the possible operating region (POR) under RES 
uncertainties for grid operators. This limitation has led to the 
advancement of region-based methods [13].

The region-based method provides global information on 
operating regions of power grids [14]. Reference [15] de‐
fines the security region of a distribution grid and formulates 
a corresponding mathematical model. Reference [16] and 
[17] delve into the topological characteristics and boundaries 
of the security regions. Reference [18] establishes a founda‐
tional theory for the security region of distribution grids, in‐
cluding a mathematical deduction of the N - 1 security crite‐
rion. In [14], the focus shifts to security regions in distribu‐
tion grids with soft open points. Addressing RES uncertain‐
ties, [19] introduces a set-based method to determine the 
maximum uncertainty boundaries for distributed generation. 
Reference [20] identifies the largest operating ranges of 
RESs, offering three alternative solving approaches. Refer‐
ence [4] and [21] propose a method to construct real-time 
dispatchable regions for RESs, identifying them as bounded 
polytopes. Based on the AC power network, [22] constructs 
a convex inner approximation of a steady-state security re‐
gion of power grid, and [23] studies the dispatchable region 
of RESs relative to a given dispatch base point. A novel dis‐
patchable region considering only potential boundaries is de‐
termined through a mixed-integer linear program, as intro‐
duced in [24]. Reference [25] proposes a two-stage distribu‐
tionally robust optimization model to balance system flexibil‐
ity, scheduling cost, and RES utilization by co-optimizing 
power scheduling and operating ranges of RES. Reference 
[26] tackles time coupling in RESs, introducing a fast algo‐
rithm to approximate the security regions of tie-lines. Ex‐
panding this concept, [27] applies the concept of security re‐
gion to multi-dimensional integrated energy systems. Refer‐
ence [13] proposes a robust security region for electrici‐
ty-gas integrated systems to mitigate RES fluctuations. Ref‐
erences [28] and [29] provide a comprehensive characteriza‐
tion for security regions of integrated energy systems, ac‐
counting for the two-timescale feature. Additionally, [30] de‐
velops a security region based model to optimize the reac‐
tive power in distribution grids with RES uncertainties.

Regarding region utilization, [31] proposes an economic 
scheduling model that considers the security region of RES. 
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Reference [32] formulates the box-constrained operating re‐
gion (BC-OR) of generators for each scheduling period, 
within which the real-time economic scheduling can be com‐
puted independently.

The above survey reveals significant achievements in re‐
gion-based methods for various applications. However, the 
existing research primarily concentrates on security operat‐
ing points, encompassing the security regions of distribution 
grids, integrated energy systems, tie-lines, AC power net‐
works, and the dispatchable regions of RESs at specific 
scheduling points. To the best of the authors’  knowledge, 
studies on the impacts of RES uncertainties on the economic 
operating points of power grids are relatively scarce. Differ‐
ent from the aforementioned studies, this paper considers 
both security and economics, characterizing the CH-EOR of 
the power grid with energy storage while taking into account 
the RES uncertainties.

The principal contributions of this paper are outlined as 
follows.

1) We define the CH-EOR of dispatchable generators 
(DGs) in a power grid integrated with RESs, providing the 
set of global OSSs under uncertainties.

2) The geometric properties of CH-EOR are delineated. 
Utilizing these properties, we introduce a novel approach for 
generating the CH-EOR. This encompasses one overarching 
algorithm along with two subsidiary algorithms.

3) To enhance the computational efficiency of CH-EOR, 
we propose a big-M preprocessing method.

Instead of a specific OSS, the CH-EOR, which simultane‐
ously considers security and economics, provides a set of 
OSSs under uncertainties for grid operators. The CH-EOR is 
usually much smaller than the POR of DGs and can be cal‐
culated offline and applied online. Specifically, the applica‐
tions of CH-EOR primarily include three aspects.

1) We can evaluate the economics of the real-time opera‐
tion of power grid by determining whether the current oper‐
ating point is within the CH-EOR [33], [34].

2) The CH-EOR can significantly reduce the action space 
of the artificial intelligence (AI) based algorithms for the 
generation of online scheduling plans and improve the train‐
ing efficiency [35]-[38]. Readers can refer to [34] for details.

3) In the electricity market, CH-EOR can be regarded as a 
reward operating region and utilized to explore a power grid 
scheduling strategy that combines planned scheduling with 
market-based bidding [39].

The rest of this paper is organized as follows. Section II 
mathematically defines the CH-EOR based on a given basic 
optimal scheduling model (OSM) and introduces the geomet‐
ric properties of CH-EOR. Section III proposes the solution 
approach, including a novel algorithm to calculate the CH-
EOR and a big-M preprocessing method to accelerate the 
computational efficiency. Section IV presents case studies 
corresponding to visualization analysis, region size analysis, 
economy comparison, and computational efficiency compari‐
son on four test systems. Finally, Section V gives the conclu‐
sions.

II. DEFINITION AND PROPERTIES OF CH-EOR 

A. Basic OSM

The CH-EOR evaluates the optimal operating points of 
the dispatchable components such as DGs and energy stor‐
age systems (ESSs) in power grids and is associated with a 
specific OSM. The “economic” here pertains to various 
scheduling objectives beyond merely minimizing generation 
cost. In this paper, our primary focus is on the CH-EOR of 
DGs, with the scheduling objective set to maximize the ac‐
commodation of RESs at the lowest feasible cost. The basic 
OSM corresponding to this objective is formulated as:

min∑
t = 1

NT é

ë

ê
êê
ê ù

û

ú
úú
ú∑

i = 1

NG

(ai (pG
it )

2 + bi pG
it + ci ) +∑

s = 1

NS

(ccha
s pcha

st + cdis
s pdis

st )

    (1a)

s.t.

                        pGmin
i £ pG

it £ pGmax
i     "iÎΩG"tÎΩT (1b)

-RDi £ pG
it + 1 - pG

it £RUi    "iÎΩG"tÎΩT - 1 (1c)

0 £ pWcur
jt £ pW

jt    "jÎΩW"tÎΩT (1d)

-fl
max £∑

i = 1

NG

π G
li pG

it +∑
j = 1

NW

πW
lj (pW

jt - pWcur
jt )+∑

s = 1

NS

(π dis
ls pdis

st -

π cha
ls pcha

st )-∑
r = 1

ND

π D
lr pD

rt £ f max
l         "lÎΩL"iÎΩG

 "jÎΩW"sÎΩS"rÎΩD"tÎΩT      (1e)

es1 = esNT + 1    "sÎΩS (1f)

ì
í
î

0 £ pcha
st £ pSmax

s

0 £ pdis
st £ pSmax

s

"sÎΩS  "tÎΩT (1g)

-est + est + 1 +
1
ηdis

s

pdis
st - η

cha
s pcha

st = 0    "sÎΩS  "tÎΩT    (1h)

∑
i = 1

NG

pG
it +∑

j = 1

NW

( pW
jt - pWcur

jt )+∑
s = 1

NS

pdis
st -∑

s = 1

NS

pcha
st    -∑

r = 1

ND

pD
rt = 0

                                                                                        "tÎΩT (1i)

Constraint (1b) restricts the output limit of DGs; con‐
straint (1c) is the ramp limit of DGs; constraint (1d) denotes 
the RES curtailment; constraint (1e) limits the power flow of 
transmission lines; constraints (1f) - (1h) are the ESS opera‐
tion conditions; and constraint (1i) is the power balance con‐
dition. Thus, the optimal solution of (1) is the OSS that cor‐
responds to the fixed predicted value pW

jt.
Since (1a) is an increasing function of pcha

st  and pdis
st , the 

critical constraint pcha
st pdis

st = 0, which avoids simultaneous 
charging and discharging, is always satisfied at the optimal 
solution [40]. Please refer to [40] for details of the proof.

It is worth mentioning that the basic OSM (1) is construct‐
ed based on the DC power flow model, which is widely ac‐
cepted in economic scheduling problems, and the modeling 
error meets engineering needs [41]. The CH-EOR based on 
the AC power flow model is our future research.

1421



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 12, NO. 5, September 2024

B. Definition of CH-EOR

In this subsection, we mathematically define the CH-EOR 
corresponding to the basic OSM (1) as follows.

Definition 1  Let Ψt ={pGt|"pWÎϒW $pGt satisfies (1)}, 
and then the CH-EOR at time step t, denoted as Ψ conv

t , is 
conv(Ψt ), and pGt =[pG

it ]"i.
According to Definition 1, Ψt is the set of OSSs of DGs 

at time step t, which is the exact economic operating region 
(EOR). Since the mapping from pW to pGt is non-linear, 
whether ϒW is convex or not, Ψt may be a non-convex set 
which is notoriously hard to handle. To balance the utility 
and complexity, we calculate the convex hull of Ψt, i.e., the 
so-called CH-EOR Ψ conv

t . In the following, Ψ conv
t  corresponds 

specifically to the DGs in the basic OSM (1) unless stated 
otherwise.

Figure 1 presents a schematic diagram showing the differ‐
ence and relationship among generators’  adjustable region 
(GAR), POR, EOR, and CH-EOR in 2D space. GAR is the 
set of all possible combined outputs of DGs that only consid‐
ers output limits of DGs. POR is the set of all possible oper‐
ating points that only satisfy security constraints (1b) - (1i) 
(usually the subset of GAR). CH-EOR is the convex hull of 
EOR, usually much smaller than POR and GAR. POR only 
considers “feasible and robust” aspects, while EOR and CH-
EOR, in addition to this, also take into account system eco‐
nomics.

C. Properties of CH-EOR

In order to develop a computational algorithm for CH-
EOR, we first derive its geometric property. For the conve‐
nience of expression, the basic OSM (1) is written in a com‐
pact form as:

min (pT
G ApG +BT pG +C T x +D) (2a)

s.t.
                   E1 pG +F1 pW +G1 x +H1 £ 0 (2b)

E2 pG +F2 pW +G2 x +H2 = 0 (2c)

where matrices A, E1, E2, F1, F2, G1, and G2, vectors B, C, 
H1, and H2, and constant D correspond to the coefficients 
in (1).

Since (2) is a quadratic convex optimization problem, the 
Karush-Kuhn-Tucker (KKT) conditions are both necessary 

and sufficient for its optimal solution [42] and can be formu‐
lated as:

ì

í

î

ïïïï

ïïïï

(2b)

(2c)

λ ³ 0

(3a)

diag(λ)×(E1 pG +F1 pW +G1 x +H1 )= 0 (3b)

2ApG +B +E T
1 λ +E T

2 v = 0 (3c)

C +G T
1 λ +G T

2 v = 0 (3d)

Constraint (3b) consists of q1 rows, which is the dimen‐
sion of λ.

Proposition 1  If the uncertainty set ϒW is a bounded 
polytope, so is Ψ conv

t "tÎΩT.
Proof  See Appendix A.
Proposition 1 reveals that Ψ conv

t  can be formulated by lin‐
ear inequalities as:

Ψ conv
t ={pdim

Gt |cft × p
dim
Gt + dft £ 0} (4)

Thus, our remaining work is to determine the dimension 
of CH-EOR N dim

t , the matrix cft, and the vector dft, "tÎΩT. 
Some additional remarks about the CH-EOR are given as fol‐
lows.

1) Since the main contribution of this paper is not the 
characterization of uncertainty sets, we have only chosen to 
use box constraints for simplicity to represent the uncertain‐
ty set ϒW of RESs (a common practice in robust optimiza‐
tion [10]). The uncertainty set can also be modified to other 
convex forms [43] by replacing the corresponding con‐
straints, and the resulting compact form will remain un‐
changed with the same solution process. The acceleration 
strategy introduced in Section III also works.

2) The attributes of CH-EOR including time scale, tempo‐
ral resolution, basic OSM, etc. are tailored to meet specific 
scheduling requirements. Additionally, the unit commitment 
can be integrated into the basic OSM, which is the future re‐
search.

3) The dimension of Ψ conv
t , denoted as N dim

t , corresponds 
to the number of DGs whose optimal output is influenced by 
RESs. It is important to note that N dim

t  may be smaller than 
the total number of DGs because certain DGs may maintain 
a constant optimal output regardless of the fluctuations of 
RESs within the uncertainty set. As demonstrated in Section 
IV, Ψ conv

t  is considerably smaller than the POR of DGs. We 
can develop efficient algorithms to match the OSS from the 
CH-EOR for real-time scheduling.

III. SOLUTION APPROACH 

A. Overall Algorithm

This subsection presents the overall algorithm (Algorithm 
1) for CH-EOR calculation. The main idea is first to deter‐
mine the dimension of Ψ conv

t  and initialize a convex hull 
with the same dimension for each time step, ensuring it is 
sufficiently small. Subsequently, extending points are com‐
puted, and the initial convex hulls are iteratively expanded. 
The overall calculation process of the overall algorithm is il‐
lustrated in Fig. 2.

0.4 0.50.20.1 0.3 0.6 0.7 0.8 0.9 1.0
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GAR; POR; CH-EOR; EOR

G
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2
 (

p
�u
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P1

G
P1  (p.u.)

Fig. 1.　Schematic diagram of GAR, POR, EOR, and CH-EOR.
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Since Proposition 1 reveals that the CH-EOR is a bound‐
ed polytope, the final CH-EOR can be obtained within a fi‐
nite number of iterations. The detailed calculation process of 
CH-EOR is outlined in Algorithm 1. The CH-EOR Ψ conv

t  is 
iteratively calculated until Ωleffac

t  is empty for all time steps 
(the outer loop starting from line 5). Extending points of 
Ψ conv

t  are independently generated for each time step (the 
middle loop starting from line 6) and each facet (the inner 
loop starting from line 7).

1)　Determining Dimensions
To identify the DGs whose outputs remain unchanged 

with the RESs and ascertain the dimension of CH-EOR, we 
present two distinct bi-level optimization problems, denoted 
as (5) and (6), and each is solvable independently for ev‐
ery pG

it.

max pG
it (5a)

s.t.
           - W jt £ pW

jt £
-
W jt    "jÎΩW"tÎΩT (5b)

[pGx]Î arg{min(2a)  s.t. (2b) (2c)} (5c)

min pG
it (6a)

s.t.
            -W jt £ pW

jt £
-
W jt    "jÎΩW"tÎΩT (6b)

[pGx]Î arg{min(2a)  s.t. (2b) (2c)} (6c)

As shown in (5b) and (6b), we assume that pW
jt lies within 

the lower and upper bounds of the active power output by 
RES. Constraints (5c) and (6c) involve lower-level optimiza‐
tions guaranteeing that [pGx] satisfies the basic OSM (2), 
ensuring optimality. Consequently, constraints (5b)((6b)) and 
(5c) ((6c)) define the set Ψt, and objectives (5a) and (6a) 
seek the maximum value poptmax

it  and the minimum value 
poptmin

it  of pG
it in Ψt, respectively, with the output power fluctu‐

ation of RES within the uncertain set. If poptmax
it = poptmin

it , 
which indicates a fixed optimal pG

it, the corresponding DG 
can be removed. However, it is not straightforward for off-
the-shelf solvers to solve bi-level optimization problems. To 
address this, we propose replacing the lower-level optimiza‐
tion problem with its KKT conditions (3a)-(3d) [42]. Since it 
is challenging due to the non-convex complementary slack‐
ness condition (3b), we employ the following linearization 
technique [4] to reformulate (3b).

-Mθ £E1 pG +F1 pW +G1 x +H1 £ 0 (7a)

0 £ λ £M (1 - θ) (7b)

Thus, the bi-level optimization problems (5) and (6) are 
reformulated as the single-level problems (8) and (9), respec‐
tively, which can be solved by commercial solvers directly.

ì
í
î

max   pG
it

s.t. (3a) (3c) (3d) (5b) (7a) (7b)
  (8)

ì
í
î

min   pG
it

s.t. (3a) (3c) (3d) (5b) (7a) (7b)
  (9)

Taking into account calculation errors, the procedure for 
determining the dimension of CH-EOR is outlined in Algo‐
rithm 2.

2)　Initializing Convex Hulls
In this part, we initiate the iterative calculation of CH-

EOR by formulating small simplexes as the initial convex 
hulls. Initially, a scenario is randomly chosen from the uncer‐
tainty set of RES outputs, and the basic OSM (1) is solved 

Generate extending points

Obtain final CH-EOR

Determine dimension

of CH-EOR

Update current CH-EOR

(initial convex hulls)

Initialize convex hulls

Are there

new extending

points? 

Algorithm 2

Algorithm 3

Algorithm 1

Y

N

Start

End

Fig. 2.　Overall calculation process of overall algorithm.

Algorithm 1: calculation process of CH-EOR

Input: NT and tolerance δ1

Output: the facets {cf k
γtdf k

t }ÎΩcurfac
t  "γ, "k, "t

1: Initialize Ωtotfac
t =Æ, Ωcurfac

t =Æ, Ωleffac
t =Æ, and Ωtotver

t =Æ
2: Determine the dimension of CH-EOR for each time step, and obtain 

Ωdim
t , N dim

t , "tÎΩT (Algorithm 2)
3: Initialize sufficiently small convex hulls for each time step, and update 

Ωtotver
t  and Ωcurfac

t , "tÎΩT (Algorithm 3)
4: Update Ωleffac

t =Ωcurfac
t  "tÎΩT

5: While $tÎΩT Ω
leffac
t ¹Æ, do

6:   for t = 1:NT do
7:      for k = 1:N leffac

t  do
8:         Solve the optimization problem based on {cf k

γtdf k
t }ÎΩleffac

t  to ob‐
tain an potential extending point pdim

Gt  and calculate d =
|

|

|
||
|
|
||

|

|
||
|
|
|∑
γ

cf k
γt × p

G
iγt
+ df k

t ∑
γ

(cf k
γt )

2

9:         if d > δ1 then
10:        Update Ωtotver

t =Ωtotver
t {pdim

Gt }
11:     end
12:  end
13:  Calculate the half-space representation of the convex hull of vertices 

in Ωtotver
t  based on the quickhull algorithm [44], update Ωcurfac

t  with
all the obtained facets, update Ωleffac

t =Ωcurfac
t \Ωtotfac

t , and update 
Ωtotfac

t =Ωtotfac
t Ωcurfac

t
14:  end
15: end

Algorithm 2: determining the dimension of CH-EOR

Input: NT and tolerance δ2

Output: N dim
t  and Ωdim

t , "tÎΩT

1: Initialize N dim
t = 0 and Ωdim

t =Æ, "tÎΩT

2: for t = 1:NT do
3:   for i = 1:NG do
4:      Solve (8) and (9) to obtain poptmax

it  and poptmin
it

5:      if | poptmax
it - poptmin

it | ³ δ2 then

6:        Update Ωdim
t =Ωdim

t   {i}, N dim
t = N dim

t + 1
7:      end
8:   end
9: end

1423



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 12, NO. 5, September 2024

to obtain a specific OSS, denoted as {p0G
it }"i"t. Subse‐

quently, for each time step, N dim
t  points are generated by in‐

troducing slight deviations to each dimension of the optimal 
solution. These points, along with the optimal solution, con‐
stitute N dim

t + 1 vertices in Ωtotver
t . The next step involves com‐

puting the half-space representation of the simplex using the 
quickhull algorithm [44]. The obtained facets are used to up‐
date Ωcurfac

t . Algorithm 3 provides a detailed description of 
this calculation process.

3)　Searching Extending Points
According to Algorithm 3, the CH-EOR is systematically 

expanded through the iterative search for extending points 
beyond the current convex hull. We formulate the bi-level 
optimization problem (10) to generate these extending 
points. Constraints (10b) and (10c) confine pG

it within the set 
Ψt, which is the same as 5(b)(6(b)) and 5(c)(6(c)), respective‐
ly. The objective function (10a) is designed to identify the 
farthest point pdim

Gt  above the facet {cf k
γtdf k

t }.

max∑
γ = 1

N dim
t

cf k
γt × p

G
iγt
+ df k

t     iγÎΩ
dim
t (10a)

s.t.
            -W jt £ pW

jt £
-
W jt    "jÎΩW"tÎΩT (10b)

[pGx]Î arg{min(2a)  s.t. (2b) (2c)} (10c)

As introduced in Section III-A-1), the bi-level optimiza‐
tion problem (10) can also be transformed into a single-level 
form, obtaining the mixed-integer linear programming prob‐
lem (11).

max∑
γ = 1

N dim
t

cf k
γt × p

G
iγt
+ df k

t     iγÎΩ
dim
t (11a)

s.t.
                 (3a) (3c) (3d) (5b) (7a) (7b) (11b)

Proposition 2  If the vector cf k
t  is not orthogonal to any 

facet of CH-EOR Ψ conv
t , then the extending point generated 

based on {cf k
γtdf k

t } is the extreme point of Ψ conv
t .

Proof  See Appendix A.
According to Proposition 1, Proposition 2, and Algorithm 

1, we can deduce that after a finite number of iterations, the 
iterative process will converge to the final CH-EOR. Though 
the CH-EORs are generated for each period, they are closely 
connected through ramping and energy storage constraints. 

In our bi-level optimization problem (10) for generating CH-
EOR vertices, the lower-level optimization (10c) considers 
the ramping and energy storage constraints between all 
scheduling periods.

B. Acceleration Strategy

In Section III-A-1), constraint (3b) undergoes linearization 
using the big-M method. However, the traditional big-M 
method employs a uniform value of M for every constraint, 
posing challenges in determining an appropriate value and 
leading to overly relaxed node bounds. This results in a high‐
er number of nodes requiring examination during the branch‐
ing process. To address this limitation, we propose a big-M 
preprocessing method to tailor a specific M for each respec‐
tive constraint, tightening the node relaxation and subse‐
quently improving the efficiency of the solution process.

Firstly, randomly generate Nsce scenarios for RES output, 
denoted as pn

W   (n = 12...Nsce ), based on which the basic 
OSM (2) is solved to obtain the corresponding optimal solu‐
tions [pn

Gx
n ]  (n = 12...Nsce ). Then, solve the following lin‐

ear optimization problem (12) for each scenario to obtain λn 
and vn (n = 12...Nsce).

min   1T λn (12a)

s.t.

         {λn
i = 0
  E1i pn

G +F1i pn
W +G1i x

n +H1i ¹ 0
"i (12b)

{λn
i ³ 0

E1i pn
G +F1i pn

W +G1i x
n +H1i = 0

"i (12c)

2Apn
G +B +E T

1 λ
n +E T

2 vn = 0 (12d)

C +G T
1 λ

n +G T
2 vn = 0 (12e)

where E1i, F1i, G1i, and H1i are the ith row of E1, F1, G1 and 
H1, respectively; and λn

i  and vn
i  are the ith element of λn and 

vn, respectively. Since [pn
Gx

n ]  is solved ahead of time, it is 
easy to identify the non-active inequality constraints and re‐
strict the corresponding λn

i  to zero (constraint (12b)). Similar‐
ly, constraint (12c) determines the ranges of λn

i  related to the 
active inequalities. Constraints (12b) and (12c) are equiva‐
lent to complementary slackness conditions and dual feasibil‐
ity. Constraints (12d) and (12e) are stationary conditions. 
Since [pn

Gx
n ] is the optimal solution of the basic OSM (2) 

based on pn
W, the primal feasibility is inherently satisfied. 

Thus, the obtained λn and vn satisfy the KKT conditions (3).
After that, we replace M corresponding to λ i in (7) with 

M λmax
i  and bound vi in (13) with M vmax

i  and M vmin
i . M λmax

i , 
M vmax

i , and M vmin
i  are calculated as:

M λmax
i =min{λmax

i m1 +m2  m3 } (13a)

M vmax
i =min{vmax

i + | vmax
i |m1 +m2  m3 } (13b)

M vmin
i =max{vmin

i - | vmin
i |m1 -m2   -m3 } (13c)

where λmax
i =max{ |λn

i |E1i pn
G +F1i pn

W +G1i x
n +H1i }, "n; vmax

i =
max{vn

i }, "n; vmin
i =min{vn

i }, "n; and m1m2, and m3 are the 
given positive constants that are easy to determine. We ob‐
tain M λmax

i , M vmax
i , and M vmin

i  by solving linear optimization 
problems, which usually take much less time than solving 
mix-integer problems.

Algorithm 3: initializing convex hulls

Input: NT, N
dim
t , Ωdim

t , "tÎΩT, and deviation δ
Output: Ωtotver

t  and Ωcurfac
t , "tÎΩT

1: Initialize Ωtotver
t =Æ and Ωcurfac

t =Æ
2: Solve the basic OSM (1) to obtain the optimal solution {p0G

it }"i"t 
based on a specific RES output scenario

3:  for t = 1:NT do
4:    Update Ωtotver

t =Ωtotver
t  p0dim

Gt

5:    for ϑ = 1:N dim
t  do

6:       Update Ωtotver
t =Ωtotver

t  { }p0dim
Gt + ξ δN

dim
t

ϑ

7:    end
8:    Calculate the half-space representation {cf k

γtdf k
t } of the convex hull 

of the vertices in Ωtotver
t  based on the quickhull algorithm [44]

9:    Update Ωcurfac
t =Ωcurfac

t {cf k
γtdf k

t }"k
10: end
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As detailed in Section III-A, the computation of CH-EOR 
involves the iterative solution of the mix-integer optimiza‐
tion problems. The proposed big-M preprocessing method 
tightens the node relaxation during the branching process 
and plays a crucial role in enhancing computational efficien‐
cy (substantiated in Section IV-D).

IV. CASE STUDIES 

This section presents case studies conducted on modified 
IEEE 9-bus, IEEE 30-bus, IEEE 57-bus, and IEEE 118-bus 
test systems [45]. All experiments are performed on a com‐
puter with a 2.90 GHz CPU and 16 GB RAM. Gurobi 9.5.1 
is utilized under a Free Academic License.

A. General Experimental Setup

To investigate the characteristics of CH-EOR and validate 
the effectiveness of Algorithm 1, we modify four test sys‐
tems by incorporating two wind farms (RES 1 and RES 2) 
and one energy storage system (ESS), to which the corre‐
sponding buses are detailed in Table I. Additionally, Table II 
provides the operation parameters for DGs and ESSs, includ‐
ing the ramp-up/ramp-down limits for DGs and the rated ca‐
pacity, the maximum charging/discharging power, and charg‐
ing/discharging efficiency for ESSs. The initial stored electri‐
cal energy for each ESS is set to half its capacity.

To facilitate experimental design, we set NT = 24 and as‐
sume that the predicted output power of RESs and the load 
level for each test system fluctuate based on the factors out‐
lined in Appendix A. At each time step, the predicted output 
power of RES is determined by multiplying a base power by 
the corresponding RES factor, and the load is calculated by 
multiplying a base load by the corresponding load factor. 
The base power of RES is set to be 30 MW, 40 MW, 100 
MW, and 200 MW for the IEEE 9-bus, IEEE 30-bus, IEEE 
57-bus, and IEEE 118-bus test systems, respectively. The 
base loads are given in the IEEE 30-bus, IEEE 57-bus, and 
IEEE 118-bus test systems, where they are adjusted to 80 

MW, 60 MW, and 60 MW, connected to buses 5, 7, and 9, 
respectively. In the IEEE 9-bus, IEEE 30-bus, and IEEE 57-
bus test systems, the minimum output power of each DG is 
set to be 30% of its rated power.

More specifically, in the IEEE 9-bus test system, the rated 
output power of each DG is set to be 100 MW and the 
branch transmission limit is shown in Table III. In the IEEE 
30-bus test system, we adjust the branch transmission limit 
to twice the specified value. In the IEEE 57-bus test system, 
each branch transmission limit is set to be 200 MW. In the 
IEEE 118-bus test system, each branch transmission limit is 
set to be 300 MW. Other parameters are configured as: ccha

s =
cdis

s = 0.01, δ1 = 0.1, δ2 = 0.02, and Nsce = 500.

B. Visualization and Region Size Analysis

To gain a more intuitive understanding of CH-EOR, we 
apply the proposed big-M preprocessing method to the IEEE 
9-bus test system, which features three DGs and is particular‐
ly suitable for the visualization analysis of CH-EOR. We as‐
sume that the actual output power of wind farms falls within 
±65% of the predicted value, constituting the uncertainty set 
ϒW. The CH-EOR is calculated for scenarios without ESS in 
operation (denoted as CH-EOR 1) and with ESS in opera‐
tion (denoted as CH-EOR 2). Additionally, we introduce the 
POR of DG for comparison, which solely considers security 
constraints and disregards the ESS and optimality condition. 
Calculations are performed for CH-EOR 1, CH-EOR 2, and 
POR across 24 time steps. For a detailed analysis, we select 
time steps 1, 2, 5, and 20 for visualization, as illustrated in 
Fig. 3.

While the IEEE 9-bus test system incorporates three DGs, 
it is noteworthy that the dimensions of CH-EOR at each 
time step are not consistently three, indicating dimension re‐
duction. As illustrated in Fig. 3 and detailed in Table IV, the 
dimensions of CH-EOR 1 decrease to 2 at time steps 2, 4, 6, 
and 24. Similarly, the dimensions of CH-EOR 2 decrease to 
2 at time steps 1-9. In contrast, the dimensions of POR re‐
main constant at 3. The phenomenon of dimension reduction 
in CH-EOR implies that, at certain time steps, the optimal 
output power of the corresponding DGs (DG 1 in this case 
study) remains fixed at 30 MW, regardless of fluctuations in 
the wind farms within the uncertainty set. This stability in 
the optimal output power of DGs can be utilized to guide re‐
al-time scheduling.

TABLE I
BUS NO. CORRESPONGDING TO FOUR TEST SYSTEMS

Test system

IEEE 9-bus

IEEE 30-bus

IEEE 57-bus

IEEE 118-bus

Bus No.

RES 1

7

6

8

12

RES 2

9

12

12

49

ESS

5

12

9

9

DGs

1, 2, 3

1, 2, 22, 27

1, 3, 8, 12

5, 11, 12, 21, 28, 29, 
30, 37, 40, 45

TABLE II
OPERATION PARAMETERS OF DGS AND ESSS

Test system

IEEE 9-bus

IEEE 30-bus

IEEE 57-bus

IEEE 118-bus

RDi 
(MW/h)

30

30

100

200

RUi 
(MW/h)

30

30

100

200

E max
1

(MWh)

200

200

500

500

pSmax
1

(MW)

25

25

100

100

ηcha
s

0.93

0.93

0.93

0.93

ηdis
s

0.93

0.93

0.93

0.93

TABLE III
BRANCH TRANSMISSION LIMIT IN IEEE 9-BUS TEST SYSTEM

Branch No.

1

2

3

4

5

6

7

8

9

Connected bus

(1, 4)

(4, 5)

(5, 6)

(3, 6)

(6, 7)

(7, 8)

(8, 2)

(8, 9)

(9, 4)

Transmission limit (MVA)

170

80

70

170

70

170

170

100

70
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The primary distinction between the POR and CH-EOR 1 
lies in the additional consideration of the optimality condi‐

tion in CH-EOR 1. Consequently, CH-EOR 1 remains within 
the bounds of POR. However, when the ESS is in operation, 
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Fig. 3.　Visualization of CH-EOR 1, CH-EOR 2, and POR. (a) Time step 1. (b) Time step 2. (c) Time step 5. (d) Time step 20.

TABLE IV
REGION SIZE AND DIMENDIONS OF POR, CH-EOR 1, AND CH-EOR 2

Time step

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

POR

Ratio (%)

34.74

14.06

13.73

10.63

11.98

9.83

14.04

12.70

12.73

23.76

42.96

69.52

67.63

67.59

52.76

57.22

56.55

73.21

75.03

69.52

68.08

60.98

13.15

13.73

Dimension

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

CH-EOR 1

Ratio (%)

0.72

10.59

0.18

10.92

0.14

11.79

0.29

0.23

0.25

1.07

1.96

3.27

1.20

0.47

0.14

0.21

0.19

0.70

1.78

1.38

0.29

2.09

0.18

5.47

Dimension

3

2

3

2

3

2

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

2

CH-EOR 2

Ratio (%)

0.18

1.63

1.17

0.27

9.87

5.10

9.15

11.57

6.10

0.39

0.49

0.78

0.04

0.02

0.02

0.02

0.02

0.03

0.18

0.28

0.24

1.50

0.30

0.29

Dimension

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3
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the corresponding CH-EOR 2 exceeds the limits of POR at 
certain time steps due to the ability of ESS to transfer electri‐
cal energy and alter the optimal operating region of DG. As 
illustrated in Fig. 3, it is evident that the POR constitutes a 
substantial portion of GAR. Nevertheless, after factoring in 
the optimality condition, the CH-EOR becomes relatively 
small, restricting the output power of DG 1 to a lower level 
(attributed to the high generation cost of DG 1). At time 
step 1, CH-EOR 2 even contracts into a very narrow region.

Furthermore, we assess the region size of POR, CH-EOR 
1, and CH-EOR 2 using the Monte Carlo method, with the 
corresponding ratios to the GAR, as presented in Table IV. 
Based on the RES factors in Appendix A and a given RES 
forecast error of ±65%, the uncertain RES output constitutes 
7.45%-77.545% of the load and 5.13%-44.17% of installed ca‐
pacity of DGs. In a context characterized by significant RES 
uncertainty, the POR spans from 9.83% to 75.03%. However, 
CH-EOR 1 encompasses only 0.14%-3.27% in three dimen‐
sions and 5.47%-11.79% in two dimensions. CH-EOR 2 cov‐
ers 0.02%-1.50% in three dimensions and 0.18%-11.57% in 
two dimensions.

Based on the preceding discussions, it is observed that the 
EOR of DGs typically constitutes a minor ratio of their 

GAR, which is also considerably smaller than the POR. The 
proposed big-M processing method effectively delineates this 
EOR. The inclusion of ESS serves to further contract the 
CH-EOR, even reducing its dimensionality. This contraction 
concentrates the operating points of DGs within a more eco‐
nomically favorable region.

C. Economic Comparison

This subsection examines the economic characteristics of 
CH-EOR and compares them with the box-constrained oper‐
ating region (BC-OR) [32], utilizing the IEEE 9-bus test sys‐
tem. For ease of analysis, we construct uncertainty sets by 
setting the RES forecast errors as ±65%, ±55%, ±45%, 
±35%, and ±25%. Subsequently, we calculate the correspond‐
ing BC-OR and CH-EOR without ESS in operation (BC-OR 
1 and CH-EOR 1) and with ESS in operation (BC-OR 2 and 
CH-EOR 2). We randomly generate 500 scenarios for RES 
output within each uncertainty set and then compute the cor‐
responding global OSSs and the OSSs within BC-OR and 
CH-EOR, respectively. After that, the optimal average operat‐
ing costs and the average operating costs based on BC-OR 
and CH-OR are compared, as shown in Table V, with values 
of the ratio to the optimal average operating cost.

TABLE V
COMPARISON RESULTS OF AVERAGE OPERATING COSTS

RES
forecast

error (%)

±65

±55

±45

±35

±25

Without ESS in operation

Optimal
average

operating
cost ($)

61008

60816

60660

60539

60452

BC-OR 1

Average
operating
cost ($)

67681

65839

64168

62818

61747

Ratio

1.1094

1.0826

1.0578

1.0377

1.0214

CH-EOR 1

Average
operating
cost ($)

61008

60816

60660

60539

60452

Ratio

1.0000

1.0000

1.0000

1.0000

1.0000

With ESS in operation

Optimal
average

operating 
cost ($)

59460

59374

59307

59256

59219

BC-OR 2

Average
operating 
cost ($)

65469

63529

61828

60569

59645

Ratio

1.1011

1.0700

1.0425

1.0222

1.0072

CH-EOR 2

Average
operating 
cost ($)

59460

59374

59307

59256

59219

Ratio

1.0000

1.0000

1.0000

1.0000

1.0000

The simulation results demonstrate that the average operat‐
ing cost based on the CH-EOR aligns with the optimal average 
operating cost, encompassing all corresponding OSSs. In con‐
trast, the BC-OR is derived from a two-stage robust optimiza‐
tion method [32], aiming to find the optimal solution under the 
worst-case scenario and exhibiting a conservative bias. Conse‐
quently, as indicated in Table V, the average operating cost de‐
rived from the BC-OR surpasses the optimal average operat‐
ing cost. This discrepancy grows with the increasing RES fore‐
cast errors, indicating that certain OSSs are excluded from the 
BC-OR. Notably, CH-EOR 2 outperforms CH-EOR 1. Thus, 
we can infer that CH-EOR offers superior economic outcomes 
compared with BC-OR, and the ESS contributes to a reduction 
in the operating costs of power grid.

D. Computational Efficiency Analysis

This subsection analyzes the computational efficiency of 
the proposed big-M preprocessing method for each test sys‐
tem. We set m1 = 1.5, m2 = 10, and m3 = 105 for the big-M pre‐
processing method and set M = 105 for the traditional big-M 

method. The experiments are performed on the IEEE 9-bus, 
IEEE 30-bus, IEEE 57-bus, and IEEE 118-bus test systems, 
with or without ESS in operation. The RES forecast error is 
all assumed to be ±65%. Table VI shows the average compu‐
tational time of generating one extending point in each simu‐
lation.

TABLE VI
COMPARISON OF AVERAGE COMPUTATIONAL TIME

Test system

IEEE 9-bus

IEEE 30-bus

IEEE 57-bus

IEEE 118-bus

Big-M method

Proposed

Traditional

Proposed

Traditional

Proposed

Traditional

Proposed

Traditional

Average computational time (s)

Without ESS 
in operation

0.08

13.42

0.13

2.62

1.33

23.61

1.80

>1200.00

With ESS
in operation

0.24

>1200.00

0.72

248.39

79.72

>1200.00

2.06

>1200.00
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According to Table VI, the computation is more efficient 
after applying the proposed big-M preprocessing method. 
When the ESS is in operation, the average computational 
time becomes longer due to the introduction of ESS operat‐
ing constraints. Further, we can observe that the average 
computational time in the IEEE 9-bus test system is longer 
than that in the IEEE 30-bus test system based on the tradi‐
tional big-M method. After applying the big-M preprocessing 
method, the average computational time in the IEEE 57-bus 
test system can also be longer than that in the IEEE 118-bus 
test system when the ESS is in operation. In general, the av‐
erage computational time tends to increase with the expan‐
sion of the system scale, but sometimes smaller-scale sys‐
tems require longer computational time. This is because the 
computational efficiency of mixed-integer programming is af‐
fected by many factors such as the solving scale, branching 
method, and node relaxation.

Usually, choosing an overlarge M value for the traditional 
big-M method will lead to worse node relaxation and signifi‐
cantly prolonged computational time. However, if the M val‐
ue is set too small, it may result in calculational infeasibility. 
Thus, it is usually difficult to determine a suitable M for the 
traditional big-M method. In comparison, it is easier to deter‐
mine m1, m2, and m3 for the proposed big-M preprocessing 
method, which can further decrease the node relaxation dur‐
ing the branching process, resulting in fewer nodes to be ex‐
amined. Thus, according to Table VI, the proposed big-M 
preprocessing method can significantly improve the computa‐
tional efficiency of the proposed algorithm (averagely im‐
proved over 17 times).

It is worth mentioning that although the proposed big-M pre‐
processing method can significantly improve the efficiency of 
generating CH-EOR, the required computational time will also 
increase as the system scale increases. Additionally, when the 
number of DGs increases, the amount of vertices in the CH-
EOR that need to be calculated will also increase. Therefore, 
further improvements to the proposed algorithm are still need‐
ed for larger-scale systems. In the future, we will further ex‐
plore the decomposing and parallel-solving structure and di‐
mensionality reduction methods for the CH-EOR.

V. CONCLUSION 

This paper innovatively introduces the mathematical defini‐
tion and geometric properties of the CH-EOR for power grids. 
We perform simulations on four modified test systems based 
on the proposed algorithms for generating the CH-EOR and 
the proposed big-M preprocessing method. The testing results 
reveal that the CH-EOR is significantly smaller (ranging from 
0.02% to 11.79% of the GAR) and more economically effi‐
cient (with a 0.72% to 10.94% increase compared with the BC-
OR). The proposed big-M preprocessing method enhances 
computational efficiency by an average of over 17 times com‐
pared with the traditional big-M method.

Future research will extend to the calculation of the CH-
EOR based on AC optimal power flow (OPF), incorporating 
unit commitment, exploring the effect of different uncertainty 
sets on the CH-EOR, and developing algorithms for the rapid 
selection of OSSs from the CH-EOR for real-time scheduling.

APPENDIX A 

A. Proof of Proposition 1

Proof  The proof process mainly consists of three steps. 
Firstly, based on the uncertainty set ϒW of wind power output 
and the KKT conditions of the optimal operating point of the 
power grid, we demonstrate that Ψ is a union of a finite num‐
ber of bounded polytopes by exhaustively enumerating the ze‐
ro value of λ j in the bilinear constraints. Then, based on the 
definition of convex combination, we prove that the convex 
hull Ψ conv of Ψ is a bounded polytope. Lastly, by explaining 
that the CH-EOR Ψ conv

t  of each time period is a lower-dimen‐
sional subspace of Ψ conv, we further demonstrate that Ψ conv

t  is 
also a bounded polytope. The detailed process is as follows.

Firstly, since the uncertainty set ϒW is a bounded polytope, 
ϒW can be expressed by linear inequalities as ϒW ={pW|JpW +
K £ 0}, where matrix J and vector K represent the coefficients. 
According to constraint (1b), pGt is always bounded. Let Ψαβ =
{pG|JpW +K £ 0E1i pG +F1i pW +G1i X +H1i = 0"iÎΩC α

q1

β "jÎ

Ωq1
\Ω

C α
q1

β  (3a) (3b) (3c)}, where Ωq1
 is the index set of q1 equa‐

tions; and Ω
C α

q1

β  denotes the β th α-combination from Ωq1
α =

01...q1β = 12...C α
q1

. Clearly, Ψαβ is either empty or a 

bounded polytope with finite vertices, "α"β. Thus, Ψ =


"α"β
Ψαβ, i.e., Ψ is the union of finite bounded polytopes.

Then, let Vαβ denote the set of vertices of Ψαβ and vi
αβ be 

the ith vertex in Vαβ. Ψ
conv is the convex hull of the finite verti‐

ces 
"α"β

Vαβ. Clearly, the convex set that covers Ψ cannot be 

smaller than Ψ conv. Any point vαβÎΨαβ can be denoted by the 
convex combination of vi

αβÎVαβ, i.e., vαβ =∑
i

ρ i
αβv

i
αβ, where 

∑
i

ρ i
αβ = 1ρ i

αβ ³ 0. Further, vi
αβ can be represented by the con‐

vex combination of vconv
j ÎV conv, i. e., vi

αβ =∑
j

μi
jv

conv
j , where 

∑
j

μi
j = 1μi

j ³ 0, and vconv
j  represents the j th vertex in V conv. Thus, 

vαβ =∑
i

ρ i
αβ∑

j

μi
jv

conv
j =∑

j

κ i
j v

conv
j , where κ j =∑

i

ρ i
αβ μ

i
j, κ j ³ 0. 

Since ∑
j

κ i
j =∑

j
∑

i

ρ i
αβ μ

i
j =∑

i

ρ i
αβ∑

j

μi
j = 1, then ΨαβÎΨ

conv

"α"β, i. e., ΨÎΨ conv. Thus, Ψ conv is the convex hull of Ψ, 
which is a bounded polytope.

Lastly, Ψ conv
t = Prpdim

Gt
(Ψ conv ), i.e., the projection of Ψ conv onto 

pdim
Gt-subspace, so Ψ conv

t  is a bounded polytope too [4], [42].

B. Proof of Proposition 2

Proof  We propose to prove Proposition 2 by contradiction. 
Firstly, assume that the extending point obtained based on the 
optimization model (11) is not the extreme point of CH-EOR. 
Then, in the neighborhood of this extending point, we find a 
counterexample to prove that this extending point is not the op‐
timal solution of (11). The detailed proof process is as follows.

Assuming the generated extending point pdim
Gt  is not the ex‐

treme point of Ψ conv
t , it could appear within/on the facet, or on 

the edge of Ψ conv
t , around which a sufficiently small neighbor‐

hood ρ must exist and contains no extreme points. According 
to Algorithm 1 and the quickhull algorithm [44] (neglecting 
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the computation error resulting from the small initial convex 
hulls), the generated extending point is above {cf k

γtdf k
t }. Thus, 

(cf k
t )T pdim

Gt + df k
t > 0, and the distance from pdim

Gt  to facet 

{cf k
γtdf k

t } is d0 = || (cf k
t )T pdim

Gt + df k
t  cf k

t > 0.

If pdim
Gt  is on the edge (whose direction vector is ν) of Ψ conv

t , 
then there must exist two points, i. e., p1 = (pdim

Gt + τν)Î ρ and 
p2 = (pdim

Gt - τν)Î ρ, where τ ³ 0 is a small enough positive coef‐
ficient. The distances from p1 and p2 to facet {cf k

γtdf k
t } are 

d1= || (cf k
t )T (pdim

Gt +τν)+df k
t  cf k

t  and d2= | (cf k
t )T (pdim

Gt -τν)+ 

|df k
t  cf k

t , respectively. Since vector cf k
t  is not orthogonal to 

any facet of Ψ conv
t , (cf k

t )Tν ¹ 0. If (cf k
t )Tν > 0, d1= d0+

τ(cf k
t )Tν  cf k

t > d0, else d2= d0+ τ ( )cf k
t

T
ν  cf k

t > d0. There‐

fore, pdim
Gt  is not the farthest point above {cf k

γtdf k
t }, which does 

not agree with the optimization problem (11). If pdim
Gt  is within 

or on the facet of Ψ conv
t , we can also find a direction vector ν 

that is not orthogonal to vector {cf k
γt } and prove the contradic‐

tion similarly. Thus, the extending point generated based on 
{cf k

γtdf k
t } is the extreme point of Ψ conv

t .

C. Factors of RES and Load

As shown in Table AI, the factors for RES represent the out‐
put coefficients of RES 1 and RES 2, and multiplying them by 
the base power of RES 1 and RES 2 yields their actual output 
sequences, respectively. The factors of load represent the load 
level coefficients, and multiplying them by the base load re‐
sults in the actual load level sequence.
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