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Abstract——This paper develops an adaptive two-stage unscent‐
ed Kalman filter (ATSUKF) to accurately track operation states 
of the synchronous generator (SG) under cyber attacks. To 
achieve high fidelity, considering the excitation system of SGs, a 
detailed 9th-order SG model for dynamic state estimation is es‐
tablished. Then, for several common cyber attacks against mea‐
surements, a two-stage unscented Kalman filter is proposed to 
estimate the model state and the bias in parallel. Subsequently, 
to solve the deterioration problem of state estimation perfor‐
mance caused by the mismatch between noise statistical charac‐
teristics and model assumptions, a multi-dimensional adaptive 
factor matrix is derived to modify the noise covariance matrix. 
Finally, a large number of simulation experiments are carried 
out on the IEEE 39-bus system, which shows that the proposed 
filter can accurately track the SG state under different abnor‐
mal test conditions.

Index Terms——Cyber attack, dynamic state estimation, Kal‐
man filtering, synchronous generator (SG), unscented transfor‐
mation.

I. INTRODUCTION 

DUE to the development of monitoring, sensing, and 
communication technologies, a great quantity of intelli‐

gent devices are applied to modern power systems, making 
the information exchange between power systems and cyber 
systems increasingly frequent. Because of such features, the 
power system relies on critical cyber infrastructure, making 
it vulnerable to cyber attacks [1] - [5]. As one of the core 
functions of the energy management system (EMS), the dy‐
namic state estimation (DSE) can help operators perceive the 
system state and its results can be used as the basis for other 
advanced functions of power grid [6]. However, the results 
of state estimation are often limited by the quality of mea‐
surements and the understanding of system parameters. This 
allows attackers to compromise the information and transmis‐
sion of the measurement by exploiting the security vulnera‐
bilities in communication, authentication, and data collection 
of the device [7]. Once the attack succeeds, the operator’s 
awareness of the power system state will be diminished, re‐
sulting in system failures or outages and huge financial loss‐
es. Therefore, cyber attacks are gradually becoming one of 
the important factors threatening the security and stability of 
modern power systems.

At present, a great quantity of phasor measurement units 
(PMUs) have been installed in the wide-area measurement 
system (WAMS), which provides significant measurement 
data for DSE. The operators can dynamically track operation 
states of the system [8]. In this situation, Kalman filtering 
and its extension methods have attracted wide attention [9]-
[13]. In [14], considering the parameter changes of the state-
space model caused by cyber attacks, a robust forecasting-
aided state estimation method based on extended Kalman fil‐
ter (EKF) was proposed to estimate the distribution system 
state. In [15], based on EKF, the batch-mode regression and 
S-estimator were used to identify and suppress the impact of 
outliers to ensure the accuracy of state estimation results un‐
der cyber attacks. In [16], a fast detection strategy of net‐
work attack based on EKF was proposed by using general‐
ized likelihood ratio. In [17], an optimal two-stage Kalman 
filter (OTSKF) method was developed to estimate system 
state vectors and attack vectors in automatic generation con‐
trol (AGC) system. Estimating attack vectors can help opera‐
tors understand cyber attacks more deeply, which can pro‐
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vide effective information for tracing network attack sources 
and formulating defense strategies.

Moreover, to avoid the error caused by EKF, a derivative-
free unscented Kalman filter (UKF) was proposed in [18] -
[20]. In [21], based on the robust control theory, an adaptive 
UKF was proposed to suppress the estimation error of syn‐
chronous generator (SG) caused by cyber attacks or unpre‐
dictable changes of model parameters. In [22], a new decen‐
tralized DSE method was proposed to estimate unknown in‐
puts by using statistical linearization method. A method was 
presented to improve the numerical stability of UKF in [23]. 
Based on the separation deviation theory, a two-stage un‐
scented Kalman filter (TSUKF) was presented in [24]. To re‐
duce the computation burden, an improved TSUKF based on 
non-augmented UKF is proposed in [25]. Nevertheless, in a 
Kalman filter, noise statistical parameters will directly affect 
the performance of DSE. Due to the interference of uncer‐
tain factors in actual systems, it is difficult to obtain the 
noise statistical parameters accurately, which leads to the de‐
crease in estimation accuracy or deviation from the true val‐
ue [26], [27].

In an effort to address these problems, an adaptive two-
stage unscented Kalman filter (ATSUKF) is developed based 
on the adaptive noise correction method, which is suitable 
for the DSE of SGs. The contributions of this work are as 
follows.

1) To effectively reflect the operation states of SGs, the 
DSE model is extended based on the consideration of d-axis 
windings and q-axis damping windings. Considering the ex‐
citation system of SGs, a novel 9th-order SG model is pro‐
posed for DSE.

2) A TSUKF for DSE of SGs is proposed to separate the 
bias caused by cyber attacks or noise signals, which can esti‐
mate the state and the bias in parallel.

3) Considering the influence of unknown noise statistical 
characteristics caused by uncertainties on the performance of 
state estimation, an adaptive noise correction method is pro‐
posed and the multi-dimensional adaptive factor matrix is de‐
rived.

The remainder of this paper is organized as follows. A 
novel 9th-order SG model including an excitation system is 
introduced in Section II. In Section III, an ATSUKF is pre‐
sented to estimate the state and bias of SGs in parallel. In 
Section IV, by using the constructed 9th-order SG model, a 
large number of simulation and numerical results are used to 
prove the advantages of the proposed filter. Finally, the con‐
clusions are given in Section V.

II. NOVEL 9TH-ORDER SG MODEL 

The detailed SG model can reflect operation states of the 
generator more comprehensively [28], [29]. Therefore, a de‐
tailed 9th-order SG model is utilized for DSE, which will 
help operators accurately predict operation states of the gen‐
erator. Two mechanical equations, four electrical equations, 
and an excitation system model are included in the model.

The two mechanical equations can be expressed as:

δ̇ =ωRDω (1)

ω̇ =
ωR

2H ( )Tm - Te -DDω (2)

where δ is the rotor position; ω is the rotor speed in per 
unit; ωR is the synchronous speed; Dω is the rotor speed de‐
viation in per unit and Dω = (ω -ωR ) /ωR; Te is the electrical 
torque; Tm is the mechanical torque; H is the inertia con‐
stant; and D is the damping coefficient.

The four electrical equations of the field winding and 
damper winding fluxes are expressed as [30]:

ψ̇fd =ωR(efd +
ψad -ψfd

Lfd

Rfd ) (3)

ψ̇1d =ωR(e1d +
ψad -ψ1d

L1d

R1d ) (4)

ψ̇1q =ωR(e1q +
ψaq -ψ1q

L1q

R1q ) (5)

ψ̇2q =ωR(e2q +
ψaq -ψ2q

L2q

R2q ) (6)

where e is the voltage; ψ is the flux; L is the leakage reac‐
tance; R is the resistance; the subscripts fd, 1d, and iq repre‐
sent the field winding, d-axis damper winding, and q-axis 
damper winding i (i = 12), respectively; and the fluxes ψad 
and ψaq can be calculated by:

ψad = L″ad( - id +
ψfd

Lfd

+
ψ1d

L1d ) (7)

ψaq = L″aq( - iq +
ψ1q

L1q

+
ψ2q

L2q ) (8)

L″ad =
1

L-1
ad + L-1

fd + L-1
1d

(9)

L″aq =
1

L-1
aq + L-1

1q + L-1
2q

(10)

where id and iq are the d- and q-axis currents, respectively; 
and Lad and Laq are the saturated values of the d- and q-axis 
mutual inductances, respectively [31].

Then, the electric torque Te can be expressed as:

Te =ψadiq -ψaqid (11)

In addition, the currents can be written in terms of fluxes 
as:

ifd =
ψfd -ψad

Lfd
(12)

i1d =
ψ1d -ψad

L1d
(13)

i1q =
ψ1q -ψaq

L1q
(14)

i2q =
ψ2q -ψaq

L2q
(15)

The excitation system model including the power system 
stabilizer (PSS) and automatic voltage regulator (AVR) is 
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shown in Fig. 1. The equations of the excitation system mod‐
el are expressed as:

v̇1 =
1
TR

(vt - v1 ) (16)

v̇2 =KSTABDω̇ -
1

Tw

v2 (17)

v̇3 =
1
T2

(T1 v̇2 + v2 - v3 ) (18)

where v1-v3 are the excitation system state variables; KSTAB is 
the stabilizer gain; Tw is washout time constant; T1 is the 
time constant of lead compensator; TR is the time constant of 
terminal voltage transducer; T2 is the time constant of lag 
compensator; and vt is the generator terminal voltage.

For convenience, the above equations can be written in 
the following form:

ì
í
î

ïï
ïï

ẋ = f ( )xu +w

y = h ( )xu + v
(19)

where f ( )××  is the system function; h ( )××  is the measurement 
function; x is the state vector; u is the input vector; y is the 
measurement vector; and w and v represent the process and 
measurement noises, respectively.

x = [ δωψfdψ1dψ1qψ2qv1v2v3 ]
T

(20)

u = [ efde1de1qe2qTmidiqvt ]
T

(21)

y = [ δωifdi1di1qi2qv1v2v3 ]
T

(22)

Considering the discrete nature of the measured data, (19) 
can be rewritten in the discrete-time form as:

ì
í
î

ïï

ïï

xk + 1 = f ( )xkuk +wk

yk = h ( )xkuk + vk

(23)

where k is a discrete time factor.

III. PROPOSED ATSUKF 

A. Measurement Data Attack Model

To successfully gain access, the attacker needs to know 
the complete knowledge about the target before attacking 
[32]. However, it is difficult for attackers to obtain the sys‐
tem parameters because there are a large number of mea‐
sures to protect information in actual power systems, such as 

identity authentication, intrusion detection, and firewalls 
[33]. The measurement equipment relies on the network to 
transmit the measurement data, and has frequent communica‐
tion with the outside world, so its defense is relatively vul‐
nerable. Therefore, accessing the measurement data becomes 
one of the most common methods to attack systems. The 

measurement vector yk = [ y1ky2kyNk ]
T
 can be written 

as:

yk = h ( xkuk ) +Gbk + vk    k ³ τ (24)

where bk = [b1kb2kbNk ]
T
 is the attack/bias vector at 

time k; τ is the moment when the attacker successfully ac‐
cesses the measurement data; G is the attack distribution ma‐

trix of measurement variables; and vk = [ v1kv2kvNk ]
T
 is 

the measurement noise vector at time k.

ynk =
ì
í
î

ïï

ïï

hn( )xkuk + vnk              nÏ S f
kk ³ τ

hn( )xkuk + bnk + vnk    nÎ S f
kk ³ τ

(25)

where hn( )××  is the measurement function of the nth measure‐
ment variable; S f

kÌ {12N} is the set of the measurement 
variable affected by cyber attacks; and nÎ {12N}.

Several common cyber attacks against measurement data 
can be expressed in the following forms.
1)　False Data Injection (FDI)

FDI, as the most common type of cyber attack, injects 
false data bFDI

nk  into real data to affect the operator’s aware‐
ness of the system:

ynk =
ì
í
î

ïï

ïï

hn( )xkuk + vnk nÏ S f
kk ³ τ

hn( )xkuk + bFDI
nk + vnk nÎ S f

kk ³ τ
(26)

2)　Scaling Attack
The attacker can scale down/up the measurement through 

scaling factors λa:

ynk =
ì
í
î

ïï

ïï

hn( )xkuk + vnk        nÏ S f
kk ³ τ

λahn( )xkuk + vnk    nÎ S f
kk ³ τ

(27)

3)　Data Replay Attack
The attacker can inject previous data ynk - t in place of real 

measurements:

ynk =
ì
í
î

ïï
ïï

hn( )xkuk + vnk nÏ S f
kk ³ τ

ynk - t + vnk nÎ S f
kk ³ τ

(28)

4)　Ramp Attack
By utilizing the growth factor rb, the injected data bRA

nk =
rb(k - τ ) will change over time.

ynk =
ì
í
î

ïï

ïï

hn( )xkuk + vnk nÏ S f
kk ³ τ

hn( )xkuk + bRA
nk + vnk nÎ S f

kk ³ τ
(29)

B. TSUKF

Consider the nonlinear discrete system with attack/bias, 
and then (23) can be written as:

ì
í
î

ïï

ïï

xk + 1 = f ( )xkuk +Fbk +wk

yk = h ( )xkuk +Gbk + vk

(30)

v2 v3

v1

vs

vt

Washout

Exciter

AVR

vsmax

efmax

efd

vref

efmin

vsmin

PSS

Terminal voltage

transducer

Phase

compensationGain

Δω KSTAB

KA

1+sTw

sTw

1+sTR

1

1+sT2

1+sT1

+

+

+
-

Fig. 1.　Excitation system model of SGs.
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where F is the attack distribution matrix of state variables.
TSUKF is an extension of UKF. The attack-/bias-free esti‐

mation and attack/bias estimation processes of TSUKF are 
as follows:

x̂k + 1| k + 1= x͂k + 1| k + 1+ βk + 1| k + 1b̂k + 1| k + 1 (31)

P x
k + 1| k + 1= P͂ x

k + 1| k + 1+ βk + 1| k + 1P b
k + 1| k + 1β

T
k + 1| k + 1 (32)

where βk + 1| k + 1 is the coupling matrix; x͂k + 1| k + 1 is the state vec‐

tor of attack-/bias-free estimation; P͂ x
k + 1| k + 1 is the variance ma‐

trix of attack-/bias-free estimation; and b̂k + 1| k + 1 and P b
k + 1| k + 1 

are the state vector and its variance matrix of attack/bias esti‐
mation, respectively.

In the attack-/bias-free estimation, the expected value of 
the estimator is equal to the true value. There is a deviation 
between the expected value and the true value of the estima‐
tor in the attack/bias estimation. When the measurement is 
attacked, the results of attack-/bias-free estimation will devi‐
ate from the true value. Therefore, it is necessary to estimate 
the bias caused by cyber attacks through attack/bias estima‐
tion to suppress the impact of false measurements.
1)　Attack-/bias-free Estimation

Similar to UKF, by utilising the unscented transform, the 
sigma points can be selected as:

χ 0
k = x̂k | k (33)

χ j
k = x̂k | k ± ( )n + λ P x

k | k ei    j = 12n (34)

where λ is the scaling parameter; and ei is the column vector 
where the ith element is 1 and the other elements are 0.

Using the state transfer function to propagate sigma 
points, the predicted state vector mk and its corresponding er‐
ror covariance matrix P͂ x

k + 1| k can be obtained by:

mk =∑
j = 0

2n

W s
j f ( χ j

k ) (35)

x̂k + 1| k =mk +Fb̂k | k (36)

P x
k + 1| k =∑

j = 0

2n

W c
j ( f ( χ j

k ) -mk ) ( f ( χ j
k ) -mk ) T

-

Mk βk | k P b
k | k β

T
k | k M T

k +Rk P b
k | k RT

k +Wx (37)

x͂k + 1| k = x̂k + 1| k - βk + 1| k b̂k + 1| k (38)

P͂ x
k + 1| k =P x

k + 1| k - βk + 1| k P b
k + 1| k β

T
k + 1| k (39)

where Mk and Rk are the coupling matrices that can be ob‐
tained through the calculation of the coupling equations; Wx 
is the process noise variance matrix; and the weights W s

j  and 
W c

j  are defined as:

ì

í

î

ïïïï

ï
ïï
ï

W s
0 =

λ
n + λ

W c
0 =

λ
n + λ

+ 1 - α2
c + βc

(40)

W s
j =W c

j =
1

2 ( )n + λ
    j = 122n (41)

where αc is the scaling factor that can control the range of 

sigma point sets; and βc is a constant used to reflect the 
high-order information characteristics of state information.

After that, using the measurement function to instantiate 
sigma points, the measurement vector nk + 1 and its corre‐
sponding error covariance matrix P͂ yy

k + 1| k can be obtained by:

nk + 1 =∑
j = 0

2n

W s
j h ( χ j

k + 1 ) (42)

y͂k + 1| k = nk + 1 -Nk + 1 βk + 1| k b̂k + 1| k (43)

P͂ yy
k + 1| k =∑

j = 0

2n

W c
j ( )h ( )χ j

k + 1 - nk + 1 ( )h ( )χ j
k + 1 - nk + 1

T
-

Nk + 1 βk + 1| k P b
k + 1| k β

T
k + 1| k N T

k + 1 +Vx (44)

where y͂k + 1| k is the predicted measurement vector; Nk + 1 is a 

coupling matrix; and Vx is the measurement noise variance 
matrix.

The gain matrix K x
k + 1 and filtered states P͂ x

k + 1| k + 1 and 

x͂k + 1| k + 1 can be calculated by:

K x
k + 1 = P͂ x

k + 1| k N T
k + 1( P͂ yy

k + 1| k ) -1

(45)

P͂ x
k + 1| k + 1= P͂ x

k + 1| k -K x
k + 1 P͂ yy

k + 1| k(K x
k + 1 ) T

(46)

x͂k + 1| k + 1= x͂k + 1| k +K x
k + 1( yk + 1 - y͂k + 1| k ) (47)

2)　Attack/bias Estimation
Notably, the attack-/bias-free estimation and the attack/bi‐

as estimation run in parallel.

b̂k + 1| k = b̂k | k (48)

P b
k + 1| k =P b

k | k +Wb (49)

ŷk + 1| k = nk + 1 +Gb̂k + 1| k (50)

P by
k + 1| k =P b

k + 1| k H T
k + 1| k (51)

P yy
k + 1| k = P͂ yy

k + 1| k +Hk + 1| k P b
k + 1| k H T

k + 1| k (52)

K b
k + 1 =P by

k + 1| k(P yy
k + 1| k ) -1

(53)

P b
k + 1| k + 1=P b

k + 1| k -K b
k + 1 P yy

k + 1| k(K b
k + 1 ) T

(54)

b̂k + 1| k + 1= b̂k + 1| k +K b
k + 1( yk + 1 - ŷk + 1| k ) (55)

where ŷk + 1| k is the predicted measurement vector of attack/bi‐

as estimation; P yy
k + 1| k is the predicted measurement covari‐

ance matrix; Hk + 1| k is the coupling matrix in the prediction 

process of bias estimation; K b
k + 1 is the gain matrix of attack/

bias estimation; and Wb and P by
k + 1| k are the process noise vari‐

ance matrix and cross-covariance matrix in attack-/bias-free 
estimation, respectively.
3)　Coupling Equations

Rk =Mk βk | k +F (56)

βk + 1| k =Rk P b
k | k(P b

k | k +Wb ) -1

(57)

Hk + 1| k =Nk + 1 βk + 1| k +G (58)
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βk + 1| k + 1= βk + 1| k -K x
k + 1 Hk + 1| k (59)

Mk =
1

2 n + λ

é

ë

ê
êê
ê∑

j = 1

n ( )f ( )χ j
k - f ( )χ j + n

k eT
i

ù

û

ú
úú
ú ( P x

k | k ) -1

(60)

Nk + 1 =
1

2 n + λ

é

ë

ê
êê
ê∑

j = 1

n ( )h ( )χ j
k + 1 - h ( )χ j + n

k + 1 eT
i

ù

û

ú
úú
ú ( P x

k + 1| k ) -1

 (61)

C. Noise Modification

Similar to the Kalman filter, TSUKF has good estimation 
effects only when accurate knowledge about DSE model can 
be obtained [34]. However, in the actual system, due to un‐
known factors such as cyber attacks, equipment aging, and 
environmental changes, the statistical parameters of the DSE 
model may change and cannot be accurately obtained [35] -
[37]. Under these circumstances, the performance of TSUKF 
is significantly degraded and it is difficult to track the dy‐
namic changes of the model state. This limits the use of 
TSUKF method in DSE. Considering the error caused by the 
uncertainty of noise prior statistics, a multi-dimensional 
adaptive factor matrix is introduced to modify the noise sta‐
tistics, so that TSUKF can adapt to the statistical characteris‐
tics of noise. The scaling matrix Sk + 1 is used to realize the 
adaptive modification of measurement noise covariance, and 
the measurement variance can be expressed as:

P͂ yy
k + 1| k =C y + Sk + 1Vx (62)

C y =∑
j = 0

2n

W c
j (h ( χ j

k + 1 ) - nk + 1 ) (h ( χ j
k + 1 ) - nk + 1 ) T

-

Nk + 1 βk + 1| k P b
k + 1| k β

T
k + 1| k N T

k + 1 (63)

According to the actual measurement, the covariance ma‐
trix can be obtained as:

P̄ yy
k + 1| k =

1
l - 1 ∑j = k - l + 2

k + 1

ε͂j ε͂
T
j (64)

where l is the size of the window; and ε͂j is the residual vec‐
tor of attack-free estimation at time j, and ε͂j = yj -Nj x͂ j | j - 1

.

Therefore, the equation relationship is as follows:

1
l - 1 ∑j = k - l + 2

k + 1

ε͂j ε͂
T
j =C y + Sk + 1Vx (65)

The scaling matrix Sk + 1 can be written as:

Sk + 1 = ( P̄ yy
k + 1| k -C y )V -1

x (66)

If the noise variance matches the system model, the scal‐
ing matrix is the unit matrix. However, the scaling matrix 
Sk + 1 obtained by (66) may not be a diagonal matrix, and the 
diagonal elements may be less than or equal to 0. To avoid 
this, the scaling matrix needs to be modified as:

Sk + 1 = diag (s1s2si )     i = 12n (67)

where si =max{1Sk + 1ii} is the diagonal element of the modi‐

fied scaling matrix, and Sk + 1ii is the diagonal element of ma‐
trix Sk + 1 before modification. By using the scaling matrix in 
(67), the covariance matrix P͂ yy

k + 1| k and filter gain matrix K x
k + 1 

can be recalculated.
In addition, the adaptive scaling matrix of the system and 

the noise variance matrix Wx and Wb can be obtained in the 
same way. By using (65), the scaling matrix S x

k + 1 can be ex‐
pressed as:

1
l - 1 ∑j = k - l + 2

k + 1

ε͂j ε͂
T
j =Nk + 1(C x + S x

k + 1Wx ) N T
k + 1 +Vx (68)

C x =∑
j = 0

2n

W c
j ( f ( χ j

k ) -mk ) ( f ( χ j
k ) -mk ) T

+

Rk P b
k | k RT

k -Mk βk | k P b
k | k β

T
k | k M T

k - βk + 1| k P b
k + 1| k β

T
k + 1| k (69)

By using matrix operations, (68) can be simplified as:

S x
k + 1 =N -1

k + 1( P̄ yy
k + 1| k -Nk + 1C

x N T
k + 1 -Vx ) (Wx N T

k + 1 ) -1
(70)

The scaling matrix S x
k + 1 can be defined as:

S x
k + 1 = diag (sx

1s
x
2sx

i )     i = 12n (71)

where sx
i =max{1S x

k + 1ii} is the diagonal element of the modi‐

fied scaling matrix, and S x
k + 1ii is the diagonal element of ma‐

trix S x
k + 1 before modification.

The covariance matrix P͂ x
k + 1| k can be recalculated as:

P͂ x
k + 1| k =C x + S x

k + 1Wx (72)

For the scaling matrix S b
k + 1, the residual vector ε͂ b

j  and co‐
variance matrix P̂ yy

k + 1| k are defined as:

ε͂ b
j = yj -Nj x͂ j | j - 1

-H
j | j - 1

b
j | j - 1 (73)

P̂ yy
k + 1| k =

1
l - 1 ∑j = k - l + 2

k + 1

ε͂ b
j ( ε͂ b

j ) T

(74)

1
l - 1 ∑j = k - l + 2

k + 1

ε͂ b
j ( ε͂ b

j ) T

= P͂ yy
k + 1| k +Hk + 1| k(P b

k | k + S b
k + 1Wb ) H T

k + 1| k (75)

The adaptive scaling matrix can be obtained by:

S b
k + 1 =H -1

k + 1| k( P̂ yy
k + 1| k - P͂ yy

k + 1| k )-Hk + 1| k P b
k | k H T

k + 1| k ( )Wb H T
k + 1| k

-1

(76)

S b
k + 1 = diag (sb

1s
b
2sb

i )     i = 12n (77)

where sb
i =max{1S b

k + 1ii} is the diagonal element of the modi‐

fied scaling matrix, and S b
k + 1ii is the diagonal element of ma‐

trix S b
k + 1 before modification.

The covariance matrix P b
k + 1| k can be recalculated as:

P b
k + 1| k =P b

k | k + S b
k + 1Wb (78)

For convenience, the proposed ATSUKF based on adap‐
tive noise correction method can be presented as Algo‐
rithm 1.

Remark 1: in order to track the operation states of SGs, 
the 4th-order model of generators is usually used for DSE 
[21], [26]. However, the detailed SG model can reflect the 
operation states of SGs more comprehensively. Thereby, the 
DSE model was extended based on the consideration of d-ax‐
is damping windings and q-axis damping windings, and a 9th-
order SG model including an excitation system is proposed 
for DSE.

Remark 2: generally, in the DSE algorithm based on Kal‐
man filter [21]-[23], the estimation accuracy under cyber at‐
tacks is guaranteed by enhancing the robustness of the algo‐
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rithm. Considering the nonlinear characteristics of the model 
equation, a TSUKF is proposed to separate the bias caused 
by cyber attacks. To deal with the deterioration of the state 
estimation performance caused by mismatches between the 
statistical characteristics of the measurement noise and mod‐
el assumptions, a multi-dimensional adaptive factor matrix is 
derived to modify the measurement noise covariance matrix. 
On this basis, considering the impact of system fault on 
noise, the application of adaptive scaling matrix is extended 
to adaptively modify process noise of attack-free estimation 
and attack estimation. Compared with the method in [24] 
and [25], a multi-dimensional adaptive factor matrix is intro‐
duced in the proposed ATSUKF to modify the noise statis‐
tics, which effectively decreases the error caused by the un‐
certainty of noise prior statistics.

IV. NUMERICAL RESULTS 

To access the performance of the proposed ATSUKF un‐
der unknown noise statistics and cyber attack interference, 
extensive simulations are carried out in the IEEE 39-bus sys‐
tem by using the detailed 9th-order SG model developed in 
Section II. The topology of IEEE 39-bus system is shown in 
Fig. 2, and its parameters can be obtained from [38]. 
PSCAD/EMTDC® is used to simulate the dynamic change 
process of power system to obtain the real states and mea‐
surements. To simulate the system operation, it is assumed 

that a three-phase grounding fault occurs at Bus 16 when t =
0.5 s, and the fault is cleared when t = 0.7 s. Due to space 
limitation, only the DSE results of Generator 8 (G8) are 
shown in this section.

Because of the interference of uncertain factors and the 
change of system operation state, it is difficult for operators 
to obtain accurate prior knowledge of noise. Furthermore, 
malicious cyber attacks against power systems will also lead 
to the deterioration of DSE performance. Consequently, con‐
sidering the interference of uncertain factors in the actual 
power system, simulation scenarios are set up as follows.

Scenario 1: the UKF, TSUKF, and proposed ATSUKF are 
compared and discussed under normal operation conditions.

Scenario 2: the above-mentioned filters are analyzed and 
compared in the test system with unknown noise statistics.

Scenario 3: the robustness of above-mentioned filters is 
discussed under the malicious network attack against the 
measurement data.

In addition, set the number of Monte Carlo simulations 
Nm as 200. The average state estimation error index E is uti‐
lized to appraise the performance of the discussed filters:

E =
1

Nm
∑
j = 1

Nm 1
Nt
∑
k = 1

Nt ( )x̂ik - xik

2
(79)

where xik is the true value; and x̂ik is the estimation value.

A. Scenario 1

Without loss of generality, we assume that operators can 
master the knowledge of system model and accurate prior 
noise statistics. Assuming that the process noise and mea‐
surement noise are zero-mean Gaussian noise, the standard 
deviations of the process noise and measurement noise are 
both 10-4. At this time, the actual noise variance matches the 
system model, and the multi-dimensional adaptive factor ma‐
trices are all unity matrices.

The estimation results of rotor speed and rotor angle of 
G8 are shown in Fig. 3. The estimation results of field wind‐
ing and damper winding fluxes of G8 are shown in Figs. 4 
and 5. By using UKF, TSUKF, and the proposed ATSUKF 

Algorithm 1: proposed ATSUKF based on adaptive noise correction method

Initialization: parameter initialization

Input: uk, yk, and the number of iterations Nt

While k = 0 to Nt

Step 1: generate the predicted state of attack-/bias-free estimation by (33)-
(39)

Step 2: calculate the scaling matrix S x
k + 1 by (68)-(72) and recalculate the 

covariance matrix P͂ x
k + 1| k

Step 3: obtain the predicted measurement of attack-/bias-free estimation 
by (42)-(45)

Step 4: obtain the scaling matrix Sk + 1 by (62)-(67) and recalculate the co‐
variance matrix P͂ yy

k + 1| k

Step 5: complete the attack-/bias-free estimation

x͂k + 1| k + 1= x͂k + 1| k +K x
k + 1( yk + 1 - y͂k + 1| k )

P͂ x
k + 1| k + 1= P͂ x

k + 1| k -K x
k + 1 P͂ yy

k + 1| k(K x
k + 1 )T

Step 6: generate the predicted state of attack/bias estimation by (48)-(53)

Step 7: obtain the scaling matrix S b
k + 1 by (73)-(78) and recalculate the co‐

variance matrix P b
k + 1| k

Step 8: complete the attack/bias estimation

b̂k + 1| k + 1= b̂k + 1| k +K b
k + 1( yk + 1| k - ŷk + 1| k )

P b
k + 1| k + 1=P b

k + 1| k -K b
k + 1 P yy

k + 1| k(K b
k + 1 )T

Step 9: complete the estimation by utilizing the results of attack/bias esti‐
mation and attack-/bias-free estimation

x̂k + 1| k + 1= x͂k + 1| k + 1+ βk + 1| k + 1b̂k + 1| k + 1

P x
k + 1| k + 1= P͂ x

k + 1| k + 1+ βk + 1| k + 1P b
k + 1| k + 1β

T
k + 1| k + 1

Step 10: output x̂k + 1| k + 1 and P x
k + 1| k + 1 and update time instant

End while
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Fig. 2.　Topology of IEEE 39-bus system.
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to track the states of G8 in Scenario 1, the estimation results 
of SG excitation system state variables of G8 can be ob‐
served in Fig. 6. Additionally, the average estimation error 
results in Scenario 1 are given in Table I. From the results 
of numerical simulation, it can be observed that the pro‐
posed ATSUKF and TSUKF inherit the advantages of UKF 
and can accurately track the changes of generator operation 
states. Notably, because of the bias estimation, the proposed 
ATSUKF and TSUKF have small deviations from the results 
of UKF in tracking the state change of the excitation sys‐
tem, which can be ignored. When the actual noise variance 
matches the system model, the proposed ATSUKF and 
TSUKF have the same estimation performance.

B. Scenario 2

In the actual power system, the statistical characteristics 
of noise are easily disturbed by many factors. 
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TABLE I
AVERAGE ESTIMATION ERROR RESULTS IN SCENARIO 1

Variable

δ

ω

ψfd

ψ1d

ψ1q

ψ2q

v1

v2

v3

Average estimation error

UKF

0.000097

0.000096

0.000368

0.000168

0.000021

0.000713

0.000099

0.007440

0.000102

TSUKF

0.000097

0.000096

0.000404

0.000168

0.000021

0.000713

0.000099

0.007444

0.000102

ATSUKF

0.000097

0.000096

0.000404

0.000169

0.000021

0.000713

0.000099

0.007445

0.000102
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Under the interference of uncertain factors such as net‐
work attacks, equipment aging, and environmental changes, 
the prior statistical information of noise cannot be accurately 
known by the operator, resulting in the mismatch between 
noise statistics and model assumptions. In order to simulate 
the influence of this situation on the performance of estima‐
tion, it is assumed that the statistical characteristics of noise 
do not match the model assumptions. The standard devia‐
tions of the process noise and measurement noise are set to 
be 10-2 and 10-3, respectively, which deviate from the true 
values 10-4 and 10-4.

The estimation results of field winding fluxes and d-axis 
damper winding fluxes in Scenario 2 are shown in Fig. 7. 
The estimation results of SG excitation system state vari‐
ables in Scenario 2 are shown in Fig. 8. It is worth mention‐
ing that UKF and TSUKF perform well in the estimation of 
δ, ω, ψ1q, and ψ2q. As can be observed in Fig. 7 and Fig. 8, 
when ψfd and v2 are estimated by UKF, the result seriously 
deviates from the true value and can only track the approxi‐
mate trend of the change of the state variable. Additionally, 
the average estimation error results in Scenario 2 are given 
in Table II. Due to unknown prior noise statistics, TSUKF 
has errors in the process of no-attack estimation, resulting in 
inaccurate attack estimation. This problem degrades the esti‐
mation performance of TSUKF significantly. Compared with 
other filters, the proposed ATSUKF can accurately track the 
dynamic changes of state variables by using multi-dimension‐
al adaptive factor matrices to correct the estimation error co‐
variance.

C. Scenario 3

Accessing the measurement data has become one of the 
most common ways to attack power systems. Attackers can 
compromise the authenticity of data by injecting attack data 
into the data collected by the measuring device. Once the re‐
al measurement is altered, the state estimation results will de‐
viate from the actual state, which will cause the operator to 
make a wrong decision. The common measurement cyber at‐
tack methods include false data injection, scaling attack, data 
replay attack, and ramp attack. To analyze the effectiveness 
of state estimation algorithms under cyber attacks, it is as‐
sumed that the measurement data v3 are accessed by multi‐
ple types of malicious network attacks.

The following four attack conditions are considered.
1) Condition 1: the measurement is successfully accessed 

by FDI at t = 2 s and the attack stops at t = 8 s. Once the at‐
tack succeeds, false data injection attacks will inject false da‐
ta bFDI

k = 0.02 into the measurement.
2) Condition 2: when the measurement device is manipu‐

lated by the data replay attack at t = 5 s, the device will re‐
peatedly transmit the same measurement data.

3) Condition 3: the attacker uses scaling attacks to scale 
up the measurement after t = 4 s, and the scaling factor λa is 
set to be 1.5.

4) Condition 4: the attacker uses ramp attacks to inject da‐
ta into the measurement data after t = 6 s. The data injected 
through ramp attacks will grow over time and rb = 3 ´ 10-4.

The estimation results of v3 under FDI attacks are shown 
in Fig. 9. When the data replay attack occurs, the measure‐
ment device will continuously transmit the measurement data 
from t = 5 s to replace real measurements. The estimation re‐
sults of v3 under data replay attack are shown in Fig. 10. 
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Fig. 7.　Estimation results of field winding and d-axis damper winding flux‐
es of G8 in Scenario 2.
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TABLE II
AVERAGE ESTIMATION ERROR RESULTS IN SCENARIO 2

Variable

δ

ω

ψfd

ψ1d

ψ1q

ψ2q

v1

v2

v3

Average estimation error

UKF

0.000255

0.001021

0.364208

0.000174

0.000176

0.000708

0.001088

0.115421

0.000813

TSUKF

0.001265

0.000111

0.544942

0.000173

0.000091

0.000698

0.002760

0.117418

0.001639

ATSUKF

0.000101

0.000099

0.003684

0.000173

0.000072

0.000765

0.000101

0.008041

0.000116
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For the scaling attacks, suppose that the attacker scales up 
the measurement by using scaling factor λa = 1.5 after t = 4 s, 
and the result comparison is given in Fig. 11. When the 
ramp attack occurs at t = 6 s, the estimation results of v3 are 
shown in Fig. 12. Additionally, the average estimation error 
results of v3 under four common cyber attacks are given in 
Table III. As can be observed from the above results, the es‐
timation effect of the proposed ATSUKF is significantly su‐
perior to other filters. Since there is no way to separate the 
deviations caused by cyber attacks during state estimation, 
UKF is vulnerable to cyber attacks. As expected, due to the 
inability to update the error covariance matrix, TSUKF can‐
not quickly and accurately track the attack signal. In con‐
trast, the proposed ATSUKF can adaptively update the cova‐
riance matrix during the process of attack/bias estimation to 
obtain better results.

In order to compare the computational efficiency of differ‐
ent filters discussed under different conditions, simulations 
are implemented on a system with an Intel i7-7700 CPU and 
16 GB of RAM in the MATLAB environment. The execu‐
tion time of different filters under different conditions is 
shown in Table IV. The results in Table IV are achieved 
without complete optimization and the computational time 
can be further reduced by using C code. Since the state and 
the bias can be estimated in parallel, the proposed ATSUKF 
and TSUKF exhibit similar computational efficiency to UKF 
under all designed conditions. A multi-dimensional adaptive 
factor matrix is introduced in the proposed ATSUKF to mod‐
ify the noise statistics, which effectively decreases the error 
caused by the uncertainty of noise prior statistics. Therefore, 
the computational efficiency of the proposed ATSUKF will 
be lower than that of TSUKF. It is worth mentioning that 
when the attacker accesses multiple measurement data simul‐
taneously, the computational burden of attack/bias estimation 
will further increase and the computational efficiency of the 
filter will decrease.
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Fig. 9.　Estimation results of v3 under FDI attack.

TABLE IV
EXECUTION TIME OF DIFFERENT FILTERS UNDER DIFFERENT CONDITIONS

Condition

Normal operation condition

Unknown noise statistics condition

Condition 1

Condition 2

Condition 3

Condition 4

Execution time (ms)

UKF

7565

7670

7850

7849

7992

7940

TSUKF

7617

7651

7961

7919

7988

7957

ATSUKF

7693

7728

8014

8187

8210

8203
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Fig. 11.　Estimation results of v3 under scaling attack.
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Fig. 12.　Estimation results of v3 under ramp attack.

TABLE III
AVERAGE ESTIMATION ERROR RESULTS IN SCENARIO 3

Attack mode

FDI attack

Data replay attack

Scaling attack

Ramp attack

Average estimation error

UKF

0.015490

0.019197

0.024678

0.021983

TSUKF

0.006696

0.006615

0.006707

0.008893

ATSUKF

0.000112

0.000132

0.000103

0.000143
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Fig. 10.　Estimation results of v3 under data replay attack.
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V. CONCLUSION 

In this study, an adaptive DSE algorithm is proposed 
against cyber attacks. Considering the nonlinear characteris‐
tics of the model equation, a filter is proposed based on the 
unscented transform technology and two-stage Kalman filter‐
ing theory, which can suppress the impact of cyber attacks 
on the estimation results. On this basis, the adaptive scaling 
matrix is utilized to modify the error covariance matrix in 
the estimation process of the TSUKF, which can effectively 
deal with the problem when the statistical parameters of 
noise do not match the model assumptions. Compared with 
other filters, the effectiveness of the proposed ATSUKF is il‐
lustrated under cyber attacks.

As it turns out, the proposed ATSUKF can effectively esti‐
mate the system state vector and attack vector in parallel. 
When the statistical parameters of generator model noise are 
unknown, the proposed ATSUKF is still effective. In the fu‐
ture, we will build more types of cyber attack models and 
extend the proposed ATSUKF to bound the uncertainty 
caused by cyber attacks to provide effective information for 
tracing the source of cyber attacks and formulating defense 
strategies. In addition, we will design an effective attack de‐
tection strategy to distinguish between noise signals and cy‐
ber attacks, thereby reducing unnecessary calculations and 
improving the computational efficiency of the proposed 
ASUKF.
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