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Abstract——Dynamic operating envelopes (DOEs), as a key en‐
abler to facilitate distributed energy resource (DER) integra‐
tion, have attracted increasing attention in the past years. How‐
ever, uncertainties, which may come from load forecasting er‐
rors or inaccurate network parameters, have been rarely dis‐
cussed in DOE calculation, leading to compromised quality of 
the hosting capacity allocation strategy. This letter studies how 
to calculate DOEs that are immune to such uncertainties based 
on a linearised unbalanced three-phase optimal power flow 
(UTOPF) model. With uncertain parameters constrained by 
norm balls, formulations for calculating robust DOEs (RDOEs) 
are presented along with discussions on their tractability. Two 
cases, including a 2-bus illustrative network and a representa‐
tive Australian network, are tested to demonstrate the effective‐
ness and efficiency of the proposed approach.

Index Terms——Distributed energy resource (DER), dynamic 
operating envelope (DOE), feasible region, robust optimisation, 
uncertainty modelling, unbalanced optimal power flow.

I. INTRODUCTION 

THE penetration of distributed energy resources (DERs) 
has been rapidly increasing worldwide in the past years, 

leading to a series of issues that require close coordination 
among transmission system operators (TSOs), distribution 
system operators (DSOs), and emerging DER aggregators 
via virtual power plants (VPPs) [1], [2]. Dynamic operating 
envelope (DOE), which specifies the operational range for 
customers with DERs at the connection point that is permis‐
sible within the network operational limits, is identified as a 
key enabler in future power system architectures and has 
gained increasing interest from both industry and academia 

to manage DER export/import limits and to facilitate DER 
participation in electricity markets [2]. Differing from static 
operating envelopes (SOEs) that are calculated based on the 
worst operational scenarios that occur rarely in a distribution 
network, DOEs can be updated more frequently (day-ahead, 
every several hours, hourly, or every 15 min) to avoid unnec‐
essary limitations on DER integration and free up the latent 
network hosting capacity. Moreover, compared with the co-
optimisation of scheduled generators, DERs, and network op‐
erations, DOEs can be calculated and published by an indi‐
vidual distribution system operator to avoid traceability is‐
sues that may arise when both transmission networks and 
medium-/low-voltage distribution networks are modelled and 
optimised together by a single central system operator.

Although substantial advances have been made in develop‐
ing approaches to calculating DOEs in recent years [1], [3], 
[4], uncertainties, which may arise from load forecasting and 
inaccurate network parameters, are typically ignored in the 
calculations, which may lead to unreliable DOE allocations. 
To address this issue, this letter proposes an approach to cal‐
culate robust DOEs (RDOEs) that are immune to such uncer‐
tainties. It is noteworthy that DOEs are inherently linked to 
the concept of feasible region (FR), which has been dis‐
cussed for transmission networks in [5] and for distribution 
networks in [6]. Geometrically, each DOE allocation strategy 
is linked to a feasible point on the boundary of the FR when 
it is calculated by deterministic approaches such as in [3] 
and [4]. The contributions of this letter are summarised as 
follows.

1) The formulation of the FR for DERs, along with its ap‐
propriate reformulation, is presented based on a linearised 
unbalanced three-phase optimal power flow (UTOPF) model. 
Formulating the FR first is for the convenience of consider‐
ing uncertainties from network impedances and/or forecast‐
ing errors.

2) The robust feasible region (RFR), which is a variation 
of the FR, while considering the studied uncertainties mod‐
elled as norm inequalities, is presented based on static ro‐
bust optimisation theory, leading to deterministic convex for‐
mulations for calculating RDOEs.

The proposed approach is tested and demonstrated effi‐
ciently on a 2-bus illustrative network and a representative 
Australian network.
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II. CALCULATING DOES VIA DETERMINISTIC UTOPF 

Based on UTOPF, a deterministic approach to calculating 
DOEs can be formulated as:

max
PmQm

r(P) (1)

V ϕ
iref
=V ϕ

0     "ϕ (2)

V ϕ
i -V ϕ

j =∑
ψ

z ϕψij I ϕij     "ϕ"ij (3)

∑
n:n® i

I ϕni - ∑
m:i®m

I ϕim =∑
m

μϕim (Pm - jQm )

(V ϕ
i )*

    "ϕ"i ¹ iref (4)

V min
i £ |V ϕ

i | £V max
i     "ϕ"i (5)

where r(P) is the objective function reflecting the efficiency 
and fairness in calculating DOEs, and can be in linear or 
convex quadratic forms; iref is the index of the reference bus; 
V ϕ

0  is the fixed voltage of phase ϕ at reference bus (known 
parameter); V ϕ

i  (i ¹ 0) is the voltage of phase ϕ at node i; I ϕni 
is the current in phase ϕ of line ni flowing from bus n to 
bus i; μϕimÎ{01} is a parameter indicating the phase connec‐
tion of customer m with its value being 1 if it is connected 
to phase ϕ of bus i and being 0 otherwise; V min

i  and V max
i  are 

the lower and upper limits of |V ϕ
i |, respectively; Pm is the ac‐

tive power demand of customer m; and Qm is the reactive 
power demand of customer m. For simplicity, all Pm and Qm 
are treated as variables in the formulation. However, they 
will be fixed to their forecasting values if they are uncontrol‐
lable.

In the formulation, the objective function aims at maximis‐
ing r(P) to obtain the desired DOEs, subject to (2) specify‐
ing the voltage at the reference bus, (3) formulating voltage 
drop in each line, (4) assuring that Kirchhoff’s current law 
is satisfied, and (5) representing voltage magnitude (VM) 
constraints. It is noteworthy that only VM constraints are 
considered in this letter; however, other constraints can be 
conveniently incorporated.

Note that for most distribution networks, the differences 
of voltage angles in each phase are sufficiently small [7] and 
nodal voltages throughout the network are around 1.0 p. u., 
(4) can be linearised by fixing V ϕ

i  in the denominator on the 
right-hand side of (5), leading to a compact formulation of 
(1)-(5) with linear constraints as:

max
p1q1

r(p1 ) (6)

[A1A2 ][pT
1 p

T
2 ]T +[B1B2 ][qT

1 q
T
2 ]T +Cl = b (7)

Dv +El = d (8)

Fv £ f (9)

where p1 and p2 are the vectors related to active power from 
active customers (VPP participants) and passive customers 
(the customers for which active power needs to be forecast‐
ed or estimated), respectively; q1 and q2 are the vectors con‐
sisting of reactive power that is controllable and that needs 
to be forecasted or estimated, respectively; l and v are the 
vectors consisting of state variables related to line currents 
and nodal voltages, respectively; and A =[A1A2 ], B =[B1 

B2 ], C b D E d F, and f are the constant parameters with 
appropriate dimensions.

It is noteworthy that the fixed value of V ϕ
i , i. e., V̄ ϕ

i , can 
be estimated, for example, as 1.0Ð0° p. u., 1.0Ð120° p. u., 
and 1.0Ð- 120° p.u. for phases a, b, and c, respectively, or 
acquired from measurements from the network to improve 
the accuracy of the linearised formulation further. More de‐
tails on the linearisation accuracy will be presented and dis‐
cussed in Section IV.

In the formulation, (7) links back to (4) after linearisation 
and represents the relations between line currents l and resi‐
dential demands p1, p2, q1, and q2; (8) represents the lin‐
earised power flow equations that link the bus voltages v 
and currents l running in all lines, i.e., (2) and (3); and (9) 
represents all the operational constraints after the linearisa‐
tion, i.e., (5).

Noting that only p1 and q1 are independent variables, (2) 
defines the FR as a function of q1 for p1. Therefore, if all re‐
alised values of p1 fall within the FR, the integrity of the net‐
work can be guaranteed. After removing state variables v 
and l, the FR for p1 can be expressed as the following poly‐
hedron.

F (q1 )={p1|FD-1 EC-1 (A1 p1 +A2 p2 +B[qT
1 q

T
2 ]T - b)£

f -FD-1d} (10)

It is noteworthy that both C and D can be proven to be in‐
vertible since both of them can be constructed from the con‐
nectivity matrix of all buses (excluding the reference bus) 
and all lines in a distribution network with radial topology. 
Further, for the convenience of later discussions, we have 
the following proposition and its proof.

Proposition 1: the FR expressed as (10) is equivalent to:

F (q1 )={p1|vec(E)T H i (A1 p1 +A2 p2 +B[qT
1 q

T
2 ]T - b)£ ti"i}

(11)

where vec(×) is the vectorising operator for a matrix. For exam‐

ple, for H = é
ë
êêêê ù

û
úúúúh11 h12

h21 h22

, we have vec(H)=[h11h21h12h22 ]T. 

[×]i indicates the ith row of a matrix or the ith element of a vec‐
tor. Hi =C-1⊗ ([F]i D

-1 )T with ⊗ being the Kronecker prod‐
uct, and ti =[ f -FD-1d]i.

Proof: from (10), it is obvious that the ith inequality ex‐
pression is:

[F]i D
-1 EC-1 (A1 p1 +A2 p2 +B[qT

1 q
T
2 ]T - b)£[ f -FD-1d]i = ti

(12)

For the term [F]i D
-1 EC-1, we have [8]:

vec([F]i D
-1 EC-1 )= (C-T⊗[F]i D

-1 )vec(E) (13)

Equation (13) leads to:

vec(E)T (C-1⊗ ([F]i D
-1 )T )w =[F]i D

-1 EC-1w (14)

where w =A1 p1 +A2 p2 +B[qT
1 q

T
2 ]T - b, which proves the 

proposition.
Therefore, seeking DOEs through the deterministic ap‐

proach with controllable q1 is equivalent to solving:

max
(p1q1 )

{r(p1 ) |s.t.  p1ÎF (q1 )} (15)

And one typical formulation of the objective function, 
which will be used in this letter, is r(p1 )= 1T p1.
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III. ROBUST DOES 

A. Uncertainty Modelling

Comparing (1) and (2), the errors in forecasting Pm and 
Qm, and the inaccuracies in z ϕψij  will lead to uncertainties in 
p2 q2, and E, respectively. In this letter, such uncertainties 
are formulated as:

E = E1 E2 ={E|vec(E)= e1 + J1 x x ¥ £ γ1 }
{E|vec(E)= e2 + J2 x x £ γ2 } (16)

P =P1P2 ={p2|p2 = u1 +U1 y y
¥
£ ρ1 }

{p2|p2 = u2 +U2 y y £ ρ2 } (17)

Q =Q1Q2 ={q2|q2 =w1 +W1 z z ¥ £ θ1 }

{q2|q2 =w2 +W2 z z £ θ2 } (18)

where ei ui wi J i Ui W i γi ρ i, and θi are the constant 
parameters describing the uncertainty sets; and x y and z 
are the random variables; and the ¥-norm constraint in E1, 
P1, and Q1 provides a general lower/upper bound for the ran‐
dom variable, while the norm constraint in E2 P2, and Q2, 
which can take 1-/2-/¥-norm or other types of norms, is to 
further reduce the conservativeness of the uncertainty set.

Several remarks on uncertainty modelling are given below.
1) Constant parameters can be chosen depending on the 

physical truth or historical error distributions. For example, 
if E is usually within 10% error of Ē, where Ē is the nomi‐
nal value of E, we can set E = E1, e1 = vec(Ē), J1 = diag(e1 ), 
and γ1. As another example, if p2 falls in [0pmax

2 ] and its 
forecasting error follows a multivariate normal distribution 
with expectation and covariance being 0 and Σ, respectively, 
and 2-norm is used in P2, u1 can be set as a vector with all 
its elements being pmax

2 /2, U1 = diag(u1 ), and ρ1 = 1 for P1. 
Note that yTΣy follows a Chi-square distribution with free‐
dom degrees of n, i. e., yTΣy  χ 2

n , we can set u2 = p̄2 in P2, 
with p̄2 being the forecasted value of p2. U2 = diag(u2 ) and 
ρ2 = (χ 2

n1 - ϵ )1 2 so as to guarantee that p2 now falls within P2 
with a confidence level of 1 - ϵ.

2) Constant parameters can also be chosen depending on 
the confidence level of satisfying (11), leading to equivalent 
chance-constrained optimisation problems. This, however, is 
beyond the scope of this letter, and more discussions can be 
found in [9].

3) E, P, and Q can be formulated as other types of con‐
vex sets, which, however, may affect the tractability of the 
formulated problem if two or more uncertainties co-exist. 
More discussions will be provided in the next section.

B. Robust DOEs

For the convenience of discussion, we here assume that 
both q1 and q2 are controllable, thus removing uncertainties 
in q2. However, similar to dealing with uncertainty in p2, the 
proposed approach can be easily extended to the case when 
uncertainty in q2 exists.

Since the optimisation problem (15) only contains linear 
inequality constraints (11), the essential idea in seeking 
RDOEs is to make sure that (11) is always satisfied for any 
realisation of uncertain parameters. To obtain the robust 

counterpart (RC) of (15), the equivalent reformulation of 
(11), considering the uncertainties that are bounded by (16)-
(18), should be derived. Taking a generic formulation f (εx)£
0 as an example, where x is a variable and ε is an uncertain 
parameter belonging to E ={g(ε)£ 0}, its RC formulation is:

max
εÎ E

f (εx)= min
α ³ 0

max
ε

f (εx)- αg(ε)£ 0 (19)

With the following fact or assumption, (19) can then be re‐
formulated as deterministic linear or other convex con‐
straints.

1) If the min operator is on the left-hand side of a less-
than-or-equal-to constraint, it can be safely removed. For ex‐
ample, h(xβ)£ 0 can always guarantee that min

β
h(xβ)£ 0.

2) Under certain circumstances, for example, f (εx) being 
linear and E being norm constraints, i.e., E ={ε|ε £ ε̄}, 
max
ε

f (εx)- αg(ε) can be expressed in an equivalent deter‐

ministic form without the max operator.
Next, we will discuss how such reformulation techniques 

can be applied in deriving the RDOE formulation under vari‐
ous uncertainty models.
1)　With Uncertainty Only in E

Fixing p2 at p̄2 and denoting hi =Hi (A1 p1 +A2 p̄2 +Bq - b), 
the inequality expression in (11) with any realisation of un‐
certain E is equivalent to:

max
EÎ E

vec(E)T H i (A1 p1 +A2 p̄2 +Bq - b)= δ* (hi|E)£ ti (20)

For the left-hand side of (20), we further have:

max
EÎ E

vec(E)T H i (A1 p1 +A2 p̄2 +Bq - b)= δ* (hi|E)=

min
τi1τi2

{δ* (τ i1|E1 )+ δ* (τ i2|E2 ))|τ i1 + τ i2 = hi }=

min
τi1τi2

ì
í
î

ïï
ïï

ü
ý
þ

ïïïï
ïï

∑
j

(eT
j τ ij + δ

* (J T
j τ ij|Xj ))

|

|

|
||
|
|
|∑

j

τ ij = hi (21)

where ej and J j  are the same as those defined in (16); and 
τ ij is an intermediate variable. 

We can then obtain:

min
τi1τi2

ì
í
î

ïï∑
j

eT
j τ ij + γ1 J T

1 τ i1 1
+ γ2 J T

2 τ i2 *

ü
ý
þ

ïïïï
ïï

|

|

|
||
|
|
|∑

j

τ ij = hi (22)

where δ* (y|X )= sup
xÎX

yT x is the conjugate function of the sup‐

port function δ(x|X ); X1 = {x |  x ¥ £ γ1}; X2 = {x |  x £ γ2}; 
and  ×

*
 represents the dual norm operator. Moreover, 

δ* (y|X ) is always a convex function [10].
After safely removing the min operator in (22), (20) can 

be reformulated as [9]:∑
j

eT
j τ ij + γ1 J T

1 τ i1 1
+ γ2 J T

2 τ i2 *
£ ti (23)

∑
j

τ ij = hi (24)

As a result, (23) and (24) define the robust FR (RFR) that 
is robust to uncertain E, and maximising r(p1 ) over 
(p1qτ ij ) in this RFR will report the desired RDOEs. The fi‐
nal optimisation problem with the objective maximising the 
total DOE can be formulated as max

p1q
{r(p1 ) |s.t.  (23) (24)}.
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2)　With Uncertainty Only in p2

With vec(E) fixed at ē and denoting g i =AT
2 H T

i ē, for the ith 
constraint in (11), reformulating (11) while considering un‐
certainty in p2 leads to:

max
p2Î

g T
i p2 = δ

* (g i|P)= min
ϕi1ϕi2

{δ* (ϕi1|P1 )+ δ* (ϕi2|P2 ))|ϕi1 +ϕi2 =

g i }= min
ϕi1ϕi2

ì
í
î

ïï
ïï

ü
ý
þ

ïïïï
ïï

∑
j

(uT
j ϕij + δ

* (U T
j ϕij|Y j ))

|

|

|
||
|
|
|∑

j

ϕij = g i (25)

where ϕij is an intermediate variable. 
We can then obtain:

min
ϕi1ϕi2

ì
í
î

ïï
ïï

ü
ý
þ

ïïïï
ïï

∑
j

uT
j ϕij + ρ1 U T

1 ϕi1 1
+ ρ2 U T

2 ϕi2 *

|

|

|
||
|
|
|∑

j

ϕij = g i £

ti - ēT H i (A1 p1 +Bq - b) (26)

where Y1 = {y |
|  y

¥
£ ρ1}; and Y2 = {y |  y £ ρ2}.

Similar to the derivation of the RFR with uncertain E, re‐
moving the min operator in (26) also leads to an RFR that is 
robust against uncertain p2. The final optimisation problem 
to maximise the total DOE can thus be formulated as:

max
p1q

r(p1 ) (27)

uT
1ϕi1 + uT

2ϕi2 + ρ1 U T
1 ϕi1 1

+ ρ2 U T
2 ϕi2 *

£

ti - ēT H i (A1 p1 +Bq - b)"i (28)

ϕi1 +ϕi2 = g i    "i (29)

3)　With Uncertainties in Both E and p2

In this case, bilinear uncertainty exists in (11), making the 
RC reformulation generally intractable. However, as dis‐
cussed in [9], a tractable reformulation is achievable when 
the uncertainty set follows specific types. One case is when 
P is formulated as:

P =P1P2 = { }p2|u +UyyÎY =Y1Y2 (30)

where u = u1 = u2; U =U1 =U2; Y1 = {y |
|  y

¥
£ ρ1}; and Y2 =

{y |
|  y

1
£ nt ρ1} with nt £ n, and n is the cardinality of y.

Obviously, there is a total number of 2nt( )n
nt

 extreme 

points in Y. As a special case, when nt = 1, the 2n extreme 
points in Y can be expressed as {±y1±yk±yn }, where 
ykÎRn ´ 1 is a vector with the kth element being ρ1 and all the 
other elements being 0. Based on (22), reformulating the ith 
constraint in (11) while considering uncertainty in both E 
and p2 leads to:

min
τi1kτi2k

ì
í
î

ïï
ïï

ü
ý
þ

ïïïï
ïï

∑
j

eT
j τ ijk + γ1 J T

1 τ i1k
1
+ γ2 J T

2 τ i2k
*

|

|

|
||
|
|
|∑

j

τ ijk = hi (yk ) £

ti    "k (31)

min
λi1kλi2k

ì
í
î

ïï
ïï
∑

j

eT
j λ ijk + γ1 J T

1 λ i1k
1
+

γ2 J T
2 λ i2k

*

|

|

|
||
|
|
|∑

j

λ ijk = hi (-yk )
ü
ý
þ

ïïïï
ïï
£ ti    "k (32)

where hi (±yk )=Hi (A1 p1 +A2u ±A2Uyk +Bq - b).
Similarly, the final equivalent deterministic formulation to 

maximise the total DOE can be formulated as:
max

p1q
r(p1 ) (33)

∑
j

eT
j τ ijk + γ1 J T

1 τ i1k
1
+ γ2 J T

2 τ i2k
*
£ ti    "i"k (34)

∑
j

eT
j λ ijk + γ1 J T

1 λ i1k
1
+ γ2 J T

2 λ i2k
*
£ ti    "i"k (35)

∑
j

τ ijk = hi (yk )    "i"kÎ{12n} (36)

∑
j

λ ijk = hi (-yk )    "i"kÎ{12n} (37)

Several remarks on calculating RDOEs are given below.
1) In this letter, a strictly equal allocation strategy, i. e., 

DOEs of all active customers being equal to each other, will 
be used, leading to a linear formulation of the objective func‐
tion: r(p1 )= 1T p1 subject to p1i = p1j ("i ¹ j). However, other 
objective functions can also be applied.

2) Note that (11) is linear in E, p2, and q2, a tractable RC 
for this constraint can always be derived with single uncer‐
tainty, i.e., when uncertainty appears only in E or only in p2, 
and if the uncertainty set is convex. When bilinear uncertain‐
ty exists, a tractable RC formulation is achievable if there is 
a finite number of extreme points for at least one uncertainty 
set, as shown in (31). However, it can be difficult to enumer‐
ate all extreme points itself.

3) The problem (15) with single uncertainty becomes a lin‐
ear programming (LP) problem when 1-norm or ¥-norm is 
used in (16)-(18), and becomes second-order cone program‐
ming (SOCP) problem when 2-norm is used. However, the 
RC of (15) with single uncertainty is always a convex pro‐
gramming problem if the uncertainty set is convex.

4) Compared with (11), a buffer term is added to the left 
side of (11) in its RC, leading to enhanced robustness of the 
solution. When γi, ρ i, or θi equals 0, the RC deteriorates to 
the deterministic formulation.

5) Due to the unbalances and mutual couplings of all phas‐
es in a distribution network and the fact that the active pow‐
er of a VPP customer may vary between 0 kW and its allo‐
cated DOE, there is another type of uncertainty related to 
the difference between the optimal solution of p2 and its re‐
alised value p̂2. Although this is beyond the scope of this let‐
ter, such uncertainty can be addressed by: ① taking the ap‐
proach proposed in [11] on top of an RFR based on the ap‐
proach proposed in this letter; ② employing the strictly 
equal allocation strategy, which is already taken in this let‐
ter. Note that such an allocation strategy, even with a deter‐
ministic DOE calculation approach, can provide satisfactory 
robustness as demonstrated in [11].

6) When extra constraints on p1 and q1 exist, an additional 
constraint L1 p1 +L2 p2 £ r can be added to (10) and (11).

IV. CASE STUDY 

A. Case Setup

Two distribution networks, i. e., 2-bus illustrative network 
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and a representative Australian network, will be studied. For 
the illustrative network, where its topology is presented in 
Fig. 1, an ideal balanced voltage source with the VM being 
1.0 p. u. is connected to bus 1. A three-phase line connects 
bus 1 and bus 2, and its impedance matrix can be found 
in [11].

Of the three customers, S2 =P2 + jQ2 is fixed, while 
P1P3Q1, and Q3 are to be optimised with r(P)=-P1 -P3 
and P1 =P3, aiming at maximising the total exports from cus‐
tomers 1 and 3. Moreover, the default export/import limits 
for both customers are set to be 7 kW, and controllable reac‐
tive power is assumed to be within [-1, 1]kvar. Lower and 
upper VM limits are set to be 0.95 p.u. and 1.05 p.u., respec‐
tively. The representative Australian network has 33 buses 
and 87 customers, of which 30 are VPP participants whose 
DOEs are to be calculated. For the remaining 57 customers, 
their reactive power is fixed, while the active power is treat‐
ed as uncertain parameters. The default limits on active and 
reactive power are the same as those in the illustrative net‐
work, and other data can be found in [11].

For network impedances, x in (16) refers to the mutual im‐
pedances of line 12 for the illustrative network and refers to 
the positive, negative and zero-sequence impedances of all 
line codes of lines “46-47”, “69-67”, “49-50”, “40-41”, “54-
59”, “45-50”, “67-68”, “44-45”, “61-62”, and “52-54” for 
the Australian network.

B. Errors from Linearised Model

This subsection will investigate the accuracy of the em‐
ployed linearised model based on the Australian network, 
where the given voltages for phases a, b, and c are set to be 
1.0Ð0°, 1.0Ð- 120°, and 1.0Ð120°, respectively, for all bus‐
es.

The average and maximum VM errors when the demand 
for each of the active customers is at 1 kW (low customer 
load) and 3 kW (high customer load), under both exporting 
and importing statuses, are presented in Table I. The value 3 
kW is taken noting that RDOE calculated for each of the 
customers is around 3 kW. When customers’  demands are at 
a high level, the average and maximum errors are at around 
0.23% and 0.59%, respectively, when they are exporting 
power to the grid, and are at around 0.83% and 1.78%, re‐
spectively, when they are importing power, demonstrating 
that the linearisation approach can achieve acceptable accura‐
cy for RDOE calculation. However, it is expected that errors 
will become more significant when true nodal voltages devi‐
ate from the given voltage points, which can occur when 
customers are exporting or importing power at very high lev‐
els.

The nodal VMs for all three phases of the Australian net‐
work are also presented in Fig. 2 when all active customers 
are exporting at 3 kW, which clearly shows that the VMs 
calculated by the linearised unbalanced three-phase power 
flow (LIN-UTPF) and by the non-convex UTPF (NCVX-UT‐
PF) are very close to each other in this scenario.

However, we admit that the errors brought by the lineari‐
sation approach are inevitable, and in some cases, may be 
high. Thus, more efforts are needed in this area. One of the 
approaches to improving the accuracy is by iteratively updat‐
ing the given voltage points used to linearise the model. Spe‐
cifically, after solving the optimisation model with the opti‐
mal solutions of p and q as p* and q*, respectively, the opti‐
mal solution for v after this iteration can be expressed as 
(38) based on (7) and (8).

v* =D-1 EC-1 (Ap* +Bq* - b)+D-1d (38)

Then, matrix C, which depends on the given voltage 
points, can be updated further, followed by the re-calculation 
of the RDOE. The effectiveness of the iteration-based ap‐
proach has been demonstrated in [12] and is omitted here 
for simplicity.

C. Calculated RDOEs

Simulation results are presented in Table II and Fig. 3 
with all optimisation problems solved by Mosek (version 
10.0) [13] on a laptop with Intel Core i7-8550U CPU and 
16 GB RAM.

S1=P1+ jQ1

S3=P3+ jQ3

z12

Bus 1 Bus 2
Phase a

Phase b

S2=(�2+j0) kVA

Phase c

Fig. 1.　Network topology of 2-bus illustrative network.

TABLE I
AVERAGE AND THE MAXIMUM VM ERRORS

Customer status

Export

Import

Customer load

High

Low

High

Low

VM error (p.u.)

Average

0.002336

0.000125

0.008268

0.001776

The maximum

0.005877

0.000298

0.017820

0.003675

1.10
1.05
1.00
0.95
0.90V

M
 (

p
.u

.)
1.10
1.05
1.00
0.95
0.90V

M
 (

p
.u

.)

1.10
1.05
1.00
0.95
0.90V

M
 (

p
.u

.)

0 4 8 12 16 20
Bus number

(a)

24 28 32 36 40

0 4 8 12 16 20
Bus number

(b)

24 28 32 36 40

0 4 8 12 16 20
Bus number

(c)

24 28 32 36 40

NCVX-UTPF; LIN-UTPF

Fig. 2.　Nodal VMs for all three phases of Australian network.
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In Table II, the various uncertainties include: ① q1 = 0, E =
E1 (E2 is not considered) with e1 = vec(Ē) and J1 = diag(e1 ), 
and ② p = p2 (p1 is not considered) with u2 = p̄2 and U2 =
diag(u2 ). It should be noted that negative values represent 

export limits, and numbers on the left-hand and right-hand 
sides in the table mean with q1 being 0 kvar and with opti‐
mised q1, respectively, and the computational time includes 
both the time for setting up the optimisation model and for 
solving the optimisaiton problem. In Fig. 3, the legends 
“DFR” and “RFR” represent the FRs calculated via deter‐
ministic and robust approaches, respectively. “DDOE” and 
“RDOE” indicate the deterministic and robust DOEs, respec‐
tively. fq means the case when q1 is fixed at 0 kvar while cq 
means q1 is taken as its optimised value.

Moreover, the DOEs calculated by deterministic approach 
are also presented for comparison purposes. Moreover, the 
compact formulation of the problems in this paper is realised 
with the assistance of Julia packages MathOptInterface. jl, 
JuMP.jl, and PowerModelsDistribution.jl [14].

Simulation results clearly show that RDOEs are more con‐
servative than DDOEs, and a higher level of uncertainty 
leads to a more conservative allocation strategy, as demon‐
strated in Fig. 3(a). Moreover, as shown in Table II and Fig. 
3, RFRs and allocated DOEs with optimised controllable re‐
active power can effectively report ameliorated DOEs. Re‐
garding computational time, RDOEs can be calculated effi‐
ciently for both networks except when bilinear uncertainty 
exists in the Australian network. Moreover, setting up the op‐
timisation model for this case can also be computationally 
demanding. In fact, for the Australian network, it takes at 
most 9 s to set up the optimisation model when there is a 
single uncertainty. In comparison, the setup time is as high 
as 2306.05 s when bilinear uncertainty exists due to a large 
number of constraints in (31), implying that the computation‐
al efficiency can be potentially improved by investigating ef‐
ficient programming techniques.

V. CONCLUSION 

Uncertainties in demand forecasting and impedance model‐
ling in distribution networks are inevitable and could poten‐
tially undermine the reliability of calculated DOEs for DER 
integration. This letter studies the calculation of DOEs when 
single or bilinear uncertainty exists in demands and network 
impedances, leading to various tractable formulations. More‐
over, uncertainty sets are formulated as generalised norm 
constraints and could cover the most commonly used mea‐
sures in quantifying uncertainties. Simulation results show 
the differences in DOE allocation strategies geometrically 
with and without considering uncertainties, and demonstrate 
the efficiency of the proposed approach. Note that the pro‐
posed approach is built on a linear UTOPF model, further 
improving the accuracy in linearising UTOPF and investigat‐
ing robust formulations under other types of uncertainty sets 
are potential research directions.
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