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Impedance Model for Instability Analysis of 
LCC-HVDCs Considering Transformer Saturation
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Abstract——In line commutated converter based high-voltage 
direct current (LCC-HVDC) transmission systems, the trans‐
former saturation can induce harmonic instability, which poses 
a serious threat to the safe operation of the power system. How‐
ever, the nonlinear characteristics of the power grids introduced 
by the transformer saturation considerably limit the application 
of the conventional analysis methods. To address the issue, this 
paper derives a linear model for the transformer saturation 
caused by the DC current due to the converter modulation. Af‐
terwards, the nonlinear characteristics of power grids with the 
transformer saturation is described by a complex valued imped‐
ance matrix. Based on the derived impedance matrix, the sys‐
tem harmonic stability is analyzed and the mechanism of the 
transformer saturation induced harmonic instability is revealed. 
Finally, the sensitivity analysis is conducted to find the key fac‐
tors that influence the system core saturation instability. The 
proposed impedance model is verified by the electromagnetic 
transient simulation, and the simulation results corroborate the 
effectiveness of the proposed impedance model.

Index Terms——Line commutated converter based high voltage 
direct current (LCC-HVDC), transformer saturation, harmonic 
instability, impedance model.

I. INTRODUCTION 

THE line commutated converter based high-voltage di‐
rect current (LCC-HVDC) technologies have been wide‐

ly used for large-scale and long-distance power transmission 
[1], [2]. To increase electricity transmission capacity with 
lower environment impacts, it is common to build high-volt‐
age direct current (HVDC) transmission lines in the existing 
corridors of high-voltage alternative current (HVAC) trans‐
mission lines, like the Hydro-Quebec-New England system 
[3]-[6].

In the HVAC and HVDC hydro system, the HVAC line 
may induce the fundamental (1st-harmonic) current on the 
HVDC line [7], [8]. This coupled fundamental current would 

then be converted to DC components on the AC side of the 
converter [9], which consequently causes the transformer sat‐
uration and generates positive-sequence 2nd-harmonic cur‐
rent. This 2nd-harmonic component would be modulated back 
to the DC side as the fundamental component. Therefore, 
the dynamic interaction between the converter and the trans‐
former saturation may trigger a type of instability, which is 
called the core saturation instability. For the safe operation 
of the LCC-HVDC, it is necessary to analyze the core satura‐
tion instability [10].

The harmonic instability of the LCC-HVDC has been stud‐
ied for many years and a typical analysis method is the im‐
pedance modeling method [11]. In the impedance analysis, 
the LCC-HVDC is divided into the line commutated convert‐
er (LCC) subsystem and the grid subsystem from the point 
of common coupling (PCC). The instability of the LCC-
HVDC is thus described by the interactivity between a linear 
system (power grids) and a nonlinear system (LCC), as 
shown in Fig. 1(a). By linearizing the LCC, the system sta‐
bility is analyzed. For instance, the sequence-domain imped‐
ance models have been developed in [12] and [13] for the 
LCC to predict the instability of the LCC-HVDC. Consider‐
ing the phase-locked loop (PLL), the dq-frame impedance 
models are derived for LCC in [14] and [15]. Reference [16] 
develops a complex αβ-frame impedance model from the dq-
frame impedance model to clearly analyze the frequency cou‐
pling effect of the LCC-HVDC. Coupling effects of the char‐
acteristic harmonics are taken into consideration with Har‐
monic state space (HSS) method in [17] - [19]. However, all 
the above studies only treat the grid side as linear, which 
may not be the case for the core saturation instability. In 
practice, the transformer can exhibit a strong nonlinear char‐
acteristic under the saturation condition, making the power 
grids to be nonlinear, as shown in Fig. 1(b). As a result, the 
conventional methods cannot be applied directly, and the 
transformer saturation should be taken into consideration for 
grid impedance modeling.
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Fig. 1.　 Interactive system. (a) Without transformer saturation. (b) With 
transformer saturation.
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Although a wide body of research has been reported on 
the analysis of transformer saturation, mostly focused on the 
transformer saturation characteristics. In [20], the electrical 
circuit and the magnetic circuit are combined to predict the 
distorted excitation current in the saturated transformer. Us‐
ing the Fourier analysis, [21] and [22] find out that the main 
component of the excitation current in the single-phase satu‐
rated transformer is the 2nd-harmonic. Reference [9] reveals 
that a three-phase transformer saturated by the converter-
modulated DC current can generate positive-sequence 2nd-har‐
monic current. However, the previous studies lack elabora‐
tion of how to incorporate the transformer saturation in the 
grid impedance modeling process.

The criterion for the core saturation instability of LCC-
HVDC has been analyzed in the existing literature. In [9], 
the circulating loop of the coupled fundamental current in 
the LCC-HVDC is investigated to explain the mechanism of 
the instability. A criterion based on the increase of the cur‐
rent in a circulating loop is derived in [9], however, the sim‐
ulation results show that the criterion is conservative. Ac‐
cording to the equivalent impedance change of the system 
with transformer saturation, a mathematical method is de‐
rived to analyze the core saturation instability of the LCC-
HVDC in [23]. However, the interaction between the power 
grids and the converter is not discussed. Reference [11] pro‐
poses a frequency-scanning method to assess the core satura‐
tion instability of the LCC-HVDC under different opera‐
tions. It shows that the transformer saturation will induce 
variations to the power grid impedances, which leads to the 
core saturation instability. Nonetheless, [11] only provides a 
rough explanation without any rigorous mathematical analy‐
sis. Therefore, it is necessary to provide an accurate and in-
depth method to analyze the core saturation instability.

In view of the above gaps, a complex valued impedance 
modeling method is developed to analyze the core saturation 
instability of the LCC-HVDC. The main contributions of 
this paper are summarized as follows.

1) A complex valued impedance model is proposed to de‐
scribe the nonlinear characteristics of power grids with the 
transformer saturation. The proposed impedance model can 
be used to effectively analyze the core saturation instability 
of LCC-HVDC.

2) The mechanism of core saturation instability for the 
LCC-HVDC is theoretically and quantitatively explained.

3) The sensitivity study is carried out to find the key fac‐
tors that affect the core saturation instability of the LCC-
HVDC. The results indicate that the knee voltage of the 
transformer and the impedance of power grids predominant‐
ly contribute to the core saturation instability, while the con‐
trol parameters have very limited impact.

The remainder of this paper is organized as follows. Sec‐
tion II provides the system and variable description. Section 
III derives the admittance model of the LCC. The impedance 
model is derived for power grids with the transformer satura‐
tion in Section IV. Section V analyzes the system stability 
and the instability mechanisms. Section VI presents the sensi‐
tivity analysis, and Section VII draws conclusions.

II. SYSTEM AND VARIABLE DESCRIPTION 

The analysis system is single-pole and 12-pulse, which is 
constructed by AC system, converter transformer, LCC, and 
DC transmission line. To simplify the analysis, the receiving 
end is replaced with an ideal voltage source, but the analysis 
system contains all the components of a real system, and the 
derived theory still has migration capabilities.

A. Description of System Under Study

The detail of the analysis system under study is shown in 
Fig. 2, where idc and udc are the current and voltage on the 
DC line, respectively; ucoup is the voltage source employed to 
imitate the harmonic induced by the parallel AC transmis‐
sion line; vac is the voltage at the PCC; us is the AC grid 
voltage; α is the firing angle; θ =ω1t is the phase angle mea‐
sured by the PLL, and ω1 is the fundamental frequency; and 
R1-R3, C1-C3, and L1-L3 are the resistances, capacitances, and 
inductances, respectively. The control system is composed of 
a PLL and a DC-side current control block. The detailed con‐
trol system is shown in Fig. 3, where kpp and kpi are the con‐
trol parameters of the PLL; G, T, kcp, and kci are the control 
parameters of the DC-side current control; and idc,ref is the 
reference value of idc. As shown in Fig. 2, the system is di‐
vided into AC side and converter side from the PCC.

The transfer functions of the control system are expressed 
as:

Gpll = ( )kpp +
kpi

s
1
s

1

s + ( )kpp +
kpi

s
Vd

s
(1)

Gc = (kcp +
kci

s ) G
1 + sT

(2)

where Vd is the magnitude of vac; Gpll is the transfer function 
of the PLL; and Gc is the transfer function of the DC-side 
current control.
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Fig. 2.　Detail of analysis system.
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Fig. 3.　Control system of LCC-HVDC.
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B. Complex Described Variable

The stationary-frame, i. e., αβ-frame, variables with the 
subscript “αβ” can be interchangeably represented by the re‐
al-space vector and the complex, as shown in (3).

v = é
ë
êêêê ù

û
úúúúvα

vβ
« v = vα + jvβ (3)

The dq-frame variables with subscripts “dq” are given as:

vdq =
é
ë
êêêê ù

û
úúúúvd

vq

« vdq = vd + jvq (4)

The variables in one reference frame can be transformed 
to the other as:

vdq = e-jθv« vdq (s)= v(s + jθ) (5)

In addition, we have the complex conjugation as:

v*
dq (s)= vd (s)- jvq (s) (6)

III. ADMITTANCE MODEL OF LCC 

Figure 4 shows the closed-loop diagram of the converter 
side in Fig. 2, where linearized transfer functions can be cal‐
culated according to the linearized modeling method in the 
previous work [17].

In Fig. 4, the input small signals are the phase voltage 
Δvdq, the firing angle Δα, and the DC current Δidc. The out‐
put signals are the DC-side voltage Δudc and the AC-side 
current Δidq. The extinction delay angle Δδ is employed to 
describe commutation overlap process of the LCC, which is 
the sum of Δα and the angle of the commutation overlap Δμ, 
i.e., Δδ =Δα+Δμ. Zdc is the equivalent impedance of the DC 
lines. Gαudc

, Gδudc
, Gidcudc

, and Gvdqudc
 in the green blocks are 

the linearized transfer functions between the output Δudc and 
the inputs Δα, Δδ, Δidc, and Δvdq, respectively. The transfer 
functions in the purple blocks (Gαidq

, Gδidq
, Gidcidq

, and Gvdqidq
) 

and blue blocks (Gαδ, Gidcδ
, and Gvdqδ

) are defined in the 

similar way for the output Δidq and the input Δδ, respective‐
ly. As an example, the complex transfer function Gvdqudc

 is ex‐

pressed as:
Gvdqudc

=Gvdudc
+ jGvqudc (7)

By rearranging the closed-loop diagram in Fig. 4, the out‐
put admittance matrix of the converter side can be calculat‐
ed, as shown in (8).

é

ë
ê
êê
ê ù

û
ú
úú
úId (s)

Iq (s)
= é

ë
êêêê ù

û
úúúúYdd Ydq

Yqd Yqq

é

ë
ê
êê
ê ù

û
ú
úú
úVd (s)

Vq (s)
(8)

where Id (s) and Iq (s) are the output currents in the dq-frame; 
Vd (s) and Vq (s) are the input voltages in the dq-frame; and 
the expressions of Ydd, Ydq, Yqd, and Yqq are given in Appen‐
dix A.

The mathematical relationship between the impedance 
models in the dq-frame and αβ-frame is derived in [17]. 
Based on this mathematical relationship, the dq-frame admit‐
tance in (8) is transformed to the αβ-frame as:

é

ë
ê
êê
ê ù

û
ú
úú
úI(s)

I * (s - 2jω1 )
=

é

ë
ê
êê
ê ù

û
ú
úú
úYs (s - jω1 ) Yc (s - jω1 )

Y *
c (s - jω1 ) Y *

s (s - jω1 )
é

ë
ê
êê
ê ù

û
ú
úú
úV (s)

V * (s - 2jω1 )

(9)

where s - 2jω1 is the coupled frequency of frequency s; and 
Ys (s - jω1 ) and Yc (s - jω1 ) are the self-admittance and the 
coupling-admittance, respectively.

In (9), the positive-sequence and negative-sequence vari‐
ables can be represented by the positive frequency (s ³ 0) 
and negative frequency (s < 0), respectively. Specifically, the 
admittances in (9) are calculated as:

ì

í

î

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï
ïï
ï
ï

ï

ï

ï

Ys =
1
2

[(Ydd + Yqq )+ j(Yqd - Ydq )]

Y *
s =

1
2

[(Ydd + Yqq )- j(Yqd - Ydq )]

Yc =
1
2

[(Ydd - Yqq )+ j(Yqd + Ydq )]

Y *
c =

1
2

[(Ydd - Yqq )- j(Yqd + Ydq )]

(10)

IV. IMPEDANCE MODEL OF POWER GRIDS WITH 
TRANSFORMER SATURATIONS 

When the DC current flows into the transformer, the asym‐
metrical flux ϕ is induced, as shown in Fig. 5(a). Owing to 
the nonlinear magnetic characteristics of the transformer in 
Fig. 5(b), the asymmetrical flux further induces the distorted 
excitation current iexci, as illustrated in Fig. 5(c).
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Fig. 4.　Closed-loop diagram of converter side.
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It can be found in [22] that the distorted excitation current 
is mainly composed of the 2nd-harmonic component. The lin‐
ear relationship between the amplitude of the 2nd-harmonic 
excitation current and the input DC current is specified in 
(11) [9], [23].

iexci2 =-kim0 cos(2ω1t) (11)

where k is the constant saturation coefficient; iexci,2 is the 2nd-
harmonic current; and im,0 is the input DC current.

Directly influenced by im,0, the 2nd-harmonic components 
in the three-phase transformer can be calculated using (12).

ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïï
ï

ï

iexcia2 =-kima0 cos 2ω1t

iexcib2 =-kimb0 cos 2 ( )ω1t -
2π
3

iexcic2 =-kimc0 cos 2 ( )ω1t +
2π
3

(12)

where the subscripts “abc” represent the three phases.
Based on (12), the linearized model of the three-phase 

transformer saturated by the converter-modulated DC cur‐
rents will be derived in Section IV-A. The impedance model 
of power grids with the transformer saturation will then be 
presented in Section IV-B.

A. Linearized Relation Between Input DC Current and the 
2nd-harmonic Current

According to the modulation theory [12], the coupled fun‐
damental current on the DC transmission line can be modu‐
lated into the AC side of the converter as:

ì

í

î

ïïïï

ïïïï

ia = i1Sia = I1 cos(ω1t + φ1 )×Aia1 cos ω1t

ib = i1Sib = I1 cos(ω1t + φ1 )×Aib1 cos(ω1t - 2π/3)

ic = i1Sic = I1 cos(ω1t + φ1 )×Aic1 cos(ω1t + 2π/3)
(13)

where Si,a Sib and Sic are the current modulation functions; 
Ai,a,1 Aib1, and Aic1 are the constant coefficients at the fun‐
damental frequency; φ1 is the initial phase angle; and I1 is 
the amplitude of the coupled fundamental current. Alterna‐
tively, (13) can be rewritten as:

ì

í

î

ïïïï

ïïïï

ia = 0.5I1 Aia1 (cos φ1 + cos(2ω1t + φ1 ))

ib = 0.5I1 Aib1 (cos(φ1 + 2π/3)+ cos(2ω1t + φ1 - 2π/3))

ic = 0.5I1 Aic1 (cos(φ1 - 2π/3)+ cos(2ω1t + φ1 + 2π/3))
   (14)

In (14), the 2nd-harmonic currents flow into the power 
grids directly, and their effect will be analyzed in the next 
subsection. In addition, the converter-modulated DC currents 
in (14) are shown as:

ì

í

î

ïïïï

ïïïï

iconvadc = Iconvadc cos φ1

iconvbdc = Iconvbdc cos(φ1 + 2π/3)

iconvcdc = Iconvcdc cos(φ1 - 2π/3)
(15)

where Iconv,a,dc Iconvbdc, and Iconvcdc are the amplitudes of the 
converter-modulated DC currents. Equation (15) shows that 
the three-phase DC currents are different and their phase an‐
gle shifts obey a negative sequence. Therefore, iconv,a,dc, 
iconvbdc, and iconvcdc are called the negative-sequence DC cur‐
rents in this paper.

Substituting (15) into (12) yields the 2nd-harmonic excita‐

tion currents in the three-phase transformer (itransa2, itransb2, 
and itransc2) under the converter-modulated negative-se‐
quence DC currents:

ì

í

î

ïïïï

ïïïï

itransa2 =-kIconvadc cos φ1 cos 2ω1t

itransb2 =-kIconvbdc cos(φ1 + 2π/3)cos(2ω1t + 2π/3)

itransc2 =-kIconvcdc cos(φ1 - 2π/3)cos(2ω1t - 2π/3)
(16)

Equation (16) can be further rearranged as:

ì

í

î

ïïïï

ïïïï

itransa2 =-0.5kIconvadc (cos(2ω1t + φ1 )+ cos(2ω1t - φ1 ))

itransb2 =-0.5kIconvbdc (cos(2ω1t + φ1 - 2π/3)+ cos(2ω1t - φ1 ))

itransc2 =-0.5kIconvcdc (cos(2ω1t + φ1 + 2π/3)+ cos(2ω1t - φ1 ))

(17)
The currents itransa2, itransb2, and itransc2 in (17) can be de‐

composed into zero-sequence and positive-sequence compo‐
nents. The zero-sequence currents that flow into the power 
grids will induce the zero-sequence voltages uzs,a, uzs,b, and 
uzs,c on the AC side of the converter. According to the modu‐
lation theory [12], the zero-sequence voltages are then modu‐
lated back to the DC side of the converter as:

udc = uzsaSua + uzsbSub + uzscSuc =
Uzs cos(2ω1t + φ1 )×Aua1 cos ω1t +
Uzs cos(2ω1t + φ1 )×Aub1 cos(ω1t - 2π/3)+

Uzs cos(2ω1t + φ1 )×Auc1 cos(ω1t + 2π/3)= 0 (18)

where Su,a Sub, and Suc are the voltage modulation functions 
of the voltages; Au,a,1, Aub1, and Auc1 are the fundamental 
coefficients of the voltage modulation functions; and Uzs is 
the amplitude of the zero-sequence voltage.

Equation (18) indicates that the zero-sequence voltages on 
the AC side of the converter correspond to zero-sequence 
voltage after being modulated back to the DC side. This 
means the zero-sequence currents in (17) cause no interac‐
tion between the power grids and the converter. Thus, the ze‐
ro-sequence currents in (17) can be neglected in the instabili‐
ty analysis. Then, (17) is simplified as:

ì

í

î

ïïïï

ïïïï

itransa2 =-0.5kIconvadc cos(2ω1t + φ1 )

itransb2 =-0.5kIconvbdc cos(2ω1t + φ1 - 2π/3)

itransc2 =-0.5kIconvcdc cos(2ω1t + φ1 + 2π/3)
(19)

It is clear that Iconv,a,dc, Iconvbdc, and Iconvcdc induce the posi‐
tive-sequence 2nd-harmonic excitation currents in (19). Equa‐
tion (19) can be transformed into the frequency domain and 
described by:

Itrans (s)=-0.5kI *
convdc (s - 2jω1 ) |s = 2jω1 (20)

where I *
conv dc (s - 2jω1 ) is the negative-sequence DC current; 

and Itrans (s) is the 2nd-harmonic component in the excitation 
current. It is clear that (19) describes the linear relationship 
between the input DC current and the output 2nd-harmonic 
current.

B. Impedance Model of Power Grids with Transformer Satu‐
rations

In Fig. 6, the transformer is represented as a T equivalent 
circuit. Iconv (s) is the current modulated by the converter; 
Iconvm (s) and Iconvac (s) are the parts of Iconv (s) that flow into 
the magnetizing winding and the power grids, respectively; 
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Vconv (s) is the voltage induced by Iconv (s); zac(s) is the imped‐
ance of power grids without transformer saturation; zdc (s) is 
the impedance of the DC transmission line; Ydc (s) is the ad‐
mittance model of the LCC; Lm and Lc are the magnetizing 
inductance and the leakage inductance of the transformer, re‐
spectively; and Zac (s) and Zac + st (s) are defined at the end of 
this subsection.

With reference to Fig. 6, Iconvac (s) and Iconv,m (s) can be ex‐
pressed as:

Iconvac (s)=
sLm Iconv (s)
sLm + zac (s) (21)

Iconvm (s)=
zac (s)Iconv (s)
sLm + zac (s) (22)

Considering the frequency coupling effect of the converter 
shown in (9), Iconvac (s) and Iconvm (s) are extended to the αβ-
frame as:

é

ë
ê
êê
ê ù

û
ú
úú
úIconvac (s)

I *
convac (s - 2jω1 )

=

é

ë

ê

ê

ê

ê
êê
ê

ê

ê

ê ù

û

ú

ú

ú

ú
úú
ú

ú

ú

úsLm Iconv (s)
sLm + zac (s)

é

ë
êêêê

ù

û
úúúú

(s - 2jω1 )Lm Iconv (s - 2jω1 )
(s - 2jω1 )Lm + zac (s - 2jω1 )

* (23)

é

ë

ê
êê
ê ù

û

ú
úú
úIconvm (s)

I *
convm( )s - 2jω1

=

é

ë

ê

ê

ê

ê
êê
ê

ê

ê

ê ù

û
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Because sLm>>zac(s), only the negative-sequence DC cur‐
rent (I *

convm (s - 2jω1 )|s = 2jω1
  in  (24)) can flow into the magne‐

tizing winding. After substituting (24) into (20), the positive-
sequence 2nd-harmonic excitation current Iexcig (s) (Iexcig (s)=
-Itrans (s)) induced by the converter-modulated negative-se‐
quence DC current can be obtained as:
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*

0

(25)

Given the transformer saturation, the equivalent circuit in 
Fig. 6 can be changed into Fig. 7. In Fig. 7, the distorted 
Iexci (s) flows into the transformer, while Iconvac (s) flows out 
of the transformer. Then, current flowing into the power 
grids (Iac (s)) and inducing the voltage (Vac (s)) can be mathe‐
matically described as (26). Since Vac (s)=Vconv (s) in Fig. 7, 

(26) can be equivalently written as (27). The matrix Zac + st (s) 
in (27) depicts the relationship between the input current and 
the output voltage of the power grids.
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Comparing the impedance models of the power grids in 
(26) and (27), the converter-modulated DC current that 
flows into the transformer introduces a coupling impedance 
for the power grids.

V. SIMULATION VERIFICATION 

To verify the effectiveness and correctness of the pro‐
posed impedance model, the simulation tests are carried out 
in PSCAD. The system in Fig. 2 is simulated to verify the 
impedance model of the power grids and the transformer sat‐
uration harmonic instability of the LCC-HVDC. The parame‐
ters of the LCC-HVDC and the transformer are given in Ta‐
bles I and II, respectively. In Sections IV-A and IV-B, the de‐
rived equivalent admittance models for the LCC-HVDC and 
power grids with transformer saturation are verified com‐
pared with the measured results. In Section IV-C, the correct‐
ness of the system harmonic stability analysis method is veri‐
fied compared with the simulation results.
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A. Verification of Equivalent Admittance Model for LCC-
HVDC

Figures 8 and 9 show the self- and coupling-admittances 
for the LCC-HVDC under different frequencies, respectively. 
The calculated results are obtained from (9), while the mea‐
sured results are obtained via frequency scanning. In Figs. 8 
and 9, the calculated results match well with the measured 
results. Hence, it can be concluded that the admittance mod‐
el for the LCC-HVDC is accurately derived.

B. Verification of Impedance Model for Power Grids with 
Transformer Saturation

As the impedance Zac + st22 (s) lags only 2jω1 behind 
Zac + st11 (s) in (27), only Zac + st11 (s) and Zac + st12 (s) are verified 
in this subsection. According to Fig. 2, zac(s) can be calculat‐
ed as:

zac (s)=R1
1

sC1

+ ( )R2 sL1
1

sC2
(28)

According to the method in [18], the constant saturation 
coefficient k in (27) is measured to be 0.5. In Figs. 10 and 
11, the calculated results are obtained from (27), while the 
measured results are obtained based on [17]. The calculated 
results match well with the measured results in Figs. 10 and 
11, which verify the correctness of the proposed impedance 
model for the power grids with the transformer saturation in 
(27). In Fig. 11, it can be found that a spike is introduced to 
Zac + st12 (s) at 100 Hz owing to the transformer saturation. 
The value of Zac + st11 (s) around 0 Hz (highlighted with the 
green box in Fig. 10) is presented in Fig. 12. It is obvious 
that Zac + st11 (s) at 0 Hz is zero owing to the transformer satu‐
ration.

TABLE I
PARAMETERS OF LCC-HVDC

Parameter

udc

R1

R2

R3

L1

L2

L3

C1

C2

C3

Kcp

Value

100 kV

10 Ω

1030 Ω

1 Ω

6.33 mH

600 mH

918 mH

1200 μF

397.31 μF

22 μF

0.4540

Parameter

Kci

Kpp

Kpi

G

idc

ucoup

Vd

us

T

Ra, Rb, Rc

α

Value

277.8

10

50

1

1 kA

8 kV

100 kV

100 kV

0.0012 s

0.5 Ω

0.28 rad

TABLE II
PARAMETERS OF TRANSFORMER

Parameter

Line-line voltage ratio

Transformer capacity

Leakage reactance

Knee voltage

Magnetizing current

Value

100 kV/41 kV

80.118 MVA

0.13 p.u.

1.33 p.u.
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Fig. 8.　Frequency response of self-admittance Ys (s).
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C. Stability Analysis and Mechanism of Core Saturation In‐
stability for LCC-HVDC

Utilizing the admittance model for the LCC-HVDC in Sec‐
tion III-A and the impedance model of the power grids in 
(26) and (27), the Nyquist contours of the LCC-HVDC are 
drawn according to (29) [24].

det[λI(s)-Zac + st (s)Ydc (s)]= 0 (29)

where I(s) is the unit matrix.
The Nyquist contours when k = 0.5 with and without the 

transformer saturation are shown in Fig. 13. In Fig. 13(a), 
the brown contour does not encircle the point (-1, 0), which 
means the system without transformer saturation is stable. 
However, the blue contour encircles the point (-1, 0). Ac‐
cording to the generalized Nyquist stability criterion [24], 
the system with transformer saturation is predicted to be un‐
stable. According to [9] and [10], the corresponding criterion 
values with and without transformer saturation are shown in 
Table III. In Table III, two methods in [9] and [10] predict 
that the system are unstable whenever the system is with 
transformer saturation or not.

In Fig. 13(a), the real part of the eigenvalue for the sys‐
tem without transformer saturation is large than -1 at 100 
Hz, suggesting the system has positive damping (-0.01 + 1 >
0) [12], [24]. However, the real part of the eigenvalue for 
the system with transformer saturation is less than -1 at 100 
Hz, and thus the system has negative damping (-1.2 + 1 < 0). 
The mechanisms of the core saturation instability for the 
LCC-HVDC can be summarized as follows.

1) The converter-modulated DC current saturates the trans‐
former and induces the positive-sequence 2nd-harmonic cur‐
rent, which is described in (20).

2) The induced positive-sequence 2nd-harmonic current 
changes the equivalent impedance of the power grids, which 
is described as a coupling impedance shown in (27).

3) According to (29), the coupling impedance degrades 
the damping of the system from positive to negative, thereby 
triggering the core saturation instability of the LCC-HVDC.

Based on the model in Fig. 2 and the parameters in Tables 
I and II, the electromagnetic transient (EMT) simulation is 
conducted to verify the stability analysis. The fundamental 
voltage source ucoup is set to be 8 kV during the time period 
of 3.0 - 3.5 s to induce the fundamental current. The mea‐
sured DC flux of transformer and current on DC transmis‐
sion line with k = 0.5 are shown in Fig. 14.

Before the fundamental voltage is injected, it is clear that 
the DC flux of the transformer is zero in Fig. 14(a) and the 
current on the DC transmission line is stable in the Fig. 14(b). 
After the fundamental voltage is injected, the DC flux rises 
and does not decay to zero even though the fundamental 
voltage source is removed at t = 3.5 s. As observed from Fig. 
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TABLE III
CORRESPONDING CRITERION VALUES WITH AND WITHOUT TRANSFORMER 

SATURATION

Reference

[9]

[10]

Criterion value

With transformer
 saturation

-0.6 (unstable)

-0.2 (unstable)

Without transformer
 saturation

-1.3 (unstable)

-0.4 (unstable)
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14(b), the current on the DC transmission line keeps oscillat‐
ing after the fundamental voltage source is removed. There‐
fore, it is concluded that the core saturation instability is trig‐
gered, which verifies the prediction results of the proposed 
impedance model. From Fig. 14, the proposed impedance 
model is in accordance with the simulation results, which 
means the proposed impedance model can effectively find 
core saturation instability of the system. According to Table 
III, the simulation results show that the methods in [9] and 
[10] can effectively find the instability of the system with 
transformer saturation. However, the two criteria cannot ef‐
fectively find the stability of the system and tend to be con‐
servative when the transformer of the system is not saturat‐
ed. It can conclude that the proposed impedance model is ac‐
curate than those in [9] and [10].

VI. SENSITIVITY ANALYSIS 

The influences of the knee voltage of transformer, the im‐
pedance of power grids, and the control parameters of the 
LCC-HVDC on the core saturation stability will be analyzed 
in this section.

A. Sensitivity of Core Saturation Stability to Knee Voltage of 
Transformer

The knee voltage of transformer is the key factor to de‐
cide the saturation coefficient. Thus, the system core satura‐
tion stabilities under different knee voltages are analyzed in 
this subsection. The knee voltages and the corresponding 
constant saturation coefficients k are shown in Table IV. In 
addition, the corresponding Nyquist contours are presented 
in Fig. 15.

In Fig. 15(a), the blue contour (k = 0.5) encircles the point 
(-10) and the brown contour (k = 0.438) passes through this 
point, which means the systems are predicted to be unstable. 
However, the green contour (k = 0.4) does not encircle the 
point (-10), thus the system is predicted to be stable. It indi‐

cates that the system tends to be stable with a decreased k.

The measured current on the DC transmission line with k =
0.438 and k = 0.4 are displayed in Fig. 16. Clearly, the sys‐
tem with k = 0.5 is unstable, which has been verified in Fig. 
14. In Fig. 16(a), with k = 0.438, the current keeps oscillating 
with a constant amplitude right after the fundamental voltage 
source is removed at t = 3.5 s, which demonstrates the sys‐
tem is in critical state. In Fig. 16(b), with k = 0.4, the oscillat‐
ing current converges after the fundamental voltage is re‐
moved, indicating that the system is stable. The simulation 
results in Figs. 14 and 16 are in accordance with the predict‐
ed results in Fig. 15.

B. Sensitivity of Core Saturation Stability to Impedances of 
Power Grids

As shown in (27), the impedances of power grids at 100 
Hz directly affects the coupling impedance. In this subsec‐
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TABLE IV
KNEE VOLTAGES AND CORRESPONDING CONSTANT SATURATION 

COEFFICIENTS

Knee voltage (p.u.)

1.330

1.463

1.490

k

0.500

0.438

0.400
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tion, the inductance L1 is changed to analyze its influence on 
the core saturation stability. The corresponding impedances 
of power grids at 100 Hz are shown in Table V. As can be 
observed from Table V, the impedance amplitude of power 
grids decreases with a reduction in L1, while the phase angle 
remains approximately constant. Figure 15 presents the Ny‐
quist contours with different L1. It is clear from Fig. 17(a) 
that the blue contour encircles the point (-1 0) and brown 
contour passes through that point, which means the system 
is unstable. In contrast, the green line does not encircle the 
point (-1 0), thereby the system is predicted to be stable. 
From Fig. 17(a), it can be found that the system tends to be 
stable with a reduction in the impedances of power grids at 
100 Hz.

The measured current on the DC transmission line with 
different L1 is shown in Fig. 18. It can be observed that the 
systems with L1 = 6.33 mH (Fig. 14(b)) and L1 = 6.323 mH 
(Fig. 18(a)) are unstable, while the system with L1 = 6.31 
mH (Fig. 18(b)) is stable. The simulation results are in agree‐

ment with the predicted results in Fig. 17. Thus, it can be 
concluded that the core saturation stability of the LCC-
HVDC is improved by reducing the impedance amplitudes 
of power grids at 100 Hz.

C. Sensitivity of Core Saturation Stability to Controller Pa‐
rameter

Equation (29) shows that the DC-side equivalent imped‐
ance of the LCC-HVDC can directly influence the stability 
of the system. Among all the control parameters in Fig. 3, 
this paper chooses the parameter kcp to shape the impedance 
of the LCC-HVDC systems. Thus, this subsection investi‐
gates the influence of the controller by varying the parame‐
ter kcp. The Nyquist contours with different kcp are plotted in 
Fig. 19.

In Fig. 19(a), the three Nyquist contours encircle point 

kcp=0.454; kcp=0.354; kcp=0.654

Real axis

-0.2 0-0.4-0.6-0.8-1.0

-1.0 -0.5-1.5

-1.2 0.2

(a)

0 0.5 1.51.0 2.0 2.5 3.0

0

0.4

0.8

1.0

0.6

(b)

Im
ag

in
ar

y
 a

x
is

Im
ag

in
ar

y
 a

x
is

-0.4

-0.6

-0.8

-0.8

-1.0

-0.2

-0.4

-0.6

-0.2

0

0.4

0.2

0.2

Real axis

(-1, 0)

100 Hz

(-1, 0)
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TABLE V
IMPEDANCES OF POWER GRIDS WITH DIFFERENT L1

L1 (mH)

6.330

6.323

6.310

Impedance (p.u.)

3.916∠1.073

3.489∠1.130

2.883∠1.210
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Fig. 17.　Nyquist contours with different L1. (a) Nyquist contour of the first 
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(-1, 0), which means the system under these three states is 
unstable. The measured currents on the DC transmission line 
with different kcp are shown in Fig. 20. It is clear that the 
system is unstable, which are in accordance with the predict‐
ed results in Fig. 19. The simulation results also indicate 
that the control parameter kcp has a negligible effect on the 
core saturation instability, and the reasons can be explained 
as follows.

With reference to Fig. 3, the oscillation frequency in the 
DC-side current control or PLL is equal to the frequency of 
the DC-side harmonic current (50 Hz) or the q-axis harmon‐
ic voltage (50 Hz). The LCC-HVDC employs a fixed dura‐
tion firing strategy to reduce the harmonic components 
shown in Fig. 21 [25]. In Fig. 21, only the first firing signal 
is triggered by the control system in Fig. 3 and the other 
eleven pulses are sequentially triggered after a fixed duration 
of π/6 for the twelve-pulse converter. Therefore, there is on‐
ly one control firing pulse in a fundamental circle and the 
control frequency for the LCC-HVDC systems is 50 Hz. Ac‐
cording to the sampling theorem [26], [27], to rebuild the 
continuous signal, the frequency of the discrete signal 
should be twice of the continuous signal at least. It can de‐
rive that the LCC-HVDC systems can only effectively gener‐
ate control signals whose frequency are lower than 25 Hz. 
Namely, the cut-off frequency for the LCC-HVDC systems 
is 25 Hz at most, which is lower than the transformer satura‐
tion induced oscillation (50 Hz). Therefore, changing the 
control parameters of the PLL or DC-side current control 
has little effect on the stability of the system.

VII. CONCLUSION

This paper employs the impedance model to analyze the 
core saturation instability of the LCC-HVDC systems. 
Through the theoretical analysis and simulation comparisons, 
the effectiveness of the proposed impedance model is veri‐
fied.

1) The nonlinear characteristics of the power grids with 
the transformer saturation can be described by the complex 
valued impedance matrix, and the impedance model is thus 

able to analyze the core saturation instability of the LCC-
HVDC systems.

2) From the Nyquist-contour-based stability analysis, the 
results indicate that the transformer saturation degrades the 
damping of the system from positive to negative by introduc‐
ing a coupling impedance at 100 Hz. Hence, the core satura‐
tion instability can be triggered in the LCC-HVDC systems.

3) The core saturation instability of the LCC-HVDC sys‐
tems can be enhanced by increasing the knee voltage of the 
transformer or reducing the impedances of the power grids 
at 100 Hz. However, the control parameter has little effect 
on the core saturation instability.
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