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  Abstract——The accurate identification of smart meter (SM) 
fault types is crucial for enhancing the efficiency of operation 
and maintenance (O&M) and the reliability of power collection 
systems. However, the intelligent classification of SM fault types 
faces significant challenges owing to the complexity of features 
and the imbalance between fault categories. To address these is‐
sues, this study presents a fault diagnosis method for SM incor‐
porating three distinct modules. The first module employs a 
combination of standardization, data imputation, and feature 
extraction to enhance the data quality, thereby facilitating im‐
proved training and learning by the classifiers. To enhance the 
classification performance, the data imputation method consid‐
ers feature correlation measurement and sequential imputation, 
and the feature extractor utilizes the discriminative enhanced 
sparse autoencoder. To tackle the interclass imbalance of data 
with discrete and continuous features, the second module intro‐
duces an assisted classifier generative adversarial network, 
which includes a discrete feature generation module. Finally, a 
novel Stacking ensemble classifier for SM fault diagnosis is de‐
veloped. In contrast to previous studies, we construct a two-lay‐
er heuristic optimization framework to address the synchronous 
dynamic optimization problem of the combinations and hyper‐
parameters of the Stacking ensemble classifier, enabling better 
handling of complex classification tasks using SM data. The pro‐
posed fault diagnosis method for SM via two-layer stacking en‐
semble optimization and data augmentation is trained and vali‐
dated using SM fault data collected from 2010 to 2018 in Zheji‐
ang Province, China. Experimental results demonstrate the ef‐
fectiveness of the proposed method in improving the accuracy 
of SM fault diagnosis, particularly for minority classes.

Index Terms——Data augmentation, fault diagnosis, feature ex‐

traction, smart meter, Stacking ensemble optimization.

I. INTRODUCTION 

SMART meters (SMs), communication networks, and da‐
ta management systems form an advanced metering in‐

frastructure that plays a vital role in information integration, 
tariff improvement, and energy management [1]. In recent 
years, the global SM market has witnessed significant 
growth owing to technological advancements and the imple‐
mentation of carbon peaking and carbon neutrality targets. 
According to statistics, the global SM market will reach 
40.45 billion dollars by 2030 [2], resulting in increased oper‐
ation and maintenance (O&M) work. The increasing number 
of manufacturers supplying terminal devices, coupled with 
the influence of multiple modalities such as manufacturing 
processes, components, and installation environments, has 
contributed to complex and diverse fault types. These faults 
pose significant threats to the long-term stability of intelli‐
gent industrial systems. Manual experience alone has proven 
insufficient for the rapid and accurate identification of SM 
fault types [3]. Furthermore, current research works on SM 
fault diagnosis are limited because of the challenges in ob‐
taining fault data from SMs. Therefore, developing a robust 
SM fault diagnosis model holds immense significance, as it 
can assist O&M personnel in efficiently and accurately iden‐
tifying fault types and ensuring the stable operation of the 
power system.

Deep learning is currently the leading method for diagnos‐
ing smart device faults. This process involves learning intri‐
cate mapping relationships from large volumes of data. How‐
ever, this methodology is often hindered by missing data, re‐
dundant features, and imbalanced data distributions among 
different fault categories [4]. Considering these data quality 
issues, this study aims to address the specific challenges as‐
sociated with industrial equipment fault diagnosis by focus‐
ing on the SM fault diagnosis. The objective is to enhance 
the classification performance of SM faults.

Methods to overcome feature redundancy include feature 
extraction and selection, which can improve the generaliza‐
tion ability and performance of the model. Feature selection 
may disrupt the correlation between certain features, leading 
to the loss of important information. In contrast, feature ex‐
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traction can better preserve information in the original data 
by mapping the original features to a new feature space. In 
this study, we encounter the following difficulties. The first 
is to obtain more discriminative features during feature ex‐
traction. Several studies have introduced feature extraction 
methods for fault diagnosis to capture general and essential 
information from extensive data and achieve feature repre‐
sentations with enhanced generalization capabilities [5]. 
Deep-learning-based feature extraction techniques, particular‐
ly those utilizing autoencoders (AEs), have shown signifi‐
cant promise for automatically learning complex features 
from large-scale data for industrial equipment fault diagnosis 
[6]. Although only a few studies have specifically focused 
on SM fault diagnosis, insights can be drawn from research 
works on other smart devices. Previous research works [6] 
and [7] have utilized the encoder part of an AE as a feature 
extractor for industrial equipment fault information, address‐
ing issues related to data noise and high feature dimensional‐
ity. However, without any constraints on the intermediate lay‐
er nodes, an AE might learn redundant information from the 
data. To address this issue, some scholars have introduced 
sparsity constraints to guide AEs to capture crucial features 
and improve the accuracy of fault identification in smart de‐
vices [8]. The effectiveness of these methods has been exten‐
sively demonstrated in [8]-[10]. The feature extraction meth‐
ods described above focus on obtaining key downscaled data 
representations to improve the efficiency of most machine-
learning models in processing data. However, this broad ef‐
fect does not necessarily apply to all supervised tasks [4]. In 
other words, the aforementioned feature extraction methods 
are not specifically designed for classification problems. For 
example, these methods do not fully leverage the label infor‐
mation of samples, resulting in a waste of information re‐
sources and a lack of discriminative features in the extracted 
representations [11]. Consequently, obtaining more discrimi‐
native fault feature information for SM fault diagnosis is a 
significant challenge that must be addressed.

The second challenge is the classification bias caused by 
an imbalance between fault categories. The occurrence fre‐
quencies of different SM faults exhibit significant variations 
in practical applications, resulting in severe category imbal‐
ance. This poses challenges for classification models, as they 
tend to be more sensitive to the majority classes of samples, 
leading to poor generalization ability. To address the issue of 
catogary imbalance, various techniques focus on the original 
dataset and employ oversampling (generating synthetic mi‐
nority samples) or undersampling (removing majority classes 
of samples) based on the sample characteristics. Typical un‐
dersampling methods include random and clustered unders‐
ampling methods [12]. However, removing data can result in 
the loss of important information. Traditional oversampling 
methods such as random oversampling (ROS), synthetic mi‐
nority class oversampling (called SMOTE), and borderline 
SMOTE [13] are easy to implement, but fail to learn the un‐
derlying data distribution and are prone to synthesizing 
noisy samples, increasing the risk of overfitting [14].

Recently, generative adversarial networks (GANs) have 
emerged as powerful tools for learning the latent distribution 
of data through competitive training, and have been utilized 

to address the imbalance problem of fault diagnosis in smart 
devices [15]. However, GANs face challenges in generating 
samples of specific classes, making it difficult to adapt them 
for the diagnosis of multiple fault types (12 in this study) in 
SMs. References [16] and [17] propose a fault data expan‐
sion method based on an auxiliary classifier GAN (ACGAN) 
that can generate samples of specified classes and has dem‐
onstrated its effectiveness. Unfortunately, SM fault data of‐
ten contain discrete features such as manufacturers, SM mod‐
els, affiliated departments, and city companies, making it 
challenging for the classical ACGAN to satisfy the augmen‐
tation demands of SM data.

The final challenge is the design of a high-precision SM 
fault diagnosis classifier. SM fault diagnosis can be consid‐
ered a classification problem, where the accuracy of fault 
identification relies on the performance of the classifier. 
However, as the dataset grows larger, it becomes increasing‐
ly challenging for a single classifier to obtain accurate deci‐
sion boundaries [18], [19]. To address this issue, researchers 
have explored the use of ensemble classification models to 
improve performance [18]. The motivation behind this is to 
reduce the variance and bias, thereby reducing the depen‐
dence of the results on the characteristics of a single training 
set, and the combination of multiple classifiers can learn a 
model that is more expressive than a single classifier. A nota‐
ble study on SM fault diagnosis [3] uses random forests to 
demonstrate the effectiveness of integrated learning in this 
context. However, traditional ensemble learning methods 
such as bagging and boosting typically rely on voting or 
weighted voting to combine homogeneous learners, making 
it difficult to leverage the advantages of heterogeneous mod‐
els [19]. The Stacking ensemble strategy offers a novel meth‐
od for fusing heterogeneous models, providing better flexibil‐
ity, generalization ability, and the capacity to tackle complex 
practical problems [20]. Previous research works have high‐
lighted the superiority of Stacking integration strategies for 
fault diagnosis in smart devices [19], [21]. However, most re‐
search works have overlooked the optimal configuration of 
Stacking ensemble learners in the vast optional model space, 
assuming a specific model configuration [19] - [22]. Better 
combinations of base and meta models can improve the per‐
formance of integrated models by complementing their 
strengths, thus making them better suited to the requirements 
of a particular task. This necessitates investigating the perfor‐
mance differences when selecting the base and meta-classifi‐
ers. Furthermore, each heterogeneous model possesses a 
unique set of hyperparameters that significantly affect its per‐
formance. Improper hyperparameter settings can render the 
optimized Stacking configuration less appropriate. Incorporat‐
ing the synchronous dynamic optimization of the hyperpa‐
rameters of heterogeneous models during the optimal config‐
uration further complicates this task. Therefore, the primary 
challenge lies in developing a Stacking ensemble classifier 
specifically tailored for SM fault diagnosis.

To address the aforementioned challenges, this study pro‐
poses an SM fault diagnosis framework that incorporates 
techniques to tackle sample imbalance and employs a two-
layer Stacking ensemble optimization and data augmentation 
method. The key contributions of this study are as follows.
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1) A novel SM fault diagnosis framework is developed to 
address the challenges of standardization, data imputation, 
and feature extraction. The framework incorporates a K-near‐
est neighbor (KNN) sequential imputation method that utiliz‐
es mutual information degree measurements to achieve a 
high-quality filling of missing features. In addition, a super‐
vised fine-tuning process guided by category labels is inte‐
grated into the AE to enhance the extraction of discrimina‐
tive feature information from the SM data.

2) A novel data augmentation method is proposed specifi‐
cally for SM fault data. The method utilizes an ACGAN to 
augment SM fault data. Furthermore, a discrete feature gen‐
eration module is introduced to alleviate the imbalance 
among different SM fault categories and enhance the diversi‐
ty and representation of the augmented data.

3) A two-layer optimization configuration model is con‐
structed based on a heuristic optimization algorithm for the 
Stacking ensemble strategy for SM fault diagnosis. The up‐
per-layer optimization focuses on obtaining the optimal con‐
figuration of the base classifier and meta-classifier, whereas 
the lower-layer optimization dynamically optimizes the hy‐
perparameters of the heterogeneous model based on the mod‐
el configuration.

4) An in-depth analysis of massive real-world SM fault da‐
ta in a comprehensive case study is presented in this study, 
which serves as a crucial theoretical and experimental foun‐
dation for further advancements in the research of SM fault 
diagnosis. The experimental results show that the proposed 
fault diagnosis framework can effectively improve the accu‐
racy of SM fault diagnosis. In particular, the proposed data 
augmentation method improves the classification accuracy of 
minority-class faults by 5.86% on average.

The remainder of this study is organized as follows. Sec‐
tion II describes the proposed SM fault diagnosis frame‐
work. Section III presents the feature engineering. Section 
IV presents the SM data augmentation. Section V develops 
the two-layer optimized Stacking ensemble classifier for SM 
fault diagnosis. Section VI presents a simulation analysis 
with actual SM fault data. Finally, Section VII concludes 
this study.

II. SM FAULT DIAGNOSIS FRAMEWORK

The primary objective of SM fault diagnosis is to achieve 
an optimal comprehensive classification accuracy. However, 
the accuracy of the diagnosis is influenced by multiple fac‐
tors that can complicate and hinder the training process of 
the classifier. To improve the accuracy of SM fault diagno‐
sis, we propose a novel method that combines several tech‐
niques such as sequential imputation and discriminative en‐
hanced sparse autoencoder (DESAE), a Gumbel-softmax-
based ACGAN (GS-ACGAN) data enhancement technique, 
and a Stacking ensemble classifier, considering the optimiza‐
tion configuration.

Figure 1 presents the diagram of SM fault diagnosis 
framework, which includes feature engineering, data augmen‐
tation, and SM fault diagnosis. The feature engineering mod‐
ule aims to obtain high-quality input data. Standardization 
plays a crucial role in the overall framework, as it addresses 
issues such as computational bias in the nearest neighbor cal‐

culations and convergence difficulties in gradient descent 
caused by varying magnitudes [20]. After standardization, 
the next step involves data imputation, which can effectively 
handle missing values during training. The proposed KNN 
sequential data imputation technique considers the informa‐
tion gain provided by the feature correlation and estimation 
order. Subsequently, the complete dataset is input to DESAE 
to extract more discriminative feature information. To ad‐
dress the challenge of catogary imbalance, the complete data‐
set is fed into a catogary balancer called the GS-ACGAN. 
This balancer learns the distribution of the SM fault data, 
which includes both discrete and continuous features, and ef‐
fectively tackles the class imbalance problem. Once the data 
are prepared, they are input into a Stacking ensemble model 
for classification. The performance of the Stacking ensemble 
model relies on the configuration of both the base and meta-
models. To optimize this configuration and its corresponding 
hyperparameters, a two-layer whale optimization algorithm 
(WOA) is developed. The upper-layer optimization provides 
a combination of base and meta-models, whereas the lower-
layer optimization adjusts the corresponding hyperparameters 
according to the K-fold cross-validation scores. In addition, 
to overcome the limitations of traditional heuristics in contin‐
uous numerical optimization, we introduce a time-varying bi‐
nary transfer function that updates the position of the search 
agent. To accelerate the hyperparameter optimization pro‐
cess, an external archive repository is introduced to store the 
historical optimal hyperparameters for each classifier. These 
modules are further elaborated in the subsequent sections.

III. FEATURE ENGINEERING 

Feature engineering plays a crucial role in analyzing big-
data problems, which is an initial and essential step [4]. By 
employing techniques such as data recovery, noise removal, 
and extraction of relevant information, feature engineering 
can enhance the quality of the training data. Feature engi‐
neering is particularly important in the context of the SM 
fault diagnosis, which focuses on three key technical aspects 
of feature engineering tailored to the data characteristics of 

Lower-layer optimization

Upper-layer optimization

Data imputation

(KNN sequential data)

Module 3: SM fault diagnosis 

Feature extraction

Module 1: feature engineering Module 2: data

augmentation
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Fig. 1.　Diagram of SM fault diagnosis framework.
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SMs: standardization, data imputation, and feature extraction.

A. Standardization

Owing to the varying magnitudes and orders of magnitude 
of SM fault features such as the average daily timing error  
and average monthly electricity consumption, the continuous 
features need to be standardized. By applying standardiza‐
tion, multidimensional features can be transformed into val‐
ues of similar scales. This step not only enhances the reliabil‐
ity of the subsequent data imputation but also facilitates fast‐
er convergence of the gradient descent algorithm. Standard‐
ization is employed as a preprocessing technique to ensure 
consistent data treatment, which is outlined as:

xsd =
x - x̄
σ ( )x

(1)

where xsd is the standardized data; x is the sample of the 
original data for a feature; x̄ is the mean of the sample; and 
σ(x) is the standard deviation of the sample.

B. Data Imputation

SM fault diagnosis involves mapping the feature informa‐
tion of fault samples to specific fault types. However, SM 
fault samples often contain discrete data and missing multi‐
variate information, which can negatively affect the perfor‐
mance of machine-learning models. Although traditional lin‐
ear interpolation methods are suitable for partially missing 
time-series data, they are not ideal for independent SM fault 
samples. Mindlessly filling missing values with zeros can 
lead to redundant feature information. Previous studies have 
shown that interpolating the missing features of instances in 
a specific order yields better results than directly interpolat‐
ing all the missing values. In addition, estimating a missing 
feature becomes more significant when there is a stronger re‐
lationship between the feature and the corresponding fault 
category [23]. Considering the characteristics of SM data, 
we adopt the mutual information degree I to assess the corre‐
lation between feature F and the category label Y.

For discrete features, we use the following equation:

I ( )FY =∑
fÎF
∑
yÎ Y

p ( )fy lg
p ( )fy

p ( )f p ( )y
(2)

where p(×) is the probability density function.
For continuous features, we use the following equation:

I ( )FY =∑
yÎ Y
∫p ( )fy lg

p ( )fy

p ( )f p ( )y
df (3)

Features with stronger correlations will be interpolated ear‐
lier in this study.

To address the varying degrees of missingness across in‐
stances, we introduce the missing rate for each instance as a 
secondary criterion. This study offers the advantage of maxi‐
mizing the utilization of the available information. The miss‐
ing rate of the mth instance is:

Rm =
Nm

NF
(4)

where NF is the total number of features; and Nm is the num‐
ber of missing features in an instance. An instance with a 
lower missing rate is first interpolated.

The KNN algorithm is a widely used nonparametric impu‐
tation method that has proven to be effective in various esti‐
mation tasks [24]. It provides highly accurate imputation da‐
ta suitable for both continuous and discrete values. Given 
these benefits, KNN is selected as the estimator for sequen‐
tial imputation in this study.

To estimate the missing features, for the instance xp, the 
Manhattan distance between xp and each remaining instance 
xq in the dataset is calculated using (5). This method esti‐
mates the distances for continuous and discrete features as:

dist ( )xpxq =∑
i = 1

NF

|| xpi - xqi (5)

where xpi is the ith feature of the missing instances; and xqi is 
the ith feature of the remaining instances. The distances are 
sorted in ascending order, and the first KN are selected as fill 
candidates, where KN is an important hyperparameter in 
KNN. Notably, once an instance is fully populated, it is con‐
sidered as a complete instance and participates in the calcula‐
tion. For continuous features, the mean of the first KN in‐
stances is used for filling as:

xpj =
∑
k = 1

KN

xkj

k

(6)

Discrete features use the voting results of the first KN in‐
stances:

xpj = arg max ( )count ( )xkj (7)

where count ( )xkj  is the count result of the jth feature for all 

the candidate instances. KN is set to be 9 in this study with 
reference to existing studies [23], [24] and experimental re‐
sults.

C. Feature Extraction

The AE consists of two primary phases: encoding and de‐
coding, as shown in (8) and (9). In the encoding phase, the 
AE utilizes weighting and biasing operations to transform in‐
put data into a compressed feature representation. This pro‐
cess, known as feature downscaling, has been demonstrated 
to be effective [6], [7].

H = f1( )W1 X + b1 (8)

X R = f2( )W2 H + b2 (9)

where W1 and b1 are the weight and deviation from the input 
layer to the hidden layer, respectively; W2 and b2 are the 
weight and deviation from the hidden layer to the output lay‐
er, respectively; X, H, and X R are the original input, hidden 
layer output, and reconstructed data, respectively; and f1 (×) 
and f2 (×) are the sigmoid activation functions.

Although the AE can learn features from input data, the 
learned features may not necessarily capture the critical as‐
pects of the samples [11]. To address this limitation, sparsity 
constraints can be incorporated into an AE. By imposing 
sparsity constraints, redundant information in the input data 
can be filtered out, allowing the AE to focus more effective‐
ly on the critical features. After incorporating the sparsity 
constraint, the loss function of the AE can be expressed as:
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JSAE( )Wb =  X R -X
2
+ β∑

ν

KL ( )ρ ρ̂ν (10)

KL ( )ρ ρ̂ν = ρlg
ρ
ρ̂ν

+ ( )1 - ρ lg
1 - ρ
1 - ρ̂ν

(11)

where JSAE( )Wb  is the loss function after the sparsity con‐
straint is introduced; β is the weight coefficient of Kullback-
Leibler (KL) divergence KL ( )× ; ρ is the sparsity parameter of 
KL divergence; and ρ̂ν is the average activation degree of 
node ν in the hidden layer.

The ability of classifiers to accurately identify fault catego‐
ries relies on the discriminative power of the features, which 
has received considerable attention from researchers [7]. In 
this study, we introduce a supervised training process for 
SAE called the DESAE. This additional training process in‐
corporates category labels to guide the learning of more dis‐
criminative features.

Clustering algorithms are widely employed to analyze fea‐
ture similarities and serve as valuable tools for understand‐
ing the characteristics of mixed data types in SM fault diag‐
nosis [25]. In this study, we utilize the k-prototype clustering 
algorithm [25] to cluster the implicit feature representation 
H obtained from the encoder into NK clusters. The aim is to 
analyze the differentiation between the different categories 
of features. To ensure an accurate measure of feature distinc‐
tiveness, we set the number of clusters NK equal to the num‐
ber of SM fault categories NC. Incremental clustering is ad‐
opted during the training to mitigate the computational bur‐
den associated with repeated clustering, which uses the previ‐
ous clustering results as the initial state for subsequent clus‐
tering iterations.

Our objective is to minimize the number of mixed catego‐
ries within each cluster to maximize the distinguishability of 
features between different fault categories. Ideally, each clus‐
ter should contain only one fault category. However, achiev‐
ing this goal is challenging. To represent the fault categories 
contained in different clusters, we define a matrix B = ( )bij  

of size NC ´NK. To describe the affiliation of fault categories 
with clusters, we introduce an affiliation matrix U = ( )uij  of 

the same size as B. The value of uij is determined using (12).

uij = {0    bij < Ti

1    bij⩾Ti

(12)

where bij is the number of samples in the ith fault category 
of the jth cluster; and Ti is the threshold for the ith fault cate‐
gory belonging to the jth cluster, which is set to be N i

C /NK in 
this model, and N i

C is the number of samples in the ith fault 
category. Exceeding the threshold indicates that the category 
belongs to the jth cluster.

We define function D to quantify the degree of feature dif‐
ferentiation. This function measures the dissimilarity be‐
tween features and is then multiplied by a scaling factor γ. 
The resulting value is incorporated into the loss function for‐
mula for the supervised training process of the stacked 
sparse AE (SSAE). During the training of the SSAE, the pa‐
rameters of the network structure are fine-tuned based on 
this loss function. Note that both the reconstruction loss and 
feature discriminative loss play a combined role in guiding 

the model to acquire key and discriminative features, which 
is aligned with the idea of the regularization term.

D =








 







∑

i = 1

NC∑
j = 1

NK

uij -NC (13)

JDESAE( )Wb = JSAE( )Wb + γD (14)

where JDESAE( )Wb  is the loss function of DESAE.

IV. SM DATA AUGMENTATION 

Although feature engineering aims to enhance the quality 
of raw data, it often struggles to address the significant clas‐
sification bias originating from data imbalance. To address 
this challenge, a novel method called GS-ACGAN is devel‐
oped and applied in the context of SM fault diagnosis. The 
GS-ACGAN is utilized to generate fault samples specifically 
for SMs, thereby alleviating the data-imbalance problem.

A. Principle of ACGAN

A GAN is a game theoretically inspired architecture con‐
sisting of a generator G and a discriminator D. The genera‐
tor captures the latent distribution of the real data samples 
and generates data from Gaussian random noise vectors to 
“trick” the discriminator. In contrast, the discriminator is 
trained to distinguish between real and generated data. The 
GAN alternately trains G and D, leveraging the concept of a 
game to reach the Nash equilibrium.

The ACGAN is a variation of the GAN architecture that 
adds auxiliary classifiers to the GAN to address the limita‐
tions of the traditional GAN in generating specified catego‐
ries. The ACGAN introduces labeling information during the 
training of G and generates samples of the specified catego‐
ries Xfake =G ( )zc  using the random noise z and the labeling 
information c. The probability distributions of the source and 
category labels P ( )DS|X  and P ( )C|X , respectively, are then 
given by D. The loss function of the ACGAN is composed 
of two parts: the loss function of the source and the label of 
the category, and the loss function of the label of the catego‐
ry. The two components of the loss function of the ACGAN 
are expressed as:

LS =Ex~Pdata( )lg P ( )DS = real|Xreal +Ez~Pz( )lg P ( )DS = fake|Xfake

(15)

LC =Ex~Pdata( )lg P ( )C = c|Xreal +Ez~Pz( )lg P ( )C = c|Xfake     (16)

where Ex~Pdata
 and Ez~Pz

 are the expectations over the real data 

and noise distributions, respectively; LS is the probability of 
correct judgment when judging the authenticity of the data; 
LC is the probability of correctly classifying data; Xreal and 
Xfake are the real and synthetic samples, respectively; and DS 
and C are the data sources and label categories, respectively. 
During the training process, the loss function of the discrimi‐
nator is LS + LC and the loss function of the generator is LC -
LS.

B. GS-ACGAN

The ACGAN is primarily designed for real data values, 
which poses challenges when dealing with feature variables 
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in the case of SMs consisting of both continuous and dis‐
crete variables. Using discrete data as the input can effective‐
ly undermine the ability of the discriminator to learn distribu‐
tional features. Furthermore, when the generator produces 
probability vectors for discrete variables, the direct sampling 
of the maximum can terminate the training of the generator 
early, resulting in a loss of exploratory ability [26].

In this study, we first employ the Gumbel-max trick to sam‐
ple the discrete distributions. Assuming that the generator pro‐
duces a probability set P = { }pζ|ζ = 12NC  of discrete vari‐

ables, the corresponding Gumbel-max representation is given 
by:

xc = arg max
iÎ { }12NC

( )lg ( )pζ + gζ (17)

gζ =-lg ( )-lg ( )uζ (18)

where uζ~U ( )01 ; and gζ is the noise value that satisfies the 
Gumbel distribution.

GS is used to address the nondifferentiability of the arg‐
max operation. GS facilitates the sampling of discrete vari‐
ables while maintaining the ability to compute gradients 
through continuous operations, which enables the model to 
be optimized using gradient-based methods. The discrete 
variable results can be obtained using the following equation.

x͂c =
exp ( )lg ( )pζ + gζ /T

∑
ζ = 1

NC

exp ( )lg ( )pζ + gζ /T
(19)

where TÎ ( )0¥  is a temperature hyperparameter used to 
control the likelihood that the generated vectors are one-hot. 
x͂c approximates the one-hot vectors as T approaches zero. 
To simulate the annealing process, T is relatively large at the 
beginning of the generator training and then gradually de‐
creases to stabilize the generator performance.

V. TWO-LAYER OPTIMIZED STACKING ENSEMBLE 
CLASSIFIER FOR SM FAULT DIAGNOSIS 

Although the aforementioned techniques can enhance the 
quality and diversity of input samples for the classifier, the 
performance of the classifier remains the primary factor in‐
fluencing the accuracy [27]. Therefore, in this section, we 
propose a heterogeneous model ensemble classifier using a 
Stacking strategy to address the classification of SM faults 
effectively. Furthermore, we explore the optimal configura‐
tions of the base model, meta-model, and hyperparameters.

A. Stacking Ensemble Classification Model

The fundamental concept of Stacking involves the con‐
struction of two layers of classification models: base classifi‐
ers and meta-classifiers. The base classifiers classify the data 
to be diagnosed and obtain the classification results as inputs 
for the meta-classifiers. The base classifiers independently 
classify the data and generate their respective classification 
outcomes. The outcomes from multiple base classifiers are 
then utilized as inputs to the meta-classifiers. In turn, the me‐
ta-classifiers learn the mapping relationship between the 
base classifier outputs and the actual SM fault categories.

B. Heterogeneous Model Optimization

1)　Problem Description
As Stacking involves the integration of different models, 

the selection of classifiers can significantly affect the perfor‐
mance, which can vary across datasets and problems. There‐
fore, it is necessary to approach this selection as a prefer‐
ence rather than following a standardized configuration. To 
address this, we transform the heterogeneous model selec‐
tion into an optimization problem with decision variables de‐

noted as S = [ ]s1s2sNS
sNS + 1 , where s1-sNS

 are the binary 

variables, and the value of which indicates the selection of a 
model as a base classifier. In contrast, sNS + 1 is an integer 

ranging from 1 to NS, indicating the selection of meta-classi‐
fiers. Because of the large search space involved, exhaustive 
search methods are often impractical because they require 
the evaluation of all possible solutions. Instead, heuristic al‐
gorithms employ heuristic information to guide the search 
process. These algorithms assess the potential value or supe‐
riority of each candidate solution in the search space, lead‐
ing to a smaller search space and faster convergence than ex‐
haustive search methods [28].

However, a new challenge arises when the Stacking con‐
figuration is optimized. The number and types of hyperpa‐
rameters vary across different combinations of heteroge‐
neous models, making it challenging to optimize both hetero‐
geneous model combinations and hyperparameters simultane‐
ously [29], [30]. To address this issue, we propose a two-lay‐
er stacking ensemble optimization algorithm. The upper lay‐
er focuses on determining the base model and meta-model 
configurations, whereas the lower layer provides feedback 
based on the provided model configurations, enabling the op‐
timization of the corresponding hyperparameters.
2)　Objective Function

k-fold cross-validation enables each fold of a dataset to be 
used for both training and validation, which maximizes the 
utilization of all samples and effectively addresses issues 
such as model overfitting and inaccurate evaluation caused 
by limited validation data. To evaluate the performance of 
the Stacking framework, we adopt the average K-fold cross-
validation score of the training set as an objective function:

min f ( )x =-
1

KV
∑
μ = 1

KV 1
NC
∑
c = 1

NC

2
PRμ

c ×RE μ
c

PRμ
c +RE μ

c

(20)

Pc =
TPc

TPc +FPc
(21)

Rc =
TPc

TPc +FNc
(22)

where KV is the number of folds for K-fold cross-validation, 
which is set to be 5 in this study; PRμ

c and RE μ
c  are the rec‐

ognition accuracy and recall of the cth fault category when 
the first fold is used as the validation set, respectively; and 
TPc, FPc, and FNc are the true-positive, false-positive, and 
false-negative examples of the cth fault category, respectively.
3)　Two-layer Stacking Ensemble Optimization Algorithm

The WOA is a heuristic optimization algorithm that has at‐
tracted attention in recent years. Inspired by the behavior of 
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humpback whales, the WOA mimics their foraging and bub‐
ble-net hunting techniques [31]-[33]. It offers several advan‐
tages, including fast convergence and robust search capabili‐
ties. In the context of optimization problems, the WOA has 
demonstrated a superior search performance compared with 
various classical optimization algorithms such as particle 
swarm optimization, genetic algorithm, differential evolution, 
and ray optimization. The WOA has gained wide acceptance 
and application in diverse domains [34]. Given the efficacy 
of the WOA in optimization tasks, we construct a two-layer 
optimization configuration model utilizing the WOA algo‐
rithm.

In the WOA, whale behavior is divided into two phases: 
exploitation and exploration. The exploitation phase first up‐
dates the individual position by encircling the prey and ap‐
proaching the best search agent using the following position 
calculation formula:

DWOA = |CX B
t -Xt |  (23)

Xt + 1 =X B
t -ADWOA (24)

where the subscript t represents the number of iterations; 
DWOA is the distance between the current individual whale 
and the optimal solution; X B

t  is the optimal position for the 
current number of iterations; Xt is the current position of an 
individual whale; and A and C are the position update coeffi‐
cients.

As the whale swims along a spiral-shaped path while en‐
circling its prey, a probability of 50% is set to choose be‐
tween the two behaviors randomly, thus enabling an update 
of the position of the whale [34].

Xt + 1 =
ì
í
î

X B
t -ADWOA                       r1 < 0.5

eDWOA cos ( )2πl +X B
t      r1⩾0.5

(25)

where r1 is a random number from 0 to 1.
Figure 2 shows the flowchart of two-layer Stacking ensem‐

ble optimization. The upper-layer optimization involves the 
selection of heterogeneous models with the decision variable 
denoted as S =[101001100005], which indicates that 
classification models 1, 3, 6, and 7 are chosen as the base 
models, whereas classification model 5 is selected as the me‐
ta-model. In the lower-layer optimization, the hyperparame‐
ters of models 1, 3, 5, 6, and 7 become the decision vari‐
ables for optimization. An external archive is constructed to 
expedite the heuristic algorithm in determining the optimal 
hyperparameters. This archive records the hyperparameters 
associated with the historical optimal objective function for 
each classification model. During the optimization process in 
the lower layer, instead of generating initial values random‐
ly, the external archive is referenced to obtain the initial val‐
ues for the hyperparameters of each classification model.

Note that the upper-layer optimization involves binary 
variables, and traditional continuous numerical optimization 
makes it difficult to find the optimal solution in discrete 
space [35]. Hence, we introduce a binary time-varying trans‐
fer function TV ( )XMφ  as:

TV ( )XMφ =
1

1 + e
-

XM
φ

(26)

where XM is the position of an individual heuristic algo‐

rithm; and φ = φmax - t ( )φmax - φmin

tmax

 is the control parameter, 

and tmax is the maximum iteration, and φmax and φmin are the 
upper and lower limits of the control parameter, which are 
set to be 4 and 0.05, respectively.

Thus, the locations of the decision variables of the upper-
layer can be transformed as:

XM d
m ( )t + 1 =

ì
í
î

ïï

ïï

1    rand < TV ( )XM d
m ( )t φ

0    rand ³ TV ( )XM d
m ( )t φ

(27)

where XM d
m is the d th decision variable of the mth search 

agent; and rand is a random number ranging from 0 to 1.

VI. CASE STUDY 

The difficulty in obtaining samples is an essential reason 
for the lack of research on SM fault diagnosis. Fortunately, 
we obtain nearly 200000 SM fault samples from Zhejiang 
Province, China, for analysis. Therefore, this case study uti‐
lizes the data obtained from SM fault samples in the urban 
areas of the Zhejiang Province from 2010 to 2018, encom‐
passing 11 urban areas. After data processing, the dataset 
comprises 15 features and 12 fault categories. To enhance 
the data quality, we calculate the feature “usage duration” 
by subtracting the fault date from the installation date, effec‐
tively replacing the two dates. Consequently, the SM fea‐

Lower-layer optimizationUpper-layer optimization

Input SM data after

data imputation  

Obtain optimal fitness 

function value

Update population position

via time-varying binary

transfer function  

Calculate fitness

through lower-layer

optimization model

Is the

maximum iteration 

reached?

Obtain optimal base model,

meta-model, and

hyperparameter

configuration 

Is it the

historical optimal

hyperparameter? 

Calculate individual

fitness of population 

Record hyperparameters

in external repository

Is the

maximum iteration 

reached?

Update WOA

population position

Determine the number of

iterations and population size 

Initialize WOA population

position (combination of

base model and meta-model)  

Initialize hyperparameters

based on Stacking configuration

and external repository  

Determine the number of

iterations and population size 

N

N

Y

Y

N

Y

Fig. 2.　Flowchart of two-layer Stacking ensemble optimization.
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tures encompass meter manufacturer (feature 1), meter mod‐
el (feature 2), department (feature 3), city company (feature 
4), county company (feature 5), communication mode (fea‐
ture 6), meter reading data (feature 7), average monthly con‐
sumption in the last three months (feature 8), average basic 
error (feature 9), average daily timing error (feature 10), 
number of the same batch (feature 11), length of use (feature 
12), arrival batch number (feature 13), tender lot number 
(feature 14), and production lot number (feature 15). The da‐
ta types for SM features are presented in Table I.

Failure samples (fault categories) from the most to the 
least are as follows: clock battery undervoltage (category 7), 
clock misalignment (category 6), timing function abnormali‐
ty (category 2), broken appearance (category 9), communica‐
tion interface failure (category 3), measurement function ab‐
normality (category 11), stop reading battery undervoltage 
(category 5), preset parameter error (category 10), cost con‐
trol function abnormality (category 1), LCD data display ab‐
normality (category 12), current change caused by the per‐
centage of error (category 4), and other faults (category 8).
Table II lists the sample size of each fault category, high‐
lighting the significant imbalance among the SM fault cate‐
gories.

The degree of imbalance for each fault category is quanti‐
fied, as shown in (28). Categories 1, 3, 4, 5, 8, 10, 11, and 
12, which exhibit imbalance rates exceeding five, are identi‐
fied as minority categories for subsequent data augmentation 
purposes as:

pi =
Nmax

N i
C

(28)

where pi is the imbalance rate of fault category i; and Nmax 
is the maximum number of samples in the fault category.

In this section, we partition the dataset into training and 
test sets using a stratified sampling method, maintaining a ra‐
tio of 8 : 2. The entire SM fault diagnosis process is then 
simulated and analyzed to assess the effectiveness of sequen‐
tial data imputation, feature extraction, data augmentation, 

and Stacking ensemble classifiers using the test set. The per‐
formance of the method is evaluated based on its accuracy 
and F1-score. Although the accuracy provides an intuitive 
measure of the classification performance of a method, it 
can be biased toward majority classes. To address this, the 
F1-score combines the accuracy and recall metrics, making 
it suitable for evaluating the classification performance in 
the presence of a class imbalance.

A. Analysis of Fault Diagnosis Results

The input feature data are normalized to mitigate the im‐
pact of varying magnitudes and orders of magnitude among 
the SM fault features on the classification performance. Fur‐
thermore, discrete features are transformed into a one-hot 
code. In addition, missing values within each sample are ad‐
dressed using the sequential imputation method outlined in 
Section III. In this experiment, we evaluate 11 efficient and 
widely used classifiers.

1) Traditional machine learning: support vector machine 
(SVM), decision tree (DT), KNN, and naive Bayes (NB).

2) Neural networks: backpropagation neural network 
(BPNN) and convolutional neural network (CNN).

3) Ensemble learning: random forest (RF), extreme gradi‐
ent boosting machine (XGBoost), light gradient boosting ma‐
chine (LightGBM), adaptive boosting (AdaBoost), and cate‐
gorical boosting (CatBoost).

The optimized configuration results for stacking ensemble 
classifiers are presented in Table III. Ensemble classification 
models such as LightGBM, CatBoost, and XGBoost are se‐
lected more often, indicating a better classification perfor‐
mance. RF belongs to the category of bagging ensemble 
methods, and LightGBM, CatBoost, and XGBoost belong to 
the category of boosting ensemble methods. To assess the 
performance of the optimized model, we compare the F1-
scores of the resulting Stacking ensemble classifier with 
those of other classifiers, as presented in Table IV. Data with 
the highest accuracy are highlighted in bold. Note that, dur‐
ing the two-layer optimization configuration, our external re‐
pository is responsible for recording the historical optimal 
hyperparameters of each model. Each model historically 
achieves the optimal performance under the set objective 
function. Therefore, the hyperparameters of the comparative 
model are all obtained from our external repository and are 
not set arbitrarily. Fault categories 1, 3, 4, 5, 8, 10, 11, and 
12, characterized by a small number of samples, exhibit sig‐
nificantly lower recognition accuracies compared with fault 
categories 2, 6, 7, and 9, which have a larger number of 
samples. This indicates that the classification accuracy of the 
model decreases when there is a lack of instances in a partic‐
ular category. The results demonstrate that the classifiers de‐
veloped in this study offer an optimal classification perfor‐
mance for almost every category. The poor performance of 
the NB classifier in the experiments suggests that the as‐
sumption of disregarding feature correlations does not align 
with the SM fault data used in this study, further affirming 
the existence of complex interdependencies among the SM 
features.

TABLE I
DATA TYPES OF SM FEATURES

Data type

Discrete type

Numerical type

Feature No.

1, 2, 3, 4, 5, 6

7, 8, 9, 10, 11, 12, 13, 14, 15

TABLE II
SAMPLE SIZE OF EACH FAULT CATEGORY

Category

1

2

3

4

5

6

Sample 
size

3849

33113

7138

2426

4915

46760

Imbalance 
ratio

10.96

1.61

7.45

15.52

10.81

1.14

Category

7

8

9

10

11

12

Sample 
size

53157

2203

28761

4767

5213

2468

Imbalance 
ratio

1.00

16.60

1.85

9.22

8.56

15.33
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To demonstrate the importance of employing optimized 
configurations through Stacking, we compare the obtained 
classifiers with the configurations utilized in other fault diag‐

nosis studies. The comparison of effectiveness of different 
missing value imputation methods is listed in Table V. The 
experiments are repeated 10 times for each method without 
setting a random number seed, and the average accuracy 
(macro-precision) and average F1-score (macro-F1-score) are 
computed, as shown in Fig. 3. Reference [22] adopts the 
simplest Stacking configuration, which makes it challenging 
to handle SM fault diagnosis tasks; therefore, it has the low‐
est accuracy. References [19] and [20] use Boosting ensem‐
ble learning and neural networks, but do not consider the op‐
timization of the Stacking ensemble configuration, resulting 
in a lower accuracy than that of the proposed method. The 
proposed method significantly outperforms the other meth‐
ods, indicating that Stacking configurations that exhibit a su‐
perior performance in other fault diagnosis domains may not 
necessarily be suitable for SM fault diagnosis. In other 
words, it is essential to optimize the configuration for a spe‐
cific problem.

To assess the effectiveness of the data imputation proposed 
in Section III, we compare it with four other methods: missing 
value zero padding (Method I), sequential data imputation fol‐
lowing KNN nonsequential data imputation (Method II), se‐
quential data imputation using Pearson’s correlation coeffi‐
cient to evaluate feature relevance (Method III), and GANs 
(Method IV). The quality of the data imputation is evaluated 
based on the classification accuracy. The recognition accura‐
cies of the different SM fault categories using the Stacking en‐
semble classifier as the medium are presented in Table VI.

Although easy to implement, the zero-padding method intro‐
duces a significant amount of redundant information, leading 
to a decrease in the fault recognition accuracy, particularly for 
some classes. GANs are data imputation methods based on 
deep learning. However, a mixture of discrete and continuous 
features makes it difficult for GANs to learn the distribution of 
data features, resulting in a poor data imputation performance. 
In contrast, the data-filling method proposed herein considers 
the information gain between features and classes, effectively 
addressing the information loss caused by missing values and 
yielding the best data imputation results. 

TABLE III
OPTIMIZED CONFIGURATION RESULTS FOR STACKING 

ENSEMBLE CLASSIFIERS

Optimiza‐
tion type

Upper-layer

Lower-layer

Classifier type

Base

Meta

LightGBM

XGBoost 
(base)

KNN

XGBoost (me‐
ta)

Optimization configuration

LightGBM, XGBoost, KNN, and CatBoost

XGBoost

learning_rate = 0.0641,

n_estimators = 554,

Num_leaves = 43,

min_child_sample = 15,

max_depth = 6,

reg_lambda = 0.209

learning_rate = 0.0592,

n_estimators = 496,

Num_leaves = 39,

min_child_sample = 14,

max_depth = 6,

reg_lambda = 0.177

n_neighbors = 11,

algorithm = ‘ball_tree’,

leaf_size = 53,

weights = ‘distance’,

CatBoost: learning_rate = 0.0783,

iterations = 1042,

depth = 6,

Od_wait = 71

learning_rate = 0.0582,

n_estimators = 368,

Num_leaves = 31,

min_child_sample = 13,

max_depth = 5,

reg_lambda = 0.149

TABLE IV
SM FAULT DIAGNOSIS ACCURACY WITH DIFFERENT CLASSIFIERS

Category

1

2

3

4

5

6

7

8

9

10

11

12

Accuracy

RF

0.382

0.714

0.557

0.381

0.407

0.693

0.757

0.506

0.914

0.454

0.425

0.272

XGBoost

0.523

0.779

0.731

0.412

0.590

0.682

0.767

0.645

0.877

0.528

0.579

0.238

CNN

0.583

0.639

0.610

0.272

0.642

0.629

0.685

0.357

0.803

0.410

0.549

0.133

KNN

0.409

0.742

0.654

0.373

0.555

0.665

0.775

0.581

0.847

0.546

0.488

0.233

LightGBM

0.497

0.790

0.743

0.351

0.561

0.699

0.783

0.617

0.891

0.506

0.533

0.231

Stacking

0.571

0.806

0.743

0.437

0.672

0.736

0.807

0.628

0.925

0.572

0.577

0.358

SVM

0.506

0.732

0.656

0.228

0.633

0.608

0.616

0.267

0.741

0.319

0.395

0.126

CatBoost

0.448

0.740

0.679

0.461

0.657

0.623

0.713

0.409

0.821

0.519

0.558

0.385

DT

0.390

0.709

0.562

0.369

0.396

0.694

0.754

0.419

0.893

0.421

0.335

0.272

NB

0.188

0.501

0.514

0.270

0.228

0.415

0.554

0.218

0.592

0.218

0.481

0.127

AdaBoost

0.361

0.707

0.629

0.313

0.573

0.514

0.659

0.506

0.815

0.460

0.524

0.254
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Furthermore, the proposed method utilizes mutual informa‐
tion to quantify feature correlations by considering both nu‐
merical and discrete features. This method outperforms the 
Pearson correlation coefficient, which measures only linear 
correlations.

B. Analysis of Feature Extraction Effect

When converting discrete features from SM fault data into 
one-hot coding, the feature space expands, necessitating the 
use of efficient feature extraction methods to reduce redun‐
dancy. To validate the effectiveness of the DESAE feature 
extraction method proposed herein, the feature extraction 
process outlined in Section III is incorporated before classifi‐
cation. The results for each classifier are listed in Table VII. 
Compared with Table IV, the proposed feature extraction 
method enhances the generalization ability of the model, re‐
sulting in an improved classification accuracy. However, the 
improvement in the accuracy for the minority class is not 
significant. This is attributed to the limitations of the DE‐
SAE in learning the key features of the minority class when 
insufficient samples are available. In addition, the CNN in‐
herently possesses a feature extraction function. Therefore, 
the classification accuracy does not improve significantly af‐
ter implementing the proposed DESAE feature extraction 
method. This suggests that excessive feature extraction may 
result in the loss of crucial information.

TABLE V
CONFIGURATION OF STACKING ENSEMBLE CLASSIFIER FOR DIFFERENT 

REFERENCES

Reference

[19]

[20]

[21]

[22]

Classifier type

Base

Meta

Base

Meta

Base

Meta

Base

Meta

Configuration of stacking ensemble 
classifier

NB, BPNN, SVM, AdaBoost, LightGBM

Logistic regression (LR)

SVM, RF, gradient boosting decision 
tree (GBDT)

Temporal convolutional network (TCN)

KNN, AdaBoost, LR

AdaBoost

LR, NB, DT

LR

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.60

0.61

0.62

0.63

0.64

0.65

0.66

0.67

0.68

0.69  Precision 

 F1-score

Proposed Reference

 [19]

Reference

 [20]

Method

Reference

 [21]

Reference

 [22]
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Fig. 3.　Comparison of SM fault diagnosis accuracies of different methods.

TABLE VI
RECOGNITION ACCURACY OF DIFFERENT SM FAULT CATEGORIES

Category

1

2

3

4

5

6

7

8

9

10

11

12

Accuracy

Method I

0.553

0.794

0.726

0.402

0.644

0.713

0.792

0.614

0.911

0.542

0.539

0.307

Method II

0.561

0.792

0.739

0.425

0.653

0.722

0.808

0.616

0.913

0.560

0.574

0.342

Method III

0.566

0.802

0.737

0.431

0.669

0.728

0.805

0.626

0.917

0.566

0.575

0.359

Method IV

0.557

0.793

0.731

0.416

0.663

0.734

0.796

0.611

0.908

0.556

0.542

0.331

Proposed

0.571

0.806

0.743

0.437

0.672

0.736

0.807

0.628

0.925

0.572

0.577

0.358

TABLE VII
FAULT DIAGNOSIS ACCURACY OF EACH CLASSIFIER AFTER DESAE FEATURE EXTRACTION

Category

1

2

3

4

5

6

7

8

9

10

11

12

Accuracy

RF

0.384

0.722

0.563

0.387

0.423

0.713

0.782

0.529

0.908

0.455

0.423

0.276

XGBoost

0.546

0.781

0.760

0.434

0.616

0.698

0.795

0.671

0.902

0.541

0.582

0.240

CNN

0.581

0.629

0.607

0.268

0.652

0.628

0.687

0.361

0.809

0.407

0.546

0.132

KNN

0.413

0.766

0.650

0.392

0.557

0.673

0.782

0.598

0.868

0.561

0.499

0.236

LightGBM

0.515

0.793

0.768

0.354

0.560

0.703

0.784

0.624

0.901

0.524

0.542

0.241

Stacking

0.569

0.814

0.749

0.449

0.672

0.754

0.829

0.639

0.923

0.574

0.581

0.357

SVM

0.512

0.739

0.661

0.232

0.657

0.621

0.643

0.294

0.748

0.338

0.426

0.129

CatBoost

0.453

0.740

0.705

0.488

0.722

0.623

0.722

0.435

0.827

0.543

0.562

0.399

DT

0.415

0.717

0.590

0.386

0.415

0.701

0.774

0.431

0.917

0.446

0.338

0.282

NB

0.198

0.527

0.517

0.298

0.257

0.422

0.580

0.225

0.616

0.245

0.499

0.127

AdaBoost

0.372

0.731

0.658

0.316

0.582

0.513

0.673

0.537

0.825

0.473

0.549

0.262
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To demonstrate the superiority of the proposed feature ex‐
traction method, DESAE is compared with AE, sparse auto‐
encoder (SAE), and principal component analysis (PCA), 
and the fault diagnosis accuracy with different feature extrac‐
tion methods is illustrated in Fig. 4. The DESAE effectively 
leverages the information gained from category labels and 
learns more discriminative feature information than the other 
feature extraction methods. Additionally, the feature extrac‐
tion performance of the SAE surpasses that of the AE, indi‐
cating that incorporating sparsity constraints assists the AE 
in obtaining higher-quality and reduced-dimensional feature 
representations. Note that PCA is a linear transformation 
method that captures primarily linear relationships in the da‐
ta. However, it struggles to achieve effective dimensionality 
reduction on SM data that contain nonlinear features. Conse‐
quently, not all feature extraction methods are effective in 
improving the accuracy of fault diagnosis. Therefore, effi‐
cient feature extraction methods tailored to specific problem 
domains need to be developed.

C. Analysis of Data Augmentation Results

Data augmentation is a common practice in the field of 
fault diagnosis. However, directly increasing the number of 
minority classes of samples to match the majority classes of 
samples may lead to unreliable results. This is because syn‐
thesizing a large number of samples can introduce noise, 
which affects the recognition accuracy of the majority class‐
es of samples. Based on the previous experiments, we con‐
duct further investigations to determine the optimal amount 
of data augmentation based on the macro-F1-scores. The 
variation of SM fault diagnosis accuracy with different num‐
bers of synthesized samples is shown in Fig. 5. A continuous 
decrease in the F1-score indicates that the recognition accura‐
cy of the minority classes of samples is not significantly im‐
proved, which further affects the recognition accuracy of the 
majority classes of sample. From Fig. 5, it is apparent that 
the highest average classification accuracy for each model is 
achieved when the number of synthesized minority classes 
of samples is 4400. Therefore, in this experiment, we aug‐

ment each minority classes of samples with 4400 samples us‐
ing the GS-ACGAN. Notably, if the importance of faults is 
considered, different weights can be assigned to the accuracy 
of each class when exploring the optimal number of data 
augmentations. This method helps improve the recognition 
accuracy of specific targeted faults.

The effectiveness of the proposed data augmentation meth‐
od is validated using the Stacking ensemble classifier devel‐
oped in this study, as presented in Table VIII. 

The comparison includes the methods applicable to both 
continuous and discrete variables, namely, the SMOTE-nomi‐
nally continuous (SMOTE-NC) and ROS. In addition, we di‐
rectly apply ACGAN to data augmentation for comparison 
and forcibly constrain the generated discrete features to inte‐
gers. Among these methods, ROS is proven to be the least 
effective because of the repetitive sampling of minority class‐
es of samples, leading to an increase in redundant informa‐
tion and a decrease in the generalization ability of the mod‐
el. In contrast, the data augmentation method based on GS-
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Fig. 4.　Fault diagnosis accuracy with different feature extraction methods.
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TABLE VIII
COMPARISON OF SM FAULT DIAGNOSIS ACCURACY WITH DIFFERENT DATA 

AUGMENTATION METHODS

Category

1

2

3

4

5

6

7

8

9

10

11

12

Accuracy

GS-ACGAN

0.599

0.813

0.754

0.529

0.702

0.752

0.786

0.655

0.919

0.634

0.631

0.501

SMOTE-NC

0.586

0.793

0.749

0.492

0.681

0.746

0.779

0.642

0.904

0.606

0.619

0.460

ROS

0.580

0.774

0.751

0.463

0.683

0.733

0.759

0.633

0.885

0.592

0.617

0.439

ACGAN

0.573

0.784

0.746

0.481

0.688

0.734

0.763

0.629

0.913

0.597

0.622

0.428
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ACGAN improves the classification accuracy of the minori‐
ty classes of samples by an average of 5.86%, outperforming 
the other two methods. Moreover, the recognition accuracy 
of the majority classes of samples is minimally affected, indi‐
cating that the method synthesizes fewer noisy samples. This 
indicates that GS-ACGAN, which incorporates GS, enables 
synthesized samples to align more closely with the actual 
sample distribution, resulting in more effective data augmen‐
tation.

D. Extended Experiment

To verify the effect of the proposed external archive, we 
compare the search performance when introducing and not 
introducing an external archive in the iterative process of the 
lower-layer optimization, as shown in Fig. 6. The number of 
individuals in the WOA is set to be 30, and the number of it‐
erations is 50. As the upper-layer optimization feeds differ‐
ent Stacking configurations, the lower-layer takes different 
decision variables for the optimization, resulting in slower 
optimization for the traditional scheme with random initial‐
ization. The external archive is endowed with a heuristic 
memory function that can provide near-optimal initial hyper‐
parameters for the lower-layer heuristic optimization, effec‐
tively reducing the number of searches, which fully verifies 
the effectiveness of the proposed method.

VII. CONCLUSION

In this study, we present an SM fault diagnosis method 
based on a two-layer Stacking ensemble optimization and data 
augmentation method. We develop feature engineering, data 
enhancement, and fault classification modules to investigate 
the characteristics of the SM data. The proposed method is 
evaluated using fault samples collected from Zhejiang Prov‐
ince. The results demonstrate the effectiveness of the proposed 
method. In the feature engineering module, the DESAE fea‐
ture extraction method enhances the macro-F1-score by up to 
1.72%. Through the GS-ACGAN, we explore the optimal 
number of synthesized samples, considering the importance of 
fault categories. This provides valuable insights for data aug‐
mentation in scenarios, where the importance of the fault cate‐
gory is considered. By employing the proposed method, we 

could adaptively select the optimal combination of base and 
meta-classifiers. This enables the combination method to im‐
prove the performance of the prediction model effectively. Fur‐
thermore, a comparison with other state-of-the-art classifiers 
such as SVM, RF, CNN, and LightGBM demonstrates the su‐
periority of the proposed method in terms of accuracy, making 
it suitable for industrial applications.

This study provides a robust solution to the stable opera‐
tion of power systems and offers insights for fault diagnosis 
studies in other device domains. For example, the proposed 
two-layer Stacking ensemble optimization and data augmen‐
tation can obtain an optimal heterogeneous model integration 
solution for any task. However, the lack of training data 
makes it difficult to verify more complex SMs and limits the 
effectiveness of fault identification. We plan to collect addi‐
tional SM fault samples to validate and improve the pro‐
posed method further in the future.
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