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Abstract—In recent years, the expansion of the power grid
has led to a continuous increase in the number of consumers
within the distribution network. However, due to the scarcity of
historical data for these new consumers, it has become a com-
plex challenge to accurately forecast their electricity demands
through traditional forecasting methods. This paper proposes
an innovative short-term residential load forecasting method
that harnesses advanced clustering, deep learning, and transfer
learning technologies to address this issue. To begin, this paper
leverages the domain adversarial transfer network. It employs
limited data as target domain data and more abundant data as
source domain data, thus enabling the utilization of source do-
main insights for the forecasting task of the target domain.
Moreover, a K-shape clustering method is proposed, which effec-
tively identifies source domain data that align optimally with
the target domain, and enhances the forecasting accuracy. Sub-
sequently, a composite architecture is devised, amalgamating at-
tention mechanism, long short-term memory network, and
seq2seq network. This composite structure is integrated into the
domain adversarial transfer network, bolstering the perfor-
mance of feature extractor and refining the forecasting capabili-
ties. An illustrative analysis is conducted using the residential
load dataset of the Independent System Operator to validate
the proposed method empirically. In the case study, the relative
mean square error of the proposed method is within 30 MW,
and the mean absolute percentage error is within 2%. A signifi-
cant improvement in accuracy, compared with other compara-
tive experimental results, underscores the reliability of the pro-
posed method. The findings unequivocally demonstrate that the
proposed method advocated in this paper yields superior fore-
casting results compared with prevailing mainstream forecast-
ing methods.

Index Terms—Load forecasting, domain adversarial, K-shape
clustering, long short-term memory network, seq2seq network,
attention mechanism.
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1. INTRODUCTION

HORT-TERM load forecasting constitutes a fundamental

pillar within power system planning, consumption analy-
sis, and operational coordination. It is important to attain pre-
cision and rationality in short-term load forecasting, furnish-
ing pivotal data that underpin decisions encompassing opti-
mal dispatching, operational planning, and demand-side ad-
ministration within the power system [1]. This, in turn, be-
gets heightened economic gains and propels efficient power
utilization. Against power grid expansion nowadays, the pop-
ulation of power consumers on the consumption side is on a
relentless ascent. This surges users in fresh challenges for
load forecasting: the absence of historical load data for
emerging power consumers renders their patterns of electrici-
ty consumption uncertain [2]. Consequently, conventional
forecasting methods struggle to forecast their -electricity
loads accurately.

Numerous technologies have found applications in load
forecasting, with prominent categories namely statistical
methods and machine learning methods [3]. Among these,
statistical methods encompass the linear regression method
[4], the exponential smoothing method [5], and the autore-
gressive moving average method [6]. On the other hand, ma-
chine learning methods encompass those such as support vec-
tor machines (SVMs) [7], but it is the domain of deep learn-
ing that has witnessed rapid advancement in recent times.
Deep learning has gained unparalleled traction due to its
prowess in handling time series data.

Deep learning encompasses a range of methods with key
players including the convolutional neural networks (CNNs)
[8] and the long short-term memory (LSTM) networks.
While CNNs primarily shine in fields such as computer vi-
sion [8] and natural language processing [9], the contempo-
rary recurrent neural networks (RNNs) typified by LSTM
have found their niche in load forecasting. LSTM has
emerged as the cornerstone of load forecasting because of its
capacity to capture long-term dependencies and surmount
the challenge of gradient vanishing. Moreover, it demon-
strates an aptitude for abstract feature extraction from load
data, curtailing data intricacies. An extensive body of litera-
ture attests to the noteworthy achievements of LSTM in the
forecasting domain [10]. Reference [11] conceives a forecast-
ing framework grounded in LSTM, thereby effecting short-
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term load forecasting for individual residential energy loads
with commendable outcomes. Similarly, [12] harnesses
LSTM to model temporal intricacies within time series data,
crafting a forecasting model for building load that exhibits
remarkable accuracy.

Furthermore, load forecasting has witnessed the applica-
tion of more sophisticated deep learning methods. Notably,
methods such as the seq2seq network and attention mecha-
nism have come to the fore, acclaimed for their efficacy in
capturing both long-term and short-term dependencies inher-
ent in load data [13]. Illustratively, [14] delves into load fore-
casting within renewable energy, employing a seq2seq net-
work to excel in the short-term forecasting of office building
loads. Concomitantly, [13] innovates a transformer-based
seq2seq network that hinges on the attention mechanism,
leading to the precise forecasting of reactive loads in residen-
tial areas. Noteworthy also is the endeavor of [15] that con-
centrates on the forecasting of building energy and orches-
trates an attention-enhanced seq2seq network, thereby attain-
ing remarkable accuracy in the advanced multi-step forecast-
ing of building energy dynamics.

The passage mentioned above delineates the extensive uti-
lization of deep learning technology in regional residential
load forecasting. However, this efficacy is hindered when
newly developed residential zones present a scarcity of load
data. Conventional deep learning methods grapple with estab-
lishing effective forecasting models under such constrained
conditions, exacerbating the challenges in load forecast-
ing [16].

Nonetheless, a resolution surfaces in transfer learning, ad-
ept at ameliorating the dearth of data by drawing insights
from alternative datasets for model training and subsequent
target dataset forecasting. Within this context, the domain ad-
versarial transfer network (DATN) emerges as an exemplar,
augmenting traditional transfer learning with an adversarial
mechanism. This strategic amalgamation of domain adapta-
tion and profound feature learning engenders an efficacious
mapping between source and target domains, thereby enhanc-
ing transfer efficiency [17]. Illustratively, [18] harnesses do-
main adaptation to facilitate the seamless migration of build-
ing load data, culminating in discernible enhancements in
forecasting accuracy. Similarly, [19] introduces an ensemble
forecasting model grounded in domain adaptation principles,
adeptly circumventing the issue of inadequate training of
model attributed to limited samples stemming from concept
drift. The convergence of deep learning, transfer learning,
and domain adaptation constitutes a pivotal stride toward ad-
dressing the intricacies of sparse data scenarios in load fore-
casting.

In transfer learning endeavors, it becomes a pivotal consid-
eration to select suitable source domain data when multiple
load datasets are available. Contemporary practices frequent-
ly encompass methodologies such as K-means clustering and
dynamic time warping (DTW). Notably, K-means clustering
stands as a conventional method. Reference [20] introduces
a forecasting model that harmoniously melds the K-means
clustering with deep learning. Specifically, the K-means clus-
tering is leveraged to distill the resemblance within residen-
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tial load profiles, thereafter facilitating load data forecasting
through deep learning methods. On a similar note, [21] advo-
cates for the utilization of K-means to categorize users in
load forecasting. Nevertheless, it is acknowledged that the
classification efficacy might wane in face of voluminous da-
ta, potentially impinging upon the forecasting accuracy. Al-
ternatively, the DTW has recently emerged as a dominant
method for gauging correlation. Reference [22] harnesses the
DTW distance as a benchmark to gauge similarity between
source and target domain data, facilitating the selection of
source domain data. However, a drawback inherent to DTW
is its elevated calculation complexity.

A recent addition to this landscape is the K-shape cluster-
ing, which incorporates a refined model grounded in the
principles of K-means. This method augments operational ef-
ficiency and bolsters the robustness of data classification,
thereby achieving calculation efficacy akin to DTW [23]. Re-
grettably, its application in load forecasting remains limited
as of now. The efficacy of the K-shape clustering has been
demonstrated in specific application domains. For instance,
[24] proposes a convolutional RNN predicated upon K-shape
clustering and an attention mechanism, culminating in profi-
cient short-term wind speed forecasting. Likewise, [25] ad-
vances the K-shape clustering to classify building energy
consumption data. Empirical outcomes highlight the com-
mendable clustering proficiency of this method across vari-
ous energy consumption data granularities.

Consequently, this paper presents a solution for the chal-
lenges posed by the scarcity of data from newly established
residential users to underpin load forecasting. It addresses
the conundrum of source domain data selection for the trans-
fer process. The proposed method for short-term load fore-
casting within this context is poised to enhance forecasting
accuracy effectively.

The contributions of this paper can be outlined as follows.

1) A forecasting model based on the LSTM network and
an attention mechanism is devised, thereby enhancing the en-
coding process of load data.

2) The integration of the domain adversarial mechanism
into the seq2seq network gives rise to the DATN, facilitating
the seamless transition of data from the source domain to
the target domain.

3) A novel method grounded in the K-shape clustering is
introduced. This method quantifies load data similarities, sub-
sequently serving as a benchmark for selecting pertinent
source domain data.

The organization of this paper unfolds as follows. Section
IT delineates the model structures for this paper. Subsequent-
ly, the Section III presents the overall framework advanced
within this paper. Section IV presents illustrative case stud-
ies to corroborate the viability of the proposed method. Fi-
nally, Section V encapsulates the findings and conclusions.

II. MODEL STRUCTURE FOR THIS PAPER

This paper uses the K-shape clustering to sieve the source
domain data, while the seq2seq network, LSTM network,
and attention mechanism collaboratively enhance the perfor-
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mance of conventional DATN method. Subsequent subsec-
tions will expound on each of these components individually.

A. K-shape Clustering

Clustering is a widely employed unsupervised data mining
method applicable to time series data processing [26].
Through clustering, insights into regularities and correlations
among data can be gleaned, enabling the categorization of
time series data according to their affinities [27]. A promi-
nent conventional unsupervised clustering method is K-
means, which calculates similarity between time series via
Euclidean distance (ED). This method boasts a straightfor-
ward principle and notable calculation efficiency [28]. Never-
theless, K-means disregards potential horizontal scaling and
data translation effects, rendering it less effective in scenari-
os where dissimilar time series lengths or phase disparities
are involved.

The K-shape clustering represents an enhanced clustering
method derived from K-means, showcasing notable advance-
ments across two key dimensions [23].

1) Distance calculation: the distance is calculated utilizing
the cross-correlation metric, and a statistical method is em-
ployed to ascertain the similarity between two time series,
even when their lengths differ and they lack precise align-
ment.

The time series are denoted as x=(x,,x,,....x,) and y=
(V1,2 .-y, ), respectively, where 7 is the number of time se-
ries. The sequence X is subject to transformation by (1) to at-
tain displacement invariance:

[s]

—

(0,....0,x,x5,..,x,—S5) s>0

-

Y= (D

X g -0x,—1,x,,0,...,0) s<0

Is|
where s represents the displacement of the sequence. Consid-
ering a range of distinct s values, we incrementally derive
the dot product between x, and y as visually depicted in
Fig. 1.

<y

Fig. 1. Calculation of dot product between sequences.

In Fig. 1, considering the sequence length as an illustra-
tive instance with n=5, the values for s ranges within
[-4,4]. Diverse values of s prompt a systematic calculation
of the dot product using (2), resulting in a cumulative count
of obtained dot products totaling 2n—1, which equates to 9
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in this scenario.
Subsequently, the correlation coefficient between the two
series is obtained:
n—s

- y['x[+s
R.x(x7j;)= ;

R— S(; ’ )?)
where R, is the inner product between sequences.

Ultimately, the shape-based distance (SBD) is evaluated
employing the normalized correlation coefficient, represented

by:

s>0
(2)

s<0

R, (x.y)

VREXR(G.Y)

where R is the inner product within the identical sequences.
Proximity to 0 in the SBD value indicates a heightened cor-
relation between the two sequences.

2) Centroid calculation: in instances where clusters encom-
pass multiple time series, the entire cluster can be succinctly
encapsulated by a single series termed the centroid. A
straightforward method to deriving the centroid from a series
collection entails calculating the arithmetic mean of corre-
sponding coordinates across all series, thus determining the
centroid coordinates. Nevertheless, the efficacy of the pro-
posed method is compromised when dealing with temporally
shifted time series. As depicted in (4), the K-shape clustering
calculates the centroid using the SBD, thereby reformulating

the centroid calculation into an optimization paradigm.
2

SBD(X,y)=1 —max 3)

max Rs ()E ﬁk )

“)

U, = arg max 2

i D\ RELD) R diy)
where u, represents the centroid that becomes imperative to
determine the optimal value z, for the centroid to ensure the

maximal similarity between the centroid and each sequence
within cluster D.

B. Seq2seq Network

The seq2seq network was initially introduced in 2014,
gaining prominence for its capacity to handle tasks character-
ized by uncertain output lengths, particularly in machine
translation [29]. Unlike conventional neural networks,
seq2seq networks are constructed upon an encoder-decoder
architecture. In the forecasting context, they process variable-
length sequences as input for the encoder, conducting feature
extraction to yield a fixed-shape hidden state. This hidden
state is then transformed into a variable-length sequence
through the decoder, culminating in the eventual generation
of the final forecasting outcome. Differing from deep learn-
ing methods typified by LSTM, the seq2seq network archi-
tecture embodies an autoregressive model and generates time
series transformations from one domain to another, address-
ing the challenge of inadequate data in traditional deep learn-
ing methods. Consequently, it finds its forte in forecasting
scenarios marked by limited availability of historical data.

Nonetheless, traditional seq2seq networks confront specif-
ic concerns as follows.
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1) Given that the encoder-decoder structure in the seq2seq
network is founded on a fundamental feedforward neural net-
work (FNN), the amplification of input sequence length pos-
es challenges in effectively encompassing all the information
embedded within extended sequences into the hidden state.
Consequently, this can impede the forecasting accuracy [30].

2) The inherent limitation of a fixed-length hidden state
might compromise its capacity to comprehensively retain the
entirety of input sequence information, potentially leading to
the overwriting of earlier data input by subsequently arriving
data [14].

This paper advocates the substitution of conventional
FNN within the encoder-decoder framework with LSTM to
address the first concern. This transition aims to enhance the
treatment of extended sequences by affording improved long-
term sequence processing.

In response to the second concern, this paper introduces
an attention mechanism into the conventional seq2seq net-
work. This augmentation assigns greater weights to salient
information within the input sequence. Consequently, the lim-
ited-length hidden state is empowered to capture a more
comprehensive spectrum of sequence information.

C. LSTM Network

The LSTM network model constitutes an advancement
over the conventional RNN [30]. Drawing inspiration from
computer logic gates, it offers a solution to the issue of gra-
dient vanishing or explosion that arises from ongoing matrix
multiplications in RNN [31]. At present, it stands as the pre-
eminent contemporary model in the realm of RNNs. LSTM
infuses memory components into the RNN in its evolution,
simulating human cognitive processes [32]. This augmenta-
tion facilitates enhanced processing of historical information.
State gates are introduced to regulate the output of each
memory cell, which governs these memory cells [33]. The
structural depiction of the LSTM network is presented in
Fig. 2.

<

il == S

STM network

X

Fig. 2. Structural depiction of LSTM network.

The calculation formula corresponding to each component
within Fig. 2 is given by:

i=f(xw,+h,_,w,+b,) (5)
fi=f(xwit+h,_w,+b;) (6)

0 =f(xw+h,_wy,+b,) (7
m,=tanh(x,w_ +h,_ w, +b ) ®)
c,=f0c,_+iOm, )
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h,=o0,Otanhc, (10)

where i, f, o, and m, are the input gate, forget gate, output
gate, and candidate memory units, respectively; x, is the in-
put of the memory elements; c, is the output of the memory
elements; A, is the hidden state at time # w,, w, w,, and
w,_, are the weight matrices multiplied by x; w,, w, w,,
and w,,, are the weight matrices multiplied by &,_; b, b, b,
and b are the weight biases; f'is the employed sigmoid func-
tion o; and O is the Hadamard product.

As illustrated in (9), the output of the memory cell ¢, at
time ¢ is primarily shaped by two components, i.e., ¢,_, and
m,, corresponding to the previous memory cell state and the
candidate memory unit, respectively. The input gate i, gov-
erns the incorporation of fresh information from m, while
the forget gate f, dictates the preservation of historical data
from the prior memory cell state ¢,_,. This dual interplay fa-
cilitates integrating current and antecedent data for a compre-
hensive understanding.

X0?

D. Attention Mechanism

The attention mechanism emulates the cognitive informa-
tion processing observed in the human brain. Initially pro-
posed in 2014, it has found diverse applications in domains
like machine translation, speech recognition, and image pro-
cessing [34]. In recent years, the utilization of the attention
mechanism has progressively extended to the realm of deep
learning. This mechanism facilitates the focal engagement of
the model with pivotal feature information, amplifying its
weight during training while diminishing the weight attribut-
ed to less significant ancillary data [34]. Consequently, this
mechanism curtails sensitivity to secondary information, aug-
menting the data processing efficacy, especially when deal-
ing with restricted datasets.

The attention mechanism can be categorized into hard at-
tention and soft attention. A binary weight coefficient (0 or
1) is assigned to each input element in hard attention, indi-
cating selective focus on specific input data. Conversely,
weight coefficients ranging from 0 to 1 are allocated across
all input data in soft attention, signifying a more comprehen-
sive engagement with the input [35]. Hence, this paper em-
ploys soft attention exemplified by the calculation procedure
shown in Fig. 3.

Fig. 3. Calculation procedure of attention mechanism.
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The calculation procedure is divisible into three distinct
steps.

1) Calculate the attention score S, In Fig. 3, the input vec-
tor is denoted as X=[X|,X,, ..., X, ], while ¢ represents the
query vector. The assessment of the significance of each in-
put vector concerning the query vector can be executed us-
ing an attention-scoring function. Among the prevalent scor-
ing functions, the dot product function is widely employed.
Its formulation is succinctly captured by:

S=X'q (11)
2) Calculate the attention distribution weight «, Utilize

the softmax function /*"™* to normalize the attention score
S, within the range of [0, 1]:

exp(sS;

ai:fsoﬂmax(Si): : p( 1)
Eexp(Sj)
j=1

3) Calculate the final attention output vector F. Based on
the attention distribution weight a,, the input data are subject-
ed to a weighted averaging process, yielding the ultimate
output:

(12)

F= ia,x[ (13)
i=1

This mechanism directs the attention of the model towards
pivotal feature information, enabling the allocation of height-
ened weight ratios to such aspects during model training
while allocating lesser weights to comparatively less signifi-
cant secondary data [34]. Consequently, it mitigates sensitivi-
ty to secondary data, enhancing the data processing capabili-
ty of the model mainly when working with limited datasets.

E. DATN
Domain adaptation is a pivotal facet of transfer learning

Feature extractor G,
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that involves mapping data from source and target domains
characterized by disparate distributions into a unified feature
space. The minimization of the distance between the data
points from the two domains within this feature space under
a defined metric, which acquires domain-invariant features
[35], diminishes the divergence between domain distribu-
tions. This endeavor thereby equips the model with en-
hanced prowess in addressing novel tasks within the target
domain. The conceptual incorporation of confrontation into
domain adaptation gives rise to the formulation of DATN.

The traditional architecture of transfer learning is com-
prised of a feature extractor and a predictor. The DATN inte-
grates a domain classifier to achieve an adversarial effect to
expand upon this foundation [36], as illustrated in Fig. 4. In
this method, the feature extractor maps data into the feature
space, facilitating the ability of predictor to discern catego-
ries within the source domain data. However, the domain dis-
criminator struggles to distinguish the originating domain of
data. Subsequently, the predictor employs the output of fea-
ture extractor to forecast the domain-specific class label of
the input data. During the training phase, the role of the do-
main classifier involves categorizing data within the feature
space and striving to differentiate the originating domains
maximally. This complex interaction aims to enhance the do-
main adaptation capabilities of the DATN. Within this frame-
work, the interplay between the feature extractor and the do-
main classifier gives rise to an antagonistic effect. The intro-
duction of a gradient inversion layer during training serves
to minimize classification errors. Meanwhile, the integration
of the feature extractor and predictor contributes to the re-
duction of training errors. The collective training error £ en-
compassing the feature extractor, predictor, and domain clas-
sifier is depicted in (14).

Label predictor G,

/—H
oL,
i = Forecasting label y Loss L,
oL,
06,
= = Feature
Gradient reversal layer oL,
a0,
oL,
Inpm E Domain label Loss L,
o0,

| —
Domain classifier G,

Fig. 4. DATN structure diagram.

N N
E(‘gfa 0,.0,)= le G, (Gf(xi7 9]‘)» 0,).y)—4 sz G, (Gf(xi’
iz oy

0).0:)00= DL, 0p0)-A YL 0p0,)  (14)

where G,, 0,, and L, are the label predictor, its correspond-
ing parameters, and the associated loss function, respective-
ly; G,, 0,, and L, are the domain classifier, its parameters,
and its specific loss function, respectively; G, and 6, are the
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feature extractor and its parameters, respectively; A is the
trade-off coefficient of the loss function L,; and N is the
number of training data. Throughout the training process, it-
erative optimization of 0, 0,, and 0, is undertaken to ascer-
tain their saddle points, which is illustrated in (15) and (16).
roory : '
@, 07) ar% r;nn E@©,0,,0;) (15)

r

r__ : ! !

0= argolznm E0).01,0,) (16)

At the saddle point, the parameter 8, of the label predictor
minimizes the forecasting loss, while the parameter 6, of the
domain classifier maximizes the classification loss. Upon in-
tegrating the feature inversion layer, the parameter 0, of the
feature extractor simultaneously minimizes both the forecast-
ing and classification losses.

III. OVERALL FRAMEWORK

Overall, the functions of each part of the proposed method
in this paper are summarized as shown in Fig. 5. The pro-
posed method integrates the advantages of its components,
making it more suitable for the forecasting scenarios intro-
duced in this paper.

Utilizing an enhanced distance calculation method
and centroid computation method, it exhibits
superior clustering performance compared with
conventional clustering methods.

K-shape
clustering

Advantage: establishing a mapping between two
domains, it is more suitable for application scenar-
ios lacking historical data.

Disadvantage: the basic architecture comprises FNN,
and as the length of the input sequence increases,
' the forecasting performance deteriorates.

Advantage: it can consider both current and past data
: information, providing better handling of time
series. :

Disadvantage: in situations with insufficient
historical data, the forecasting performance is
suboptimal, hence it is combined with the seq2seq
network.

Simulating the way the human brain processes
information enables the method to focus more on
crucial information during training.

Advantage: introducing the domain adversarial
mechanism on top of the traditional transfer
learning framework leads to improved transfer |:
effectiveness. :

Disadvantages: the network architecture of the
‘ feature extractor, label predictor, and domain
i classifier is overly simplistic, resulting in limited
' capability to handle time series data.

Fig. 5.

Summary of functions of each part of proposed method.

The overall framework of the proposed method can be di-
vided into three main components, as illustrated in Fig. 6.
Each of these components will be introduced sequentially.

A. K-shape Clustering

Initially, it is imperative to identify the dataset slated for
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forecasting as the target domain data. Subsequently, a dataset
that optimally aligns with the target domain is chosen from
the pool of various datasets earmarked for selection as the
source domain data. Through the implementation of K-shape
clustering, all load data are partitioned into distinct clusters.
Subsequently, the SBD between the target domain data and
the data within the same cluster is calculated. The dataset ex-
hibiting the minimum SBD value is then selected as the
source domain data.

K-shape clustering

Multiple sets of

source domain . |

load data Shape-based The best matching |

distance [ ] source domain 3

Target domain load data 1

load data

l : !
l—Mlxer

{7Seiciéseq attention DATN

l Encoder ;

Attention LSTM cell 1 for

mechanism feature extraction | . 3

[ ;

: v |
! Update of Gradient Decoder 3
| parameters reversal layer LSTM cell 3 f
; l for regression ;
LSTM cell 2 for Regression |-

domain classification gl '

[ 0ss :

Classification | |

assification loss 3

{Fine-tuning ~ —— :

|._.----"" Freeze the
paramenter !

.| Frozen
LSTM cell 1

Fine tune the model -~

[LSTM cell 2] [LSTM cell 3]

Loss from
fine-tuned model

|

Fine-tuned load
forecasting result

Fig. 6. Overall framework of proposed method.

Upon selecting the most suitable source domain data, the
domain classification labels are appended to both datasets us-
ing one-hot encoding. Specifically, a domain label of O is as-
signed to the source domain data, while a label of 1 is as-
signed to the target domain data. Subsequently, a comprehen-
sive shuffling and blending process is applied to the two da-
tasets, resulting in an amalgamated dataset that serves as the

input data x,. This process is denoted as:
load

lable
x, =[x, %, ] 17)
where x*’ represents the /" load data; and x/“ represents

the /" domain classification label data.

B. Seq2seq Attention DATN

The overall framework of the proposed method in this pa-
per is grounded in the seq2seq network. This framework
comprises an LSTM encoder, an LSTM decoder, and an
LSTM classifier, integrating an attention mechanism. The un-
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derlying principles are delineated as follows.

The data are input into LSTM cell 1 to commence, where-
in the attention-LSTM network facilitates feature extraction
from the input data. The calculation process is outlined in
(18) and (19).

h?nc :fLSTM(hfgcl’xt’ 6{) (18)

(19)

where ™ is the calculation formula of the LSTM; h™ is
the hidden state calculated by the LSTM encoder at time ¢,
and ¢™ is the local context determined by the attention mech-
anism with a length of T—z, T is the length of the input se-
quence, and 7 is the modulated length of the local context.

On the one hand, the feature-extracted data are fed into
LSTM cell 2 to facilitate domain classification. The goal is
to accurately discern whether the input data originate from
the source or target domains. Subsequently, the minimization
of classification errors is achieved by utilizing a gradient in-
version layer.

cenc — zhtencefsuﬂmax (h?nch:nc )

t=1

class __ p,LSTM class ,enc
ht _f (ht—lvc ’02)

where h%* is the hidden layer output of the predictor.

On the other hand, the feature-extracted data are chan-
neled into LSTM cell 3 to undergo regression analysis, with
the primary objective of reducing regression errors. In order
to concurrently mitigate both regression and classification er-
rors, an iterative process is pursued until the stipulated accu-
racy criteria are satisfied.

h;icc =f'LSTM (h?fcl, c&:nc7 01 )

where h® is the hidden layer output of the classifier.

The outputs of LSTM cells 2 and 3 can be calculated us-
ing (5)-(10). Ultimately, the loss functions of these two out-
puts are amalgamated through the utilization of a gradient re-
versal layer.

(20)

o2y

C. Fine-tuning

Fine-tuning constitutes a crucial research method within
the domain of transfer learning. It entails additional training
for a specific task leveraging an already trained model, en-
hancing the alignment of the model with the task require-
ments. Fine-tuning strategically situates the model parame-
ters through pre-training for more favorable initialization, re-
sulting in time savings during subsequent training phases.
Consequently, it has garnered extensive adoption in super-
vised learning [37].

Fine-tuning is imperative for the proposed method in this
paper to refine the mapping between the source and target
domains and enhance the forecasting accuracy. In this re-
gard, the parameters of the LSTM encoder, having under-
gone the initial training round, are frozen and adopted as the
foundational parameters for the subsequent round of fine-tun-
ing training. The calculation formula for this process is pro-
vided by:

B =R X, 0) (22)

where 0 represents the feature extractor parameters subse-
quent to the initial round of training; and A"’ is the output
of the hidden layer following the process of fine-tuning.
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IV. CASE STUDY

The case study in this paper employs residential load data
sourced from the New England region of the United States,
spanning from January 2022 to June 2023, as supplied by In-
dependent System Operator (ISO) New England. This datas-
et encompasses six states and includes eight sets of temporal
and load data [38], each recorded with a time resolution of 1
hour. Focusing on New Hampshire as the target domain, the
data are partitioned into training, validation, and testing sub-
sets with a ratio of 6:2:1. To emulate the scarcity of load da-
ta within the newly established power consumption region,
the entirety of load data in the dataset is utilized as the
source domain data, encompassing the timeframe from Janu-
ary 2022 to June 2023. For the target domain data, records
from the initial half of 2023 are selected, thus facilitating
further exploration through example analysis.

The experimental hardware platform comprises an Intel
Core 17-11700 CPU and a NVIDIA GeForce GTX 1650
GPU. The implementation is carried out in Python 3.9, while
the essential functionalities are realized by utilizing the
Keras deep learning library within the TensorFlow frame-
work.

A. Evaluation Metrics

Before embarking on experimental analysis, it is essential
to choose evaluation metrics to assess the experimental out-
comes. Among various evaluation metrics, the relative mean
square error (RMSE) and mean absolute percentage error
(MAPE) [39] stand out as widely employed indicators in the
forecasting domain, delivering optimal evaluation results.
Among these, MAPE offers insight into the general average
performance of the forecasting models, while RMSE quanti-
fies the spread of deviation between the projected load and
the observed load [40]. They effectively capture the disparity
between forecasted and actual values. Consequently, this pa-
per opts for these two criteria to evaluate the forecasting re-
sults, which are calculated as:

m

>3, (23)

YRMSE =

1
m i

1 m
YMaPE = m z

i=1

yi_);i

x 100% (24)

where y, is the forecasted value; y, is the actual value; and m
is the number of forecasted data.

B. K-shape Clustering

Initially, the load data exhibiting the highest similarity
must undergo screening via cluster analysis. This paper con-
ducts a comparative analysis with K-means clustering to vali-
date the effectiveness of the previously proposed K-shape
clustering. Specifically, the procedure of K-shape clustering
is outlined as follows.

1) Determine the number of clusters via the elbow meth-
od. The unsupervised clustering method delineates distinct
categories based on the magnitude of mean square error
(MSE) [41]. The elbow method is employed to ascertain the
optimal cluster count by observing the trajectory of the in-
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crease of MSE. Starting from a single cluster, the cluster
count progressively rises. When the number of clusters reach-
es the optimum, the MSE experiences a pronounced decline,
eventually reaching a plateau.

Cluster analysis is conducted on the dataset corering the
first half 2023 from the set of eight load data sequences.
The elbow method is employed to ascertain the optimal clus-
ter count. The test results are depicted in Fig. 7.
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Fig. 7. Test results of elbow method.

As depicted in Fig. 7, the MSE maintains a consistent lev-
el after reaching a cluster count of 3. Consequently, this pa-
per opts for a cluster count of 3. Within this arrangement,
the data of Vermont and the Midwest of Massachusetts each
belong to distinct categories, while the data from the remain-
ing regions are allocated to the third category.

2) Utilize the SBD metric for determining the optimal
matching source domain data. This entails conducting addi-
tional assessment on source domain data within the same
cluster as the target domain data. Subsequently, calculate the
SBD distance between each potential candidate data point
and the target domain data, as defined by (3).

The K-means clustering employs the ED to assess the ef-
fectiveness, facilitating the selection of optimal source do-
main data [42]. The SBD and ED between each dataset and
the New Hampshire data can be found in Table 1.

TABLE I
RESULTS OF SBD AND ED CALCULATION

Cluster number Area SBD (107 ED
1 Vermont 201.91 29.90
2 Midwestern Massachusetts 140.49 38.04
3 Connecticut 19.29 7.71
3 Rhode Island 13.19 8.26
3 Northeast Massachusetts 10.30 6.90
3 Southeastern Massachusetts 28.93 10.19
3 Maine 22.07 6.58

It can be observed that the SBD between the load data in
Northeast Massachusetts and the target data is minimized,
while the ED between the load data in Maine and the target
data is minimized. Further experimental analysis is required.

3) Confirm the accuracy of clustering results. Various data-
sets are chosen as source domain data to validate the fore-
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casting efficacy to substantiate the accuracy and efficacy of
the K-shape, as mentioned earlier.

As mentioned earlier, we have conducted K-shape verifica-
tion experiments on data from different regions, and the re-
sults are presented in Table II.

TABLE I
RESULTS OF K-SHAPE VERIFICATION EXPERIMENT

Area RMSE (MW) MAPE (%)
Vermont 58.84 3.27
Midwestern Massachusetts 57.14 3.34
Connecticut 34.88 2.16
Rhode Island 42.35 2.59
Northeast Massachusetts 31.04 1.93
Southeastern Massachusetts 43.55 2.60
Maine 31.21 2.50

It can be observed from Table II that the experimental
groups corresponding to clusters 1 and 2 exhibit the most
substantial forecasting errors, characterized by RMSE values
exceeding 57 MW and MAPE values surpassing 3%. Con-
versely, the experimental group associated with cluster 3
showcases notably diminished forecasting errors compared
with the initial two clusters. Furthermore, a discernible trend
emerges in which lower SBD values coincide with reduced
forecasting errors. Notably, the SBD in the Northeast Massa-
chusetts is the smallest, indicating the lowest error. Mean-
while, the ED in Maine is the smallest. However, its error is
slightly larger than the former, highlighting the greater accu-
racy and effectiveness of K-shape clustering compared with
K-means clustering. To sum up, the present experiment lever-
ages the dataset from Northeastern Massachusetts as the
source domain data and the dataset from New Hampshire as
the designated target domain data for the conducted study.

C. Comparative Experiment

In order to validate the enhanced efficacy of the proposed
method relative to alternative forecasting methods, a compar-
ative experiment is undertaken. Specifically, the comparative
experiments encompass a range of contemporary forecasting
models including SVM, feedforward neural network (FNN),
extreme gradient boosting (XGBoost), gradient boosting deci-
sion tree (GBDT), random forest (RF), and gated recurrent
unit (GRU). Additionally, to comprehensively assess the ef-
fectiveness of all the refined components within the method,
ablation experiments are conducted utilizing LSTM, seq2seq,
and DATN. Among them, SVM and FNN are prevalent tradi-
tional machine learning models with simple principles,
which can achieve favorable forecasting results in straightfor-
ward forecasting scenarios [43]. XGBoost, GBDT, and RF
are representative ensemble learning models based on the in-
tegration training of multiple decision trees, allowing to ex-
hibit strong generalization capabilities [44]. GRU, LSTM,
and seq2seq are widely applied deep learning models nowa-
days, known for their capability to capture intricate features
in time series data [13]. DATN is a transfer learning model
based on domain adversarial training. All these models are
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widely used in contemporary forecasting. Using them as
comparative experiments can effectively validate the superi-
ority of the proposed method in this paper. The comparative
experiment results are presented in Table III, while the com-
parison of forecasting results of a consecutive week are visu-
ally depicted in Fig. 8.

TABLE III
COMPARATIVE EXPERIMENT RESULTS

Experiment type Number Model RMSE (MW) MAPE (%)
Proposed method 1 Improved DATN 27.97 1.92
2 SVM 42.72 3.04
3 FNN 81.26 5.23
Comparative 4 XGBoost 51.96 3.83
experiment 5 GBDT 50.44 3.65
6 RF 50.96 3.50
7 GRU 35.67 223
. 8 LSTM 50.15 3.27
éiﬁifﬁﬁ?nt 9 seq2seq 41.97 2.69
10 DATN 58.90 3.78

0 10 20 30 40 50 60 70 80 90 100110120130140150160170
Time (hour)
— Actual load; — DATN-seq; — GRU; — FNN; — SVM

(a)

0 10 20 30 40 50 60 70 80 90 100110120130140150160170
Time (hour)
— Actual load; — DATN-seq; — GBDT; — RF; — XGBoost
(b)

00 10 20 30 40 50 60 70 80 90 100110120130140150160170
Time (hour)
— Actual load; — DATN-seq; — seq2seq; — LSTM; — DATN
(©)

Fig. 8. Comparison of forecasting results of a consecutive week. (a) Fore-
casting results of the first set of comparative experiments. (b) Forecasting re-
sults of the second set of comparative experiments. (c) Forecasting results
of ablation experiments.

The data in Table III underscore a notable contrast in per-
formance between the proposed and the comparative experi-
ment methods. Notably, the proposed method exhibits a re-
duction in RMSE of 14.75 MW, 53.29 MW, 23.99 MW,
22.47 MW, 22.99 MW, 7.7 MW, 22.18 MW, 14 MW, and
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30.93 MW across the comparative models. A corresponding
decrease in MAPE of 1.12%, 3.31%, 1.91%, 1.73%, 1.58%,
0.31%, 1.35%, 0.77%, and 1.86% is observed. Figure 8 visu-
ally illustrates that the proposed method in this paper excels
in forecasting peak and trough values, thus yielding a more
accurate overall forecasting outcome.

In the context of ablation experiments, a comparative anal-
ysis reveals that exclusively employing the LSTM or
seq2seq networks in the first two groups yields suboptimal
forecasting outcomes due to the limitations of the domain ad-
aptation. This underscores the shortcomings of deep learning
when data availability is insufficient. Furthermore, juxta-
posed with the final group, it becomes evident that leverag-
ing the traditional DATN for forecasting facilitates the data
transfer from the source domain to the target domain. How-
ever, this method has a diminished capability to comprehend
time series data, leading to inferior forecasting outcomes
compared with the proposed method in this paper. The pro-
posed method, on the other hand, effectively capitalizes on
both data migration advantages and deep learning, thereby
achieving superior forecasting results.

To delve deeper into the forecasting efficacy of the pro-
posed method in this paper, Fig. 9 presents a violin plot of
the forecasting results. This plot effectively visualizes the
distribution characteristics and probability density across
multiple datasets. The medians, depicted as white points
within the plots, and interquartile ranges, symbolized by cen-
tral black bars, are distinctly represented. Additionally, the
width of the violin indicates the number of data distribu-
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Fig. 9. Violin plot of forecasting results.

As depicted in Fig. 9, the data distribution of the forecast-
ing outcomes generated by the proposed method in this pa-
per closely resembles the actual load data distribution. Nota-
bly, the superiority of the forecasting capabilities of pro-
posed method is discernible through the aspect of data distri-
bution.

V. CONCLUSION

This paper introduces an enhanced short-term residential
load forecasting method based on K-shape clustering and
DATN to address the challenge of load forecasting stemming
from limited data availability among new power users. Ini-
tially, the load data undergo screening via K-shape cluster-
ing. Subsequently, a seq2seq network is formed by employ-
ing an LSTM encoder and decoder architecture integrated
with an attention mechanism. This amalgamation facilitates
the roles of feature extraction, domain classification, and la-
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bel forecasting. A fusion is performed between the source do-
main data identified through clustering and the target do-
main data to realize the migration network function within
the DATN. Subsequent fine-tuning of the ultimate forecast-
ing outcomes yields the final target domain forecasting re-
sults.

In case study, varying datasets are initially employed as
source domain data, thereby validating the efficacy of K-
shape clustering. Subsequently, a comparative evaluation is
conducted between the proposed method in this paper and di-
verse forecasting methods. The findings underscore the supe-
rior forecasting performance of the proposed method. More-
over, the efficacy of each constituent is substantiated through
ablation experiments. Compared with alternative methods,
the proposed method achieves a notable reduction in RMSE
ranging from 7.7 MW to 53.29 MW and a corresponding re-
duction in MAPE from 0.31% to 3.31%.

However, this paper still has certain limitations. For in-
stance, in practical engineering scenarios, the source domain
data are often substantial, while the source domain data used
in this paper are relatively limited. In future research, we
will contemplate employing more extensive source domain
data for experimentation. Additionally, this paper focuses on
forecasting the load for large regional areas. In contrast, new-
ly constructed residences are more often represented in
smaller clusters such as residential communities or individu-
al buildings. Future endeavors will involve electrical load
forecasting for smaller-scale entities, aiming to enhance the
forecasting accuracy.
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