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Abstract——In recent years, the expansion of the power grid 
has led to a continuous increase in the number of consumers 
within the distribution network. However, due to the scarcity of 
historical data for these new consumers, it has become a com‐
plex challenge to accurately forecast their electricity demands 
through traditional forecasting methods. This paper proposes 
an innovative short-term residential load forecasting method 
that harnesses advanced clustering, deep learning, and transfer 
learning technologies to address this issue. To begin, this paper 
leverages the domain adversarial transfer network. It employs 
limited data as target domain data and more abundant data as 
source domain data, thus enabling the utilization of source do‐
main insights for the forecasting task of the target domain. 
Moreover, a K-shape clustering method is proposed, which effec‐
tively identifies source domain data that align optimally with 
the target domain, and enhances the forecasting accuracy. Sub‐
sequently, a composite architecture is devised, amalgamating at‐
tention mechanism, long short-term memory network, and 
seq2seq network. This composite structure is integrated into the 
domain adversarial transfer network, bolstering the perfor‐
mance of feature extractor and refining the forecasting capabili‐
ties. An illustrative analysis is conducted using the residential 
load dataset of the Independent System Operator to validate 
the proposed method empirically. In the case study, the relative 
mean square error of the proposed method is within 30 MW, 
and the mean absolute percentage error is within 2%. A signifi‐
cant improvement in accuracy, compared with other compara‐
tive experimental results, underscores the reliability of the pro‐
posed method. The findings unequivocally demonstrate that the 
proposed method advocated in this paper yields superior fore‐
casting results compared with prevailing mainstream forecast‐
ing methods.

Index Terms——Load forecasting, domain adversarial, K-shape 
clustering, long short-term memory network, seq2seq network, 
attention mechanism.

I. INTRODUCTION

SHORT-TERM load forecasting constitutes a fundamental 
pillar within power system planning, consumption analy‐

sis, and operational coordination. It is important to attain pre‐
cision and rationality in short-term load forecasting, furnish‐
ing pivotal data that underpin decisions encompassing opti‐
mal dispatching, operational planning, and demand-side ad‐
ministration within the power system [1]. This, in turn, be‐
gets heightened economic gains and propels efficient power 
utilization. Against power grid expansion nowadays, the pop‐
ulation of power consumers on the consumption side is on a 
relentless ascent. This surges users in fresh challenges for 
load forecasting: the absence of historical load data for 
emerging power consumers renders their patterns of electrici‐
ty consumption uncertain [2]. Consequently, conventional 
forecasting methods struggle to forecast their electricity 
loads accurately.

Numerous technologies have found applications in load 
forecasting, with prominent categories namely statistical 
methods and machine learning methods [3]. Among these, 
statistical methods encompass the linear regression method 
[4], the exponential smoothing method [5], and the autore‐
gressive moving average method [6]. On the other hand, ma‐
chine learning methods encompass those such as support vec‐
tor machines (SVMs) [7], but it is the domain of deep learn‐
ing that has witnessed rapid advancement in recent times. 
Deep learning has gained unparalleled traction due to its 
prowess in handling time series data.

Deep learning encompasses a range of methods with key 
players including the convolutional neural networks (CNNs) 
[8] and the long short-term memory (LSTM) networks. 
While CNNs primarily shine in fields such as computer vi‐
sion [8] and natural language processing [9], the contempo‐
rary recurrent neural networks (RNNs) typified by LSTM 
have found their niche in load forecasting. LSTM has 
emerged as the cornerstone of load forecasting because of its 
capacity to capture long-term dependencies and surmount 
the challenge of gradient vanishing. Moreover, it demon‐
strates an aptitude for abstract feature extraction from load 
data, curtailing data intricacies. An extensive body of litera‐
ture attests to the noteworthy achievements of LSTM in the 
forecasting domain [10]. Reference [11] conceives a forecast‐
ing framework grounded in LSTM, thereby effecting short-
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term load forecasting for individual residential energy loads 
with commendable outcomes. Similarly, [12] harnesses 
LSTM to model temporal intricacies within time series data, 
crafting a forecasting model for building load that exhibits 
remarkable accuracy.

Furthermore, load forecasting has witnessed the applica‐
tion of more sophisticated deep learning methods. Notably, 
methods such as the seq2seq network and attention mecha‐
nism have come to the fore, acclaimed for their efficacy in 
capturing both long-term and short-term dependencies inher‐
ent in load data [13]. Illustratively, [14] delves into load fore‐
casting within renewable energy, employing a seq2seq net‐
work to excel in the short-term forecasting of office building 
loads. Concomitantly, [13] innovates a transformer-based 
seq2seq network that hinges on the attention mechanism, 
leading to the precise forecasting of reactive loads in residen‐
tial areas. Noteworthy also is the endeavor of [15] that con‐
centrates on the forecasting of building energy and orches‐
trates an attention-enhanced seq2seq network, thereby attain‐
ing remarkable accuracy in the advanced multi-step forecast‐
ing of building energy dynamics.

The passage mentioned above delineates the extensive uti‐
lization of deep learning technology in regional residential 
load forecasting. However, this efficacy is hindered when 
newly developed residential zones present a scarcity of load 
data. Conventional deep learning methods grapple with estab‐
lishing effective forecasting models under such constrained 
conditions, exacerbating the challenges in load forecast‐
ing [16].

Nonetheless, a resolution surfaces in transfer learning, ad‐
ept at ameliorating the dearth of data by drawing insights 
from alternative datasets for model training and subsequent 
target dataset forecasting. Within this context, the domain ad‐
versarial transfer network (DATN) emerges as an exemplar, 
augmenting traditional transfer learning with an adversarial 
mechanism. This strategic amalgamation of domain adapta‐
tion and profound feature learning engenders an efficacious 
mapping between source and target domains, thereby enhanc‐
ing transfer efficiency [17]. Illustratively, [18] harnesses do‐
main adaptation to facilitate the seamless migration of build‐
ing load data, culminating in discernible enhancements in 
forecasting accuracy. Similarly, [19] introduces an ensemble 
forecasting model grounded in domain adaptation principles, 
adeptly circumventing the issue of inadequate training of 
model attributed to limited samples stemming from concept 
drift. The convergence of deep learning, transfer learning, 
and domain adaptation constitutes a pivotal stride toward ad‐
dressing the intricacies of sparse data scenarios in load fore‐
casting.

In transfer learning endeavors, it becomes a pivotal consid‐
eration to select suitable source domain data when multiple 
load datasets are available. Contemporary practices frequent‐
ly encompass methodologies such as K-means clustering and 
dynamic time warping (DTW). Notably, K-means clustering 
stands as a conventional method. Reference [20] introduces 
a forecasting model that harmoniously melds the K-means 
clustering with deep learning. Specifically, the K-means clus‐
tering is leveraged to distill the resemblance within residen‐

tial load profiles, thereafter facilitating load data forecasting 
through deep learning methods. On a similar note, [21] advo‐
cates for the utilization of K-means to categorize users in 
load forecasting. Nevertheless, it is acknowledged that the 
classification efficacy might wane in face of voluminous da‐
ta, potentially impinging upon the forecasting accuracy. Al‐
ternatively, the DTW has recently emerged as a dominant 
method for gauging correlation. Reference [22] harnesses the 
DTW distance as a benchmark to gauge similarity between 
source and target domain data, facilitating the selection of 
source domain data. However, a drawback inherent to DTW 
is its elevated calculation complexity.

A recent addition to this landscape is the K-shape cluster‐
ing, which incorporates a refined model grounded in the 
principles of K-means. This method augments operational ef‐
ficiency and bolsters the robustness of data classification, 
thereby achieving calculation efficacy akin to DTW [23]. Re‐
grettably, its application in load forecasting remains limited 
as of now. The efficacy of the K-shape clustering has been 
demonstrated in specific application domains. For instance, 
[24] proposes a convolutional RNN predicated upon K-shape 
clustering and an attention mechanism, culminating in profi‐
cient short-term wind speed forecasting. Likewise, [25] ad‐
vances the K-shape clustering to classify building energy 
consumption data. Empirical outcomes highlight the com‐
mendable clustering proficiency of this method across vari‐
ous energy consumption data granularities.

Consequently, this paper presents a solution for the chal‐
lenges posed by the scarcity of data from newly established 
residential users to underpin load forecasting. It addresses 
the conundrum of source domain data selection for the trans‐
fer process. The proposed method for short-term load fore‐
casting within this context is poised to enhance forecasting 
accuracy effectively.

The contributions of this paper can be outlined as follows.
1) A forecasting model based on the LSTM network and 

an attention mechanism is devised, thereby enhancing the en‐
coding process of load data.

2) The integration of the domain adversarial mechanism 
into the seq2seq network gives rise to the DATN, facilitating 
the seamless transition of data from the source domain to 
the target domain.

3) A novel method grounded in the K-shape clustering is 
introduced. This method quantifies load data similarities, sub‐
sequently serving as a benchmark for selecting pertinent 
source domain data.

The organization of this paper unfolds as follows. Section 
II delineates the model structures for this paper. Subsequent‐
ly, the Section III presents the overall framework advanced 
within this paper. Section IV presents illustrative case stud‐
ies to corroborate the viability of the proposed method. Fi‐
nally, Section V encapsulates the findings and conclusions.

II. MODEL STRUCTURE FOR THIS PAPER

This paper uses the K-shape clustering to sieve the source 
domain data, while the seq2seq network, LSTM network, 
and attention mechanism collaboratively enhance the perfor‐
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mance of conventional DATN method. Subsequent subsec‐
tions will expound on each of these components individually.

A. K-shape Clustering

Clustering is a widely employed unsupervised data mining 
method applicable to time series data processing [26]. 
Through clustering, insights into regularities and correlations 
among data can be gleaned, enabling the categorization of 
time series data according to their affinities [27]. A promi‐
nent conventional unsupervised clustering method is K-
means, which calculates similarity between time series via 
Euclidean distance (ED). This method boasts a straightfor‐
ward principle and notable calculation efficiency [28]. Never‐
theless, K-means disregards potential horizontal scaling and 
data translation effects, rendering it less effective in scenari‐
os where dissimilar time series lengths or phase disparities 
are involved.

The K-shape clustering represents an enhanced clustering 
method derived from K-means, showcasing notable advance‐
ments across two key dimensions [23].

1) Distance calculation: the distance is calculated utilizing 
the cross-correlation metric, and a statistical method is em‐
ployed to ascertain the similarity between two time series, 
even when their lengths differ and they lack precise align‐
ment.

The time series are denoted as x= (x1x2xn ) and y=
(y1y2yn ), respectively, where n is the number of time se‐
ries. The sequence x is subject to transformation by (1) to at‐
tain displacement invariance:

x(s)=

ì

í

î

ïïïï

ï
ïï
ï

(

00

|| s

x1x2xn - s) s ³ 0

(x1 - sxn - 1xn00
|| s

) s < 0
(1)

where s represents the displacement of the sequence. Consid‐
ering a range of distinct s values, we incrementally derive 
the dot product between x(s) and y as visually depicted in 
Fig. 1.

In Fig. 1, considering the sequence length as an illustra‐
tive instance with n = 5, the values for s ranges within 
[-44]. Diverse values of s prompt a systematic calculation 
of the dot product using (2), resulting in a cumulative count 
of obtained dot products totaling 2n - 1, which equates to 9 

in this scenario.
Subsequently, the correlation coefficient between the two 

series is obtained:

Rs (xy)=
ì

í

î

ïïïï

ïïïï

∑
i = 1

n - s

yi xi + s     s ³ 0

R - s(yx)     s < 0

(2)

where Rs is the inner product between sequences.
Ultimately, the shape-based distance (SBD) is evaluated 

employing the normalized correlation coefficient, represented 
by:

SBD(xy)= 1 -max
Rs (xy)

R(xx)R(yy) (3)

where R is the inner product within the identical sequences. 
Proximity to 0 in the SBD value indicates a heightened cor‐
relation between the two sequences.

2) Centroid calculation: in instances where clusters encom‐
pass multiple time series, the entire cluster can be succinctly 
encapsulated by a single series termed the centroid. A 
straightforward method to deriving the centroid from a series 
collection entails calculating the arithmetic mean of corre‐
sponding coordinates across all series, thus determining the 
centroid coordinates. Nevertheless, the efficacy of the pro‐
posed method is compromised when dealing with temporally 
shifted time series. As depicted in (4), the K-shape clustering 
calculates the centroid using the SBD, thereby reformulating 
the centroid calculation into an optimization paradigm.

μ*
k = arg max

μ*
k

∑
xÎD( )max Rs (xμk )

R(xx) R(μkμk )

2

(4)

where μk represents the centroid that becomes imperative to 
determine the optimal value μ*

k for the centroid to ensure the 
maximal similarity between the centroid and each sequence 
within cluster D.

B. Seq2seq Network

The seq2seq network was initially introduced in 2014, 
gaining prominence for its capacity to handle tasks character‐
ized by uncertain output lengths, particularly in machine 
translation [29]. Unlike conventional neural networks, 
seq2seq networks are constructed upon an encoder-decoder 
architecture. In the forecasting context, they process variable-
length sequences as input for the encoder, conducting feature 
extraction to yield a fixed-shape hidden state. This hidden 
state is then transformed into a variable-length sequence 
through the decoder, culminating in the eventual generation 
of the final forecasting outcome. Differing from deep learn‐
ing methods typified by LSTM, the seq2seq network archi‐
tecture embodies an autoregressive model and generates time 
series transformations from one domain to another, address‐
ing the challenge of inadequate data in traditional deep learn‐
ing methods. Consequently, it finds its forte in forecasting 
scenarios marked by limited availability of historical data.

Nonetheless, traditional seq2seq networks confront specif‐
ic concerns as follows.

…

y

x
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Fig. 1.　Calculation of dot product between sequences.
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1) Given that the encoder-decoder structure in the seq2seq 
network is founded on a fundamental feedforward neural net‐
work (FNN), the amplification of input sequence length pos‐
es challenges in effectively encompassing all the information 
embedded within extended sequences into the hidden state. 
Consequently, this can impede the forecasting accuracy [30].

2) The inherent limitation of a fixed-length hidden state 
might compromise its capacity to comprehensively retain the 
entirety of input sequence information, potentially leading to 
the overwriting of earlier data input by subsequently arriving 
data [14].

This paper advocates the substitution of conventional 
FNN within the encoder-decoder framework with LSTM to 
address the first concern. This transition aims to enhance the 
treatment of extended sequences by affording improved long-
term sequence processing.

In response to the second concern, this paper introduces 
an attention mechanism into the conventional seq2seq net‐
work. This augmentation assigns greater weights to salient 
information within the input sequence. Consequently, the lim‐
ited-length hidden state is empowered to capture a more 
comprehensive spectrum of sequence information.

C. LSTM Network

The LSTM network model constitutes an advancement 
over the conventional RNN [30]. Drawing inspiration from 
computer logic gates, it offers a solution to the issue of gra‐
dient vanishing or explosion that arises from ongoing matrix 
multiplications in RNN [31]. At present, it stands as the pre‐
eminent contemporary model in the realm of RNNs. LSTM 
infuses memory components into the RNN in its evolution, 
simulating human cognitive processes [32]. This augmenta‐
tion facilitates enhanced processing of historical information. 
State gates are introduced to regulate the output of each 
memory cell, which governs these memory cells [33]. The 
structural depiction of the LSTM network is presented in 
Fig. 2.

The calculation formula corresponding to each component 
within Fig. 2 is given by:

it = f (x twxi + ht - 1whi + b i ) (5)

ft = f (x twxf + ht - 1whf + bf ) (6)

o t = f (x twxo + ht - 1who + bo ) (7)

mt = tanh(x twxm + ht - 1whm + bm ) (8)

ct = ftct - 1 + itmt (9)

ht = o t tanh ct (10)

where it, ft, ot, and mt are the input gate, forget gate, output 
gate, and candidate memory units, respectively; xt is the in‐
put of the memory elements; ct is the output of the memory 
elements; ht is the hidden state at time t; wxi, wxf, wxo, and 
wxm are the weight matrices multiplied by xt; whi, whf, who, 
and whm are the weight matrices multiplied by ht - 1; bi, bf, bo, 
and bm are the weight biases; f is the employed sigmoid func‐
tion σ; and  is the Hadamard product.

As illustrated in (9), the output of the memory cell ct at 
time t is primarily shaped by two components, i.e., ct - 1 and 
mt, corresponding to the previous memory cell state and the 
candidate memory unit, respectively. The input gate it gov‐
erns the incorporation of fresh information from mt, while 
the forget gate ft dictates the preservation of historical data 
from the prior memory cell state ct - 1. This dual interplay fa‐
cilitates integrating current and antecedent data for a compre‐
hensive understanding.

D. Attention Mechanism

The attention mechanism emulates the cognitive informa‐
tion processing observed in the human brain. Initially pro‐
posed in 2014, it has found diverse applications in domains 
like machine translation, speech recognition, and image pro‐
cessing [34]. In recent years, the utilization of the attention 
mechanism has progressively extended to the realm of deep 
learning. This mechanism facilitates the focal engagement of 
the model with pivotal feature information, amplifying its 
weight during training while diminishing the weight attribut‐
ed to less significant ancillary data [34]. Consequently, this 
mechanism curtails sensitivity to secondary information, aug‐
menting the data processing efficacy, especially when deal‐
ing with restricted datasets.

The attention mechanism can be categorized into hard at‐
tention and soft attention. A binary weight coefficient (0 or 
1) is assigned to each input element in hard attention, indi‐
cating selective focus on specific input data. Conversely, 
weight coefficients ranging from 0 to 1 are allocated across 
all input data in soft attention, signifying a more comprehen‐
sive engagement with the input [35]. Hence, this paper em‐
ploys soft attention exemplified by the calculation procedure 
shown in Fig. 3.tanh
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Fig. 2.　Structural depiction of LSTM network.
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Fig. 3.　Calculation procedure of attention mechanism.
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The calculation procedure is divisible into three distinct 
steps.

1) Calculate the attention score Si. In Fig. 3, the input vec‐
tor is denoted as X =[X1, X2, ..., Xn ], while q represents the 
query vector. The assessment of the significance of each in‐
put vector concerning the query vector can be executed us‐
ing an attention-scoring function. Among the prevalent scor‐
ing functions, the dot product function is widely employed. 
Its formulation is succinctly captured by:

Si =X T
i q (11)

2) Calculate the attention distribution weight αi. Utilize 
the softmax function f softmax to normalize the attention score 
Si within the range of [0, 1]:

αi = f softmax (Si )=
exp(Si )

∑
j = 1

n

exp(Sj )
(12)

3) Calculate the final attention output vector F. Based on 
the attention distribution weight αi, the input data are subject‐
ed to a weighted averaging process, yielding the ultimate 
output:

F =∑
i = 1

n

αi X i (13)

This mechanism directs the attention of the model towards 
pivotal feature information, enabling the allocation of height‐
ened weight ratios to such aspects during model training 
while allocating lesser weights to comparatively less signifi‐
cant secondary data [34]. Consequently, it mitigates sensitivi‐
ty to secondary data, enhancing the data processing capabili‐
ty of the model mainly when working with limited datasets.

E. DATN

Domain adaptation is a pivotal facet of transfer learning 

that involves mapping data from source and target domains 
characterized by disparate distributions into a unified feature 
space. The minimization of the distance between the data 
points from the two domains within this feature space under 
a defined metric, which acquires domain-invariant features 
[35], diminishes the divergence between domain distribu‐
tions. This endeavor thereby equips the model with en‐
hanced prowess in addressing novel tasks within the target 
domain. The conceptual incorporation of confrontation into 
domain adaptation gives rise to the formulation of DATN.

The traditional architecture of transfer learning is com‐
prised of a feature extractor and a predictor. The DATN inte‐
grates a domain classifier to achieve an adversarial effect to 
expand upon this foundation [36], as illustrated in Fig. 4. In 
this method, the feature extractor maps data into the feature 
space, facilitating the ability of predictor to discern catego‐
ries within the source domain data. However, the domain dis‐
criminator struggles to distinguish the originating domain of 
data. Subsequently, the predictor employs the output of fea‐
ture extractor to forecast the domain-specific class label of 
the input data. During the training phase, the role of the do‐
main classifier involves categorizing data within the feature 
space and striving to differentiate the originating domains 
maximally. This complex interaction aims to enhance the do‐
main adaptation capabilities of the DATN. Within this frame‐
work, the interplay between the feature extractor and the do‐
main classifier gives rise to an antagonistic effect. The intro‐
duction of a gradient inversion layer during training serves 
to minimize classification errors. Meanwhile, the integration 
of the feature extractor and predictor contributes to the re‐
duction of training errors. The collective training error E en‐
compassing the feature extractor, predictor, and domain clas‐
sifier is depicted in (14).

E(θ fθ1θ2 )=∑
i = 1

N

L1 (G1 (Gf (xiθf )θ1 )y)- λ∑
i = 1

N

L2 (G2 (Gf (xi

θf )θ2 )y)=∑
i = 1

N

L1 (θ fθ1 )- λ∑
i = 1

N

L2 (θ fθ2 ) (14)

where G1, θ1, and L1 are the label predictor, its correspond‐
ing parameters, and the associated loss function, respective‐
ly; G2, θ2, and L2 are the domain classifier, its parameters, 
and its specific loss function, respectively; Gf and θf are the 
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Fig. 4.　DATN structure diagram.
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feature extractor and its parameters, respectively; λ is the 
trade-off coefficient of the loss function L2; and N is the 
number of training data. Throughout the training process, it‐
erative optimization of θ1, θ2, and θf is undertaken to ascer‐
tain their saddle points, which is illustrated in (15) and (16).

(θ′f θ′1 )= arg min
θfθ1

E(θ fθ1θ′2 ) (15)

θ′2 = arg min
θ2

E(θ′f θ′1θ2 ) (16)

At the saddle point, the parameter θ1 of the label predictor 
minimizes the forecasting loss, while the parameter θ2 of the 
domain classifier maximizes the classification loss. Upon in‐
tegrating the feature inversion layer, the parameter θf of the 
feature extractor simultaneously minimizes both the forecast‐
ing and classification losses.

III. OVERALL FRAMEWORK

Overall, the functions of each part of the proposed method 
in this paper are summarized as shown in Fig. 5. The pro‐
posed method integrates the advantages of its components, 
making it more suitable for the forecasting scenarios intro‐
duced in this paper.

The overall framework of the proposed method can be di‐
vided into three main components, as illustrated in Fig. 6. 
Each of these components will be introduced sequentially.

A. K-shape Clustering

Initially, it is imperative to identify the dataset slated for 

forecasting as the target domain data. Subsequently, a dataset 
that optimally aligns with the target domain is chosen from 
the pool of various datasets earmarked for selection as the 
source domain data. Through the implementation of K-shape 
clustering, all load data are partitioned into distinct clusters. 
Subsequently, the SBD between the target domain data and 
the data within the same cluster is calculated. The dataset ex‐
hibiting the minimum SBD value is then selected as the 
source domain data.

Upon selecting the most suitable source domain data, the 
domain classification labels are appended to both datasets us‐
ing one-hot encoding. Specifically, a domain label of 0 is as‐
signed to the source domain data, while a label of 1 is as‐
signed to the target domain data. Subsequently, a comprehen‐
sive shuffling and blending process is applied to the two da‐
tasets, resulting in an amalgamated dataset that serves as the 
input data x t. This process is denoted as:

x t =[x load
t x lable

t ] (17)

where x load
t  represents the tth load data; and x label

t  represents 
the tth domain classification label data.

B. Seq2seq Attention DATN

The overall framework of the proposed method in this pa‐
per is grounded in the seq2seq network. This framework 
comprises an LSTM encoder, an LSTM decoder, and an 
LSTM classifier, integrating an attention mechanism. The un‐

LSTM

DATN

K-shape

clustering

Utilizing an enhanced distance calculation method 
and centroid computation method, it exhibits 
superior clustering performance compared with 
conventional clustering methods.

seq2seq

Advantage: establishing a mapping between two 
domains, it is more suitable for application scenar-
ios lacking historical data.

Disadvantage: the basic architecture comprises FNN, 
and as the length of the input sequence increases, 
the forecasting performance deteriorates.

Advantage: it can consider both current and past data 
information, providing better handling of time 
series.

Disadvantage: in situations with insufficient
historical data, the forecasting performance is 
suboptimal, hence it is combined with the seq2seq 
network.

Attention
mechanism

Simulating the way the human brain processes 
information enables the method to focus more on 
crucial information during training.

Advantage: introducing the domain adversarial 
mechanism on top of the traditional transfer 
learning framework leads to improved transfer 
effectiveness.

Disadvantages: the network architecture of the 
feature extractor, label predictor, and domain 
classifier is overly simplistic, resulting in limited 
capability to handle time series data.

Fig. 5.　Summary of functions of each part of proposed method.
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Loss
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The best matching
source domain

load data

Seq2seq attention DATN
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Attention
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parameters
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LSTM cell 2
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Loss from
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Fine-tuned load
forecasting result
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paramenter

Fig. 6.　Overall framework of proposed method.
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derlying principles are delineated as follows.
The data are input into LSTM cell 1 to commence, where‐

in the attention-LSTM network facilitates feature extraction 
from the input data. The calculation process is outlined in 
(18) and (19).

henc
t = f LSTM (henc

t - 1x tθf ) (18)

cenc =∑
t = τ

n

henc
t f softmax (henc

t henc
τ ) (19)

where f LSTM is the calculation formula of the LSTM; henc
t  is 

the hidden state calculated by the LSTM encoder at time t; 
and cenc is the local context determined by the attention mech‐
anism with a length of T- τ, T is the length of the input se‐
quence, and τ is the modulated length of the local context.

On the one hand, the feature-extracted data are fed into 
LSTM cell 2 to facilitate domain classification. The goal is 
to accurately discern whether the input data originate from 
the source or target domains. Subsequently, the minimization 
of classification errors is achieved by utilizing a gradient in‐
version layer.

hclass
t = f LSTM (hclass

t - 1 c
encθ2 ) (20)

where hclass
t  is the hidden layer output of the predictor.

On the other hand, the feature-extracted data are chan‐
neled into LSTM cell 3 to undergo regression analysis, with 
the primary objective of reducing regression errors. In order 
to concurrently mitigate both regression and classification er‐
rors, an iterative process is pursued until the stipulated accu‐
racy criteria are satisfied.

hdec
t = f LSTM (hdec

t - 1c
encθ1 ) (21)

where hdec
t  is the hidden layer output of the classifier.

The outputs of LSTM cells 2 and 3 can be calculated us‐
ing (5)-(10). Ultimately, the loss functions of these two out‐
puts are amalgamated through the utilization of a gradient re‐
versal layer.

C. Fine-tuning

Fine-tuning constitutes a crucial research method within 
the domain of transfer learning. It entails additional training 
for a specific task leveraging an already trained model, en‐
hancing the alignment of the model with the task require‐
ments. Fine-tuning strategically situates the model parame‐
ters through pre-training for more favorable initialization, re‐
sulting in time savings during subsequent training phases. 
Consequently, it has garnered extensive adoption in super‐
vised learning [37].

Fine-tuning is imperative for the proposed method in this 
paper to refine the mapping between the source and target 
domains and enhance the forecasting accuracy. In this re‐
gard, the parameters of the LSTM encoder, having under‐
gone the initial training round, are frozen and adopted as the 
foundational parameters for the subsequent round of fine-tun‐
ing training. The calculation formula for this process is pro‐
vided by:

henc
t ′ = f LSTM (henc

t-1′ x tθ′f ) (22)

where θ′f represents the feature extractor parameters subse‐
quent to the initial round of training; and henc

t ′ is the output 
of the hidden layer following the process of fine-tuning.

IV. CASE STUDY

The case study in this paper employs residential load data 
sourced from the New England region of the United States, 
spanning from January 2022 to June 2023, as supplied by In‐
dependent System Operator (ISO) New England. This datas‐
et encompasses six states and includes eight sets of temporal 
and load data [38], each recorded with a time resolution of 1 
hour. Focusing on New Hampshire as the target domain, the 
data are partitioned into training, validation, and testing sub‐
sets with a ratio of 6:2:1. To emulate the scarcity of load da‐
ta within the newly established power consumption region, 
the entirety of load data in the dataset is utilized as the 
source domain data, encompassing the timeframe from Janu‐
ary 2022 to June 2023. For the target domain data, records 
from the initial half of 2023 are selected, thus facilitating 
further exploration through example analysis.

The experimental hardware platform comprises an Intel 
Core i7-11700 CPU and a NVIDIA GeForce GTX 1650 
GPU. The implementation is carried out in Python 3.9, while 
the essential functionalities are realized by utilizing the 
Keras deep learning library within the TensorFlow frame‐
work.

A. Evaluation Metrics

Before embarking on experimental analysis, it is essential 
to choose evaluation metrics to assess the experimental out‐
comes. Among various evaluation metrics, the relative mean 
square error (RMSE) and mean absolute percentage error 
(MAPE) [39] stand out as widely employed indicators in the 
forecasting domain, delivering optimal evaluation results. 
Among these, MAPE offers insight into the general average 
performance of the forecasting models, while RMSE quanti‐
fies the spread of deviation between the projected load and 
the observed load [40]. They effectively capture the disparity 
between forecasted and actual values. Consequently, this pa‐
per opts for these two criteria to evaluate the forecasting re‐
sults, which are calculated as:

yRMSE =
1
m∑i = 1

m

(yi - ŷi )
2 (23)

yMAPE =
1
m∑i = 1

m |

|
|
||
||

|
|
||
| yi - ŷi

yi

´ 100% (24)

where ŷi is the forecasted value; yi is the actual value; and m 
is the number of forecasted data.

B. K-shape Clustering

Initially, the load data exhibiting the highest similarity 
must undergo screening via cluster analysis. This paper con‐
ducts a comparative analysis with K-means clustering to vali‐
date the effectiveness of the previously proposed K-shape 
clustering. Specifically, the procedure of K-shape clustering 
is outlined as follows.

1) Determine the number of clusters via the elbow meth‐
od. The unsupervised clustering method delineates distinct 
categories based on the magnitude of mean square error 
(MSE) [41]. The elbow method is employed to ascertain the 
optimal cluster count by observing the trajectory of the in‐
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crease of MSE. Starting from a single cluster, the cluster 
count progressively rises. When the number of clusters reach‐
es the optimum, the MSE experiences a pronounced decline, 
eventually reaching a plateau.

Cluster analysis is conducted on the dataset corering the 
first half 2023 from the set of eight load data sequences. 
The elbow method is employed to ascertain the optimal clus‐
ter count. The test results are depicted in Fig. 7.

As depicted in Fig. 7, the MSE maintains a consistent lev‐
el after reaching a cluster count of 3. Consequently, this pa‐
per opts for a cluster count of 3. Within this arrangement, 
the data of Vermont and the Midwest of Massachusetts each 
belong to distinct categories, while the data from the remain‐
ing regions are allocated to the third category.

2) Utilize the SBD metric for determining the optimal 
matching source domain data. This entails conducting addi‐
tional assessment on source domain data within the same 
cluster as the target domain data. Subsequently, calculate the 
SBD distance between each potential candidate data point 
and the target domain data, as defined by (3).

The K-means clustering employs the ED to assess the ef‐
fectiveness, facilitating the selection of optimal source do‐
main data [42]. The SBD and ED between each dataset and 
the New Hampshire data can be found in Table I.

It can be observed that the SBD between the load data in 
Northeast Massachusetts and the target data is minimized, 
while the ED between the load data in Maine and the target 
data is minimized. Further experimental analysis is required.

3) Confirm the accuracy of clustering results. Various data‐
sets are chosen as source domain data to validate the fore‐

casting efficacy to substantiate the accuracy and efficacy of 
the K-shape, as mentioned earlier.

As mentioned earlier, we have conducted K-shape verifica‐
tion experiments on data from different regions, and the re‐
sults are presented in Table II.

It can be observed from Table II that the experimental 
groups corresponding to clusters 1 and 2 exhibit the most 
substantial forecasting errors, characterized by RMSE values 
exceeding 57 MW and MAPE values surpassing 3%. Con‐
versely, the experimental group associated with cluster 3 
showcases notably diminished forecasting errors compared 
with the initial two clusters. Furthermore, a discernible trend 
emerges in which lower SBD values coincide with reduced 
forecasting errors. Notably, the SBD in the Northeast Massa‐
chusetts is the smallest, indicating the lowest error. Mean‐
while, the ED in Maine is the smallest. However, its error is 
slightly larger than the former, highlighting the greater accu‐
racy and effectiveness of K-shape clustering compared with 
K-means clustering. To sum up, the present experiment lever‐
ages the dataset from Northeastern Massachusetts as the 
source domain data and the dataset from New Hampshire as 
the designated target domain data for the conducted study.

C. Comparative Experiment

In order to validate the enhanced efficacy of the proposed 
method relative to alternative forecasting methods, a compar‐
ative experiment is undertaken. Specifically, the comparative 
experiments encompass a range of contemporary forecasting 
models including SVM, feedforward neural network (FNN), 
extreme gradient boosting (XGBoost), gradient boosting deci‐
sion tree (GBDT), random forest (RF), and gated recurrent 
unit (GRU). Additionally, to comprehensively assess the ef‐
fectiveness of all the refined components within the method, 
ablation experiments are conducted utilizing LSTM, seq2seq, 
and DATN. Among them, SVM and FNN are prevalent tradi‐
tional machine learning models with simple principles, 
which can achieve favorable forecasting results in straightfor‐
ward forecasting scenarios [43]. XGBoost, GBDT, and RF 
are representative ensemble learning models based on the in‐
tegration training of multiple decision trees, allowing to ex‐
hibit strong generalization capabilities [44]. GRU, LSTM, 
and seq2seq are widely applied deep learning models nowa‐
days, known for their capability to capture intricate features 
in time series data [13]. DATN is a transfer learning model 
based on domain adversarial training. All these models are 
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Fig. 7.　Test results of elbow method.

TABLE I
RESULTS OF SBD AND ED CALCULATION

Cluster number

1

2

3

3

3

3

3

Area

Vermont

Midwestern Massachusetts

Connecticut

Rhode Island

Northeast Massachusetts

Southeastern Massachusetts

Maine

SBD (10-4)

201.91

140.49

19.29

13.19

10.30

28.93

22.07

ED

29.90

38.04

7.71

8.26

6.90

10.19

6.58

TABLE Ⅱ
RESULTS OF K-SHAPE VERIFICATION EXPERIMENT

Area

Vermont

Midwestern Massachusetts

Connecticut

Rhode Island

Northeast Massachusetts

Southeastern Massachusetts

Maine

RMSE (MW)

58.84

57.14

34.88

42.35

31.04

43.55

31.21

MAPE (%)

3.27

3.34

2.16

2.59

1.93

2.60

2.50
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widely used in contemporary forecasting. Using them as 
comparative experiments can effectively validate the superi‐
ority of the proposed method in this paper. The comparative 
experiment results are presented in Table III, while the com‐
parison of forecasting results of a consecutive week are visu‐
ally depicted in Fig. 8.

The data in Table III underscore a notable contrast in per‐
formance between the proposed and the comparative experi‐
ment methods. Notably, the proposed method exhibits a re‐
duction in RMSE of 14.75 MW, 53.29 MW, 23.99 MW, 
22.47 MW, 22.99 MW, 7.7 MW, 22.18 MW, 14 MW, and 

30.93 MW across the comparative models. A corresponding 
decrease in MAPE of 1.12%, 3.31%, 1.91%, 1.73%, 1.58%, 
0.31%, 1.35%, 0.77%, and 1.86% is observed. Figure 8 visu‐
ally illustrates that the proposed method in this paper excels 
in forecasting peak and trough values, thus yielding a more 
accurate overall forecasting outcome.

In the context of ablation experiments, a comparative anal‐
ysis reveals that exclusively employing the LSTM or 
seq2seq networks in the first two groups yields suboptimal 
forecasting outcomes due to the limitations of the domain ad‐
aptation. This underscores the shortcomings of deep learning 
when data availability is insufficient. Furthermore, juxta‐
posed with the final group, it becomes evident that leverag‐
ing the traditional DATN for forecasting facilitates the data 
transfer from the source domain to the target domain. How‐
ever, this method has a diminished capability to comprehend 
time series data, leading to inferior forecasting outcomes 
compared with the proposed method in this paper. The pro‐
posed method, on the other hand, effectively capitalizes on 
both data migration advantages and deep learning, thereby 
achieving superior forecasting results.

To delve deeper into the forecasting efficacy of the pro‐
posed method in this paper, Fig. 9 presents a violin plot of 
the forecasting results. This plot effectively visualizes the 
distribution characteristics and probability density across 
multiple datasets. The medians, depicted as white points 
within the plots, and interquartile ranges, symbolized by cen‐
tral black bars, are distinctly represented. Additionally, the 
width of the violin indicates the number of data distribu‐
tions [13].

As depicted in Fig. 9, the data distribution of the forecast‐
ing outcomes generated by the proposed method in this pa‐
per closely resembles the actual load data distribution. Nota‐
bly, the superiority of the forecasting capabilities of pro‐
posed method is discernible through the aspect of data distri‐
bution.

V. CONCLUSION

This paper introduces an enhanced short-term residential 
load forecasting method based on K-shape clustering and 
DATN to address the challenge of load forecasting stemming 
from limited data availability among new power users. Ini‐
tially, the load data undergo screening via K-shape cluster‐
ing. Subsequently, a seq2seq network is formed by employ‐
ing an LSTM encoder and decoder architecture integrated 
with an attention mechanism. This amalgamation facilitates 
the roles of feature extraction, domain classification, and la‐

TABLE Ⅲ
COMPARATIVE EXPERIMENT RESULTS

Experiment type

Proposed method

Comparative 
experiment

Ablation 
experiment

Number

1

2

3

4

5

6

7

8

9

10

Model

Improved DATN

SVM

FNN

XGBoost

GBDT

RF

GRU

LSTM

seq2seq

DATN

RMSE (MW)

27.97

42.72

81.26

51.96

50.44

50.96

35.67

50.15

41.97

58.90

MAPE (%)

1.92

3.04

5.23

3.83

3.65

3.50

2.23

3.27

2.69

3.78
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Fig. 8.　Comparison of forecasting results of a consecutive week. (a) Fore‐
casting results of the first set of comparative experiments. (b) Forecasting re‐
sults of the second set of comparative experiments. (c) Forecasting results 
of ablation experiments.
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Fig. 9.　Violin plot of forecasting results.

1247



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 12, NO. 4, July 2024

bel forecasting. A fusion is performed between the source do‐
main data identified through clustering and the target do‐
main data to realize the migration network function within 
the DATN. Subsequent fine-tuning of the ultimate forecast‐
ing outcomes yields the final target domain forecasting re‐
sults.

In case study, varying datasets are initially employed as 
source domain data, thereby validating the efficacy of K-
shape clustering. Subsequently, a comparative evaluation is 
conducted between the proposed method in this paper and di‐
verse forecasting methods. The findings underscore the supe‐
rior forecasting performance of the proposed method. More‐
over, the efficacy of each constituent is substantiated through 
ablation experiments. Compared with alternative methods, 
the proposed method achieves a notable reduction in RMSE 
ranging from 7.7 MW to 53.29 MW and a corresponding re‐
duction in MAPE from 0.31% to 3.31%.

However, this paper still has certain limitations. For in‐
stance, in practical engineering scenarios, the source domain 
data are often substantial, while the source domain data used 
in this paper are relatively limited. In future research, we 
will contemplate employing more extensive source domain 
data for experimentation. Additionally, this paper focuses on 
forecasting the load for large regional areas. In contrast, new‐
ly constructed residences are more often represented in 
smaller clusters such as residential communities or individu‐
al buildings. Future endeavors will involve electrical load 
forecasting for smaller-scale entities, aiming to enhance the 
forecasting accuracy.
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