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Abstract——The intermittency of renewable energy generation, 
variability of load demand, and stochasticity of market price 
bring about direct challenges to optimal energy management of 
microgrids. To cope with these different forms of operation un‐
certainties, an imitation learning based real-time decision-mak‐
ing solution for microgrid economic dispatch is proposed. In 
this solution, the optimal dispatch trajectories obtained by solv‐
ing the optimal problem using historical deterministic operation 
patterns are demonstrated as the expert samples for imitation 
learning. To improve the generalization performance of imita‐
tion learning and the expressive ability of uncertain variables, a 
hybrid model combining the unsupervised and supervised learn‐
ing is utilized. The denoising autoencoder based unsupervised 
learning model is adopted to enhance the feature extraction of 
operation patterns. Furthermore, the long short-term memory 
network based supervised learning model is used to efficiently 
characterize the mapping between the input space composed of 
the extracted operation patterns and system state variables and 
the output space composed of the optimal dispatch trajectories. 
The numerical simulation results demonstrate that under vari‐
ous operation uncertainties, the operation cost achieved by the 
proposed solution is close to the minimum theoretical value. 
Compared with the traditional model predictive control method 
and basic clone imitation learning method, the operation cost of 
the proposed solution is reduced by 6.3% and 2.8%, respective‐
ly, over a test period of three months.

Index Terms——Energy management, imitation learning, data-
driven decision, economic dispatch.

I. INTRODUCTION 

THERE is a broad consensus that the high proportion of 
renewable energy generation is the key technology for 

achieving low-carbon energy supply and solving environmen‐
tal problems [1]. The microgrid is considered as an energy 
prosumer for integrating and utilizing different forms of re‐

newable energy sources (RESs), e.g., wind and solar, to meet 
local demand. However, the internal uncertainties due to the 
random and intermittent nature of renewable energy genera‐
tion and the variability of power load pose various power 
balancing challenges, e.g., voltage rise and frequency devia‐
tion, to the reliable and safe operation of microgrids. In addi‐
tion, real-time pricing mechanisms have been implemented 
in numerous demonstration areas, introducing significant un‐
certainty to the external trading environment [2].

In practice, energy storage systems (ESSs) including the 
vehicle-to-everything mobile ESS [3] are employed to miti‐
gate the impact of such uncertainties and to enhance the sys‐
tem stability margin [4]. In addition, ESSs can be flexibly 
controlled to shift the output of RESs so as to arbitrage reve‐
nues in the energy market while maintaining the power sup‐
ply-demand balance [5]. Therefore, an efficient energy man‐
agement system (EMS) considering long-term optimization 
objectives in microgrid is demanded to realize the multiple 
economic dispatch decisions in the face of various uncertain‐
ties introduced by the renewable energy generation, load de‐
mand, and electricity pricing.

In the literature, a number of microgrid economic dispatch 
solutions have been proposed to cope with the aforemen‐
tioned multiple uncertainties, covering day-ahead scheduling, 
intra-day optimization, and real-time dispatch.

The optimal day-ahead scheduling solutions generally re‐
quire precise predictions of system power production and de‐
mand [6]. It is well recognized that the accurate prediction is 
difficult to accomplish, or even impossible in practice, 
which is why the stochastic, fuzzy, and robust based meth‐
ods are used. The uncertainties in stochastic optimization are 
often considered as random variables with certain standard 
probabilistic distributions [7], [8], which is difficult to fully 
describe the uncertain properties of variables. In [9], a sce‐
nario-based analysis method is utilized to model the uncer‐
tainties in stochastic processes of optimal scheduling in 
multi-energy microgrids. In [10], the uncertainties in RESs 
and loads are modeled by the Taguchi method to minimize 
the ESS life cycle cost, loss of power supply probability, 
and carbon emissions. The fuzzy optimization takes the un‐
certain inputs as fuzzy variables to mitigate the effects of 
prediction inaccuracy [11], [12]. The robust optimization ad‐
dresses the system uncertainties by evaluating the worse-
case scenarios [13], [14]. These day-ahead scheduling solu‐
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tions can be solved by optimization techniques (e.g., La‐
grange multipliers [15], strong duality theory [16], and heu‐
ristic algorithms [17]) in an offline fashion. However, it 
should be highlighted that the day-ahead energy scheduling 
solutions in the presence of inaccurate prediction may lead 
to a significant deviation from the optimum of economic dis‐
patch.

Based on the day-ahead energy scheduling, the intra-day 
optimization strategy can be implemented according to the 
real-time operation and the latest forecast information for the 
energy scheduling in the coming hours. These rolling/reced‐
ing horizon optimization solutions combine offline and on‐
line methods to mitigate the problem of variability and un‐
certainty with their predictive and self-correcting capabili‐
ties. Since the latest system states can be updated with more 
accurate information on intra-day stage, the two-stage optimi‐
zation or closed-loop model predictive control (MPC) frame‐
work has been investigated. In [18], a two-stage robust sto‐
chastic programming model for commercial microgrids was 
applied to maximize the anticipated profits optimally in the 
day-ahead market, minimizing the imbalance cost by the re‐
al-time adjustment of RESs. In [19], a two-stage approach 
was proposed to integrate day-ahead unit commitment and 
real-time economic dispatch to deal with high uncertainties 
in the load demands and renewable generation. In [20], a 
closed-loop distributed MPC was designed to reduce poten‐
tial variations of intra-day economic dispatch considering the 
optimization of behaviors of several participants. In [21], a 
two-stage stochastic programming approach combined with 
MPC was suggested for microgrid planning considering eco‐
nomic and environmental objectives. In [22], a two-layer en‐
ergy dispatch strategy was proposed, in which the pre-layer 
optimal results can be adjusted by solving a boundary value 
problem to improve the robustness of prediction errors. How‐
ever, these intra-day optimization solutions are highly reliant 
on an explicit forecast or an appropriate modified strategy 
against the future uncertainties, which may be influenced by 
incorrect models, online regulations, or prediction horizons.

To further reduce uncertainties and eliminate the effect of 
prediction errors, the real-time dispatch has received more 
and more attention. These online solutions could not rely on 
cumbersome predictions of multiple random variables. This 
stochastic sequential decision problem is often considered 
and modeled as a Markov decision process (MDP), which 
uses Bellman’s equation to decompose the temporal depen‐
dency and partition the large-scale optimization. However, 
such a high-dimensional decision space may lead to the 
“curse of dimensionality” to MDP methodologies. To ad‐
dress these challenges, approximate dynamic programming 
(ADP) and reinforcement learning (RL) are developed to 
solve Bellman’s equation through value function approxima‐
tion (VFA) [23] or policy function approximation (PFA) 
[24]. In [25], an RL method was developed that enables gen‐
eration resources, distributed storage, and customers to iden‐
tify the best strategies for energy dispatch and load schedul‐
ing without any prior knowledge. In [26], an RL-based on‐
line optimal control method was proposed to smooth the 
charging and discharging profile and suppress the distur‐

bance of the hybrid energy storage. In [27], a cooperative 
RL algorithm with a diffusion approach was proposed for 
the distributed economic dispatch in real-time to deal with 
the vast and continuous state spaces. For the dynamic dis‐
patch of battery energy storage system (BESS), [28] pro‐
posed an RL method supplemented with Monte-Carlo tree 
search and domain knowledge expressed as dispatching 
rules. However, these solutions require sophisticated designs 
of learning strategies and approximation functions to avoid 
dimensionality problems arising from the continuous state/ac‐
tion space, complex constraints, and sluggish training. It is 
challenging to balance the exploration and the exploitation 
of the reward function so that these solutions typically fall 
into the local optimization.

To overcome the above limitations of RL, imitation learn‐
ing (IL) based economic dispatch methods have attracted 
more and more attention. IL can greatly enhance the efficien‐
cy of RL in decision-making by learning from demonstration 
samples with expert knowledge. IL methods generally in‐
clude two categories: behavior clone learning (BCL) and in‐
verse reinforcement learning (IRL). BCL methods simulate 
the expert suggested demonstrations through supervised 
learning to realize the action decision under the correspond‐
ing state. IRL methods adopt a similar structure to RL, but 
the reward function in IRL is unknown. IRL simulates the 
optimal reward function by matching it with expert demon‐
strations. IRL tries to find the underlying intent of the expert 
policy so that it can provide a better generalization policy 
for unseen states or environments with slightly different dy‐
namics. Whereas the model parameters of BCL without poli‐
cy learning process are easier to train and optimize, and 
BCL is more convenient to deploy and reproduce.

Reference [29] proposed an IRL approach to address 
building energy management by learning the objective of 
controller agents with domain experts. In [30], a novel IRL-
based IL framework is used to identify the bidding decision 
objective function of ESSs in coupled multi-market to gain 
more profits. Reference [31] proposed a behavior cloning 
based method to address the online optimal power schedul‐
ing by mimicking a mixed-integer linear programming 
(MILP) solver. In [32], a BCL-based IL method was pro‐
posed for the pricing strategy of an electricity retailer, which 
consists of a self-generated expert knowledge mechanism 
that instructs the agent to simulate given expert policy with 
generated expert knowledge. Reference [33] proposed an 
economic dispatch solution for islanding microgrid based on 
clone IL. This solution used random regression forest model 
to directly learn the optimal operation trajectories to make 
the decision-making model have enough intelligence and ex‐
perience. This solution of EMS can be efficiently deployed 
in a cloud-edge control architecture to enable real-time dis‐
patch. The main techniques of the literature under different 
economic dispatch frameworks for microgrids are summa‐
rized in Table I.

Compared with RL methods commonly used in a real-
time fashion, IL-based economic dispatch methods offer the 
advantage of fully exploring the pattern distribution in histor‐
ical data and making more efficient use of high-quality dem‐
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onstration samples derived from expert experience. Follow‐
ing the IL process, the intelligent decision-making model 
can be deployed on edge computing platforms for extended 
periods of time, while minimizing latency and bandwidth re‐
quirements. Unlike existing MPC-based solutions, this direct 
inference approach without the need for iterative optimiza‐
tion saves significant field computing resources and reduces 
communication delays and congestion [34]. The IL-based 
economic dispatch framework is designed for future RES-
dominated power systems equipped with ubiquitous sensing, 
thereby necessitating further follow-up research.

A successful clone IL model that can make an accurate in‐
ference to discriminate between different situations requires 
plentiful labeled training samples with sufficient diversifica‐
tion to maximize the pattern information in the data. Howev‐
er, the high cost of demonstration labeling or the inaccessi‐
bility of labeled samples is always the main reason for the 
“over-fitting” phenomenon in machine learning [35]. An un‐
supervised learning model, with the ability to automatically 
learn signatures and dependencies from the raw data without 
labels, plays a more important role in conjunction with su‐
pervised learning.

Thus, based on BCL, a hybrid model combining unsuper‐
vised learning and supervised learning is developed in this 
study to further enhance the learning accuracy and general‐
ization capability of the decision-making solution for eco‐
nomic dispatch. The main ideas of this solution are as fol‐
lows: the vast amount of historical data on the cloud plat‐
form are leveraged to analyze stochastic variables with inher‐
ent uncertainties of wind, photovoltaic (PV), load, and real-
time price (RTP) through unsupervised learning to obtain the 
latent representation of the system operation patterns. Then, 
the decision-making sequences of the economic dispatch for 
certain historical days are recalculated by modeling the of‐
fline optimization problem. Since the optimization problem 
is solved after the fact and the conditions that have occurred 
are already known, there are no uncertainties involved, thus 
allowing for the attainment of an optimal dispatch. After‐
ward, the supervised learning model is applied to learn, re‐
member, and understand the complex mapping between the 
optimal dispatch and the corresponding operation patterns. 
Finally, by utilizing sensing devices to obtain the latest sys‐
tem information, the well-trained model can be deployed to 
the edge and perform real-time economic dispatch based on 

actual operation conditions.
The main contributions can be summarized in two-fold.
1) An IL-based decision-making solution is developed to re‐

alize real-time economic dispatch, which substantially reduces 
the need for the precise forecasting of multiple stochastic vari‐
ables and the development of sophisticated policies.

2) A hybrid model combining unsupervised learning and 
supervised learning is utilized to learn the optimal dispatch 
of different operation patterns using expert demonstrations, 
which improves the generalization ability of the proposed so‐
lution under multiple operation uncertainties.

The remainder of this paper is organized as follows. The 
system modeling and the formulation of the economic dis‐
patch problem are presented in Section II. Section III pres‐
ents the proposed IL-based real-time decision-making solu‐
tion for microgrid economic dispatch. Section IV extensively 
evaluates the proposed solution and analyzes the numerical 
findings. Finally, conclusions are drawn in Section V.

II. SYSTEM MODELING AND FORMULATION OF ECONOMIC 
DISPATCH PROBLEM 

A grid-connected microgrid with cloud-edge architecture 
is examined in this study through the point of common cou‐
pling (PCC) with various types of RESs, i. e., PV sources, 
micro wind turbines (WTs), and BESS, as illustrated in Fig. 
1. It is assumed that the RTP is available from the aggrega‐
tor/retailer and the power can be transferred between the mi‐
crogrid and power utility. The real-time monitoring informa‐
tion can be obtained by sensors based on Internet of Things 
(IoT) technology. The system states collected from IoT sen‐
sors can be made available to the cloud platform. The eco‐
nomic dispatch model can be trained in the cloud platform 
using the historical data and then accessible to field edge 
computing devices for real-time decision-making and local 
control actions.

A. System Modeling

In this study, the PV sources, WTs, and load demands are 
considered non-dispatchable. The ESS is a dispatchable unit 

TABLE I
SUMMARY OF LITERATURE ON ECONOMIC DISPATCH FRAMEWORKS FOR 

MICROGRIDS

Framework

Day-ahead scheduling

Intra-day optimization

Real-time dispatch

Main technique

Stochastic optimization

Fuzzy optimization

Robust optimization

Two-stage approach

Rolling optimization

RL

IL

Reference

[7]-[10]

[11], [12]

[13], [14]

[18], [19], [22]

[20], [21]

[23]-[28]

[29]-[33]

Control signal; Communication signal; Power signal

Cloud platform

System

state report

Supervised

management

Utility grid

RTP market

information

BESS

Edge computing

WTs PV sources Load

Fig. 1.　 Illustration of grid-connected microgrid with cloud-edge architec‐
ture.
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that coordinates the renewable energy generation and de‐
mand during the economic dispatch. The decision-making of 
economic dispatch in the microgrid aims to optimize the use 
of RESs to reduce imbalances between the power generation 
and demand, while minimizing operation costs in a real-time 
pricing environment and improving the lifespan of storage 
devices. The economic dispatch of a microgrid can be formu‐
lated as an optimization problem that considers long-term 
economic objectives and operation constraints.

Since regional microgrids are often located within a limit‐
ed geographical area, the power loss is negligible. The pow‐
er balance constraint is formulated as:

pw(t ) + pp(t ) + pb(t ) + pg(t ) = pl(t ) (1)

where pw(t ), pp(t ), and pl(t ) are the power of WTs, PV 

sources, and loads in time slot t, respectively, which are the 
non-dispatchable variables; pg(t ) is the exchanged power ab‐

sorbed/injected by/to the utility grid, and when pg(t ) is posi‐

tive, it means purchasing electricity from the utility grid; 
and pb(t ) is the dispatched power of the BESS. When BESS 
is discharging, pb(t ) is positive, and when BESS is charging, 
pb(t ) is negative.

The total operation cost of a microgrid mainly includes 
two components: the electricity purchasing cost from the util‐
ity grid (Cg( )× ) and the BESS deterioration cost due to charg‐

ing and discharging (Cb( )× ). The utility grid with sufficient 
capacity can enable the power of the microgrid to be fed 
back at the same electricity price. Thus, the objective of eco‐
nomic dispatch in a long-term optimization horizon is:

min∑
tÎ Τ

( )Cg( )pg( )t +Cb( )pb( )t SOH ( )t (2)

where SOH ( )×  is the state of health (SOH) of the BESS; and 
T is the set of time slots for the long-term objective (always 
one day) in the global optimization. The itemized costs are 
shown as:

Cg( pg(t ) ) = eg(t ) pg(t ) (3)

Cb( pb(t ) SOH (t ) ) = ρb(SOH (t ) - SOH (t + 1) ) (4)

where eg(t ) is the RTP of the electricity of the power grid in 

time slot t; and ρb is the degradation coefficient of the BESS.
The SOH degradation iteration of the BESS caused by 

charging and discharging cycles is formulated as [27]:

SOH (t + 1) = SOH (t ) -Dh (t ) × SOH (t ) (5)

where Dh (t ) is the degradation factor associated to the 
change in the state of charge (SOC) of the BESS, which can 
be calculated as [27]:

Dh (t ) = αh((DSOC (t ) ) βh + ηh ) -1

(6)

where αh, βh, and ηh are the degradation parameters deter‐
mined by the BESS characteristics from empirical tests.

The SOC change of the BESS, i. e., DSOC (t ), is deter‐
mined by the charging or discharging power:

DSOC (t ) =
ì
í
î

ïï

ïï

cb pb( )t Dt Eb pb( )t £ 0

pb( )t Dt ( )db Eb pb( )t > 0
(7)

where cb and db are the efficiency coefficients of charging 
and discharging, respectively; Dt is the time interval; and Eb 
is the capacity of the BESS. SOC is restricted to [0.2, 0.8] 
to prevent BESS deterioration caused by deep charging and 
discharging.

The dispatched power output constraint of the BESS satis‐
fies:

pmin
b < pb(t ) < pmax

b (8)

where pmin
b  and pmax

b  are the lower and upper limits of the dis‐
patched power of the BESS, respectively.

B. Formulation of Economic Dispatch Problem

Once the renewable energy generation, demand, and elec‐
tricity price are known, the economic dispatch can be formu‐
lated as a deterministic optimization problem. By solving 
this problem, the optimal dispatch over a day in different op‐
eration patterns from the historical data can be obtained. Dif‐
ferent types of optimization tools can be used to solve this 
problem, such as commercial solvers Gurobi and CPLEX. 
For the optimization problem established in Section II-A, 
heuristic algorithms can be a powerful approach to address 
such non-convex optimization problem. The solved results 
can be evaluated by the expert experience to obtain the opti‐
mal dispatch decision as close as possible to the optimal so‐
lution. Among the heuristic algorithms, particle swarm opti‐
mization (PSO) algorithm is considered efficient with a mini‐
mal implementation complexity [36], [37], which is exten‐
sively utilized to solve different engineering optimization 
problems. In this work, the PSO algorithm [38] is utilized to 
solve this optimal economic dispatch problem with continu‐
ous decision variables.

III. PROPOSED IL-BASED REAL-TIME DECISION-MAKING 
SOLUTION FOR MICROGRID ECONOMIC DISPATCH 

In this paper, a hybrid model combining unsupervised 
learning and supervised learning is proposed to construct the 
mapping relationship between complex operation patterns 
and optimal dispatch decisions considering multiple uncer‐
tain inputs and a real-time operation environment.

First, through the unsupervised learning model, the hidden 
representations of the time-series observations are extracted 
to reveal the potential knowledge in a variety of operation 
patterns. These observations are uncontrollable stochastic 
variables over a period, including wind power, PV power, 
load demand, and RTP. The matrix of the observed stochas‐
tic variables is formulated as:

Xo =

é

ë

ê

ê

ê

ê

ê
êê
ê

ê

ê

ê

ê ù

û

ú

ú

ú

ú

ú
úú
ú

ú

ú

ú

úpw( )t - τ + 1 pw( )t - τ + 2  pw( )t
pp( )t - τ + 1 pp( )t - τ + 2  pp( )t
pl( )t - τ + 1 pl( )t - τ + 2  pl( )t
eg( )t - τ + 1 eg( )t - τ + 2  eg( )t

(9)

where τ is the length of the time series, which indicates the 
perception range of operation patterns.

Next, the supervised learning model is applied to memo‐
rize and learn the sophisticated inference from input space 
(constructed by the extracted features through the unsuper‐
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vised learning model and the matrix of system state vari‐
ables shown in (10)) to output space (labeled by the optimal 
dispatch decision at the corresponding time).

Xs =
é

ë

ê
êê
ê ù

û

ú
úú
úSOC ( )t - τ + 1 SOC ( )t - τ + 2  SOC ( )t

pg( )t - τ + 1 pg( )t - τ + 2  pg( )t     (10)

The framework of the proposed solution is shown in Fig. 
2. In the offline training process, labels of the supervised 
learning samples are given by the results of the deterministic 
offline optimization problem solving by the heuristic algo‐
rithm in Section II-B. After the unsupervised and supervised 
training processes are completed in the cloud platform, the 
proposed hybrid model can be implemented in field edge 
computing devices to make the economic dispatch in a real-
time environment. Because the model parameters have been 
learned and trained, the computational complexity require‐
ments in real time can be met during the inference process. 
The proposed hybrid model has a good generalization capa‐
bility, which can guarantee the economic and effective dis‐
patch decisions under the new operation pattern in a real-
time fashion.

It is worth noting that the training set can be supplement‐
ed by the scenario generation method when the sample data 
are insufficient. For example, [39] introduced a data-driven 
technique with interpretability for the scenario generation us‐
ing controllable generative adversarial networks, which can 
generate novel and distinct scenarios by capturing the intrin‐
sic characteristics of historical data. In addition, the pro‐
posed hybrid model is learnable and self-adaptive, allowing 
the networks to be updated with novel operation patterns 
through a rolling training process.

A. Denoising Autoencoder (DAE) Based Unsupervised 
Learning Model

The autoencoder is an unsupervised learning method that 
can explicitly learn the important hidden representations on 
the manifold [40]. The autoencoder model can automatically 
learn the parameters and extract the compact and robust fea‐

tures by minimizing the reconstruction error through the en‐
coder-decoder route. In this study, the DAE network [41] is 
adopted as the unsupervised learning feature extraction net‐
work. The DAE network can learn the observations with 
both respective time-series characteristics and the correlation 
characteristics among different variables. The matrix of ex‐
tracted features can be expressed as:

X̂o =DAE ( Xo ) (11)

where DAE ( )×  represents the encoding-decoding process us‐
ing the DAE network.

The DAE can recover the original data xÎRD from an en‐
coded representation on the manifold h = fθ( x͂ ) ÎRN of the 
corrupted input data x͂ÎRD via a decoding function gθ′(h). 
D is the original space dimension, and N is the encoding 
space dimension. The DAE learns the reconstruction distribu‐
tion from the training data pairs ( xx͂ ) through the following 
process [41].

1) Perturbation process q (x|x͂ ) adds stochastic noise into 
the original data x to generate a corrupted input data x͂.

2) Encoding function fθ( x͂ ): x͂ÎRD hÎRN generates a 
hidden representation of the input data.

3) Decoding function gθ′(h): hÎRN x̂ÎRD reconstructs 
the input data from the encoded representation h.

4) Loss metric L ( xx̂ ) can measure the dissimilarity be‐
tween the original data and the reconstructed output.

The encoded representation h is generated from a corrupt‐
ed input data x͂ with perturbations, which necessitates learn‐
ing a sufficiently clever mapping on the manifold to extract 
useful features for denoising.

Generally, a conditional probabilistic distribution q (x|x͂ ) is 
considered to independently perturb each dimension of the 

input data, i.e., q (x|x͂ ) =∏
i = 1

D

q ( )xi|x͂i .

In the encoding process, the corrupted input data x͂ÎRD 
are transformed to a encoded representation hÎRN as [41]:

h = fθ( x͂ ) = s (Wx͂ + b) (12)

where WÎRN ´D is the weight coefficient matrix; bÎRN is 
the hidden bias vector; θ = (Wb); and s ( )×  is the non-linear 
activation function.

Then, the hidden representation h is reconstructed to 
x̂ÎRD by decoding function as [41]:

x̂ = gθ′(h) = s′(W Th + c) (13)

where cÎRD is the input bias vector; θ′= (W Tc); and s′( )×  
is the non-linear mapping function at the decoder. The pa‐
rameters θ and θ′ of the encoder and decoder functions are 
trained by minimizing the reconstruction error, measured by 
the loss metric L ( xx̂ ).
B. Long Short-term Memory (LSTM) Based Supervised 
Learning Model

In this study, the supervised learning model is adopted to 
identify the complicated mapping between the input features 
from time sequences and the output dispatch decisions. The 
LSTM neural network [42] is an advanced approach to learn 
the long-term dependency and relevancy via the exquisite 
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wind, PV,

load, and

RTP data)

Modeling and

simulation of

optimal dispatch

Data
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(learning targets)
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Fig. 2.　Framework of proposed solution.
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gate structure in the “memory” blocks. It can use simultane‐
ously the current environment information and the inherent 
system operation tendency. As a result, the LSTM is well 
suited for this dynamic decision inference of the non-linear 
time-varying system by analyzing and understanding the hid‐
den patterns of operation conditions with multi-attribute time-
series inputs. In this task, the input space Xinput consists of 
the matrix of extracted features X̂o through the unsupervised 
learning model and the matrix of system state variables Xs, 
as shown in (14).

Xinput =
é

ë

ê
êê
ê ù

û

ú
úú
úX̂o

Xs

= [Xt - τ + 1 Xt - τ + 2  Xt ] (14)

where Xt denotes the input matrix of the LSTM neural net‐
work in time slot t, which includes time-series variables 
with different features.

The structure of the LSTM neural network is shown in 
Fig. 3, which includes the input layer, hidden layer, and out‐
put layer. Each “memory” block in the hidden layer consists 
of three gates, i.e., an input gate, a forget gate, and an out‐
put gate, which comprise a full connection (FC) layer with a 
sigmoid function and an element-wise product [43]. These 
gates are designed to regulate the information flow into or 
out of their “memory” blocks. The information flow of long-
term memory ct and short-term memory ht controlled by 
these gates is shown in Fig. 3.

The process of forwarding propagation can be expressed 
as [42]:

Ht = f (UXt +Wh H t - 1 ) (15)

yt =VHt (16)

where Ht is the state of hidden layer in time slot t; f ( )×  is 
the ReLU activation function; U and V are the weights be‐
tween input/hidden layer and the hidden/output layer, respec‐
tively; Wh is the weight between the current hidden layer 
and the hidden layer in the next time slot; and yt is the infer‐
ence output of the LSTM neural network in time slot t. In 
this study, yt represents the decision variable of the BESS 
dispatch pb(t + 1) in the next time slot.

The input gate controls which parts of the new informa‐
tion are added and stored in the long-term memory state. 
The value of the input gate in time slot t it can be expressed 
as [43]:

it = sig (W T
xi x t +W T

hi ht - 1 + b i ) (17)

where x t is the input information of “memory” block in time 
slot t; Wxi is the weight between the input layer and the in‐
put gate; Whi is the weight between the state of short-term 
memory in the previous time slot and the input gate; b i is 
the bias vector of the input gate; and sig ( )×  is the sigmoid 
activation function.

The forget gate controls which long-term memory state 
should be dropped. The value of forget gate in time slot t ft 
can be expressed as [43]:

ft = sig (W T
xf x t +W T

hf ht - 1 + b f ) (18)

where Wxf is the weight between the input layer and the for‐
get gate; Whf is the weight between the state of short-term 
memory in the previous time slot and the forget gate; and b f 
is the bias vector of the forget gate.

The output gate controls which long-term memory state 
should be read and output in this time slot. The value of out‐
put gate in time slot t o t can be expressed as [43]:

o t = sig (W T
xo x t +W T

hoht - 1 + bo ) (19)

where Wxo is the weight between the input layer and the out‐
put gate; Who is the weight between the state of a short-term 
memory in the previous time slot and the output gate; and bo 
is the bias vector of the output gate.

The output of ct and ht can be expressed as [43]:

g t = tanh (W T
xg x t +W T

hght - 1 + bg ) (20)

ct = ft⊗ ct - 1 + it⊗ g t (21)

ht = o t⊗ tanh (ct ) (22)

where Wxg is the weight between the input layer and the 
main layer of the memory block; Whg is the state of a short-
term memory in the previous time slot and the main layer of 
the memory block; bg is the bias vector; and ⊗ is the ele‐
ment-wise product of the vectors.

IV. PERFORMANCE ASSESSMENT AND NUMERICAL RESULT 

A. Simulation Setup

The microgrid shown in Fig. 1 is used in this study to 
evaluate the performance of the proposed solution. WTs, PV 
sources, and loads have rated capacities of 0.6 MW, 1 MW, 
and 1.2 MW, respectively. The capacity of BESS Eb is 5 
MWh. The charging and discharging efficiencies are both 
0.9. SOC is confined to a range of 20% to 80%. The degra‐
dation coefficients of BESS are ρb = 100, αh = 0.001, βh =-2, 
and ηh = 0 based on the empirical curve-fitting results sug‐
gested in [27].

For different microgrids, the optimal dispatching trajecto‐
ries for IL is derived from the historical operation patterns 
of corresponding microgrid. Therefore, the proposed solution 
can be applied to the economic dispatch of various grid-con‐
nected microgrids in real-time electricity market environ‐
ment.

The renewable energy generation and load profiles used in 
the simulations are taken from a microgrid testbed in 2015 
[33]. WTs, PV sources, loads, and RTPs are simulated using 
real-time data with a 15-min resolution. The data gathered 
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Fig. 3.　Structure of LSTM neural network.
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from January 1 to August 31 (8 months) are used to con‐
struct training samples for the unsupervised learning model. 
The data from June 1 to August 31 (3 months) are substitut‐
ed into the economic dispatch model (described in Section 
II) to obtain the optimal dispatch trajectories as the labels of 
training samples for supervised learning model. The data 
from September 1 to November 30 (3 months) are utilized 
as test data to evaluate performance. Figure 4 shows the pat‐
tern variation profiles of renewable energy generations, 
loads, and RTPs in the training set, which encompasses a 
broad variety of operation conditions with uncertainties. μ 
represents the average value of the profiles, and σ represents 
the standard deviation.

In this study, the number of hidden layers of the LSTM 
neural network is set to be 2, and each hidden layer consists 
of 50 cell blocks. The number of layers of the DAE network 
is set to be 3. Then, the two networks are both trained using 
the backpropagation through the Adam algorithm with the 
loss function of RMSE [44].

In the simulation experiment, this study considers that the 
sensors used to monitor real-time status of the system in 
practice are reliable enough, so the impact of the field moni‐
toring errors on the solutions is not considered.

B. Performance of Real-time Dispatch

To illustrate the performance of the proposed solution, 
two operation scenarios are selected: scenario 1 represents 
the normal operation scenario; while scenario 2 represents 
the worst operation scenario. In each scenario, the results cal‐
culated by the proposed solution and the optimal dispatch 
without uncertainties are compared, which are shown in 
Figs. 5 and 6.

The result of Fig. 5(a) intuitively supports that the pro‐
posed solution can economically dispatch the BESS. During 
periods characterized by lower electricity prices, the purchas‐
ing power from the utility grid is strategically allocated. 
When electricity prices increase, the microgrid adjusts its op‐

erations intelligently, enabling power delivery to the utility 
grid. This dynamic behavior showcases the capacity of the 
microgrid to generate additional revenue by exporting sur‐
plus power. Overall, the results demonstrate that in an RTP 
environment, the proposed solution allows for the full utiliza‐
tion of RESs in the microgrid to meet the demand while ef‐
fectively reducing electricity purchasing costs.

Compared with the results of the optimal dispatch without 
uncertainties given in Fig. 5(b), the results of the proposed 
solution considering operation uncertainties show a similar 
dispatch arrangement on the same test day. This finding dem‐
onstrates that the proposed solution, characterized by its 
strong generalization capability, is capable of making near-
optimal decisions when confronted with new operation pat‐
terns. By using IL from the expert experiences, the proposed 
solution can make real-time decisions based on varying oper‐
ation conditions, thus achieving a dispatching trajectory with 
a global optimization mindset.
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In scenario 2, as illustrated by Fig. 6, the inference trajec‐
tory significantly deviates from the optimal dispatch results 
due to limitations in the generalization ability of the ma‐
chine learning model. In this scenario, the BESS charging 
and discharging time sequence decision made by the pro‐
posed solution does not match the real-time electricity mar‐
ket, resulting in the need to purchase power from the utility 
grid to meet the load demand even when the electricity price 
is high. Furthermore, the frequent charging and discharging 
of the BESS contribute to additional battery degradation 
costs. Despite the overall poor economic performance ob‐
served in this scenario, the proposed solution still enables 
the complete utilization of RESs, ensuring the stable opera‐
tion of the system. These results demonstrate the adaptability 
and stability of the proposed solution, which enables mi‐
crogrid economic dispatch without relying on predictive in‐
formation.

C. Benchmarks and Computational Complexity

To assess and compare the computational complexity and 

the economic performance of the proposed solution, three 
different solutions are used as the benchmarks. The bench‐
mark solutions are described as follows.

1) Solution 1: day-ahead stochastic scheduling [7], which 
is a typical stochastic optimization scheduling using the pre‐
diction information to optimize the scheduling of one day 
ahead. Various stochastic variables are predicted by the 
LSTM neural network, where the training data set covers the 
period from January to August. The off-line optimization 
problem is also solved by PSO.

2) Solution 2: MPC-based rolling optimization, which can 
be summarized as follows [45]. The system operation data 
are forecasted over a time slot (i.e., predictive window) and 
the optimization can be carried out based on the forecasted 
data. Then, the obtained optimization result of the first time 
slot in rolling window is adopted. In such a manner, the pre‐
dictive window moves forward with one time slot and the 
previous steps are repeated in the next time slot.

3) Solution 3: basic clone IL-based dispatch, which only 
uses the supervised learning model to verify the improve‐
ment of the unsupervised learning model on the proposed so‐
lution, in which the input of the LSTM neural network is 
the original feature not extracted by the DAE network.

Each solution involves either an offline process or an on‐
line process during execution. The computation of the of‐
fline process can be computed in the cloud platform. Online 
process is generally performed on the edge device and gener‐
ally needs to be performed once per decision period. The 
regulation resolution of the simulation is 15 min, resulting in 
an online execution frequency of 96 times per day. All solu‐
tions are implemented using Python 3.7 on a computer with 
a 3.00 GHz Intel Core i5-7400U CPU, Nvidia GTX 1650 
GPU and 8 GB RAM. The computational complexity analy‐
sis of different solutions is shown in Table II.

The main computational complexity of the proposed solu‐
tion lies in the acquisition of expert samples, which needs to 
optimize the optimal scheduling trajectories of historical 
days. Another part that requires computational cost is the 
training of the learning model. These complex calculations 
can be performed through the offline process. Economic dis‐
patch decisions are made using the real-time information ob‐
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Fig. 6.　Results calculated by proposed solution and optimal dispatch with‐
out uncertainties in scenario 2. (a) Results of proposed solution. (b) Results 
of optimal dispatch without uncertainties.

TABLE II
COMPUTATIONAL COMPLEXITY ANALYSIS OF DIFFERENT SOLUTIONS

Solution

Solution 1

Solution 2

Solution 3

Proposed

Computational process

Stochastic variable forecasting (offline)

Optimization solving (offline)

Stochastic variable forecasting (online)

Rolling optimization (online)

Optimal scheduling sample optimization 
solving (offline)

Supervised learning training (offline)

Real-time dispatch (online)

Optimal scheduling sample optimization 
solving (offline)

Unsupervised learning training (offline)

Supervised learning training (offline)

Real-time dispatch (online)

Execution time (s)

1.0

60.0

1.0

60.0

5400.0

1200.0

<0.1

5400.0

720.0

1200.0

<0.1
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tained through the online process. At this stage, the learning 
model only needs to perform forward inference, which in‐
curs relatively low computational costs. This makes it highly 
suitable for meeting real-time computing requirements.

Compared with solution 1, the proposed solution needs to 
solve more optimization problems during the offline process 
to obtain IL sample trajectories. The computational cost of 
the proposed solution increases linearly with the number of 
samples. In contrast, solution 1 only needs to solve one opti‐
mization problem and does not require additional online 
computational processes during the day. The computational 
cost of the proposed solution during a single offline process 
is much higher than that of solution 1. However, the pro‐
posed solution can deploy the decision model in a long term 
(in this simulation, for three months) using well-trained mod‐
el parameters. Therefore, the frequency of offline process for 
updating model parameters in the proposed solution can be 
very low, whereas the solution 1 needs to execute the offline 
process every day.

Compared with solution 2, the proposed solution requires 
both offline optimization and online decision-making. Solu‐
tion 2 requires continuous optimization for each control inter‐
val, with the computational cost primarily incurred during 
the online process. Each optimization task needs to be com‐
pleted within a short period, which necessitates edge devices 
to possess adequate computational capability. In contrast, the 
proposed solution only requires forward inference during the 
online process of the decision model, which incurs relatively 
low computational costs. This makes it easier to meet real-
time computing requirements.

Compared with solution 3, the proposed solution introduc‐
es the training process of an unsupervised learning model. 
Since the unsupervised learning model does not need to ob‐
tain expert trajectories through optimization as supervised 
learning samples, the offline computational cost only slightly 
increases during the training of unsupervised learning model.

D. Economic Evaluation and Comparison

The operation costs in each testing month obtained from 
the proposed solution and three benchmark solutions are 
shown in Fig. 7. The figure shows the theoretical lower 
(from optimal dispatch without uncertainties) and upper 
(without dispatch strategy of BESS) boundaries of the opera‐
tion costs, which can reflect the economic cost-saving poten‐
tial of the system.

The result presented in Fig. 7 clearly demonstrates that both 
the proposed solution and solution 3 consistently outperform 
solutions 1 and 2 throughout the three-month test period. This 
indicates the effectiveness of the IM technology in achieving 
optimal decisions for economic dispatch based on real-time in‐
put information. Moreover, the results achieved by the pro‐
posed solution exhibit the highest level of performance, close‐
ly resembling the ideal situation. This suggests that incorporat‐
ing a combined unsupervised learning model can significantly 
enhance the system performance by capturing a deeper under‐
standing of unlabeled patterns. These findings highlight the po‐
tential of leveraging advanced machine learning techniques to 
improve the decision-making process for economic dispatch, 

leading to more efficient operations in real-time fashion.

As the time progresses from September to November, a 
noticeable trend emerges in which the cost savings for all so‐
lutions consistently decrease. The reason for this could be 
the consideration of a longer time period between the train‐
ing data and the test month, as renewable energy generation 
patterns are more similar within the same season. This find‐
ing suggests that while the models may perform well initial‐
ly, their effectiveness may gradually decline over time due 
to factors such as seasonal variations and evolving patterns 
of energy generations and loads. Thus, by rolling update of 
the model training and incorporating newly collected pattern 
data, the performance of the solution can be maintained and 
ensured.

The performance evaluation is carried out for the proposed 
solution, and the numerical results in terms of the average cost 
against the benchmark solutions are presented in Table III. 
Among them, inevitable cost refers to the part exceeding the 
cost of optimal dispatch. For the total cost that includes the 
BESS deterioration cost Cb and the electricity purchasing cost 
Cg, solution 1 performs the worst as it depends on the accuracy 
of prediction. Solution 2 performs better than solution 1. How‐
ever, its optimization process in each rolling window requires 
the controller to have sufficient computing ability. To improve 
the prediction accuracy during the MPC process, additional 
costs for purchasing additional numerical weather prediction 
(NWP) information are needed in practice.

According to the economic evaluation results, IL-based so‐
lutions are more competitive under conditions of the same 
available data. The proposed solution can achieve the great‐
est cost savings compared with other solutions during all test 
months. Table IV shows the percentage of operation cost sav‐
ings of the proposed solution compared with the other three 
benchmark solutions during each test month. Compared with 
solutions 1, 2, and 3, the total operation cost of the proposed 
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solution is reduced by 10.5%, 6.3%, and 2.8%, respectively, 
during all test months.

For the proposed solution, the optimization results of eco‐
nomic dispatch under deterministic conditions are computed 
first, and then the machine learning model is used to learn 
the non-linear complex mapping between input patterns and 
optimal dispatch results in high-dimensional space. The gen‐
eralization errors are manifested as deviations of inference 
results from the optimal dispatch trajectories in the new pat‐
terns. For the stochastic optimization framework based on 
prediction results, the cumulative prediction errors of multi‐
ple random variables cause the day-ahead stochastic optimi‐
zation in day-ahead and the deterministic optimization under 
actual conditions to be inconsistent in the optimal solution 
space. Besides, the high-dimensional non-convex optimiza‐
tion solution may be easily affected by the multi-saddle 
points, which leads to suboptimal solutions [46]. Therefore, 
the proposed solution can more easily achieve the optimal 
solution for the economic dispatch problem. The numerical 
results also verify the above conclusions.

V. CONCLUSION 

This paper proposes an IL-based decision-making solution 
to realize microgrid economic dispatch in a real-time fashion. 
The proposed solution is capable of effectively addressing the 
economic dispatch problem with high operation uncertainties 
caused by the intermittency of renewable energy generation 

and the stochasticity in market prices and loads. By learning 
the optimal dispatch of the historical operation patterns in a da‐
ta-driven way, the proposed solution with good generalization 
performance can make intelligent decisions close to the opti‐
mal dispatch. The proposed solution is easy to deploy in prac‐
tice and suitable for the cloud-edge collaborative communica‐
tion and computing architecture of the future microgrid.

The proposed solution is evaluated through simulation 
tests subject to various uncertainties. Compared with the 
benchmark solutions of day-ahead stochastic optimization, 
MPC-based rolling optimization, and basic clone IL-based 
dispatch, the numerical results demonstrate that the total op‐
eration cost of the proposed solution is reduced by 10.5%, 
6.3%, and 2.8%, respectively, for all the test months.
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Solution 1
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Cb ($)
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