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Abstract——With the rapid increase in the installed capacity of 
renewable energy in modern power systems, the stable operation 
of power systems with considerable power electronic equipment 
requires further investigation. In converter-based islanded mi‐
crogrid (CIM) systems equipped with grid-following (GFL) and 
grid-forming (GFM) voltage-source converters (VSCs), it is chal‐
lenging to maintain stability due to the mutual coupling effects 
between different VSCs and the loss of voltage and frequency sup‐
port from the power system. In previous studies, quantitative 
transient stability analysis was primarily used to assess the active 
power loop of GFM-VSCs. However, frequency and voltage dy‐
namics are found to be strongly coupled, which strongly affects 
the estimation result of stability boundary. In addition, the vary‐
ing damping terms have not been fully captured. To bridge these 
gaps, this paper investigates the transient stability of CIM consid‐
ering reactive power loop dynamics and varying damping. First, 
an accuracy-enhanced nonlinear model of the CIM is derived 
based on the effects of reactive power loop and post-disturbance 
frequency jump phenomena. Considering these effects will elimi‐
nates the risk of misjudgment. The reactive power loop dynamics 
make the model coefficients be no longer constant and thus vary 
with the power angle. To evaluate quantitatively the effects of re‐
active power loop and varying damping on the transient stability 
of CIM, an iterative criterion based on the equal area criterion 
theory is proposed. In addition, the effects of parameters on the 
stable boundary of power system are analyzed, and the dynamic 
interaction mechanisms are revealed. Simulation and experiment 
results verify the merits of the proposed method.

Index Terms——Transient stability, converter, iterative criterion, 
reactive power loop, post-disturbance frequency jump.

I. INTRODUCTION 

THE penetration of power electronic equipment implant‐
ed in modern power systems has been rapidly increas‐

ing [1] - [3]. The converter-based islanded microgrid (CIM) 
has the advantages of flexible operation and high efficiency, 
and is a promising way for renewable energy integration. 
However, the CIM may lead to new challenges for the tran‐
sient stability of power systems due to its low-inertial charac‐
teristics, the dynamic interactions between grid-tied convert‐
ers (GTCs), and the loss of voltage and frequency support 
from the power system. The transient stability of the CIM is 
urgently required for analysis. GTCs dominate the stability 
of the CIM [4], [5]. Based on different voltage/frequency 
generation mechanisms, GTCs are classified as grid-forming 
(GFM) or grid-following (GFL) voltage-source converters 
(VSCs). Reference [6] proposes that a GFL-VSC could be 
equivalent to a controlled current source parallel to high im‐
pedance. By contrast, a GFM-VSC could be equivalent to a 
controlled voltage source in series with high conductance. 
GFM control includes droop control, power synchronization 
control, virtual oscillator control, and virtual synchronous 
generator (VSG) control [5], [7] - [9]. GFM-VSCs can con‐
struct their own AC-side output voltage without relying on 
an external AC system. Therefore, GFM-VSCs can operate 
in isolation or be connected to extremely weak grids [10], 
[11]. GFM-VSCs show excellent advantages in terms of sta‐
bility support by providing virtual inertia and good robust‐
ness to weak grids. However, GFM-VSCs face the challenge 
of a limited overcurrent capacity. GFL-VSCs are mainly con‐
trolled by a phase-locked loop (PLL), DC-link voltage loop, 
and inner current controller. Their output voltage is deter‐
mined by the current reference and grid parameters [12] -
[14]. GFL-VSCs can achieve the maximum power tracking 
[15] and high power-factor operations. The external charac‐
teristics of the current source provide the advantage of limit‐
ing the fault current. In addition, GFL-VSCs have the advan‐
tage of fast response. However, GFL-VSCs require an exter‐
nal grid to provide the voltage and frequency as inputs. 
Therefore, GFL-VSCs are prone to synchronization instabili‐
ties under unstable grid voltages and frequencies. GFL-
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VSCs cannot be used alone in weak or isolated microgrids 
with high renewable-energy penetration rates. As a result, a 
practical CIM should include both types of converters: GFM-
VSCs that provide voltage/frequency support and GFL-VSCs 
that provide fast power response [16].

The transient stability of GTCs has been evaluated using 
several methods. The Lyapunov [17]-[21] and Hamilton [4], 
[22] methods have complete theoretical frameworks, but the 
results are too conservative. Phase-portrait methods [23], 
[24] fail to derive analytical criteria. The equal area criterion 
(EAC) is intuitive for second-order systems and has strong 
physical significance [5], [25]-[29].

The difficulty in the transient stability analysis of GFL-
VSCs mainly lies in accurately estimating the adverse ef‐
fects caused by nonlinear varying damping, which brings sig‐
nificant conservatism to the stability criteria. The damping 
term of the GFL-VSC changes with the system power angle. 
When the power angle exceeds 90° , the damping exhibits 
negative characteristics and causes stability to deteriorate. As 
a result, stability misjudgment occurs when negative damp‐
ing is ignored, as in the conventional EAC method proposed 
in [25]. In [21] and [22], a subset of stability within the posi‐
tive damping interval is regarded as the stable domain esti‐
mation, but with relatively high conservatism since the nega‐
tive damping region is directly aborted. In [5], an improved 
EAC method is proposed to quantify the adverse effects of 
negative damping of the PLL on system stability. However, 
the improved EAC method is unavoidably conservative due 
to the mathematical inequality derived from varying damp‐
ing. In [17], a new Lyapunov direct method is proposed with 
an enlarged dissipation region and partially improved conser‐
vatism as compared with [21], [22]. However, the physical 
significance of the proposed Lyapunov function (LF) is un‐
clear. In addition, a post-disturbance frequency jump phe‐
nomenon occurs in the PLL at the disturbed moment due to 
the proportional control, which is detrimental to the transient 
stability of the PLL. However, nearly all previous studies on 
PLL have been based on the second-order simplified oscilla‐
tion model proposed in [25], which is similar to that of a 
synchronous generator. This model does not consider the 
aforementioned abrupt frequency change phenomenon. In 
other words, the instantaneous frequency at the moment of 
disturbance is assumed to be zero, which may lead to stabili‐
ty misjudgment. In [30], a nearly conservatism-free transient 
stability assessment method is proposed for a single GFL-
VSC connected to an infinite power system. However, it 
does not consider the potential dynamic interaction between 
the GFL-VSC and grid (noninfinite grid) or other converters 
that may exist in the system. The system analyzed in [30] is 
too simplistic and idealistic, showing little practical value. 
By contrast, the CIM system considered in this paper con‐
forms to the future development trend of renewable energy 
generation systems, as it is a 100% converter-based system 
and thus has strong engineering guiding significance.

The difficulties in evaluating the transient synchronization 
stability of GFM-VSCs are primarily the coupling effects be‐
tween the active and reactive power loops [24], [31] - [33], 
which deteriorate stability due to the decrease in voltage. 

Reference [24] analyzes this unfavorable coupling in droop-
VSC using a phase portrait method rather than an analytic 
criterion but fails to reveal the instability mechanism. A 
GFM-VSC model that considers the reactive power loop has 
been established in [32] and used to derive the attraction do‐
main of the GFM-VSC using the Takagi-Sugeno (T-S) meth‐
od. However, the accuracy of the stable boundary is ques‐
tionable because of its high conservatism. In [33], the effects 
of a reactive power loop based on a quasi-steady model are 
investigated. However, the proposed criterion requires numer‐
ical integration. The aforementioned study regards VSG out‐
put voltage E as a parameter in the LF instead of directly 
substituting the quasi-steady-state function of E about δ into 
LF. Therefore, the value of E must be renewed in real time 
through numerical integration. This may be explained by the 
fact that the substitution of E(δ) makes it difficult to prove 
the positive definite of LF or the semi-negative definite of 
the LF derivative.

The existing literature has seldom investigated the tran‐
sient stability of CIM systems under the interaction of differ‐
ent types of converters. In addition to the respective difficul‐
ties of the GFM-VSC and GFL-VSC previously mentioned, 
the analytical difficulties of transient stability in CIM sys‐
tems include analysis of the dynamic interactions between 
different types of converters [4], [5]. In [34], a model of a 
mixed-GFM-GFL-based CIM system is established but a 
quantitative criterion is not provided. Reference [16] indi‐
cates that adding GFM-VSCs to a PLL-integrated system is 
beneficial for stability. However, it is based only on a small-
signal stability analysis method. In [4], a Hamilton-based 
transient criterion is proposed for the aforementioned CIM 
system, but the negative damping interval is aborted directly, 
which is too conservative. In [5], the effects of PLL negative 
damping are partially considered, which improves the conser‐
vatism to some extent. However, it does not consider the ef‐
fects of the GFM-VSC reactive power loop.

In this paper, an accuracy-enhanced model and iterative 
EAC are proposed to derive the transient stable domain of 
the CIM more accurately, as this enables full capture of the 
positive and negative damping effects, reactive power loop, 
and abrupt frequency change phenomenon. The contributions 
of this paper can be summarized as follows.

1) Considering the effects of the reactive power loop and 
the abrupt frequency changes that exist in both GFL-VSCs 
and GFM-VSCs, an accuracy-enhanced model of the CIM is 
derived, which eliminates the risk of stability misjudgment. 
Further derivation shows that the stability of the CIM sys‐
tem differs under different perturbation forms.

2) An iterative EAC method is proposed for accurate esti‐
mation of the stable boundaries in which the nonlinear vary‐
ing damping and reactive power loop are fully captured. The 
proposed method is verified to be considerably more accu‐
rate than existing methods.

3) The physical mechanism by which the interaction be‐
tween two VSCs worsens or enhances system stability is 
quantified.

The remainder of this paper is organized as follows. Sec‐
tion II describes the nonlinear modeling of a CIM system 
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that includes both a GFL-VSC and GFM-VSC. Section III 
proposes an iterative EAC for stable domain estimation, 
which is free of conservatism and fully captures the dynam‐
ics of nonlinear damping and the reactive power control 
loop. In Section IV, the interaction mechanisms between two 
converters are revealed and the effects of different parame‐
ters on the stable domain are visualized. Section V shows sim‐
ulation and experimental verification of the accuracy-en‐
hanced nonlinear model of CIM. Section VI provides further 
discussion on future work, demonstrating the strong extensibil‐
ity of the proposed method. Section VII concludes this paper.

II. NONLINEAR MODELING OF CIM SYSTEM 

Figure 1(a) shows the overall structure of the CIM sys‐
tem, with several GFL-VSCs and GFM-VSCs parallel to the 
constant power load PLoad + jQLoad. Considering that the con‐
verter parameters of the same control type in the same mi‐
crogrid are similar (they do not have to be identical), they 
can be assumed to satisfy the homology criterion proposed 
in [35]. As a result, the CIM system presented in Fig. 1(a) 
can be simplified to that shown in Fig. 1(b) based on the 
Hamilton-action theory [35], [36]. 

This paper investigates the effects of the interaction be‐
tween GFM-VSCs and GFL-VSCs on the transient stability 
of the CIM system. Therefore, only the simplified system 
shown in Fig. 1(b) is analyzed. Details on homogeneous 
equivalence are provided in our earlier paper [35] and are thus 
not repeated here. In Fig. 1, Lg and Rg are the line inductance 
and resistance, respectively; Lf is the output filter of the con‐
verter; subscripts FL and FM correspond to the GFL-VSC and 
GFM-VSC, respectively; and subscripts 1-3 correspond to the 
serial numbers of VSCs. The strategy for a PLL cascaded with 
a current controller is applied to a GFL-VSC, where Kp and Ki 
are the proportional and integral coefficients of PLL, respec‐
tively; VPCC and θPCC are the voltage and phase at the point of 
common coupling (PCC), respectively; θPLL is the output phase 

of the PLL; ωPLL and ωn are the output frequency of the PLL 
and the nominal frequency, respectively; and Iref is the refer‐
ence current. The GFM-VSC is controlled by a droop control‐
ler, where mp and nq are the active and reactive droop coeffi‐
cients, respectively; PFM and QFM are the active and reactive 
power of the GFM-VSC, respectively; ωFM and θFM are the out‐
put frequency and phase of the droop controller, respectively; 
VN and VFM are the aptitudes of nominal and output voltage of 
the GFM-VSC, respectively; VLoad and θLoad are the amplitude 
and phase of the load voltage, respectively; IFM and IFL are the 
output currents of the GFM-VSC and GFL-VSC, respectively; 
eFL and eFM are the pulse width modulation signals of the GFL-
VSC and GFM-VSC, respectively; and Vdc is the voltage on 
the DC-side capacitor.

The dynamics of the inner current loop of the GFL-VSC 
are much faster than those of the PLL and thus have less im‐
pact on stability analysis. Therefore, the dq-axis components 
of the output currents of GFL-VSC, i.e., IFLd and IFLq, can be 
assumed to be equal to the reference values Irefd and Irefq, re‐
spectively.

ì
í
î

IFLd = Irefd = Iref cos φ

IFLq = Irefq = Iref sin φ
(1)

where φ is the power factor angle of the GFL-VSC. Accord‐
ing to the structure of the simplified CIM model presented 
in Fig. 1(b), VPCC can be derived as:

VPCCÐθPCC =VLoadÐθLoad +Rg IrefÐ (θPLL + φ) +
Lg

d
dt [ IrefÐ (θPLL + φ) ] (2)

Applying Park transformation with the reference phase 
θPLL on (2), the following equation can be derived:

ì
í
î

ïï

ïï

VPCCd =VLoad cos ( )θLoad - θPLL + Iref Rg cos φ -ωPLL Lg Iref sin φ

VPCCq =VLoad sin ( )θLoad - θPLL + Iref Rg sin φ +ωPLL Lg Iref cos φ

(3)

where VPCCd and VPCCq are the dq-axis components of VPCC. 
Based on the PLL structure shown in Fig. 1(b), the dynam‐
ics can be expressed as:

θPLL = ∫
0

t ( )KpVPCCq +Ki∫
0

t

VPCCqdτ +ωn dτ (4)

Ignoring the fast dynamics of the inner loops of the GFM-
VSC, we obtain:

ì

í

î

ïïïï

ïïïï

θFM » θLoad

ωFM »ωLoad

VFM »VLoad

(5)

where ωLoad is the time derivative of θLoad. We next define δ =
θPLL - θLoad as the virtual power angle of the CIM system. 
Then, by combining (1)-(5), we can obtain:

ì

í

î

ï

ï
ïïï
ï

ï

ï

ï

ï
ïïï
ï

ï

ï

δ̇ =ωPLL -ωLoad =ω
Mω̇ =-KiVLoad sin δ +Ki Iref Rg sin φ +

          ( )ω +ωLoad K i Lg Iref cos φ -

          KpVLoadω cos δ +Kpω̇Load Lg Iref cos φ - ω̇Load

M = 1 -Kp Lg Iref cos φ

(6)

where ω is the time derivative of δ; and M is the equivalent 
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Fig. 1.　Topological and control structure of a CIM system. (a) Detailed 
model of CIM system. (b) Simplified equivalent model and control diagram 
of CIM system.
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inertia. The active power PFL and reactive power QFL generat‐
ed by the GFL-VSC can be derived as:

ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

PFL = 1.5VPCCd Irefd + 1.5VPCCq Irefq =

          1.5VLoad Iref cos ( )δ + φ + 1.5I 2
ref Rg

QFL = 1.5VPCCq Irefd - 1.5VPCCd Irefq =

           -1.5VLoad Iref sin ( )δ + φ + 1.5ωPLL Lg I 2
ref

(7)

The active power consumed by the line as Pg and the reac‐
tive power consumed by the line as Qg, are given by:

ì
í
î

ïï
ïï

Pg = 1.5I 2
ref Rg

Qg = 1.5I 2
ref LgωPLL

(8)

Therefore, the output active power PFM and reactive power 
QFM of the GFM-VSC can be derived as:

ì
í
î

ïï

ïï

PFM =PLoad +Pg -PFL = PLoad - 1.5VLoad Iref cos ( )δ + φ

QFM =QLoad +Qg -QFL = QLoad + 1.5VLoad Iref sin ( )δ + φ
(9)

According to the P-ω active droop and Q-V reactive 
droop controller structure shown in Fig. 1(b), the output fre‐
quency ωFM and output voltage VFM of the GFM-VSC can be 
derived as:

ωFM =ωn -mp PFM =ωn -mp PLoad + 1.5mpVLoad Iref cos (δ + φ)
(10)

VFM(δ) =VN - nqQFM =
VN - nqQLoad

1 + 1.5nq Iref sin ( )δ + φ (11)

Combining (5), (6), (10), and (11), we can derive the CIM 
system model as:

ì

í

î

ï
ïï
ï
ï
ï

ï

ï
ïï
ï

ï

δ̇ =ωPLL -ωFM =ω
ω̇ = k1 - ( )k2( )δ sin δ + k3( )δ cos δ -

       ( )k4 + k5( )δ cos δ + k6( )δ sin δ ω

δ̇ ( )t0 + = Dω

(12)

where k1 is the equivalent mechanical power; k2sin δ +k3cos δ 
is the equivalent electromagnetic power; k4+k5( )δ cos δ+
k6( )δ sin δ is the equivalent nonlinear damping Deq; and Δω is 
the value of the post-disturbance frequency jump in the CIM 
system, which is caused by the PLL and P-ω droop control‐
ler at the disturbed moment t0+ . Detailed expressions for M 
and k1-k6 are given as:

ì

í

î

ï

ï

ï

ï

ï

ï
ïïï
ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

ï

ï

M = 1 -Kp Lg Iref cos φ

k1 = [ ]K i Iref Rg sin φ +Ki Lg Iref cos φ ( )ωn -mp PLoad M

k2( )δ =KiVFM( )δ ( )1 + 1.5mp I 2
ref Lg cos φ sin φ M

k3( )δ = -1.5mpVFM( )δ I 2
ref K i Lg cos2φ M

k4 = -Ki Lg Iref cos φ M

k5( )δ = é
ëKpVFM( )δ ( )1 + 1.5mp Lg I 2

ref cos φ sin φ -

])                1.5mpVFM( )δ Iref sin φ M

k6( )δ =-1.5mpVFM( )δ Iref cos φ

(13)

The variations in ωPLL are always proportional to VPCCq 
due to the proportional controller of PLL. When the system 

encounters large disturbances, both VPCCq and ωPLL exhibit 
abrupt changes. This phenomenon, which occurs at the per‐
turbed moment in the PLL, is defined as the frequency 
abrupt change of PLL ΔωPLL. In addition, the P-ω droop con‐
troller also experiences an abrupt change ΔωFM, which is 
caused by the abrupt change in active power distribution. A 
detailed expression of Dω can be derived as:

Dω =DωPLL -DωLoad =KpDVPCCq -DωFM (14)

where ΔVPCCq and ΔωFM can be expressed as:

DVPCCq »- (VFM + sin ( )δ+ -VFM - sin ( )δ- ) +
( )Dω +ωFM + Lg + Iref + cos φ+ -ωFM -Lg - Iref - cos φ- +

Rg + Iref +sinφ+ -Rg - Iref -sinφ- (15)

DωFM =ωFM + -ωFM - = 1.5mp(VFM + Iref + cos ( )δ+ + φ+ -

)VFM - Iref - cos ( )δ- + φ- -mp( )PLoad + -PLoad - (16)

where the subscripts “+” and “-” distinguish the post- and 
pre-perturbation parameters, respectively. Compared with the 
existing models expressed in [4] and [5], the proposed mod‐
el as derived from (12) innovatively captures both the reac‐
tive power loop dynamics and post-disturbance frequency 
jump phenomenon. In [4] and [5], the Q-V droop is ignored 
by assuming VFM »VN. Besides, the post-disturbance frequen‐
cy jump is also ignored by assuming δ̇ (t0 +) = 0. Figure 2 

shows a simulation comparison between the existing models 
derived from [4] and [5] and the proposed model as formu‐
lated in (12). Table I lists the parameters of the CIM ana‐
lyzed in this paper, where KpC and KiC are the parameters of 
the current loop. All of the three-phase voltage and current 
variables refer to the amplitudes of the instantaneous values 
of the phase voltage/current. The maximum power angle er‐
ror and maximum frequency error as given in (12) are only 
6% and 3% of those of the existing model under the pertur‐
bation shown in Fig. 2(a) and (b), respectively.

In addition to improving the model accuracy, the improve‐
ment derived from (12) can also avoid the misjudgment of 
system stability, as shown in Fig. 2(c) and (d). This misjudg‐
ment may occur in the existing model [4], [5] when the ef‐
fects of the post-disturbance frequency jump and reactive 
power loop are ignored. This is because the droop character‐
istic of the reactive power loop in (11) causes a decrease in 
output voltage of the GFM-VSC, which results in reduced 
electromagnetic power and stability. The post-disturbance fre‐
quency jump is equivalent to generating a certain amount of 
initial kinetic energy, which further deteriorates stability. 
Misinterpreting unstable systems as stable is unacceptable in 
practical engineering. In previous studies, with the inevitable 
errors derived from stability analysis methods (where the ef‐
fects of work done by the damping term cannot be accurate‐
ly assessed), the stability boundary cannot be estimated accu‐
rately. Therefore, the misjudgment as depicted in Fig. 2(c) 
and (d) does not occur. For accurate evaluation of transient 
stability of the CIM, a stability criterion that is free of con‐
servatism and fully considers nonlinear damping, the reac‐
tive power loop, and post-disturbance frequency jump phe‐
nomenon is proposed in Section III.
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III. PROPOSED ITERATIVE EAC 

In the transient stability assessment of the CIM system as 
formulated in (12), the effects of varying damping Deq and 
reactive power loop on the system are difficult to analyze 
quantitatively. The effect of Deq must be fully captured, par‐
ticularly in negative regions:

δ > δd = arcsin (-k4 k 2
5 ( )δ + k 2

6 ( )δ ) - arctan (k5( )δ k6( )δ )
(17)

This is because it imposes energy on the system and dete‐
riorates stability [5]. In addition, the reactive power loop re‐
sults in a smaller k2 and further deteriorates stability. With‐
out fully considering both the varying damping and reactive 
power loops, we cannot obtain an accurate and stable bound‐
ary estimation. However, the aforementioned difficulties can 
be overcome using the proposed method. With the iteration 
of the frequency ω and damping torque ωDeq, the tedious 
nonlinear calculation in the time domain is skipped. The dy‐
namic relationship between ω and δ can be directly obtained 
by using energy as an intermediary. The proposed method 
derives a transient stable boundary of the CIM system that is 
free of conservatism by fully considering the effects of the 
reactive power loop and varying damping but that does not 
require a time-domain numerical calculation.

A. Derivation of δmax

Reference [37] shows that nonlinear damping, whether 
positive or negative, does not affect the upper stable bound‐
ary of system (12). As a result, the real upper boundary δmax 
is exactly equal to the value estimated by the conventional 
EAC [25], i.e., δmaxC, in which the damping term is not con‐
sidered:

ì
í
î

ïïïï

ïïïï

k1 - ( )k2( )δmax sin δmax + k3( )δmax cos δmax = 0

( )k2( )δmax sin δmax + k3( )δmax cos δmax
′< 0

(18)

B. Derivation of ω(δ)

In (12), the energy conservation law is expressed as:

d ( )Ek +Ep -WD

dt
º 0 (19)

where Ek and Ep are the equivalent kinetic and potential ener‐
gies of the CIM system, respectively; and WD is the work 
performed by the varying damping term:

ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

Ek = ω
2 2

Ep =E0 + ∫( )k2( )δ sin δ + k3( )δ cos δ - k1 dδ

WD =- ∫( )k4 + k5( )δ cos δ + k6( )δ sin δ ω ( )δ dδ

(20)

where E0 is the initial potential energy; and ω ( )δ  is the fre‐
quency function that satisfies the process given in (12) under 
the varying damping terms ω ( )δ Deq( )δ . Combing (19) and 

(20), the dynamic relationship between ω and δ can be re‐
vealed by the nonlinear implicit equation regarding ω(δ):

ω(x)= 2 ∫
x

δmax( )k2( )δ sin δ + k3( )δ cos δ +Deq( )δ ω ( )δ - k1 dδ

(21)

where x is the lower power angle variable of the uncertain 
limit integral function. The varying damping and Q-V droop 
controller dynamics are fully considered in (21). In addition, 
the accelerating and decelerating areas in (21) are shown as 
S1 and S3 + S4 in Fig. 3, respectively. The conventional EAC 
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TABLE I
PARAMETERS OF CIM

Symbol

KpC, KiC

Lg

Lf

nq

PLoad + jQLoad

Value

5, 70

3 mH

0.12 mH

10-4

40 kW + j2 kvar

Symbol

VN

mp

ωn

Irefd, Irefq

Kp, Ki

Value

110 2 V

10-5

100π rad/s

135 A, 5 A

0.1, 10
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[25] neglects the works of both positive (S2 + S3 ) and nega‐
tive (S5) damping and regards S1 + S2 and S4 + S5 as the accel‐
erating and decelerating areas, respectively. Figure 3 also 
shows the post-disturbance frequency jump, denoted by the 
vertical line to the left of the solid blue curve. Section III-C 
provides details on the derivation of δmin considering the 
post-disturbance frequency jump. In Fig. 3, δe is the stable 
equilibrium point of system (12), and δd is the zero crossing 
point of damping, as shown in (17).

The iterative EAC is proposed to solve implicit equation 
(21) iteratively. Figure 4 presents a flow of the iterative 
EAC. In the ith iteration, the frequency function ωi( )δ  is de‐
termined by the damping torque Deq( )δ ωi - 1( )δ  from the pre‐

vious iteration by replacing ω ( )δ  on the right side of (21) 
with ωi - 1( )δ :

ωi( )x =

2 ∫
x

δmax( )k2( )δ sin δ + k3( )δ cos δ - k1 +Deq( )δ ωi - 1( )δ dδ

(22)

The iteration is started by assuming ω0( )δ = 0. When 
ωi( )δ  converges to an acceptable range, the iterative calcula‐
tion stops, and the derived ωi( )δ  can be referred to as the 
frequency function ω ( )δ  obtained by the proposed iterative 
EAC. To further facilitate understanding, a pseudocode is 
provided in Algorithm 1. It includes five main steps: ① pa‐

rameter input; ② derivation of δmax; ③ initialization of itera‐
tion; ④ iteration; and ⑤ stable boundary output. Algorithm 
1 illustrates the engineering application steps of the pro‐
posed iterative EAC.

Figure 5 shows the two negative convergence mechanisms 
of iteration described in Fig. 4. A larger ωi - 1( )δ  results in a 
more positive damping torque when Deq is positive (δ < δd ), 
which leads to a reduced accelerating area Sacei, and thus a 
smaller ωi( )δ  is derived from (22). However, a larger ω ( )δ  
leads to a smaller damping torque when Deq is negative (δ >
δd ), which results in a reduced decelerating area Sdeci, and 
thus a smaller ω ( )δ  is derived from (22), as ω ( )δmax = 0.

Based on the iteration given in (22), only the ω> 0 por‐
tion (right swing) of the stability boundary is obtained. To 
derive the complete stable boundary, a similar iteration as 
given in (23) could be applied to derive the ω< 0 portion 
(left swing) of the stable boundary:

ωi( )x =

- 2 ∫
x

δmax( )k2( )δ sin δ + k3( )δ cos δ - k1 +Deq( )δ ωi - 1( )δ dδ

(23)

C. Derivation of δmin

Considering the post-disturbance frequency jump indicated 
in (14) - (16), we can derive a frequency jump function 
Δωk( )δ . The input of Δωk( )δ  is the initial state of δ before 
the disturbance, and the output is the value of the post-distur‐
bance frequency jump at the disturbed moment, where k de‐
notes the perturbation. The frequency jump functions under 

Damping torque ω
i�1(δ)Deq�

Accelerating area Sdeci�

Damping torque ω
i�1(δ)Deq+

Accelerating area Sacei�

In next iteration : ω
i
(δ)�

When δ<δd: ωi�1(δ)+

In next iteration: ω
i
(δ)�

When δ>δd: ωi�1(δ)+

ω(δmax)=0

Fig. 5.　Two negative convergence mechanisms of iteration.

Algorithm 1: iterative EAC

Input Vn, Irefd, Irefq, PLoad, QLoad, Kp, Ki, mp, nq, Lg, ωn

% Input parameters
Define x =-π:10-5:π
Calculate k1( )x -k6( )x  based on (13)
Calculate δmax based on (18)
% Above is to derive δmax

Redefine x =-π:10-5:δmax

Recalculate k1( )x -k6( )x  based on (13)
Define ω0 = 0, i = 1
% Above is initialization, below is iteration
While ( )||ωi( )x -ωi - 1( )x > ε or i = 1

  Calculate ωi( )x  based on ωi - 1( )x , by (22)
  i++
end
% Iteration is stopped, output stable boundary
Output ωi( )x

i=i+1

N

Y

Calculate coefficients by (13)

max|ω
i
�ω

i�1|<ε?

Start

Calculate δmax by (18)

Initialize by ω0(δ)=0 

Calculate ω
i
(δ) by (22)

Output stable boundary ω
i
 

End

Fig. 4.　Flow of iterative EAC.

S1

S3

S5

S4

S2

Torque

δmin δe δd δmax

Positive damping Negative damping

δ

k1�Deq(δ)ω(δ) k2(δ)sin δ+k3(δ)cos δ

Fig. 3.　EAC considering damping, reactive loop, and post-disturbance fre‐
quency jump.
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the current, voltage, inductance, and phase perturbation are 
denoted as ΔωI( )δ , ΔωV( )δ , ΔωL( )δ , and Δωθ( )δ , respective‐
ly, as shown in Fig. 6. The blue area represents the stable 
boundary obtained by (22) and (23).

The intersection of Δωk( )δ  and ω ( )δ  is the lower stable 
boundary estimated under the corresponding perturbation 
form k, denoted as δminV = 0.340 rad, δminI = 0.333 rad, δminL =
0.335 rad, and δminθ = 0.334 rad, respectively. As Fig. 6(a) 
shows, 4-5 iterations are necessary before termination. Ac‐
cording to (14) - (16), different disturbance forms have dis‐
tinct mechanisms for generating post-disturbance frequency 
jumps, which cause the power-angle stable boundaries to dif‐
fer. According to Fig. 6, stability sensitivity can be sorted as 
(from higher to lower): nominal voltage disturbance, line-in‐
ductance disturbance, phase disturbance, and current-refer‐
ence disturbance.

D. Accuracy Comparison of Different Methods

Figure 7 compares the stable regions estimated using dif‐
ferent large-signal stability analysis methods. The stable re‐
gion estimated by the proposed method (blue-shaded do‐
main) shows very little difference from the critical stable 
phase trajectory (black dashed curve). Therefore, it is consid‐
ered free of conservatism. The conventional EAC method 
[25] (red-shaded domain) causes a misjudgment because it 
neglects the adverse effects of the reactive power loop dy‐
namics and negative damping [4], [5]. Point b (1.57, 13.5) 
in Fig. 7 is within the stable region estimated by the conven‐
tional EAC method [25] but outside that estimated by the 
proposed method. The simulation shows that point b is unsta‐
ble, which verifies the effectiveness of the proposed method 

as compared with the conventional EAC method [25]. In 
practice, mistaking unstable systems for stable ones is unac‐
ceptable. The Lyapunov/Hamilton method [4], [21] (green 
dashed curve) is too conservative because the negative-damp‐
ing region is directly abandoned. The improved EAC meth‐
od (blue dashed curve) proposed in [5] partially improves 
the conservatism as compared with the Lyapunov/Hamilton 
method by estimating the maximum work done by the nega‐
tive damping torque. However, the improved EAC cannot 
calculate the positive damping work and only partially cap‐
tures the negative damping work (based on inequality scal‐
ing). Therefore, its conservatism is worse than that of the 
proposed iterative EAC, which fully captures both positive 
and negative damping. Considerable conservatism may lead 
to frequent operations by protective devices. In summary, un‐
like the conventional EAC, the proposed method does not 
misjudge stability and is much less conservative than all oth‐
er existing methods, showing remarkable practical value. Ta‐
ble II presents the advantages and disadvantages of different 
transient stability analysis methods.

IV. INTERACTION MECHANISMS BETWEEN TWO 
CONVERTERS AND EFFECTS OF DIFFERENT PARAMETERS

This section discusses the interaction mechanisms between 
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TABLE II
ADVANTAGES AND DISADVANTAGES OF DIFFERENT TRANSIENT STABILITY 

ANALYSIS METHODS

Method

Lyapunov/
Hamilton 
[4], [21]

Conventional
 EAC [25]

Proposed 
iterative 

EAC

Improved 
EAC [5]

Advantage

Applicability for 
high-order systems

Intuitiveness and 
simplicity

Intuitive physical 
meaning, full capture 
of damping, and little 

conservatism

Partial improvement 
of conservatism

Disadvantage

Difficult construction of LF, high 
conservatism, and ignorance of 
post-disturbance frequency jump

Ignorance of damping, only for 2-
order systems, ignorance of post-
disturbance frequency jump, and 

stability misjudgment

Quantity of computation

Damping not fully handled, 
ignorance of post-disturbance 

frequency jump, and high 
conservatism
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the GFL-VSC and GFM-VSC in a CIM system. The effects 
of different parameters on the transient stable boundary of 
the system are quantified based on the proposed stability 
analysis method. To establish the actual engineering applica‐
tion parameters, in addition to a stable boundary size, other 
physical constraints such as dynamic performance and avail‐
able resources must also be considered. Parameter settings 
involve a complex multi-objective optimization process.

A. Dynamic Interaction Between GFL-VSCs and GFM-VSCs

The physical mechanisms of the interaction between GFL-
VSCs and GFM-VSCs are revealed corresponding to (12).

1) The reactive droop loop leads to a decrease in the out‐
put voltage amplitude VFM of GFM-VSC, which reduces the 
output capacity of the active power and increases the risk of 
a power imbalance between the AC-DC sides in the GFL-
VSC. When the maximum output capacity of the active power 
is less than that of the DC-side power supply, the system be‐
comes unstable. This interaction characteristic corresponds to 
the decrease in equivalent electromagnetic power k2sin δ due 
to voltage decrease derived from the reactive droop control 
in (11).

2) The P-ω controller of GFM-VSC changes the frequen‐
cy at the load, leading to a change in voltage of the d axis at 
the PCC. Thus, the active power of GFL-VSC changes 
with ΔPFL:

DPFL = Lg I 2
FL cos2 φmp(PLoad - 1.5VFM Iref cos (δ + φ) ) (24)

The first term in (24) increases the output active power of 
the GFL-VSC by 1.5Lg I 2

ref cos2φmp PLoad, which is conducive 
to balancing the AC-DC power difference and system stabili‐
ty and corresponds to a decrease in equivalent mechanical 
power k1 in (13). The second term in (24) reduces the output 
capacity of the active power of the GFL-VSC by 1.5Lg I 3

ref ×
mpVFM cos2φ cos ( )δ + φ , which corresponds to the k3 cos δ 

and k2 sin δ terms derived from the active droop controller. 
When δ + φ < π/2, this term is positive and the output capaci‐
ty of active power of the GFL-VSC is weakened, which is 
not favorable for stability. When δ + φ > π/2, this term is neg‐
ative and the output capacity of the active power of the GFL-
VSC is enhanced, which enhances stability. As (25) shows, 
this term is overall unfavorable for the transient stability of 
the system:

ì

í

î

ïïïï

ïïïï

∫
δmin

δmax

A cos ( )δ + φ dδ > ∫
δe

π - δe - 2φ

A cos ( )δ + φ dδ = 0

A = 1.5Lg I 2
refmpVFMcos2 φ

(25)

3) During the right oscillating process after disturbance, 
δ continues to increase, which causes PFL = 1.5VFM ×
Iref cos ( )δ + φ + 1.5I 2

ref Rg to decrease. Therefore, PFM =PLoad -
PFL increases and causes a decrease in ωFM, which further in‐
creases the relative velocity between the GFM-VSCs and 
GFL-VSCs and worsens stability. During the left oscillating 
process, δ continues to decrease, which causes PFL to in‐
crease and PFM to decrease. Therefore, ωFM increases, which 
also increases the relative velocity and worsens stability. In 
other words, the relative frequency ω =ωPLL -ωFM changes 
with 1.5mpVFM Iref cos ( )δ + φ  and is equivalent to changes in 

the relative acceleration δ̈ with -1.5mpVFM Irefω sin ( )δ + φ , 

which corresponds to the damping terms k6ωsin δ and 
k5ωcos δ in (12).

4) At the moment of current disturbance, the output power 
PFL of the GFL-VSC increases abruptly, which causes an 
abrupt decrease in PFM. Consequently, ωFM increases abruptly 
due to the active droop controller, and the frequency differ‐
ence between the GFL-VSC and GFM-VSC decreases 
abruptly, which is favorable to stability. This corresponds to 
the reduction of Dω caused by ΔωFM in (14).

B. Effects of Parameters on Stable Domain

1)　Effects of Iref and VN

From (13), we can see that an increase in Iref results in an 
increase in k1, which leads to a smaller maximum decelerat‐
ing area with a larger δe and smaller δmax. In addition, a larg‐
er Iref leads to a smaller k4. This in turn results in lower 
damping and poor stability. Figure 8(a) shows the stable do‐
mains with different Iref, which are consistent with the previ‐
ous analysis. The increase in the nominal voltage VN of the 

GFM-VSC leads to a larger k 2
2 + k 2

3 , which benefits transient 
stability because the maximum decelerating area increases. 
Figure 8(b) shows the stable domains with different values of 
VN, which are consistent with the previous analysis.

2)　Effects of PI Coefficients of PLL
A larger Kp results in a larger k5, which indicates more 

positive damping and is favorable for stability. A larger Ki re‐
sults in a smaller k4, indicating less positive damping and 
poorer stability. Neither Kp or Ki affects the upper boundary, 
which can be derived from (7) and (12). The stable domains 
under different Kp and Ki values obtained by the proposed it‐
erative EAC method are compared in Fig. 9(a) and (b), 
which show the same trend as in the theoretical analysis. 
However, Kp cannot be so large that it results in a negative 
M, and thus there is no guarantee of small-signal static sta‐
bility or large-signal transient stability.
3)　Effects of Droop Coefficients of GFM-VSC

From (13), we can infer that the increase of mp leads to a de‐
crease in k1 and an increase in k3cos δmax because cos δmax < 0. 
Therefore, a larger mp leads to a larger δmax and smaller δmin. 
From (11), we can determine that an increase in nq is equiva‐
lent to a decrease in the nominal voltage VN. Consequently, a 
larger nq adversely affects stability, which is opposite the ef‐
fect of VN.
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The stable domains estimated by the proposed method un‐
der different mp and nq are shown in Fig. 10, which exhibit 
the same trend as in the previous analysis. In addition, ignor‐
ing the adverse effects of the reactive power loop is equiva‐
lent to assuming nq = 0. Therefore, the stable domains in [4] 
and [5] are too large, which may lead to the risk of stability 
misjudgment. However, a miscalculation does not occur be‐
cause the improved EAC and Hamilton methods themselves 
are still quite conservative due to the incomplete assessment 
of the varying damping.

4)　Effects of Load and Line Parameters PLoad+jQLoad and Lg

We can infer from (13) that a smaller PLoad results in a 
larger k1, which deteriorates stability because it decreases the 
size of the decelerating area. According to (11), a larger 
QLoad is equivalent to an increase in nq and thus weakens sta‐
bility. A larger Lg leads to a larger k1 and smaller k4, which 
results in a smaller maximum decelerating area and more 
negative damping, both of which have negative effects on 
stability. Figure 11(a) and (b) shows estimations of the sta‐
ble domains under different values of PLoad and Lg, respective‐
ly, where the same trend is shown as in the previous analy‐
sis. To make the trend more obvious, mp in Fig. 11(a) is 
changed to be 10-4.

V. SIMULATION AND EXPERIMENTAL VERIFICATION 

Simulations on MATLAB/Simulink and hardware-in-loop 
(HIL) experiments under different types of disturbances have 

been performed to prove the accuracy and low conservatism 
of the proposed method. The verifications are conducted by 
adding disturbances to Irefd of the GFL-VSC and VN of the 
GFM-VSC, which simulate the perturbation from the DC 
sides of the VSCs.

A. Simulation Verification

1)　Under-current Disturbances
The equilibrium point of the analyzed system is calculated 

as δe = 0.984 rad. The upper and lower stability boundaries 
under current disturbances as derived from the proposed 
method are δmin I = 0.333 rad and δmax = 2.160 rad, respective‐
ly. The critical current disturbance is calculated as DI = 81.21 
A. As Fig. 12(a) shows, after a small current disturbance 
(ΔIsma = 79 A), the trajectories of the system are always within 
the stable domain and finally returned to δe. As Fig. 12(b) 
shows, the states of the system exceed the stable domain and 
finally lose stability after a large disturbance (ΔIlar = 82 A). 
Simulation results show that the iterative EAC is effective and 
accurate.
2)　Under Voltage Disturbances

The stable boundaries under voltage disturbance are calcu‐
lated as δmin V = 0.340 rad and δmax = 2.160 rad. The critical volt‐
age disturbance is calculated as ΔV = 229.4 V. After a small 
voltage disturbance (DVsma = 214.4 V), the system is always 
within the stable boundary and finally returned to δe, as shown 
in Fig. 13(a). However, the system exceeds the boundary and 
eventually loses stability after a large voltage disturbance 
(DV lar = 234.4 V), as shown in Fig. 13(b). IFLa is the a-phase 
output current of GFL-VSC. Simulation results demonstrate 
the high accuracy of the iterative EAC.

B. Experimental Verification

HIL experiments are conducted using the RT-Lab platform 
to verify the proposed method. The test rig for HIL experi‐
ment, which includes an RT-Lab real-time simulator, digital 
signal processor (DSP), and oscilloscope, is shown in Appen‐
dix A Fig. A1. The main circuit of the CIM is in the RT-
Lab, whereas the controllers are implemented in the DSP. 
The system can remain stable when encountering disturbanc‐
es within the obtained stable boundaries, as shown in Figs. 
14(a) and 15(a), where ΔI = 78 A and ΔV = 214.4 V. Other‐
wise, the system loses stability, as shown in Figs. 14(b) and 
15(b), where ΔI = 82 A and ΔV = 234.4 V.
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VI. FURTHER DISCUSSION 

The various nonlinear (nonpositive definite) damping and 
interactive damping terms generated by different control 
methods in power electronic equipment make it difficult to 
assess the synchronization stability of converter-based power 
systems. The proposed iterative EAC method innovatively 
accurately estimates the work of nonlinear damping through 
iterative calculations. Therefore, future work will utilize the 
basic ideas of iterative EAC and expand it to more complex 
converter-based power systems. This section briefly discuss‐
es the high scalability and inspirational value of the pro‐
posed method for further studies on converter-based power 
systems.

The transient stability of a VSG-based GFM-VSC (or low-
inertia synchronous generator) and a PLL-based GFL-VSC 
parallel system (defined as a VSG-PLL parallel system, as 
shown in Fig. 16) is worth investigation [38]. However, pre‐
vious studies have been mainly based on the constant-imped‐
ance model [38], [39], which ignores transient changes in 
line impedance due to variations in the current frequency. 
The mathematical structure of the nonlinear model derived 
in [38] is expressed as:

ì
í
î

ïï
ïï

δ̇ =ω
Teqω̇ = a + b sin ( )δ + φ - dω cos δ

(26)
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The detailed expressions of the coefficients in (26) can be 
found in [38] and are not repeated here. Equation (26) has a 
mathematical structure similar to that of (12) and an even 
simpler damping term. Therefore, the proposed method can 
be extended to the VSG-PLL parallel system and fully cap‐
tures the effects of damping term dωcos δ. However, both 
the theoretical derivation and simulation show that the con‐
stant impedance model leads to a smaller equivalent mechan‐
ical power and larger damping. Thus, the performance of the 
model in terms of stability as expressed in (26) is much bet‐
ter than that of the real system, and therefore, the stability 
analysis using the constant impedance model will misjudge 
the unstable system as stable, which is unacceptable in engi‐
neering applications. In addition, the stability assessment 
method proposed in [38] neglects the damping effects of the 
VSG and PLL, and therefore, its rigor requires further dis‐
cussion.

The power-angle-scale nonlinear model of the VSG-PLL 
parallel system, which considers the change in the line im‐

pedance in the transient process, can be derived as:

ì

í

î

ï

ï

ï

ï

ï

ï
ïïï
ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

ï

ï

θ̇VSG =ωVSG

ω̇VSG =
1
J

é

ë

ê
êê
êPref

ωn

-
PLoad - 1.5VFM Iref cos ( )θPLL - θVSG + φ

ωn

-

          
ù
û
úúúúDp( )ωVSG -ωn

θ̇PLL =ωPLL

ω̇PLL =Kp[VFM cos ( )θVSG - θPLL ( )ωVSG -ωPLL +

            ]ω̇PLL Lg Iref cos φ +Ki[VFM sin ( )θVSG - θPLL +

]            θ̇PLL Lg Iref cos φ + Iref Rg sin φ

(27)

where Pref, θVSG, and ωVSG are the active power reference, 
output voltage phase, and frequency of VSG, respectively; 
and J and Dp are the virtual inertia and virtual damping of 
VSG, respectively.

The dynamics and stability of (27) cannot be directly ana‐
lyzed using the phase and frequency differences between the 
two VSCs. The damping effects in (27) can be analyzed us‐
ing the iterative EAC. However, accurate transient stability 
analysis presents another difficulty, i. e., interaction terms. 
Most previous studies have only qualitatively analyzed or 
conservatively estimated the effects of interaction terms, but 
failed to perform accurate calculations [28]. In further stud‐
ies, we will combine mathematical scaling with the proposed 
method to obtain a stable domain estimation of a VSG-PLL 
parallel system with the minimal conservatism.

VII. CONCLUSION 

In this paper, we investigate the transient stability of a 
CIM system considering the post-disturbance frequency 
jump phenomena in the PLL and droop controller and the 
coupling interaction between the active and reactive droop 
controllers. An iterative EAC has been proposed to provide 
an assessment of transient stability under varying damping 
that is free of conservatism. In addition, the dynamic interac‐
tion mechanisms between the GFL-VSCs and GFM-VSCs and 
the effects of the parameters on stability have been analyzed. 
The proposed iterative EAC does not have a misjudgment risk 
and shows much less conservatism than existing methods. Fur‐
ther discussion demonstrate that the proposed method has high 
scalability. The main conclusions are as follows.

1) At the moment of disturbance, both GFL-VSCs and 
GFM-VSCs may behave with a post-disturbance frequency 
jump, which produces large signal model errors in the initial 
values and may lead to stability misjudgment.

2) The effects of the reactive power loop dynamics by the 
varying damping are accurately calculated.

3) The interaction between the GFM-VSCs and GFL-
VSCs is complex, and some interactions deteriorate the sta‐
bility, whereas others are beneficial.

4) A larger nominal voltage, active droop coefficient, ac‐
tive load, and PLL proportional coefficient are conducive to 
transient stability. By contrast, a larger current reference, 
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line inductance, reactive power droop coefficient, reactive 
load, and PLL integral coefficient deteriorate the stability.
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