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Temporal and Spatial Optimization for 5G 
Base Station Groups in Distribution Networks
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Abstract——With the large-scale connection of 5G base stations 
(BSs) to the distribution networks (DNs), 5G BSs are utilized as 
flexible loads to participate in the peak load regulation, where 
the BSs can be divided into base station groups (BSGs) to real‐
ize inter-district energy transfer. A Stackelberg game-based opti‐
mization framework is proposed, where the distribution net‐
work operator (DNO) works as a leader with dynamic pricing 
for multi-BSGs; while BSGs serve as followers with the ability 
of demand response to adjust their charging and discharging 
strategies in temporal dimension and load migration strategy in 
spatial dimension. Subsequently, the presence and uniqueness of 
the Stackelberg equilibrium (SE) are provided. Moreover, differ‐
ential evolution is adopted to reach the SE and the optimization 
problem in multi-BSGs is decomposed to solve the time-space 
coupling. Finally, through simulation of a practical system, the 
results show that the DNO operation profit is increased via cut‐
ting down the peak load and the operation costs for multi-BSGs 
are reduced, which reaches a win-win effect.

Index Terms——5G base station, dynamic pricing, demand re‐
sponse, energy storage, load migration, Stackelberg game, opti‐
mization.

I. INTRODUCTION 

WITH the development of the economy, the communi‐
cation technology is improved. The 5th-generation 

(5G) mobile networks, which provide high bandwidth, high 
capacity, and low latency communication [1], are becoming 
widely used in recent years. Meanwhile, as the core of 5G 
mobile networks, the extensive deployment of 5G base sta‐
tions (BSs) contributes to much more power consumption 
than previous generation of technology [2]. On the macro 
level, the proportion of the electricity consumption of 5G 
BSs in terminal electricity consumption will continue to in‐
crease. It is estimated that the electricity consumption of 
communication BSs will account for 2%-2.4% of the whole 
social electricity consumption by 2025. In the same period, 
the electricity consumption of transportation such as intercity 

high-speed rail, intercity rail transit, and electric vehicles is 
estimated to account for 1.4%-1.5% of the total social elec‐
tricity consumption [3]. The load of 5G BSs will have an in‐
creasing impact on the load structure and operation optimiza‐
tion of the distribution networks (DNs). On the micro level, 
the influence of high energy consumption of 5G BSs is be‐
coming more and more significant. In urban local DNs, such 
as office area, commercial area, and residential area DNs, 
5G BSs could bring 6.43%-11.34% increase in peak load 
[4]. For the mobile network operator (MNO), the electricity 
costs rise exponentially with the deployment of massive 5G 
BSs [5]. Consequently, it is necessary for the MNO to find 
an effective way to reduce its payment. The large-scale ac‐
cess of 5G BSs to the DNs has a significant effect on the op‐
eration of the power system. For one thing, the power con‐
sumption of the 5G BS will increase the peak load of the 
DN, which affects the safety and stability of the power sys‐
tem [6]; for another, the dispersive installation of 5G BSs al‐
so provides potential flexibility resources which promote the 
grid resilience [7]. Therefore, the collaborative interaction of 
the distribution network operator (DNO) and the MNO con‐
sidering the features of both sides deserves further explora‐
tion.

From the perspective of mobile networks, the main ap‐
proaches for energy and cost control could be divided into 
two categories: ① internal optimization in the MNO; and ② 
interactive optimization with the DNO. Recent researches on 
the internal optimization related to 5G BSs include the ener‐
gy consumption management, energy storage (ES) manage‐
ment, and the cooperative dispatch in the multiple 5G BSs 
[8], [9]. The BS sleeping strategy based on communication 
traffic is an effective method to reduce the energy consump‐
tion of 5G cellular networks [10]. A model considering mul‐
tiple sleep modes is constructed to balance the energy con‐
sumption and quality of service [11]. The game theory is al‐
so applied to the BS sleeping problem [12] to deal with the 
conflicts and interactions among the distributed BS sleeping 
switching operations. The ES devices are usually installed in 
5G BSs to maintain the BS power supply reliability at a re‐
quired level [13], which could be utilized as dispatchable re‐
sources. The BS operation cost is reduced by evaluating the 
dispatchable capacity of the BS based on semi-Markov anal‐
ysis and taking advantage of the spare capacity [14]. Be‐
sides, with the penetration of renewable energy resources, 
the on-grid power of BSs is saved by maximizing the utiliza‐
tion of green energy by decomposition of such joint optimi‐
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zation problem into several subproblems [15], [16]. Ulterior‐
ly, the ES is imported to better adapt to the dynamic nature 
of renewable energy [17], which is realized by a low-com‐
plexity online control scheme based on Lyapunov optimiza‐
tion. However, the researches mainly focus on the optimiza‐
tion in the internal 5G base station groups (BSGs) and ig‐
nore the collaborative interaction with DNs.

There are some researches considering the interaction of 
the DNO and the MNO. Through direct load control based 
on incentive or guiding signal based on electricity price, the 
distributed energy resources participate in the energy interac‐
tion with the power grid. A mixed-integer nonlinear optimi‐
zation model is proposed to allocate user associations accord‐
ing to real-time price differences among BSs [18]. Consider‐
ing the influence of the real-time change of communication 
load on the backup power demand of BSs, the ES regulation 
strategy in 5G BS is established to reduce the operation cost 
of BSs [19]. However, the existing research mainly focuses 
on the characteristics of BS operators and considers the pa‐
rameters of DNs as given inputs, which neglects the demand 
of DNs.

From the perspective of DNs, demand response is widely 
applied in the solution to energy management in DNs [20]. 
Demand response is divided into incentive demand response 
and price demand response. Time-of-use (TOU) pricing is a 
common demand-side management strategy for electricity 
prices, which involves charging consumers differently de‐
pending on the time they use energy services. As one branch 
of game theory, the Stackelberg game is extensively utilized 
in the demand response, especially in the electricity trading 
process due to the unequal status between power providers 
and users [21]. A multiparty energy management framework 
based on the Stackelberg game is proposed for the joint oper‐
ation of combined heat and power and photovoltaic (PV) 
prosumers with the internal price-based demand response 
[22]. A Stackelberg-game-based energy sharing framework is 
recommended for the DN with dynamic pricing, whereas PV 
prosumers serve as followers with the ability to modify flexi‐
ble loads through demand response [23]. A Stackelberg-
game-based collaborative optimization approach is proposed 
for DNs and 5G mobile networks with renewable resourc‐
es [24].

To realize the two-way interaction and efficient coopera‐
tion between the DNO and the MNO, 5G BSGs are served 
as dispatchable resources to participate in the demand re‐
sponse in the DN. In the temporal scale, ES devices in‐
stalled in 5G BSGs implement wired energy exchange facili‐
tated by the grid architecture through charging and discharg‐
ing, which is guided by different prices over time. In the spa‐
tial scale, considering the broadcast nature of wireless com‐
munications, energy can be shared among multiple BSs 
through wireless energy transfer methods [25]. The behavior 
of load migration (LM) is affected by the price diversity in 
different areas in the same period.

To this end, this paper focuses on the collaborative optimi‐
zation framework by making the following contributions.

1) An optimal model of 5G BS is proposed for peak load 
regulation in DNs. The proposed model considers the charac‐

teristics of ES and LM that correspond to temporal dimen‐
sion and spatial dimension, then realizes the demand re‐
sponse of these two dimensions.

2) A collaborative optimization framework based on the 
Stackelberg game theory is constructed. The peak load regu‐
lation in the DN is realized by the ES dispatch strategy of 
5G BSs and LM strategy among 5G BSGs guided by the dy‐
namic pricing scheme. The optimization framework aims at 
reducing the peak load regulation pressure in the DN while 
reducing the 5G BS operation cost.

3) The differential evolution (DE) algorithm is utilized to 
reach the Stackelberg equilibrium (SE). The optimization in 
the MNO level is decomposed into two sub-problems, i. e., 
the time-scale charging and discharging problem and the 
space-scale multi-BSG energy sharing problem, and interacts 
until reaching the optimal results.

II. DEMAND RESPONSE IN MULTI-BSGS 

A. Characteristics of 5G BS

The 5G BS is mainly composed of communication devic‐
es and ES devices (backup battery). The power consumption 
of communication devices in the 5G BS is divided into stat‐
ic power and dynamic power. The static power is usually 
fixed and related to the energy consumption of the baseband 
unit. Meanwhile, the dynamic power is adjustable, which de‐
pends on the communication traffic of served mobile users 
[26]. The coverage range of a 5G BS is mainly related to 
the BS transmission power, frequency, and installation posi‐
tion, and the signal coverage radius is about 250-400 m 
[27]. In a region equipped with 5G BSs, there is spatial cou‐
pling relationship among the BSs, thus the mobile users con‐
nected by one BS can be transferred to other BSs. By taking 
advantage of the ability of dynamic access, the MNO can 
regulate the number of mobile users connected with each 5G 
BS, realizing the LM in space dimension. To meet the de‐
mand for uninterrupted power supply in the case of power 
outages, the 5G BSs are equipped with ES. The rated power 
and the total energy capacity of the ES in 5G BS are the 
same as and triple that of the total power of the 5G BS at 
full load, respectively [14]. The reserved ES in 5G BSs is 
the potential dispatchable resource to participate in the de‐
mand response. The ES device in the 5G BS is utilized as 
flexibility resource, which exchanges power with the grid 
and realizes the dispatch in time dimension by the charging 
and discharging behaviors.

In practical situation, the dispatchable power in single 5G 
BS is little compared with total loads in the DN. In addition, 
the number of 5G BSs is large, which leads to higher model 
solving complexity and longer model solving time. There‐
fore, there is a local BSG agent in each area, which assem‐
bles dispersed adjustable resources in 5G BSGs. The trans‐
mission mode of power and information in communication 
networks is shown in Fig. 1.

In a vibrant electricity market, the BSGs in different areas 
receive different local prices. Each local 5G BSG agent col‐
lects the energy consumption of BSGs and the local electrici‐
ty price and transmits them to the central MNO. The MNO 
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rationally plans resource allocation according to information 
such as electricity price from each area. Then, the 5G BSGs 
take part in demand response in two ways: charging and dis‐
charging in ES and LM.

B. Framework of Multi-BSGs in DNs

In this paper, the framework of multi-BSGs in the DN is 
shown in Fig. 2. There are two general business agents (the 
DNO and the MNO) and multiple local BSG agents in the 
network. The DNO takes charge of the operation and securi‐
ty of the power grid. The MNO has the ownership and oper‐
ation control of the flexibility resources in the 5G BSGs, 
which issues scheduling instructions to the local BSG 
agents. A region is commonly divided into various areas ac‐
cording to their functions, like residential area, industrial ar‐
ea, and commercial area. The load curves of DNs and com‐
munication networks in these areas are different and comple‐
mentary. In one day, the peak and off-peak loads in different 
areas occur at different time slots. By dispatching flexible re‐
sources in space at one time slot, the peak loads in different 
areas are smoothed.

The mobile users can change the connection in the over‐
lapped 5G BS coverage areas. LM of BSs within a 5G BSG 
area could not change the power flow and reduce the cost 
by multi-area prices. The 5G BSG in various areas has the 
characteristics of local spatial LM, which means the 5G BSs 
at the boundary of an area could change the connection of 
the mobile users with the 5G BS at the boundary of other ar‐
ea, while the 5G BSs inside the area could not participate in 
the LM. Therefore, the dynamic load of the 5G BSG can be 
divided into spatial schedulable load and spatial non-sched‐

ulable load. In a typical distribution area, the number of 
evenly distributed 5G BSs is about 50-100 [18]. For a sym‐
metrical plane area, the spatial schedulable dynamic load of 
the area accounts for about 19%-26%; for an asymmetric ar‐
ea, the spatial schedulable dynamic load will account for a 
larger proportion.

In terms of the temporal dimension, ES devices installed 
in 5G BSGs realize wired energy exchange with the DN 
through charging and discharging behaviors according to 
electricity price signals at different time. In terms of spatial 
dimension, mobile communication load is migrated among 
5G BSGs through wireless communication load flow accord‐
ing to electricity price difference in different areas at the 
same time, so as to realize energy sharing among the 
BSGs [28].

C. Operating Strategy

The DNO serves as an intermediary agent, which purchas‐
es energy from the main grid at wholesale prices and then 
sells to consumers at retail prices. The price provided by the 
DNO reflects the degree of power supply shortage in the cur‐
rent period, and guides users’  power consumption behavior. 
On the premise of the supply for energy demand of consum‐
ers, the DNO endeavors to obtain the highest possible opera‐
tion profits. Meanwhile, the DNO also needs to provide 
more preferential dynamic pricing to incentivize flexible 
loads to actively respond and help ease the system’s peak 
load pressure. In this framework, the DNO uses a multi-area 
pricing strategy that provides different prices to BSGs based 
on their load characteristics.

The MNO, as an independent general agent, aims at mini‐
mizing its total power costs while meeting the operation con‐
ditions. In the mechanism of multi-BSG price-incentive-
based demand response, the MNO reduces its payments by 
the charging and discharging strategy in ES and the LM 
strategy. In the charging and discharging strategies, the ES 
device in 5G BSG is utilized as flexibility resource, whose 
charging and discharging behaviors in the time dimension 
are guided by the local electricity price. In the LM strategy, 
the MNO is stimulated to allocate communication traffic to 
different 5G BSGs based on their different loads and prices 
at one time slot. The interactive process of the DNO and 
MNO in Stackelberg game is shown in Fig. 3.

MNO

Information; Communication

Local
controller

5G BS

Mobile
users

Central
controller

Fig. 1.　 Transmission mode of power and information in communication 
networks.

Utility grid

…

5G BSG 1

5G BSG 2

5G BSG 3

5G BSG K

5G BSG 4

Wired energy flow; Wireless communication load flow

Fig. 2.　Framework of multi-BSGs in DN.

Power

 

 

Price

Upper layer (DNO)

Goals:

1) Maximize the operation profits

2) Reduce the peak load pressure 

Strategy:

Multi-BSG dynamic price 

Lower layer (MNO)

Goal:

Minimize the operation costs  

Strategies:

1) Charging and discharging in ES

2) Load migration   

Fig. 3.　Interactive process of DNO and MNO in Stackelberg game.
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III. OPTIMAL MODELS OF 5G BSGS AND DNS 

A. Basic Model of 5G BSGs

Assuming that a region is divided into K areas, the 5G 
BSs in one area are considered as a group. In this study, the 
ES model and LM model of 5G BSGs are aggregated.
1) ES Model

The state of charge (SOC) of the ES in BSG i between 
two consecutive time intervals satisfies:

SOCESit = SOCESit - 1 +
1

CESi (ηcha
ESi P

cha
ESitDt -

P dis
ESitDt

ηdis
ESi )

"tÎ T"iÎK (1)

where SOCESit and SOCESit - 1 are the average SOCs of the 
ES in BSG i at time slots t and t - 1, respectively; P cha

ESit and 
P dis

ESit are the aggregated charging and discharging power of 
the ES in BSG i at time slot t, respectively; ηcha

ESi and ηdis
ESi are 

the average charging and discharging efficiencies of the ES 
in BSG i, respectively; T is the number of time slots; K is 
the number of BSGs; and CESi is the total capacity of the ES 
in BSG i.

The ES should not charge and discharge simultaneously 
due to the nature of the storage, which can be described as:

P cha
ESit P

dis
ESit = 0    "tÎ T"iÎK (2)

The stored energy and the charging/discharging power are 
constrained by the ES capacity:

0 £P cha
ESit £P cha

ESimax    "tÎ T"iÎK (3)

0 £P dis
ESit £P dis

ESimax    "tÎ T"iÎK (4)

SOCESimin £ SOCESit £ SOCESimax    "tÎ T"iÎK (5)

where P cha
ESimax and P dis

ESimax are the aggregated maximum 
charging and discharging power of the ES in BSG i, respec‐
tively; and SOCESimin and SOCESimax are the average lower 
and upper limits of the SOCs in BSG i, respectively.
2) LM Model

The power consumption of the 5G BS consists of static 
power and dynamic power, which is proportional to the com‐
munication traffic connected to this 5G BS. It is defined as:

Lbst = Ls
bst + αLd

bst    "tÎ T (6)

where Lbst is the total load of the 5G BS; Ls
bst and Ld

bst are 
the static and dynamic loads of the 5G BS, respectively; and 
α is the energy efficiency coefficient, which is the reciprocal 
of efficiency of the power amplifier.

At time slot t, there is communication traffic transfer 
among different 5G BSGs, the dispatchable load of 5G BSG 
i satisfies:

Ltrans
it = ∑

j = 1i ¹ j

K

(max{Ltrans
ijt 0}+ γij min{Ltrans

ijt 0})

"iÎK"tÎ T (7)

Ltrans
ijt =-Ltrans

jit     "tÎ T (8)

where Ltrans
it  is the transferred load in 5G BSG i at time slot 

t; γij is the migration coefficient related to the transmission 
distance and path; and Ltrans

ijt  is the transferred load between 
5G BSGs i and j at time slot t. When the load is transferred 
from 5G BSG i to group j, Ltrans

ijt > 0; otherwise, Ltrans
ijt < 0. To 

guarantee the quality of service, when the distance between 
the 5G BS and customers increases, the transmitted power 
of signal emitter in the 5G BS is enhanced correspondingly, 
which contributes to more energy consumption.

With the limitation of equipment, the dynamic load of 5G 
BSG i satisfies:

0 £ Ld
bsit £ Ldmax

bsi     "iÎK"tÎ T (9)

where Ld
bsit is the dynamic load of 5G BSG i at time slot t; 

and Ldmax
bsi  is the upper limit of dynamic load in 5G BSG i .

Considering the LM among BSGs, constraint (9) could be 
rewritten as:

0 £ Ld
bsit + Ltrans

it £ Ldmax
bsi     "iÎK"tÎ T (10)

B. Optimal Model of DNs

The selling prices provided by the DNO to 5G BSGs are 
defined as:

pBsell =

é

ë

ê

ê

ê

ê

ê
êê
ê
ê

ê

ê

ê
ù

û

ú

ú

ú

ú

ú
úú
ú
ú

ú

ú

ú
pBsell11  pBsell1t  pBsell1T

  
pBselli1  pBsellit  pBselliT

  
pBsellK1  pBsellKt  pBsellKT

(11)

where pBsellit is the selling price of the electricity to 5G 
BSG i at time solt t.

To ensure the profit of the DNO and incentive for collabo‐
ration of BSGs, pBsellit satisfies:

pbuy £ pBsellit £ psell (12)

where pbuy and psell are the purchase and selling prices of the 
electricity provided by the power grid, respectively.

In this study, we assume that the price of purchasing elec‐
tricity from BSGs is the same as that from the power grid, 
which is generally a constant within a day.

The profit of the DNO is formed by three parts: the profit 
traded with inflexible and flexible loads, the cost traded with 
power grid, and the penalty cost under peak load pressure. 
Accordingly, the profit function is formulated as:

FDNO =FCL +Fexc -Cgrid -Cpen (13)

FCL =∑
i = 1

K∑
t = 1

T

pBsellit Lcit (14)

Fexc =

ì

í

î

ï
ïï
ï

ï
ïï
ï
ï
ï

∑
i = 1

K∑
t = 1

T

pBsellit PexcitDt    Pexcit ³ 0 

∑
i = 1

K∑
t = 1

T

pbuy PexcitDt         Pexcit < 0
(15)

Cgrid =∑
i = 1

K∑
t = 1

T

pbuy PgriditDt (16)

Cpen = 24λ∑
i = 1

K é

ë

ê
êê
ê ù

û

ú
úú
ú

max
tÎ T

{Lcit +Pexcit } ∑
t = 1

T

(Lcit +Pexcit ) (17)

where Cgrid is the cost of purchasing electricity from the 
power grid; Cpen is the extra operation cost due to peak load 
pressure, which is affected by the penalty coefficient λ and 
the peak-to-average ratio; FCL is the profit gained from the 
conventional load Lcit; Pgridit is the electricity purchased 
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from the power grid in 5G BSG i at time slot t; and Fexc is 
the profit of exchanging power Pexcit between the DNO and 
BSGs. When BSGs purchase electricity from the DNO, 
Pexcit > 0; whereas when BSGs sell electricity to the DNO, 
Pexcit < 0. The decision variables in (13) contain the exchang‐
ing power Pexcit and the selling prices provided by the DNO 
to 5G BSGs pBsellit.

To guarantee the security of the DN, the constraints are as 
follows:

Pgridit = Lcit +Pexcit    "iÎK"tÎ T (18)

Pgridimin £Pgridit £Pgridimax    "iÎK"tÎ T (19)

where Pgridimin and Pgridimax are the lower and upper limits 
of purchasing power from the upper grid, respectively, 
which depend on the transmission capacity of the lines.

Constraint (18) denotes the energy balance in the DN at 
any time. Constraint (19) restricts the limits of purchasing 
power from the upper grid.

C. Optimal Model of 5G BSGs

The 5G BSG adjusts the charging and discharging strate‐
gies of ES and the LM strategy to affect the power exchang 
with the DNO to minimize its total cost.

Considering scheduling in time and space, the cost model 
of the 5G BS, which consists of the cost traded with the DNO 
and the changing and discharging loss, is established as:

FBSG =Fexc +CES (20)

CES =∑
i = 1

K∑
t = 1

T

φi (P
cha
ESit +P dis

ESit)Dt (21)

where CES is the charging and discharging loss; and φi is the 
dissipation coefficient of charging and discharging power of 
ES in BSG i.

The constraints of energy balance and power line capacity 
for 5G BSGs can be expressed as:

Pexcit = Lbsit + Ltrans
it +P cha

ESit -P dis
ESit    "iÎK"tÎ T (22)

Pexcimin £Pexcit £Pexcimax    "iÎK"tÎ T (23)

where Lbsit is the load of 5G BSG i at time slot t; and 
Pexcimin and Pexcimax are the minimum and maximum limits 
of the exchanging power for each BSG, respectively.

IV. STACKELBERG GAME MODEL AND SOLUTION 
ALGORITHM 

A. Stackelberg Game Model

The non-cooperative games include multiple decision-mak‐
ing bodies, and each body attempts to maximize its own ben‐
efit. Considering the asymmetric competition among multi-
participants, the Stackelberg game is applied to provide solu‐
tions. The leader gives its strategy first, and then, the follow‐
er gives the optimal response according to the leader’s strat‐
egy and passes the strategy to the leader until the SE is 
reached, which is defined as the only fixed point where no 
player can improve its utility by changing its strategy unilat‐
erally.

In this optimization framework, the DNO acts as the lead‐
er with multi-pricing strategy, which sets dynamic prices in 

the 5G BS areas to guide the reaction of BSGs to obtain the 
maximum operation income. The BSGs act as the followers, 
who minimize their operation costs in response to the prices 
set by the DNO. The strategies of BSGs include the charg‐
ing and discharging of ES and the LM. Thus, the Stackel‐
berg game between the DNO and BSGs can be formulated 
as (24), which contains the game players, game strategies, 
and payoffs.

G ={DNOBSG ;{psell };{Pexc }; FBSG ; FDNO } (24)

where DNOBSG is the set of players; Pexc is the power ex‐
changing strategy among the DNO and each 5G BSG, which 
is affected by the charging and discharging power in ES and 
the LM among various areas; psell is the dynamic price based 
on the demand response of each BSG; FBSG is the cost func‐
tion of all 5G BSGs, which is based on their behaviors of 
charging/discharging and load transformation; and FDNO is 
the profit function of DNs, which depends on the load con‐
sumption and peak load pressure.

The existence of the SE point can be proven by the fol‐
lowing conditions.

1) The strategy set of each player is nonempty, convex, 
and compact.

2) The BSGs have a unique optimal best response strategy 
once informed of the pricing strategy of the DNO.

3) The DNO has a unique optimal strategy based on the 
identified demand response strategies of all BSGs.

Proof 1: because the strategy sets of psell and Pexc defined 
in this paper are the sets of linear inequality constraints (12) 
and (23) and linear equality constraint (22), respectively, 
these sets are readily defined as nonempty, convex, and com‐
pact.

Proof 2: assuming that N BSGs purchase electricity from 
the DNO, and other BSGs sell electricity to the DNO, by 
substituting (15) and (21) into (20), the cost function of the 
5G BSGs at time slot t can be obtained as:

FBSGt =∑
i = 1

N

[pBsellit (Lbsit + Ltrans
it +P cha

ESit -P dis
ESit )+

φi (P
cha
ESit +P dis

ESit )]+ ∑
i =N + 1

K

[pbuy (Lbsit + Ltrans
it +P cha

ESit -P dis
ESit )+

φi (P
cha
ESit +P dis

ESit )]=∑
i = 1

N

[pBsellit L
trans
it + (pBsellit + φi )P

cha
ESit +

(φi - pBsellit )P
dis
ESit + pBsellit Lbsit ]+ ∑

i =N + 1

K

[pbuy Ltrans
it +

(pbuy + φi )P
cha
ESit + (φi - pbuy )P dis

ESit + pbuy Lbsit ] (25)

Given that the pricing strategy of the DNO pBsellit is 
known, it is obvious that the coefficient of the decision vari‐
able is a constant. That means the objective function is lin‐
ear with respect to Ltrans

it  and P cha
ESit /P

dis
ESit, which has a unique 

optimal solution in the feasible domain.
According to the positive or negative value of each pexcit, 

the entire feasible domain U is divided into 2K closed and 
convex subsets {U1U2U2K }. Define the unique optimal 
solution in Um (m = 122K) is Sm ={Ltransm

it P cham
ESit /P dism

ESit }, 
the unique optimal best response strategy is obtained as:

Suni = arg max
S ={Smm = 122K }

FBSG (Sm ) (26)
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Consequently, the BSGs have a unique optimal best re‐
sponse strategy once informed of the pricing strategy of the 
DNO. The best response strategy in terms of (20) is guaran‐
teed to be optimal and unique, so condition (2) is proven.

Proof 3: the objective function (13) at time slot t can be 
concretely rewritten as:

FDNOt =∑
i = 1

K

pBsellit Lcit +∑
i = 1

K

pBsellit max{Pexcit0}+

pbuy min{Pexcit0}-∑
i = 1

K

pbuy Pgridit -

λ∑
i = 1

K é

ë

ê
êê
ê ù

û

ú
úú
ú

max{Lcit +Pexcit }∑
t = 1

T

(Lcit +Pexcit ) (27)

The derivative of (27) with respect to pBsellit is calculated 
to be a constant. When the follower’s strategy is given, the 
determined optimal pricing strategy is guaranteed to be exist 
and unique.

In conclusion, a unique SE exists in the proposed Stackel‐
berg game model.

B. Solution Process for Stackelberg Game

Because of the incompleteness of the strategy information 
obtained by each agent, it is necessary to apply decentralized 
algorithm, which utilizes multiple iterations to stabilize the 
game and reach the optimal value of the system. The DE al‐
gorithm, a heuristic optimization algorithm, is an efficient 
and effective way to solve the distributed optimization prob‐
lem [29]. The process of the algorithm is that the DNO ran‐
domly generates an initial price strategy at first; then, BSGs 
solve the optimization problem with respect to the given 
price strategy; finally, the DNO calculates its objective func‐
tion based on the optimized strategy in each BSG. In the 
next round, the DNO generates the new price through muta‐
tion, crossover, and selection operations until the iteration ap‐
proaches the optimal solution with the evolution of individu‐
al fitness. The implementation process executed by the DNO 
and BSGs are shown in Algorithms 1 and 2, respectively, 
where Lc is vector of the conventional loads; pBsell and pop

Bsell 
are the vector of the selling prices provided by the DNO to 
5G BSGs and its optimal value, respectively; γ is the vector 
of migration coefficients; pbuy is the vector of the purchase 
prices of the electricity provided by the power grid; Lbs is 
the vector of loads of 5G BSGs; Ltrans is the vector of trans‐
ferred loads of 5G BSGs; P cha

ES  and P dis
ES  are the vectors of ag‐

gregated charging and discharging power of the ES, respec‐
tively; F ESn

BSG  is the optimal cost of 5G BSGs at the nth itera‐
tion in the ES charging and discharging subproblem; and 
F LMn

BSG  is the optimal cost of 5G BSGs at the nth iteration in 
the LM subproblem.

The optimized variables of BSGs are coupled in time and 
space considering constraints (1) and (7) and, as a result, the 
optimization model of BSGs could not be solved directly. 
The original optimization problem is decomposed into ES 
charging and discharging optimization subproblem and the 
LM optimization subproblem. The optimal solution of the 
original optimization problem will be found by solving the 
two subproblems iteratively until they converge.

V. CASE STUDY 

A. Basic Simulation Setup

In this subsection, the topology of the DN shown in Fig. 
4 is constructed to verify the availability of the proposed col‐
laborative optimization framework and algorithm. There are 
three areas in the DN: Area 1 is the industrial area; Area 2 
is the residential area; and Area 3 is the commercial area. 
The conventional load data in each area are shown in Fig. 5, 
which are taken from the smart meters in a typical DN in 
Henan, China. If one region has completed the deployment 
of 5G BSs, the BSs installed in this area are regarded as a 
group.

As is known in [25], apart from the static power consump‐
tion, the dynamic power consumption of 5G BSs is about 
20% of the initial conventional load. The load data in each 
BSG are demonstrated in Fig. 6. 

Algorithm 1

1. Input the initial data Lc and pBsell, and set the parameters γ, pbuy, and 
Iter = 0

2. Repeat:

3. Iter = Iter + 1

4. For each BSG iÎK

     Send prices to BSG i

     Execute Algorithm 2

     Receive the optimized exchanging power of each BSG

5. End for

6. Calculate F Iter + 1
DNO  based on (13)

7. Perform the mutation and crossover operations, and generate offspring 
prices pIter + 1

Bsell

8. If F Iter + 1
DNO >F Iter

DNO

        pop
Bsell = pIter + 1

Bsell

   Else

        pop
Bsell = pIter

Bsell

9. End if

10. Until iterative condition is satisfied

Algorithm 2

1. Input the initial data Lbs, Ltrans, and P cha
ES /P dis

ES , and set the parameters λ, 
φ, ε, n = 0, F ES0

BSG , and F LM0
BSG = 0

2. Receive pBsell from the DNO

3. Repeat:

4. Optimize P cha
ES /P dis

ES  in the ES charging and discharging subproblem by 
substituting Ltrans =Ltransn into (20)

5. Calculate F ESn
BSG  based on (20)

6. If | F ESn
BSG -F LMn

BSG | < ε
   Break

7. End if

8. Optimize Ltrans in the LM subproblem by substituting P chan
ES /P disn

ES  into 
(20)

9. Calculate F LMn
BSG  based on (20)

10. If | F ESn
BSG -F LMn

BSG | < ε
     Break

11. End if

12. Update iteration index n = n + 1

13. Until iterative condition is satisfied
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The total power at full load of each 5G BSG is set to be 
2.5 MW, which is limited by the hardware equipment, and 
the power at no load of each 5G BSG is set to be 1.4 MW, 
which is the basic power consumption of the BSG to main‐
tain normal operation. At any time slot, the dispatchable 
power that a BSG could transfer to others is the differential 
value between its real-time load and its power at no load, 
and the power that a BSG could receive from others is the 
differential value between its power at full load and its real-
time load. In this case, the spatial schedulable load is set to 
be 50% of the dynamic load of the 5G BSG. The aggregated 
rated power and total energy capacity of ES devices in each 
BSG are 2 MW and 6 MWh, respectively. The other related 
parameters in this DN are shown in Table I.

The price of purchasing electricity from the upper grid 
adopts the feed-in tariff in most areas of China, which is set 
to be 0.3 CNY/kWh. Meanwhile, the price of purchasing 
electricity from BSGs is the same as 0.3 CNY/kWh. The 
TOU price of the power grid in Henan, China is shown in 
Table II.

The main control parameters of the DE algorithm include 
population size (NP), mutation factor (MF), and crossover 
rate (CR) [30]. In this case, the NP is set to be 4, the MF is 
set to be 0.85, and the CR is set to be 0.8 to surely and rap‐
idly calculate the global optimal solution.

B. Result Analysis

1)　Results of Dynamic Prices
Figure 7 shows the optimized dynamic prices in different 

BSGs, which are tightly correlated with the original load 
curve characteristics of different areas.
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Fig. 7.　Optimized dynamic prices in each BSG. (a) BSG 1. (b) BSG 2. (c) 
BSG 3.
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Fig. 6.　Load data of each BSG.

Load point

110 kV

10 kV10 kV10 kV

Area 1 (BSG 1) Area 2 (BSG 2)

5G BS Area 3 (BSG 3)
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Fig. 5.　Conventional load data in each area.

TABLE I
RELATED PARAMETERS IN CONSTRUCTED DN

Subject

DNO

BSG

Parameter

λ

φi

ηcha
ESi, η

dis
ESi

γ12, γ13

γ23

Value

10 CNY/kW

0.14 CNY/kW

0.95

1.1

1.2

TABLE II
TOU PRICE OF POWER GRID IN HENAN

Time period

19:00-22:00

08:00-13:00

13:00-19:00, 22:00-24:00

00:00-08:00

Price (CNY/kWh)

1.076

0.960

0.629

0.339
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To encourage the 5G BSGs to actively participate in the 
demand response, the selling prices of the electricity are low‐
er than the original TOU prices. And the selling prices are 
higher than the wholesale prices of the upper power grid in 
order to ensure the interests of DNs. The industrial load in 
Area 1 is high at time slots 1-6 and 14-18, and the DNO in‐
tends to raise price to motivate BSG 1 to decrease the load 
consumption, whereas the TOU prices restrict the dynamic 
prices. Thus, the prices in BSG 1 maintain at a comparative‐
ly low level, as shown in Fig. 7(a). Known from Fig. 5, the 
load curve in Area 2 presents a small peak and a large peak 
at time slots 11-12 and 17-22, respectively. The dynamic 
prices in BSG 2 increase to stimulate the utilization of dis‐
patchable loads and relieve the peak load pressure, which is 
coincident with the price trend in Fig. 7(b). Similarly, the 
prices in BSG 3 rise at time slots 10-12 and 15-18 to incen‐
tive the response of flexible resources.
2)　Results of DNs and 5G BSGs

Guided by the multi-dynamic prices provided by the 
DNO, BSGs make strategies to minimize their operation 
costs in two means.

1) Strategies in ES. The charging and discharging strate‐
gies in each BSG are incentivized by price differences in 
temporal dimension. The price fluctuation is not obvious in 
BSG 1, so the behavior of ES in BSG 1 has little effects on 
the peak regulation. In BSG 2 and BSG 3, the ES devices 
charge at low prices and discharge at high prices, which cut 
down the peak load at time slots 19-21 in BSG 2 and at 
time slots 10-12 in BSG 3, respectively.

2) Strategies in LM. Due to the constraint of TOU prices, 
the dynamic prices in different BSGs are almost the same at 
time slots 0-8. Consequently, LM would not happen in this 
time period. At time slots 10-12, the prices in BSG 1 are 
lower than those in the other BSGs. The BSG 1 increases its 
load consumption by mobile users’  connection transfer 
while other BSGs reduce their power consumption to lessen 
the total operation expenses. At time slots 16-18, the prices 
in BSG 2 are almost equal to those of utility grid. Therefore, 
the dynamic loads in BSG 1 and BSG 3 are transferred to 
BSG 2, which cuts down the peak load in BSG 1 and BSG 
3. At time slots 20-22, the LM serves as an auxiliary means 
for further decreasing the peak loads as the charging and dis‐
charging play an important role in peak regulation at these 
time slots.

It is noted that at some time slots (e. g., time slot 21 in 
BSG 1), the behaviors of power consumption by two means 
are entirely opposite. It is not contradictory because the re‐
sponse of ES is guided by the price trend in time dimension 
while the LM is stimulated by the price difference among 
different areas at one time slot. For example, at time slot 21, 
the price in BSG 1 is higher than those at other time slots, 
so the ES discharges. Nevertheless, the price at that time 
slot in BSG 1 is lower than those in other BSGs, thus other 
BSGs transfer loads to BSG 1.

The comparison between the initial netload and the opti‐
mized netload in each area is shown in Fig. 8, and the ES 
strategy at 24 time slots and the LM strategy among BSGs 

are also illustrated.

As for the optimal electricity prices, the MNO utilizes the 
dispatchable resources in 5G BSGs to take part in the de‐
mand response due to the preferential electricity prices pro‐
vided by the DNO. The effect of the proposed collaborative 
optimization for the guidance of the load is better than that 
of the independent optimization, which is shown in Table III.

C. Comparison with Independent Optimization

1)　Comparison of Peak Load Regulation in Different Scenar‐
ios

To demonstrate the effectiveness of the proposed collabor‐
ative optimization, the joint temporal and spatial optimiza‐
tion that combines the ES and LM is compared with the in‐
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Fig. 8.　Comparison between initial netload and optimized netload in each 
area and ES strategy and LM strategy in each BSG. (a) Area 1 (BSG 1). (b) 
Area 2 (BSG 2). (c) Area 3 (BSG 3).

TABLE III
COMPARISON OF PEAK LOAD IN EACH AREA

Area

Area 1

Area 2

Area 3

Peak load (MW)

Independent 
optimization (MW)

18.21

17.63

17.85

Collaborative 
optimization (MW)

17.56

15.61

15.82

Decrease 
percentage (%)

3.6

11.5

11.4
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dependent optimization that only considers the ES or LM.
Figure 9 shows the comparisons of optimized netload 

curves in each distributed area. It is clear that the joint tem‐
poral and spatial optimization performs better in peak load 
regulation than the independent optimization. As presented 
in Fig. 9(a), the effect of peak load regulation by means of 
LM is better than means of ES in Area 1. The ES could not 
fully utilize its ability to regulate the peak load due to the 
fact that the changing tendencies of price and load in time 
dimension are not similar. In Fig. 9(b) and (c), it is shown 
that the ES plays a more important role than LM in peak 
load shifting. In Areas 2 and 3, the ES of 5G BSGs charges 
at lower price and discharges at higher price following the 
guidance of dynamic price. The LM functions as an assistant 
role because the schedulable capacity of ES is more than 
that of LM.

In general, the proposed collaborative optimization inte‐
grates the characteristics of ES and LM, which could deal 
with various price strategies and load patterns and reduce 
the peak load regulation pressure.
2)　Comparison of Economics in Different Scenarios

To show the advantage of multi-BSG pricing strategy, the 
economic comparisons in different scenarios are demonstrat‐
ed in Table IV.

The initial scenario represents the calculated results in in‐
dependent operation pattern, while the other three scenarios 
present the results from the proposed collaborative optimiza‐
tion framework. According to Table III, the economic perfor‐
mance of the overall DN is improved when the proposed  
collaborative optimization is applied to the DNO and MNO, 
and the economic effectiveness considering the temporal and 
spatial dispatchable resources is better than only considering 
one of them. As for 5G BSGs, they adjust the charging and 
discharging strategies of ES and the LM strategy to fit in the 
optimized dynamic price to reduce their operation cost. De‐
spite that the DNO gives up a part of benefits to incentive 
flexible loads to actively respond to its peak load regulation 
demand, the peak load penalty is decreased, which compen‐
sates for the economic losses on account of concessional 
price.
3)　Comparison of Iterative Efficiency in Different Scenarios

The iterative solution algorithm is applied to the proposed 
collaborative optimization between the DNO and the MNO, 
and the convergency processes of DNO’s profit are shown 
in Fig. 10. It is clear that with the increase of iteration num‐
ber, the DNO’s profit increases gradually and reaches the 
steady state after about 50 iterations. The convergence rate 
of the joint optimization is not slower than the independent 
optimization since the coupling model is decomposed into 
two sub-models. As a result, the proposed collaborative opti‐
mization has stable convergence performance.

All numerical tests are carried out on a computer with an 
Intel Core i7-10710U CPU at 1.10 GHz and 16 GB RAM, 
and the optimal problems are solved using MATLAB soft‐
ware R2016b by calling CPLEX solver 12.8. The testing re‐
sults of computation time with different numbers of areas 
are shown in Table V, from which we can draw that, as the 
number of areas grows, the computation time of the pro‐
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Fig. 9.　Optimized netload curves in each distributed area. (a) Area 1. (b) 
Area 2. (c) Area 3.

TABLE IV
ECONOMIC COMPARISONS IN DIFFERENT SCENARIOS

Scenario

Initial

LM

ES

ES + LM

Profit of DNO (CNY)

245370

248210

255270

260650

Cost of MNO (CNY)

84030

68510

61940

57010
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Fig. 10.　Convergency processes of DNO’s profit.
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posed collaborative optimization also increases correspond‐
ingly. Although the computation complexity is O(N 2 -N/2), 
the computation time is acceptable in practical applications 
since the number of areas N would not be very large and the 
variable matrix is a sparse matrix because the direct connec‐
tions between areas will decrease with the increase in the 
number of areas.

VI. CONCLUSION 

In this paper, an optimization framework based on the 
Stackelberg game is proposed, where the DNO works as a 
leader with dynamic pricing for multi-BSGs, while BSGs 
serve as followers with the ability of demand response to ad‐
just their charging and discharging strategies in temporal di‐
mension and load migration strategy in spatial dimension. 
The existence and uniqueness of the SE of the proposed 
framework are proved and the problem reaches the optimal 
solution by DE algorithm. The results show that the DNO in‐
creases its total profits through electricity price regulation to 
encourage BSGs to assist with the peak load regulation, 
while the charging and discharging behaviors and LM re‐
sponding to the dynamic price reduce the operation costs of 
multi-BSGs by 32.16%. The case study shows the effective‐
ness of the proposed framework which benefits both parties. 
Future work will relate to synergetic optimization consider‐
ing 5G BS and other renewable resources and detailed con‐
sideration of the quality of service in both DNs and mobile 
networks.

REFERENCES

[1] Y. Siriwardhana, P. Porambage, M. Ylianttila et al., “Performance anal‐
ysis of local 5G operator architectures for industrial internet,” IEEE In‐
ternet of Things Journal, vol. 7, no. 12, pp. 11559-11575, Dec. 2020.

[2] I. Chih-Lin, S. Han, and S. Bian, “Energy-efficient 5G for a greener 
future,” Nature Electronics, vol. 3, no. 4, pp. 182-184, Apr. 2020.

[3] J. Han, N. Liu, and J. P. S. Catalão, “Optimization of distribution net‐
work and mobile network with interactive balance of flexibility and 
power,” IEEE Transactions on Power Systems, vol. 38, no. 3, pp. 
2512-2524, May 2023.

[4] Y. Zou, Q. Wang, Y. Chi et al., “Electric load profile of 5G base sta‐
tion in distribution systems based on data flow analysis,” IEEE Trans‐
actions on Smart Grid, vol. 13, no. 3, pp. 2452-2466, May 2022.

[5] M. Shafi, A. F. Molisch, P. J. Smith et al., “5G: a tutorial overview of 
standards, trials, challenges, deployment, and practice,” IEEE Journal 
on Selected Areas in Communications, vol. 35, no. 6, pp. 1201-1221, 
Jun. 2017.

[6] M. Agiwal, A. Roy, and N. Saxena, “Next generation 5G wireless net‐
works: a comprehensive survey,” IEEE Communications Surveys & Tu‐
torials, vol. 18, no. 3, pp. 1617-1655, Jul. 2016.

[7] H. A. H. Hassan, D. Renga, M. Meo et al., “A novel energy model for 
renewable energy-enabled cellular networks providing ancillary servic‐
es to the smart grid,” IEEE Transactions on Green Communications 
and Networking, vol. 3, no. 2, pp. 381-396, Jun. 2019.

[8] G. Wu, C. Yang, S. Li et al., “Recent advances in energy-efficient net‐
works and their application in 5G systems,” IEEE Wireless Communi‐
cations, vol. 22, no. 2, pp. 145-151, Apr. 2015.

[9] S. Buzzi, I. Chih-Lin, T. E. Klein et al., “A survey of energy-efficient 
techniques for 5G networks and challenges ahead,” IEEE Journal on 
Selected Areas in Communications, vol. 34, no. 4, pp. 697-709, Apr. 
2016.

[10] K. Chang, K. Chu, H. Wang et al., “Energy saving technology of 5G 
base station based on Internet of Things collaborative control,” IEEE 
Access, vol. 8, pp. 32935-32946, Feb. 2020.

[11] C. Liu, B. Natarajan, and H. Xia, “Small cell base station sleep strate‐
gies for energy efficiency,” IEEE Transactions on Vehicular Technolo‐
gy, vol. 65, no. 3, pp. 1652-1661, Mar. 2016.

[12] J. Zheng, Y. Cai, X. Chen et al., “Optimal base station sleeping in 
green cellular networks: a distributed cooperative framework based on 
game theory,” IEEE Transactions on Wireless Communications, vol. 
14, no. 8, pp. 4391-4406, Aug. 2015.

[13] Y. Mao, J. Zhang, and K. B. Letaief, “A Lyapunov optimization ap‐
proach for green cellular networks with hybrid energy supplies,” IEEE 
Journal on Selected Areas in Communications, vol. 33, no. 12, pp. 
2463-2477, Dec. 2015.

[14] P. Yong, N. Zhang, Q. Hou et al., “Evaluating the dispatchable capaci‐
ty of base station backup batteries in distribution networks,” IEEE 
Transactions on Smart Grid, vol. 12, no. 5, pp. 3966-3979, Nov. 2021.

[15] T. Han and N. Ansari, “On optimizing green energy utilization for cel‐
lular networks with hybrid energy supplies,” IEEE Transactions on 
Wireless Communications, vol. 12, no. 8, pp. 3872-3882, Aug. 2013.

[16] X. Huang, T. Han, and N. Ansari, “Smart grid enabled mobile net‐
works: jointly optimizing BS operation and power distribution,” IEEE/
ACM Transactions on Networking, vol. 25, no. 3, pp. 1832-1845, Jun. 
2017.

[17] P. H. Chiang, R. Guruprasad, and S. Dey, “Optimal use of harvested 
solar, hybrid storage and base station resources for green cellular net‐
works,” IEEE Transactions on Green Communications and Network‐
ing, vol. 2, no. 3, pp. 707-720, Sept. 2018.

[18] C. Zhou, C. Feng, and Y. Wang, “Spatial-temporal energy manage‐
ment of base stations in cellular networks,” IEEE Internet of Things 
Journal, vol. 9, no. 13, 10588-10599, Jul. 2022.

[19] X. Ma, X. Meng, Q. Zhu et al., “Control strategy of 5G base station 
energy storage considering communication load,” Transactions of Chi‐
na Electrotechnical Society, vol. 37, no. 11, pp. 2878-2887, Jun. 2022.

[20] L. Chen, N. Liu, C. Li et al., “Peer-to-peer energy sharing with dy‐
namic network structures,” Applied Energy, vol. 291, p. 116831, Jun. 
2021.

[21] C. Jiang, C.-L. Tseng, Y. Wang et al., “Optimal pricing strategy for da‐
ta center considering demand response and renewable energy source 
accommodation,” Journal of Modern Power Systems and Clean Ener‐
gy, vol. 11, no. 1, pp. 345-354, Jan. 2023.

[22] L. Ma, N. Liu, J. Zhang et al., “Energy management for joint opera‐
tion of CHP and PV prosumers inside a grid-connected microgrid: a 
game theoretic approach,” IEEE Transactions on Industrial Informat‐
ics, vol. 12, no. 5, pp. 1930-1942, Oct. 2016.

[23] L. Chen, N. Liu, and J. Wang, “Peer-to-peer energy sharing in distribu‐
tion networks with multiple sharing regions,” IEEE Transactions on 
Industrial Informatics, vol. 16, no. 11, pp. 6760-6771, Nov. 2020.

[24] J. Han, N. Liu, Y. Huang et al., “Collaborative optimization of distri‐
bution network and 5G mobile network with renewable energy sources 
in smart grid,” International Journal of Electrical Power & Energy 
Systems, vol. 130, p. 107027, Sept. 2021.

[25] X. Huang and N. Ansari, “Energy sharing within EH-enabled wireless 
communication networks,” IEEE Wireless Communications, vol. 22, 
no. 3, pp. 144-149, Jun. 2015.

[26] P. Yong, N. Zhang, S. Ci et al., “5G communication base stations par‐
ticipating in demand response: key technologies and prospects,” Pro‐
ceedings of the CSEE, vol. 41, no. 16, pp. 5540-5551, Jun. 2021.

[27] N. Zhang, J. Yang, Y. Wang et al., “5G communication for the ubiqui‐
tous Internet of things in electricity: technical principles and typical ap‐
plications, ” Proceedings of the CSEE, vol. 39, no. 14, p. 4015-4024, 
May 2019.

[28] Z. Wu, J. Wang, H. Zhong et al., “Sharing economy in local energy 
markets,” Journal of Modern Power Systems and Clean Energy, vol. 
11, no. 3, pp. 714-726, May 2023.

[29] R. Storn and K. Price, “Differential evolution – a simple and efficient 
heuristic for global optimization over continuous spaces,” Journal of 
Global Optimization, vol. 11, no. 4, pp. 341-359, Nov. 1997.

[30] N. Duvvuru and K. S. Swarup, “A hybrid interior point assisted differ‐
ential evolution algorithm for economic dispatch,” IEEE Transactions 

TABLE V
COMPARISON OF COMPUTATIONAL PERFORMANCE WITH DIFFERENT 

NUMBERS OF AREAS

Number of 
areas

3

4
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0.728
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