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Base Station Groups in Distribution Networks

Silu Zhang, Nian Liu, and Jianpei Han

Abstract—With the large-scale connection of SG base stations
(BSs) to the distribution networks (DNs), 5G BSs are utilized as
flexible loads to participate in the peak load regulation, where
the BSs can be divided into base station groups (BSGs) to real-
ize inter-district energy transfer. A Stackelberg game-based opti-
mization framework is proposed, where the distribution net-
work operator (DNO) works as a leader with dynamic pricing
for multi-BSGs; while BSGs serve as followers with the ability
of demand response to adjust their charging and discharging
strategies in temporal dimension and load migration strategy in
spatial dimension. Subsequently, the presence and uniqueness of
the Stackelberg equilibrium (SE) are provided. Moreover, differ-
ential evolution is adopted to reach the SE and the optimization
problem in multi-BSGs is decomposed to solve the time-space
coupling. Finally, through simulation of a practical system, the
results show that the DNO operation profit is increased via cut-
ting down the peak load and the operation costs for multi-BSGs
are reduced, which reaches a win-win effect.

Index Terms—S5G base station, dynamic pricing, demand re-
sponse, energy storage, load migration, Stackelberg game, opti-
mization.

I. INTRODUCTION

ITH the development of the economy, the communi-

cation technology is improved. The S5th-generation
(5G) mobile networks, which provide high bandwidth, high
capacity, and low latency communication [1], are becoming
widely used in recent years. Meanwhile, as the core of 5G
mobile networks, the extensive deployment of 5G base sta-
tions (BSs) contributes to much more power consumption
than previous generation of technology [2]. On the macro
level, the proportion of the electricity consumption of 5G
BSs in terminal electricity consumption will continue to in-
crease. It is estimated that the electricity consumption of
communication BSs will account for 2%-2.4% of the whole
social electricity consumption by 2025. In the same period,
the electricity consumption of transportation such as intercity
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high-speed rail, intercity rail transit, and electric vehicles is
estimated to account for 1.4%-1.5% of the total social elec-
tricity consumption [3]. The load of 5G BSs will have an in-
creasing impact on the load structure and operation optimiza-
tion of the distribution networks (DNs). On the micro level,
the influence of high energy consumption of 5G BSs is be-
coming more and more significant. In urban local DNs, such
as office area, commercial area, and residential area DNs,
5G BSs could bring 6.43%-11.34% increase in peak load
[4]. For the mobile network operator (MNO), the electricity
costs rise exponentially with the deployment of massive 5G
BSs [5]. Consequently, it is necessary for the MNO to find
an effective way to reduce its payment. The large-scale ac-
cess of 5G BSs to the DNs has a significant effect on the op-
eration of the power system. For one thing, the power con-
sumption of the 5G BS will increase the peak load of the
DN, which affects the safety and stability of the power sys-
tem [6]; for another, the dispersive installation of 5G BSs al-
so provides potential flexibility resources which promote the
grid resilience [7]. Therefore, the collaborative interaction of
the distribution network operator (DNO) and the MNO con-
sidering the features of both sides deserves further explora-
tion.

From the perspective of mobile networks, the main ap-
proaches for energy and cost control could be divided into
two categories: () internal optimization in the MNO; and 2
interactive optimization with the DNO. Recent researches on
the internal optimization related to 5G BSs include the ener-
gy consumption management, energy storage (ES) manage-
ment, and the cooperative dispatch in the multiple 5G BSs
[8], [9]. The BS sleeping strategy based on communication
traffic is an effective method to reduce the energy consump-
tion of 5G cellular networks [10]. A model considering mul-
tiple sleep modes is constructed to balance the energy con-
sumption and quality of service [11]. The game theory is al-
so applied to the BS sleeping problem [12] to deal with the
conflicts and interactions among the distributed BS sleeping
switching operations. The ES devices are usually installed in
5G BSs to maintain the BS power supply reliability at a re-
quired level [13], which could be utilized as dispatchable re-
sources. The BS operation cost is reduced by evaluating the
dispatchable capacity of the BS based on semi-Markov anal-
ysis and taking advantage of the spare capacity [14]. Be-
sides, with the penetration of renewable energy resources,
the on-grid power of BSs is saved by maximizing the utiliza-
tion of green energy by decomposition of such joint optimi-
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zation problem into several subproblems [15], [16]. Ulterior-
ly, the ES is imported to better adapt to the dynamic nature
of renewable energy [17], which is realized by a low-com-
plexity online control scheme based on Lyapunov optimiza-
tion. However, the researches mainly focus on the optimiza-
tion in the internal 5G base station groups (BSGs) and ig-
nore the collaborative interaction with DNs.

There are some researches considering the interaction of
the DNO and the MNO. Through direct load control based
on incentive or guiding signal based on electricity price, the
distributed energy resources participate in the energy interac-
tion with the power grid. A mixed-integer nonlinear optimi-
zation model is proposed to allocate user associations accord-
ing to real-time price differences among BSs [18]. Consider-
ing the influence of the real-time change of communication
load on the backup power demand of BSs, the ES regulation
strategy in 5G BS is established to reduce the operation cost
of BSs [19]. However, the existing research mainly focuses
on the characteristics of BS operators and considers the pa-
rameters of DNs as given inputs, which neglects the demand
of DNs.

From the perspective of DNs, demand response is widely
applied in the solution to energy management in DNs [20].
Demand response is divided into incentive demand response
and price demand response. Time-of-use (TOU) pricing is a
common demand-side management strategy for electricity
prices, which involves charging consumers differently de-
pending on the time they use energy services. As one branch
of game theory, the Stackelberg game is extensively utilized
in the demand response, especially in the electricity trading
process due to the unequal status between power providers
and users [21]. A multiparty energy management framework
based on the Stackelberg game is proposed for the joint oper-
ation of combined heat and power and photovoltaic (PV)
prosumers with the internal price-based demand response
[22]. A Stackelberg-game-based energy sharing framework is
recommended for the DN with dynamic pricing, whereas PV
prosumers serve as followers with the ability to modify flexi-
ble loads through demand response [23]. A Stackelberg-
game-based collaborative optimization approach is proposed
for DNs and 5G mobile networks with renewable resourc-
es [24].

To realize the two-way interaction and efficient coopera-
tion between the DNO and the MNO, 5G BSGs are served
as dispatchable resources to participate in the demand re-
sponse in the DN. In the temporal scale, ES devices in-
stalled in 5G BSGs implement wired energy exchange facili-
tated by the grid architecture through charging and discharg-
ing, which is guided by different prices over time. In the spa-
tial scale, considering the broadcast nature of wireless com-
munications, energy can be shared among multiple BSs
through wireless energy transfer methods [25]. The behavior
of load migration (LM) is affected by the price diversity in
different areas in the same period.

To this end, this paper focuses on the collaborative optimi-
zation framework by making the following contributions.

1) An optimal model of 5G BS is proposed for peak load
regulation in DNs. The proposed model considers the charac-
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teristics of ES and LM that correspond to temporal dimen-
sion and spatial dimension, then realizes the demand re-
sponse of these two dimensions.

2) A collaborative optimization framework based on the
Stackelberg game theory is constructed. The peak load regu-
lation in the DN is realized by the ES dispatch strategy of
5G BSs and LM strategy among 5G BSGs guided by the dy-
namic pricing scheme. The optimization framework aims at
reducing the peak load regulation pressure in the DN while
reducing the 5G BS operation cost.

3) The differential evolution (DE) algorithm is utilized to
reach the Stackelberg equilibrium (SE). The optimization in
the MNO level is decomposed into two sub-problems, i.e.,
the time-scale charging and discharging problem and the
space-scale multi-BSG energy sharing problem, and interacts
until reaching the optimal results.

II. DEMAND RESPONSE IN MULTI-BSGS

A. Characteristics of 5G BS

The 5G BS is mainly composed of communication devic-
es and ES devices (backup battery). The power consumption
of communication devices in the 5G BS is divided into stat-
ic power and dynamic power. The static power is usually
fixed and related to the energy consumption of the baseband
unit. Meanwhile, the dynamic power is adjustable, which de-
pends on the communication traffic of served mobile users
[26]. The coverage range of a 5G BS is mainly related to
the BS transmission power, frequency, and installation posi-
tion, and the signal coverage radius is about 250-400 m
[27]. In a region equipped with 5G BSs, there is spatial cou-
pling relationship among the BSs, thus the mobile users con-
nected by one BS can be transferred to other BSs. By taking
advantage of the ability of dynamic access, the MNO can
regulate the number of mobile users connected with each 5G
BS, realizing the LM in space dimension. To meet the de-
mand for uninterrupted power supply in the case of power
outages, the 5G BSs are equipped with ES. The rated power
and the total energy capacity of the ES in 5G BS are the
same as and triple that of the total power of the 5G BS at
full load, respectively [14]. The reserved ES in 5G BSs is
the potential dispatchable resource to participate in the de-
mand response. The ES device in the 5G BS is utilized as
flexibility resource, which exchanges power with the grid
and realizes the dispatch in time dimension by the charging
and discharging behaviors.

In practical situation, the dispatchable power in single 5G
BS is little compared with total loads in the DN. In addition,
the number of 5G BSs is large, which leads to higher model
solving complexity and longer model solving time. There-
fore, there is a local BSG agent in each area, which assem-
bles dispersed adjustable resources in 5G BSGs. The trans-
mission mode of power and information in communication
networks is shown in Fig. 1.

In a vibrant electricity market, the BSGs in different areas
receive different local prices. Each local 5G BSG agent col-
lects the energy consumption of BSGs and the local electrici-
ty price and transmits them to the central MNO. The MNO



ZHANG et al.: TEMPORAL AND SPATIAL OPTIMIZATION FOR 5G BASE STATION GROUPS IN DISTRIBUTION NETWORKS

rationally plans resource allocation according to information
such as electricity price from each area. Then, the 5SG BSGs
take part in demand response in two ways: charging and dis-
charging in ES and LM.
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Fig. 1. Transmission mode of power and information in communication

networks.

B. Framework of Multi-BSGs in DNs

In this paper, the framework of multi-BSGs in the DN is
shown in Fig. 2. There are two general business agents (the
DNO and the MNO) and multiple local BSG agents in the
network. The DNO takes charge of the operation and securi-
ty of the power grid. The MNO has the ownership and oper-
ation control of the flexibility resources in the 5G BSGs,
which issues scheduling instructions to the local BSG
agents. A region is commonly divided into various areas ac-
cording to their functions, like residential area, industrial ar-
ea, and commercial area. The load curves of DNs and com-
munication networks in these areas are different and comple-
mentary. In one day, the peak and off-peak loads in different
areas occur at different time slots. By dispatching flexible re-
sources in space at one time slot, the peak loads in different
areas are smoothed.
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Fig. 2. Framework of multi-BSGs in DN.

The mobile users can change the connection in the over-
lapped 5G BS coverage areas. LM of BSs within a 5G BSG
area could not change the power flow and reduce the cost
by multi-area prices. The 5G BSG in various areas has the
characteristics of local spatial LM, which means the 5G BSs
at the boundary of an area could change the connection of
the mobile users with the 5G BS at the boundary of other ar-
ea, while the 5G BSs inside the area could not participate in
the LM. Therefore, the dynamic load of the 5G BSG can be
divided into spatial schedulable load and spatial non-sched-
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ulable load. In a typical distribution area, the number of
evenly distributed 5G BSs is about 50-100 [18]. For a sym-
metrical plane area, the spatial schedulable dynamic load of
the area accounts for about 19%-26%; for an asymmetric ar-
ea, the spatial schedulable dynamic load will account for a
larger proportion.

In terms of the temporal dimension, ES devices installed
in 5G BSGs realize wired energy exchange with the DN
through charging and discharging behaviors according to
electricity price signals at different time. In terms of spatial
dimension, mobile communication load is migrated among
5G BSGs through wireless communication load flow accord-
ing to electricity price difference in different areas at the
same time, so as to realize energy sharing among the
BSGs [28].

C. Operating Strategy

The DNO serves as an intermediary agent, which purchas-
es energy from the main grid at wholesale prices and then
sells to consumers at retail prices. The price provided by the
DNO reflects the degree of power supply shortage in the cur-
rent period, and guides users’ power consumption behavior.
On the premise of the supply for energy demand of consum-
ers, the DNO endeavors to obtain the highest possible opera-
tion profits. Meanwhile, the DNO also needs to provide
more preferential dynamic pricing to incentivize flexible
loads to actively respond and help ease the system’s peak
load pressure. In this framework, the DNO uses a multi-area
pricing strategy that provides different prices to BSGs based
on their load characteristics.

The MNO, as an independent general agent, aims at mini-
mizing its total power costs while meeting the operation con-
ditions. In the mechanism of multi-BSG price-incentive-
based demand response, the MNO reduces its payments by
the charging and discharging strategy in ES and the LM
strategy. In the charging and discharging strategies, the ES
device in 5G BSG is utilized as flexibility resource, whose
charging and discharging behaviors in the time dimension
are guided by the local electricity price. In the LM strategy,
the MNO is stimulated to allocate communication traffic to
different 5G BSGs based on their different loads and prices
at one time slot. The interactive process of the DNO and
MNO in Stackelberg game is shown in Fig. 3.

Upper layer (DNO)

1) Maximize the operation profits
2) Reduce the peak load pressure

Strategy:
Multi-BSG dynamic price

Strategies:
1) Charging and discharging in ES
2) Load migration

Fig. 3. Interactive process of DNO and MNO in Stackelberg game.
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III. OPTIMAL MODELS OF 5G BSGS AND DNS

A. Basic Model of 5G BSGs

Assuming that a region is divided into K areas, the 5G
BSs in one area are considered as a group. In this study, the
ES model and LM model of 5G BSGs are aggregated.

1) ES Model

The state of charge (SOC) of the ES in BSG i between
two consecutive time intervals satisfies:

Pl At

dis
ES.i

VieT,VieK (1)

where SOCy,, and SOCy,, , are the average SOCs of the
ES in BSG i at time slots 7 and ¢— 1, respectively; Py, and
Pg”g;,.’, are the aggregated charging and discharging power of
the ES in BSG i at time slot 7, respectively; 77, and 75, are
the average charging and discharging efficiencies of the ES
in BSG i, respectively; T is the number of time slots; K is
the number of BSGs; and Cy; is the total capacity of the ES
in BSG 7.

The ES should not charge and discharge simultaneously
due to the nature of the storage, which can be described as:

P, Pis, =0 VieT,VieK 2)

The stored energy and the charging/discharging power are
constrained by the ES capacity:

SOCES.i,t:SOCES.i,t—I +

cha pcha
s PEs AL =

CESA, i

0<Pgy <P o VteT.ViekK 3)

0<Pl <Pl  VteTlViek (4)

SOC g, min$SOC s, ,<SOCps 0. VieT.VieK  (5)
where Pg¢ = and Pjs, .. are the aggregated maximum

charging and discharging power of the ES in BSG i, respec-
tively; and SOC; i and SOCq, .. are the average lower
and upper limits of the SOCs in BSG i, respectively.
2) LM Model

The power consumption of the 5G BS consists of static
power and dynamic power, which is proportional to the com-
munication traffic connected to this 5G BS. It is defined as:

Lbs.t:LZS,zdl_aL[d,_“ VteT (6)

where L, , is the total load of the 5G BS; L; , and L{ , are
the static and dynamic loads of the 5G BS, respectively; and
o is the energy efficiency coefficient, which is the reciprocal
of efficiency of the power amplifier.

At time slot #, there is communication traffic transfer
among different 5G BSGs, the dispatchable load of 5G BSG
i satisfies:

K

z (max {L]}", 0}+y,; min {L]7"", 0})

Jj=Li#j

L r ans _

VieKVteT

™
LI =—LI" VteT (®)

where L™ is the transferred load in 5G BSG i at time slot
t; y,; is the migration coefficient related to the transmission
distance and path; and L]} is the transferred load between
5G BSGs i and j at time slot £. When the load is transferred
from 5G BSG i to group j, L]7;'>0; otherwise, L;}*<0. To

Lj,t
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guarantee the quality of service, when the distance between
the 5G BS and customers increases, the transmitted power
of signal emitter in the 5G BS is enhanced correspondingly,
which contributes to more energy consumption.

With the limitation of equipment, the dynamic load of 5G
BSG i satisfies:

0 <Ld Ld max

i SLy VieKVteT 9)
where Lj, ., is the dynamic load of 5G BSG i at time slot f;
and Ly is the upper limit of dynamic load in 5G BSG i .
Considering the LM among BSGs, constraint (9) could be
rewritten as:
0 <LZ: . t Ltmm <LZYHIMX

VieK,VteT (10)

B. Optimal Model of DNs

The selling prices provided by the DNO to 5G BSGs are
defined as:

Psei 1.1 Ppsei 1.1 Psen1.T
P et = | PBseirin Ppsein,i.t Ppseiri.t (11)
PBseir k.1 Pseii k.1 Ppseirk.T

where py.,., is the selling price of the electricity to 5G
BSG i at time solt ¢.

To ensure the profit of the DNO and incentive for collabo-
ration of BSGs, py,, ;, satisfies:

Py S SPse (12)
where p,,, and p,,, are the purchase and selling prices of the
electricity provided by the power grid, respectively.

In this study, we assume that the price of purchasing elec-
tricity from BSGs is the same as that from the power grid,
which is generally a constant within a day.

The profit of the DNO is formed by three parts: the profit
traded with inflexible and flexible loads, the cost traded with
power grid, and the penalty cost under peak load pressure.
Accordingly, the profit function is formulated as:

Fpno=Fo+F,.—C,,—C (13)

grid — ™~ pen

CL EEPBscllt it

i=1t=

EEPBYL”lt exc:t Pexaztzo

F.=1." (15)

zzpbuy exc, i, t <0

i=1t=

p Bsell,i,t

(14)

exc,i,t

K T

grld z z ,[ buy Pgndt t

i=1t=1

K T
Cpen = 24/1 Z‘|: r&a;( {Lc, it + Pexc. it }/Z‘(Lu, it + Pexc, it )} (17)

where C,, is the cost of purchasing electricity from the
power grid; C,,, is the extra operation cost due to peak load
pressure, which is affected by the penalty coefficient 4 and
the peak-to-average ratio; F, is the profit gained from the
conventional load L P is the electricity purchased

(16)

c i, t’ grid, it
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from the power grid in 5G BSG i at time slot #; and F,_ is
the profit of exchanging power P, ;, between the DNO and
BSGs. When BSGs purchase electricity from the DNO,
P,...>0; whereas when BSGs sell electricity to the DNO,
P....<0. The decision variables in (13) contain the exchang-
ing power P, and the selling prices provided by the DNO
to 5G BSGs pyye i

To guarantee the security of the DN, the constraints are as
follows:

Pgrid,i,t=Lﬂ,i,t+Pexc,i.t Vi€K7\v/te T (18)
Pgrid.i,min S})grial,i,tg})grid,i,max Vie K’ VieT (19)
where P min and P, . are the lower and upper limits

of purchasing power from the upper grid, respectively,
which depend on the transmission capacity of the lines.

Constraint (18) denotes the energy balance in the DN at
any time. Constraint (19) restricts the limits of purchasing
power from the upper grid.

C. Optimal Model of 5G BSGs

The 5G BSG adjusts the charging and discharging strate-
gies of ES and the LM strategy to affect the power exchang
with the DNO to minimize its total cost.

Considering scheduling in time and space, the cost model
of the 5G BS, which consists of the cost traded with the DNO
and the changing and discharging loss, is established as:

Fpso=F o+ CES (20)
K T ; )
Crs= >, > 0, (Pis, + P, At 1)

i=1t=1
where Cj is the charging and discharging loss; and ¢, is the
dissipation coefficient of charging and discharging power of
ES in BSG i.
The constraints of energy balance and power line capacity
for 5G BSGs can be expressed as:

Pexc,i,tzLbs,i,t+L;,r;ms_i_Pz!;Ii.t_ngi.t VZ € K’ Vt € T (22)
Pexﬂ,i,minSpexﬂ,i,tSPexc,i‘max Vl € K VI € T (23)

where L, ;, is the load of 5G BSG i at time slot # and
Pimn and P, . are the minimum and maximum limits

of the exchanging power for each BSG, respectively.

IV. STACKELBERG GAME MODEL AND SOLUTION
ALGORITHM

A. Stackelberg Game Model

The non-cooperative games include multiple decision-mak-
ing bodies, and each body attempts to maximize its own ben-
efit. Considering the asymmetric competition among multi-
participants, the Stackelberg game is applied to provide solu-
tions. The leader gives its strategy first, and then, the follow-
er gives the optimal response according to the leader’s strat-
egy and passes the strategy to the leader until the SE is
reached, which is defined as the only fixed point where no
player can improve its utility by changing its strategy unilat-
erally.

In this optimization framework, the DNO acts as the lead-
er with multi-pricing strategy, which sets dynamic prices in

1163

the 5G BS areas to guide the reaction of BSGs to obtain the
maximum operation income. The BSGs act as the followers,
who minimize their operation costs in response to the prices
set by the DNO. The strategies of BSGs include the charg-
ing and discharging of ES and the LM. Thus, the Stackel-
berg game between the DNO and BSGs can be formulated
as (24), which contains the game players, game strategies,
and payoffs.

G={DNOUBSG { Py }:{P o }: Fs6: Fono } (24)

where DNOU BSG is the set of players; P, is the power ex-
changing strategy among the DNO and each 5G BSG, which
is affected by the charging and discharging power in ES and
the LM among various areas; p_,, is the dynamic price based
on the demand response of each BSG; F; is the cost func-
tion of all 5G BSGs, which is based on their behaviors of
charging/discharging and load transformation; and F,,, is
the profit function of DNs, which depends on the load con-
sumption and peak load pressure.

The existence of the SE point can be proven by the fol-
lowing conditions.

1) The strategy set of each player is nonempty, convex,
and compact.

2) The BSGs have a unique optimal best response strategy
once informed of the pricing strategy of the DNO.

3) The DNO has a unique optimal strategy based on the
identified demand response strategies of all BSGs.

Proof 1: because the strategy sets of p_, and P, defined
in this paper are the sets of linear inequality constraints (12)
and (23) and linear equality constraint (22), respectively,
these sets are readily defined as nonempty, convex, and com-
pact.

Proof 2: assuming that N BSGs purchase electricity from
the DNO, and other BSGs sell electricity to the DNO, by
substituting (15) and (21) into (20), the cost function of the
5G BSGs at time slot # can be obtained as:

N
_ trans cha __ pdis
Fys.= z[szell,i.,t(Lbs‘i,t+Li.,t + P = Prs i)+

iz

K
h di - 'h di
9; (P’ i+ Prsi 1+ 2 [pbuy(Lbs.,i.t_i_L;,r;ms+P2S?I',I_PE§L!)+
i=N+1
N

h di ! ch
9;(Pis' i+ Prsi )= z[szelI,i,tL;,r?m+(szell,i,t+¢i)Pz'Sfli,t+

i=1

K
di ‘
@i =Posen i PEs i F PosenniiLosii ]+ 2 (Do Lid™ +

i=N+1

(pbuy+¢i)P;{;‘fli,t-i_((pi_pbuy)ngi,t-‘rpbuyl’bs,i,t] (25)

Given that the pricing strategy of the DNO pg., ., is
known, it is obvious that the coefficient of the decision vari-
able is a constant. That means the objective function is lin-
ear with respect to L!" and Py, /Pgs,,, which has a unique
optimal solution in the feasible domain.

According to the positive or negative value of each p, .,
the entire feasible domain U is divided into 2% closed and
convex subsets {U,,U,,...,U,}. Define the unique optimal
solution in U, (m=1,2,....2%) is S, ={L{"™", Pis"/Pasls,
the unique optimal best response strategy is obtained as:

Soni = Fps6(S,,)

uni

¥

arg max
S={S,.m=1,2,....25}

(26)
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Consequently, the BSGs have a unique optimal best re-
sponse strategy once informed of the pricing strategy of the
DNO. The best response strategy in terms of (20) is guaran-
teed to be optimal and unique, so condition (2) is proven.

Proof 3: the objective function (13) at time slot ¢ can be
concretely rewritten as:

K K
FDNO,t: zprell,i.th,i,r—‘r zszell.i,t max {Pexc,i.t7 O} +
i=1 i=1

K
pbuy min {Pexc, iLt? 0}_ zpthgrid, it
i=1

K T
/1 EI:maX {Lz‘,,zl,t+ Pexc,i,t %E(Laiﬁt_{—Pexc,i,t ):| (27)
i=1 t=1

The derivative of (27) with respect to py,;, is calculated
to be a constant. When the follower’s strategy is given, the
determined optimal pricing strategy is guaranteed to be exist
and unique.

In conclusion, a unique SE exists in the proposed Stackel-
berg game model.

B. Solution Process for Stackelberg Game

Because of the incompleteness of the strategy information
obtained by each agent, it is necessary to apply decentralized
algorithm, which utilizes multiple iterations to stabilize the
game and reach the optimal value of the system. The DE al-
gorithm, a heuristic optimization algorithm, is an efficient
and effective way to solve the distributed optimization prob-
lem [29]. The process of the algorithm is that the DNO ran-
domly generates an initial price strategy at first; then, BSGs
solve the optimization problem with respect to the given
price strategy; finally, the DNO calculates its objective func-
tion based on the optimized strategy in each BSG. In the
next round, the DNO generates the new price through muta-
tion, crossover, and selection operations until the iteration ap-
proaches the optimal solution with the evolution of individu-
al fitness. The implementation process executed by the DNO
and BSGs are shown in Algorithms 1 and 2, respectively,
where L, is vector of the conventional loads; p,., and p%,,
are the vector of the selling prices provided by the DNO to
5G BSGs and its optimal value, respectively; y is the vector
of migration coefficients; p,,, is the vector of the purchase
prices of the electricity provided by the power grid; L, is
the vector of loads of 5G BSGs; L is the vector of trans-
ferred loads of 5G BSGs; Pf« and Pjs are the vectors of ag-
gregated charging and discharging power of the ES, respec-
tively; Fhs is the optimal cost of 5G BSGs at the n" itera-
tion in the ES charging and discharging subproblem; and
Fptr is the optimal cost of 5G BSGs at the n™ iteration in
the LM subproblem.

The optimized variables of BSGs are coupled in time and
space considering constraints (1) and (7) and, as a result, the
optimization model of BSGs could not be solved directly.
The original optimization problem is decomposed into ES
charging and discharging optimization subproblem and the
LM optimization subproblem. The optimal solution of the
original optimization problem will be found by solving the
two subproblems iteratively until they converge.
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Algorithm 1

. Input the initial data L, and py,, and set the parameters p, p,,,, and
Iter=0

2. Repeat:

3. Iter=1Iter+1

4. For each BSG i e K
Send prices to BSG i
Execute Algorithm 2

—_

Receive the optimized exchanging power of each BSG
. End for
. Calculate F/“+! based on (13)

. Perform the mutation and crossover operations, and generate offspring

o Iter+1
Prices pipg.y

lter+ 1 plter
8. If Fpyo > Fpyo
op _ lter+1
P Bset1 =P Bseil
Else
op  _ lter
P gsetr =P senl
9. End if

10. Until iterative condition is satisfied

~N N W

Algorithm 2

1. Input the initial data L,, L™, and Pg/Ps%s, and set the parameters /,
0, e,n=0, Fry), and Fht’=0

2. Receive p,,,, from the DNO

3. Repeat:

4. Optimize Pg/Pf% in the ES charging and discharging subproblem by
substituting L= L""" into (20)

5. Calculate FL" based on (20)
6. If | Fror — Frss"| <e
Break
7. End if
8. Optimize L™ in the LM subproblem by substituting Pga*"/Pts" into
(20)
9. Calculate Fst" based on (20)
10. If | FEsr - FRtr | <e
Break
11. End if

12. Update iteration index n=n+1

13. Until iterative condition is satisfied

V. CASE STUDY

A. Basic Simulation Setup

In this subsection, the topology of the DN shown in Fig.
4 is constructed to verify the availability of the proposed col-
laborative optimization framework and algorithm. There are
three areas in the DN: Area 1 is the industrial area; Area 2
is the residential area; and Area 3 is the commercial area.
The conventional load data in each area are shown in Fig. 5,
which are taken from the smart meters in a typical DN in
Henan, China. If one region has completed the deployment
of 5G BSs, the BSs installed in this area are regarded as a
group.

As is known in [25], apart from the static power consump-
tion, the dynamic power consumption of 5G BSs is about
20% of the initial conventional load. The load data in each
BSG are demonstrated in Fig. 6.
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Fig. 6. Load data of each BSG.

The total power at full load of each 5G BSG is set to be
2.5 MW, which is limited by the hardware equipment, and
the power at no load of each 5G BSG is set to be 1.4 MW,
which is the basic power consumption of the BSG to main-
tain normal operation. At any time slot, the dispatchable
power that a BSG could transfer to others is the differential
value between its real-time load and its power at no load,
and the power that a BSG could receive from others is the
differential value between its power at full load and its real-
time load. In this case, the spatial schedulable load is set to
be 50% of the dynamic load of the 5G BSG. The aggregated
rated power and total energy capacity of ES devices in each
BSG are 2 MW and 6 MWh, respectively. The other related
parameters in this DN are shown in Table I.

TABLE I
RELATED PARAMETERS IN CONSTRUCTED DN

Subject Parameter Value
DNO A 10 CNY/kW
?; 0.14 CNY/kW
BSG NS s 0.95
V12 V13 1.1
V23 1.2
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The price of purchasing electricity from the upper grid
adopts the feed-in tariff in most areas of China, which is set
to be 0.3 CNY/kWh. Meanwhile, the price of purchasing
electricity from BSGs is the same as 0.3 CNY/kWh. The
TOU price of the power grid in Henan, China is shown in
Table II.

TABLE 11
TOU PRICE OF POWER GRID IN HENAN

Time period Price (CNY/kWh)

19:00-22:00 1.076
08:00-13:00 0.960
13:00-19:00, 22:00-24:00 0.629
00:00-08:00 0.339

The main control parameters of the DE algorithm include
population size (NP), mutation factor (MF), and crossover
rate (CR) [30]. In this case, the NP is set to be 4, the MF is
set to be 0.85, and the CR is set to be 0.8 to surely and rap-
idly calculate the global optimal solution.

B. Result Analysis

1) Results of Dynamic Prices

Figure 7 shows the optimized dynamic prices in different
BSGs, which are tightly correlated with the original load
curve characteristics of different areas.

1.1 —Selling priceinBSG1
_ 1.0p-—-TOUprice
§ 0.9} - Purchase price
2 0.8F
> 0.7
& 06
305
E 0.4
0.3
0.2 . . - - - . - ; - - g
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Time (hour)
(a)
1.1 - Selling pricein BSG2
__1.0p--TOU price
§ 0.9F Purchase price
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Soesr | e
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s 04r
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D25 s
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1.1 - Selling price inBSG3
_ 1.0r--TOU price .
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~ 0.8
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Fig. 7. Optimized dynamic prices in each BSG. (a) BSG 1. (b) BSG 2. (c)

BSG 3.
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To encourage the SG BSGs to actively participate in the
demand response, the selling prices of the electricity are low-
er than the original TOU prices. And the selling prices are
higher than the wholesale prices of the upper power grid in
order to ensure the interests of DNs. The industrial load in
Area 1 is high at time slots 1-6 and 14-18, and the DNO in-
tends to raise price to motivate BSG 1 to decrease the load
consumption, whereas the TOU prices restrict the dynamic
prices. Thus, the prices in BSG 1 maintain at a comparative-
ly low level, as shown in Fig. 7(a). Known from Fig. 5, the
load curve in Area 2 presents a small peak and a large peak
at time slots 11-12 and 17-22, respectively. The dynamic
prices in BSG 2 increase to stimulate the utilization of dis-
patchable loads and relieve the peak load pressure, which is
coincident with the price trend in Fig. 7(b). Similarly, the
prices in BSG 3 rise at time slots 10-12 and 15-18 to incen-
tive the response of flexible resources.

2) Results of DNs and 5G BSGs

Guided by the multi-dynamic prices provided by the
DNO, BSGs make strategies to minimize their operation
costs in two means.

1) Strategies in ES. The charging and discharging strate-
gies in each BSG are incentivized by price differences in
temporal dimension. The price fluctuation is not obvious in
BSG 1, so the behavior of ES in BSG 1 has little effects on
the peak regulation. In BSG 2 and BSG 3, the ES devices
charge at low prices and discharge at high prices, which cut
down the peak load at time slots 19-21 in BSG 2 and at
time slots 10-12 in BSG 3, respectively.

2) Strategies in LM. Due to the constraint of TOU prices,
the dynamic prices in different BSGs are almost the same at
time slots 0-8. Consequently, LM would not happen in this
time period. At time slots 10-12, the prices in BSG 1 are
lower than those in the other BSGs. The BSG 1 increases its
load consumption by mobile users’ connection transfer
while other BSGs reduce their power consumption to lessen
the total operation expenses. At time slots 16-18, the prices
in BSG 2 are almost equal to those of utility grid. Therefore,
the dynamic loads in BSG 1 and BSG 3 are transferred to
BSG 2, which cuts down the peak load in BSG 1 and BSG
3. At time slots 20-22, the LM serves as an auxiliary means
for further decreasing the peak loads as the charging and dis-
charging play an important role in peak regulation at these
time slots.

It is noted that at some time slots (e.g., time slot 21 in
BSG 1), the behaviors of power consumption by two means
are entirely opposite. It is not contradictory because the re-
sponse of ES is guided by the price trend in time dimension
while the LM is stimulated by the price difference among
different areas at one time slot. For example, at time slot 21,
the price in BSG 1 is higher than those at other time slots,
so the ES discharges. Nevertheless, the price at that time
slot in BSG 1 is lower than those in other BSGs, thus other
BSGs transfer loads to BSG 1.

The comparison between the initial netload and the opti-
mized netload in each area is shown in Fig. 8, and the ES
strategy at 24 time slots and the LM strategy among BSGs
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are also illustrated.
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Fig. 8. Comparison between initial netload and optimized netload in each
area and ES strategy and LM strategy in each BSG. (a) Area 1 (BSG 1). (b)
Area 2 (BSG 2). (c) Area 3 (BSG 3).

As for the optimal electricity prices, the MNO utilizes the
dispatchable resources in 5G BSGs to take part in the de-
mand response due to the preferential electricity prices pro-
vided by the DNO. The effect of the proposed collaborative
optimization for the guidance of the load is better than that
of the independent optimization, which is shown in Table III.

TABLE III
COMPARISON OF PEAK LOAD IN EACH AREA

Peak load (MW)

Arca - Decrease
}ndepe{ndent C'ol'labc')ratlve percentage (%)
optimization (MW)  optimization (MW)
Area 1 18.21 17.56 3.6
Area 2 17.63 15.61 11.5
Area 3 17.85 15.82 11.4

C. Comparison with Independent Optimization

1) Comparison of Peak Load Regulation in Different Scenar-
ios

To demonstrate the effectiveness of the proposed collabor-
ative optimization, the joint temporal and spatial optimiza-
tion that combines the ES and LM is compared with the in-
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dependent optimization that only considers the ES or LM.

Figure 9 shows the comparisons of optimized netload
curves in each distributed area. It is clear that the joint tem-
poral and spatial optimization performs better in peak load
regulation than the independent optimization. As presented
in Fig. 9(a), the effect of peak load regulation by means of
LM is better than means of ES in Area 1. The ES could not
fully utilize its ability to regulate the peak load due to the
fact that the changing tendencies of price and load in time
dimension are not similar. In Fig. 9(b) and (c), it is shown
that the ES plays a more important role than LM in peak
load shifting. In Areas 2 and 3, the ES of 5G BSGs charges
at lower price and discharges at higher price following the
guidance of dynamic price. The LM functions as an assistant
role because the schedulable capacity of ES is more than
that of LM.
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Fig. 9. Optimized netload curves in each distributed area. (a) Area 1. (b)
Area 2. (c) Area 3.

In general, the proposed collaborative optimization inte-
grates the characteristics of ES and LM, which could deal
with various price strategies and load patterns and reduce
the peak load regulation pressure.

2) Comparison of Economics in Different Scenarios

To show the advantage of multi-BSG pricing strategy, the
economic comparisons in different scenarios are demonstrat-
ed in Table IV.

1167

TABLE IV
ECONOMIC COMPARISONS IN DIFFERENT SCENARIOS

Scenario Profit of DNO (CNY) Cost of MNO (CNY)
Initial 245370 84030
LM 248210 68510
ES 255270 61940
ES+LM 260650 57010

The initial scenario represents the calculated results in in-
dependent operation pattern, while the other three scenarios
present the results from the proposed collaborative optimiza-
tion framework. According to Table III, the economic perfor-
mance of the overall DN is improved when the proposed
collaborative optimization is applied to the DNO and MNO,
and the economic effectiveness considering the temporal and
spatial dispatchable resources is better than only considering
one of them. As for 5G BSGs, they adjust the charging and
discharging strategies of ES and the LM strategy to fit in the
optimized dynamic price to reduce their operation cost. De-
spite that the DNO gives up a part of benefits to incentive
flexible loads to actively respond to its peak load regulation
demand, the peak load penalty is decreased, which compen-
sates for the economic losses on account of concessional
price.

3) Comparison of Iterative Efficiency in Different Scenarios

The iterative solution algorithm is applied to the proposed
collaborative optimization between the DNO and the MNO,
and the convergency processes of DNO’s profit are shown
in Fig. 10. It is clear that with the increase of iteration num-
ber, the DNO’s profit increases gradually and reaches the
steady state after about 50 iterations. The convergence rate
of the joint optimization is not slower than the independent
optimization since the coupling model is decomposed into
two sub-models. As a result, the proposed collaborative opti-
mization has stable convergence performance.
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Fig. 10. Convergency processes of DNO’s profit.

All numerical tests are carried out on a computer with an
Intel Core i7-10710U CPU at 1.10 GHz and 16 GB RAM,
and the optimal problems are solved using MATLAB soft-
ware R2016b by calling CPLEX solver 12.8. The testing re-
sults of computation time with different numbers of areas
are shown in Table V, from which we can draw that, as the
number of areas grows, the computation time of the pro-
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posed collaborative optimization also increases correspond-
ingly. Although the computation complexity is O(N*—N/2),
the computation time is acceptable in practical applications
since the number of areas N would not be very large and the
variable matrix is a sparse matrix because the direct connec-
tions between areas will decrease with the increase in the
number of areas.

TABLE V
COMPARISON OF COMPUTATIONAL PERFORMANCE WITH DIFFERENT
NUMBERS OF AREAS

Number of Number of  Computation time in ~ Convergence time
areas variables each iteration (s) (s)
3 144 0.728 34.216
4 240 1.293 65.943
5 360 1.953 123.039

VI. CONCLUSION

In this paper, an optimization framework based on the
Stackelberg game is proposed, where the DNO works as a
leader with dynamic pricing for multi-BSGs, while BSGs
serve as followers with the ability of demand response to ad-
just their charging and discharging strategies in temporal di-
mension and load migration strategy in spatial dimension.
The existence and uniqueness of the SE of the proposed
framework are proved and the problem reaches the optimal
solution by DE algorithm. The results show that the DNO in-
creases its total profits through electricity price regulation to
encourage BSGs to assist with the peak load regulation,
while the charging and discharging behaviors and LM re-
sponding to the dynamic price reduce the operation costs of
multi-BSGs by 32.16%. The case study shows the effective-
ness of the proposed framework which benefits both parties.
Future work will relate to synergetic optimization consider-
ing 5G BS and other renewable resources and detailed con-
sideration of the quality of service in both DNs and mobile
networks.

REFERENCES

[17 Y. Siriwardhana, P. Porambage, M. Ylianttila et al., “Performance anal-
ysis of local 5G operator architectures for industrial internet,” /EEE In-
ternet of Things Journal, vol. 7, no. 12, pp. 11559-11575, Dec. 2020.

[2] L. Chih-Lin, S. Han, and S. Bian, “Energy-efficient 5G for a greener
future,” Nature Electronics, vol. 3, no. 4, pp. 182-184, Apr. 2020.

[3] J. Han, N. Liu, and J. P. S. Cataldo, “Optimization of distribution net-
work and mobile network with interactive balance of flexibility and
power,” IEEE Transactions on Power Systems, vol. 38, no. 3, pp.
2512-2524, May 2023.

[4] Y. Zou, Q. Wang, Y. Chi et al., “Electric load profile of 5G base sta-
tion in distribution systems based on data flow analysis,” IEEE Trans-
actions on Smart Grid, vol. 13, no. 3, pp. 2452-2466, May 2022.

[5] M. Shafi, A. F. Molisch, P. J. Smith et al., “5G: a tutorial overview of
standards, trials, challenges, deployment, and practice,” IEEE Journal
on Selected Areas in Communications, vol. 35, no. 6, pp. 1201-1221,
Jun. 2017.

[6] M. Agiwal, A. Roy, and N. Saxena, “Next generation 5G wireless net-
works: a comprehensive survey,” IEEE Communications Surveys & Tu-
torials, vol. 18, no. 3, pp. 1617-1655, Jul. 2016.

[7]1 H. A. H. Hassan, D. Renga, M. Meo et al., “A novel energy model for
renewable energy-enabled cellular networks providing ancillary servic-
es to the smart grid,” IEEE Transactions on Green Communications
and Networking, vol. 3, no. 2, pp. 381-396, Jun. 2019.

JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 12, NO. 4, July 2024

[8] G. Wu, C. Yang, S. Li ef al., “Recent advances in energy-efficient net-
works and their application in 5G systems,” [EEE Wireless Communi-
cations, vol. 22, no. 2, pp. 145-151, Apr. 2015.

[9]1 S. Buzzi, I. Chih-Lin, T. E. Klein et al., “A survey of energy-efficient
techniques for 5G networks and challenges ahead,” IEEE Journal on
Selected Areas in Communications, vol. 34, no. 4, pp. 697-709, Apr.
2016.

[10] K. Chang, K. Chu, H. Wang ez al., “Energy saving technology of 5G
base station based on Internet of Things collaborative control,” IEEE
Access, vol. 8, pp. 32935-32946, Feb. 2020.

[11] C. Liu, B. Natarajan, and H. Xia, “Small cell base station sleep strate-
gies for energy efficiency,” IEEE Transactions on Vehicular Technolo-
gy, vol. 65, no. 3, pp. 1652-1661, Mar. 2016.

[12] J. Zheng, Y. Cai, X. Chen et al., “Optimal base station sleeping in
green cellular networks: a distributed cooperative framework based on
game theory,” IEEE Transactions on Wireless Communications, Vvol.
14, no. 8, pp. 4391-4406, Aug. 2015.

[13] Y. Mao, J. Zhang, and K. B. Letaief, “A Lyapunov optimization ap-
proach for green cellular networks with hybrid energy supplies,” IEEE
Journal on Selected Areas in Communications, vol. 33, no. 12, pp.
2463-2477, Dec. 2015.

[14] P. Yong, N. Zhang, Q. Hou et al., “Evaluating the dispatchable capaci-
ty of base station backup batteries in distribution networks,” [EEE
Transactions on Smart Grid, vol. 12, no. 5, pp. 3966-3979, Nov. 2021.

[15] T. Han and N. Ansari, “On optimizing green energy utilization for cel-
lular networks with hybrid energy supplies,” [EEE Transactions on
Wireless Communications, vol. 12, no. 8, pp. 3872-3882, Aug. 2013.

[16] X. Huang, T. Han, and N. Ansari, “Smart grid enabled mobile net-
works: jointly optimizing BS operation and power distribution,” /EEE/
ACM Transactions on Networking, vol. 25, no. 3, pp. 1832-1845, Jun.
2017.

[17] P. H. Chiang, R. Guruprasad, and S. Dey, “Optimal use of harvested
solar, hybrid storage and base station resources for green cellular net-
works,” IEEE Transactions on Green Communications and Network-
ing, vol. 2, no. 3, pp. 707-720, Sept. 2018.

[18] C. Zhou, C. Feng, and Y. Wang, “Spatial-temporal energy manage-
ment of base stations in cellular networks,” IEEE Internet of Things
Journal, vol. 9, no. 13, 10588-10599, Jul. 2022.

[19] X. Ma, X. Meng, Q. Zhu et al., “Control strategy of 5G base station
energy storage considering communication load,” Transactions of Chi-
na Electrotechnical Society, vol. 37, no. 11, pp. 2878-2887, Jun. 2022.

[20] L. Chen, N. Liu, C. Li et al., “Peer-to-peer energy sharing with dy-
namic network structures,” Applied Energy, vol. 291, p. 116831, Jun.
2021.

[21] C. Jiang, C.-L. Tseng, Y. Wang et al., “Optimal pricing strategy for da-
ta center considering demand response and renewable energy source
accommodation,” Journal of Modern Power Systems and Clean Ener-
gy, vol. 11, no. 1, pp. 345-354, Jan. 2023.

[22] L. Ma, N. Liu, J. Zhang et al., “Energy management for joint opera-
tion of CHP and PV prosumers inside a grid-connected microgrid: a
game theoretic approach,” IEEE Transactions on Industrial Informat-
ics, vol. 12, no. 5, pp. 1930-1942, Oct. 2016.

[23] L. Chen, N. Liu, and J. Wang, “Peer-to-peer energy sharing in distribu-
tion networks with multiple sharing regions,” [EEE Transactions on
Industrial Informatics, vol. 16, no. 11, pp. 6760-6771, Nov. 2020.

[24] J. Han, N. Liu, Y. Huang et al., “Collaborative optimization of distri-
bution network and 5G mobile network with renewable energy sources
in smart grid,” International Journal of Electrical Power & Energy
Systems, vol. 130, p. 107027, Sept. 2021.

[25] X. Huang and N. Ansari, “Energy sharing within EH-enabled wireless
communication networks,” IEEE Wireless Communications, vol. 22,
no. 3, pp. 144-149, Jun. 2015.

[26] P. Yong, N. Zhang, S. Ci et al., “5G communication base stations par-
ticipating in demand response: key technologies and prospects,” Pro-
ceedings of the CSEE, vol. 41, no. 16, pp. 5540-5551, Jun. 2021.

[27] N. Zhang, J. Yang, Y. Wang et al., “5G communication for the ubiqui-
tous Internet of things in electricity: technical principles and typical ap-
plications, ” Proceedings of the CSEE, vol. 39, no. 14, p. 4015-4024,
May 2019.

[28] Z. Wu, J. Wang, H. Zhong et al., “Sharing economy in local energy
markets,” Journal of Modern Power Systems and Clean Energy, vol.
11, no. 3, pp. 714-726, May 2023.

[29] R. Storn and K. Price, “Differential evolution — a simple and efficient
heuristic for global optimization over continuous spaces,” Journal of
Global Optimization, vol. 11, no. 4, pp. 341-359, Nov. 1997.

[30] N. Duvvuru and K. S. Swarup, “A hybrid interior point assisted differ-
ential evolution algorithm for economic dispatch,” IEEE Transactions



ZHANG et al.: TEMPORAL AND SPATIAL OPTIMIZATION FOR 5G BASE STATION GROUPS IN DISTRIBUTION NETWORKS

on Power Systems, vol. 26, no. 2, pp. 541-549, May 2011.

Silu Zhang is currently working toward the master’s degree in electrical en-
gineering with the School of Electrical and Electronic Engineering, North
China Electric Power University, Beijing, China. Her current research inter-
ests include 5G base station and distribution system optimization.

Nian Liu received the B.S. and M.S. degrees in electric engineering from
Xiangtan University, Xiangtan, China, in 2003 and 2006, respectively, and
the Ph.D. degree in electrical engineering from North China Electric Power
University, Beijing, China, in 2009. He is currently a Professor with the
School of Electrical and Electronic Engineering, North China Electric Pow-
er University. He is also a Member of the State Key Laboratory of Alternate
Electrical Power System with Renewable Energy Sources, Beijing, China,
and a Member of the Standardization Committee of Power Supply and Con-

1169

sumption in Power Industry of China. He was a Visiting Research Fellow
with the Royal Melbourne Institute of Technology (RMIT) University, Mel-
bourne, Australia, from 2015 to 2016. He is an Editor of IEEE Transactions
on Smart Grid, IEEE Transactions on Sustainable Energy, IEEE Power Engi-
neering Letters, and an Associate Editor of Journal of Modern Power Sys-
tems and Clean Energy. His current research interests include multi-energy
system integration, microgrids, cyber-physical energy system, and renewable
energy integration.

Jianpei Han received the B.S. degree in electric engineering from North
China Electric Power University, Baoding, China, in 2017. He is currently
pursuing the Ph.D. degree in the School of Electrical and Electronic Engi-
neering, North China Electric Power University, Beijing, China. His current
research interests include game theory, power cyber-physical system, and
distribution network optimization.



