
JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 12, NO. 4, July 2024

Parallel Computing Based Solution for 
Reliability-constrained Distribution Network 

Planning
Yaqi Sun, Wenchuan Wu, Fellow, IEEE, Yi Lin, Hai Huang, and Hao Chen

Abstract——The main goal of distribution network (DN) expan‐
sion planning is essentially to achieve minimal investment con‐
strained by specified reliability requirements. The reliability-
constrained distribution network planning (RcDNP) problem 
can be cast as an instance of mixed-integer linear programming 
(MILP) which involves ultra-heavy computation burden espe‐
cially for large-scale DNs. In this paper, we propose a parallel 
computing based solution method for the RcDNP problem. The 
RcDNP is decomposed into a backbone grid and several lateral 
grid problems with coordination. Then, a parallelizable aug‐
mented Lagrangian algorithm with acceleration method is devel‐
oped to solve the coordination planning problems. The lateral 
grid problems are solved in parallel through coordinating with 
the backbone grid planning problem. Gauss-Seidel iteration is 
adopted on the subset of the convex hull of the feasible region 
constructed by decomposition. Under mild conditions, the opti‐
mality and convergence of the proposed method are proven. Nu‐
merical tests show that the proposed method can significantly 
reduce the solution time and make the RcDNP applicable for re‐
al-world problems.

Index Terms——Distribution network, expansion planning, reli‐
ability, parallel computing.
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B. Parameters
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Set of substation nodes

Set of transformers

Set of transformer outlet branches

Set of nodes connected to node i

Set of equivalent load nodes in backbone grid

Set of equivalent source nodes in sub-area

Subsets of convex hull conv(Xb ) and conv(Xsn )

Unit vector whose elements are equal to 0 except 
the tth element that is equal to 1

Aging vectors for conductors and transformers

Vectors of Lagrangian multipliers

Vectors of decision variables of backbone grid 
and the nth sub-area planning model

Feasible sets of backbone grid and the nth sub-ar‐
ea planning model

Feasible set

Vectors of decision variables and coordination 
variables

Vectors of coordination variables describing 
boundary conditions for backbone grid and the 
nth sub-area planning model

Variables in the kth iteration

Durations of switching-only interruptions and re‐
pair-and-switching interruptions associated with 
failure of branch connecting nodes x and y

Cost coefficient of energy not supplied

Number of year up to stage t

Present value factor for investment costs at stage t

Present value factor for maintenance costs at stage t

System average interruption duration index 
(SAIDI) requirement at stage t

Penalty value

Investment cost for alternative conductor a

Maintenance cost for alternative conductor a

Investment cost for alternative transformer a
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C. Continuous Variables
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Maintenance cost for alternative transformer a

Investment cost for substation at node s

Maintenance cost for substation at node s

Distance between node i and node j

Parameter equal to 1 when type a conductor ex‐
ists at branch ij originally

Parameter equal to 1 when type a transformer ex‐
ists at transformer Tr originally

A sufficiently large positive constant

The maximum number of transformers in substa‐
tion

Number of subproblems

Parameter equal to 1 when a substation exists at 
node s originally

Number of sub-areas

Number of customers at node i at stage t

Resistance unit of type a conductor

Capacity of type a conductor

Capacity of type a transformer

Inductance unit of type a conductor

Lower and upper bounds of variable (·)

Failure rate of branch ij at stage t

Repair time of branch ij at stage t

Customer interruption frequency (CIF) of node i at 
stage t

Customer interruption duration (CID) of node i at 
stage t

Temporarily estimated CIF of equivalent load node 
(ELN) i at stage t

Temporarily estimated CID of ELN i at stage t

Expected energy not supplied at stage t

Variable in the range of [0, 1] and equal to 1 
when node i is supplied by feeder f under normal 
operation condition at stage t

Variable in the range of [0, 1] and equal to 1 
when branch ij is supplied by feeder f under nor‐
mal operation condition at stage t
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for equivalent outlet branch of equivalent distribu‐
tion source in sub-area at stage t

Resistance of branch ij at stage t

Active and reactive load demands of node i at 
stage t

Equivalent active and reactive loads of sub-area 
at node i at stage t

Active and reactive demands at node i after post-
fault network reconfiguration due to a fault at 
branch xy (xy = NO represents normal operation 
condition) at stage t
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D. Binary Variables
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Active and reactive outputs of distributed genera‐
tion at node i after post-fault network reconfigura‐
tion due to a fault in branch xy (xy = NO repre‐
sents normal operation condition) at stage t

Active and reactive power flows through branch 
ij (from node i to node j) after post-fault network 
reconfiguration due to a fault in branch xy (xy =
NO represents normal operation condition) at 
stage t

Active and reactive power flows through trans‐
former Tr after post-fault network reconfiguration 
due to a fault at branch xy (xy = NO represents 
normal operation condition) at stage t

Capacity of branch ij at stage t

Capacity of transformer Tr at stage t

SAIDI at stage t

Substitution variable for product of failure rate 
λt

xy and repair time τ t
xy of equivalent outlet branch 

(EOB) xy at stage t

Square of voltage at reference node i at stage t

Square of voltage at node i due to a fault at 
branch xy (xy = NO represents normal operation 
condition) at stage t

Inductance of branch ij at stage t

Binary variable equal to 1 when there exists a 
conductor at branch ij, otherwise equal to 0 at 
stage t

Binary variable equal to 1 when alternative con‐
ductor a at branch ij is installed, otherwise equal 
to 0 at stage t

Binary variable equal to 1 when transformer Tr 
exists, otherwise equal to 0 at stage t

Binary variable equal to 1 when alternative trans‐
former a at candidate position Tr is installed, oth‐
erwise equal to 0 at stage t

Binary variable equal to 1 when substation at 
node s is built, otherwise equal to 0 at stage t

Binary variable equal to 1 when node i is affect‐
ed by outage due to a fault in branch xy at stage t

Binary variable equal to 1 when node i is still in 
outage after network reconfiguration following a 
fault in branch xy at stage t

Binary variable equal to 1 when branch ij is con‐
nected after network reconfiguration due to a 
fault in branch xy (xy = NO represents normal op‐
eration condition) at stage t

I. INTRODUCTION

IN order to improve the reliability of power supply, mesh-
designed architecture is commonly adopted in the current 

urban distribution networks (DNs). The DN operates radially 
under normal conditions, and redundant lines are used for 
power rerouting after failures [1] - [3]. Therefore, the DN 
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with mesh structure has higher reliability [4]. When calculat‐
ing the reliability index of the mesh-designed DN, it is nec‐
essary to consider the fault isolation and load transfer after 
the fault, which can be achieved through network reconfigu‐
ration. Otherwise, the reliability of the DN may be underesti‐
mated [5]. Since different customers or lateral grids have dif‐
ferent power supply reliability criteria, the DN expansion 
planning scheme is optimized to achieve the minimum in‐
vestment cost constrained by specified reliability require‐
ments. Commonly used reliability indicators include custom‐
er interruption frequency (CIF), customer interruption dura‐
tion (CID), system average interruption frequency index 
(SAIFI), and system average interruption duration index 
(SAIDI) [6], [7].

DN planning considering reliability has been studied. 
However, early researches mostly penalize the expectation of 
power loss in the objective function, which implicitly and ap‐
proximately reflects the reliability of DNs [8], [9]. With the 
improvement of relevant standards, some quantitative indices 
are used to measure the reliability of DNs [7], [10]. In order 
to make the planning results meet the specified reliability re‐
quirements, the reliability assessment process is required dur‐
ing optimization, which can be achieved by simulation-based 
methods or analytical methods.

Simulation-based methods often use iterative optimization 
assessment procedure, i. e., optimization steps are performed 
with a posterior reliability assessment program [11]-[15]. In 
[11], a pool of feasible solutions with diverse expansion 
plans is first obtained, and the reliability index of each plan 
is calculated to determine the optimal solution. A comprehen‐
sive planning methodology is proposed in [12] considering 
upgrading the conventional equipment in the DNs. The en‐
tire solution process includes the optimal DN reinforcement 
and the power flow solution process based on Gauss-Seidel 
iteration, which is used to evaluate the performance of the 
reinforcement scheme. Based on [11], the choices of custom‐
ers on reliability have been considered in DN planning mod‐
el by carrying out Monte Carlo based simulation in the solu‐
tion process [13]. An integrated method for reliability plan‐
ning and risk estimation in DNs is proposed in [14], which 
takes the backup supply or automatic/manual reconfiguration 
schemes into the consideration. The reliability assessment 
part of [14] still relies on the time-sequential Monte Carlo 
based simulation. Decision tree is used in [15] to solve 
multi-stage network planning problem, in which the switch‐
gear optimization is implemented by simulation software. Ta‐
bu search is adopted in [16] to solve the DN planning model 
considering uncertainty, which requires evaluations to deter‐
mine the movements for the next search step. Genetic algo‐
rithm involving reliability assessment procedure to calculate 
the fitness function is used for reliability planning stage in 
[17]. The simulation-based method is intuitive and easy to 
implement, but suffers from long solution time. The evalua‐
tion procedure cannot be embedded in the planning model to 
obtain a joint solution, while the iterative heuristic method 
cannot guarantee optimality.

Meanwhile, the analytical solution method of the reliabili‐
ty index has been studied in some literatures. Based on the 

analytical solution model of reliability, some pioneer works 
have embedded analytical reliability constraints into the DN 
planning model. Based on the fault incidence matrix pro‐
posed in [18], the fault incidence matrix is applied in [19] 
for the joint optimization configuration of sectional switches 
and tie-lines. Linearized models of different reliability indi‐
ces are introduced in [20] and then involved in a mixed-inte‐
ger linear programming (MILP) model of DN planning. Net‐
work modeling formulation of reliability indices are derived 
in [21] and [22] to consider events such as fault isolation 
and load restoration in DN planning. The multi-level expan‐
sion planning problem of the DN is modeled in [23] as an 
MILP, which has good convergence and can be solved effi‐
ciently. However, the post-fault load restoration which can 
improve the reliability of DNs [5] is not fully considered. 
For mesh DNs, planning schemes without tie switches for 
post-fault load restoration may lead to excessive invest‐
ment.

Post-fault load restoration is considered in the DN plan‐
ning model proposed in [24], but the model is solved by heu‐
ristic algorithm. Inspired by [23], a reliability-constrained 
DN planning (RcDNP) considering post-fault load restora‐
tion for mesh DNs is proposed in [25]. The DN expansion 
planning problem is finally formulated as an MILP. Howev‐
er, the model proposed in [25] does not take the sparse na‐
ture of the topological connection relationship of the DN in‐
to consideration. Existing studies usually model RcDNP as 
MILP. As the scale of the DN expands, the number of deci‐
sion variables in the centralized planning model will explo‐
sively grow, making it challenging to handle due to the esca‐
lating model complexity. Furthermore, with the proliferation 
of decision variables, the search space of the MILP problem 
also expands significantly, leading to reduced solution effi‐
ciency. This makes it challenging to find the optimal solu‐
tion or even a feasible solution within an acceptable time‐
frame. Planners often need to change the boundary condi‐
tions of the problem to create different planning scenarios, 
rather than forming a single plan at once. This requires repet‐
itive calculations, making the centralized model unsuitable 
for practical applications.

As an effective mean to improve solution efficiency, paral‐
lel computing has been widely applied in power system opti‐
mization such as distributed optimal power flow [26] and 
distributed reactive power control [27]. However, distributed 
optimization algorithms adopted in the existing literature 
such as alternating direction method of multipliers (ADMM) 
[28] and analytical target cascading (ATC) [29] cannot be 
used directly in solving the RcDNP problem, since it is an 
MILP involving a large number of integer variables. A paral‐
lel computing method combining branch exchange and dy‐
namic programming for large-scale network layout optimiza‐
tion has been proposed in [30]. Based on [30], the simultane‐
ous optimization of the line layout and type of conductor is 
further implemented in [31]. But the branch exchange algo‐
rithm adopted in network structure optimization still relies 
on heuristic search and is only suitable for radial DNs. In 
[32], a genetic algorithm based planning method is proposed 
considering the sparseness of the rural DN. Reference [33] 
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has established an MILP model for radial DN expansion 
planning. This model decomposes the original planning prob‐
lem into several sub-problems and employs a simulated an‐
nealing algorithm for the iterative solution. In [34], the load 
points of the DN are decomposed into different substation 
supply areas, and subsequently, the static substation planning 
problem is addressed using an evolutionary algorithm. A par‐
allelizable solution method based on the genetic algorithm is 
introduced in [35], wherein the genetic algorithm is initially 
employed for solving the sub-problems in parallel. Subse‐
quently, the fitness function of the integrated solution is de‐
composed to update the solutions of the sub-problems. Refer‐
ence [36] divides the planning region into smaller sub-re‐
gions during the DN planning process. These smaller sub-re‐
gions are independently optimized using heuristic methods. 
Based on the optimization at the sub-regional level, a global 
analysis of the planning region is then conducted. However, 
the heuristic method is not stable and the optimality of the 
solution cannot be guaranteed theoretically. Parallel accelerat‐
ed solution method for large-scale mesh DN expansion plan‐
ning remains to be further studied.

Built upon [25], this paper presents a parallel computing 
based solution method for RcDNP to overcome the above 
difficulties. Firstly, the RcDNP model is reformulated to the 
backbone grid and sub-areas. Then, a parallelizable augment‐
ed Lagrangian algorithm is adopted to solve the model in 
parallel manner. Furthermore, the Nesterov acceleration 
method with restart is used to improve the convergence 
speed.

The main contributions of this paper are summarized as 
follows.

1) A decomposed RcDNP model is proposed, in which the 
planning grid is decomposed into the backbone grid and sev‐
eral sub-areas. The number of integer variables of the plan‐
ning problem roughly increases linearly with the size of the 
planning DN, while the centralized RcDNP model in [25] in‐
creases quadratically.

2) A parallelizable augmented Lagrangian algorithm with 
acceleration method is developed to solve the coordination 
planning problem involving the backbone grid and sub-ar‐
eas. Numerical tests show that the proposed parallel comput‐
ing based solution method exhibits a linearly increasing com‐
putation time with the growing size of DNs. The optimality 
and convergence of the algorithm is also proved rigorously.

The remainder of this paper is arranged as follows. The 
mathematical formulation of the RcDNP model for the back‐
bone grid and sub-area is introduced in Section II. The 
parallel solution process with acceleration method is dis‐
cussed in Section III. Numerical tests and results are 
demonstrated to illustrate the performance of the pro‐
posed solution method in Section IV. Conclusions are 
drawn in Section V.

II. MATHEMATICAL FORMULATION OF RCDNP MODEL

A. Decomposed Planning Model

In the DN, substations are designed to supply power to 
multiple load concentrated areas. These load concentrated ar‐

eas are connected to the substation through the backbone 
grid. This natural sparse structure inspires us to decompose 
the RcDNP problem into the backbone grid and sub-area 
planning problems. It can be solved in parallel through 
coordination. The decomposed planning model is shown 
in Fig. 1.

The proposed model consists of three parts: backbone grid 
planning module, sub-area planning module, and coordina‐
tion layer. As shown in Fig. 2, the sub-area is aggregated as 
an equivalent load node (ELN) i′ in the backbone grid plan‐
ning. For the sub-area planning, the backbone grid is repre‐
sented by an equivalent distribution source (EDS) i″ connect‐
ed a series equivalent outlet branch (EOB) i″ j″ with a cer‐
tain probability of failure.

The consistency conditions of boundary variables include 
two aspects: the consistency of the power flow and the con‐
sistency of the reliability index.

The consistency of the power flow means that the equiva‐
lent load of the backbone grid should be equal to the power 
flow of corresponding EOB in the sub-area. Besides, corre‐
sponding branches in the backbone grid and sub-area share 
the same capacity while corresponding nodes in the back‐
bone grid and sub-area share the same voltage.
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Fig. 1.　Decomposed planning model.
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Fig. 2.　 Schematic diagram of equivalent decoupled models of backbone 
grid and sub-area for RcDNP.
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rameter of the EOB in the sub-area and the reliability index 
of the ELN of the backbone grid should meet the following 
constraints.

λt
i″j″=CIF et

i′     i′ÎΨ e
Di″ÎΨ

e
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τ t
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e

S j″ÎΨi″ (6)

The EDS i″ is assumed to be completely reliable, and the 
influence of the backbone grid failures on the sub-area is re‐
flected in the EOB.

B. Objective Function

The objective function for the RcDNP model is the total 
investment, which consists of investment cost, maintenance 
cost, and reliability cost.
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C. Constraints

The constraints in the model include the following.
1) Operation Constraints

Operation constraints are classified into normal conditions 
and fault conditions.
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Here xyÎΨB{NO} represents the branch fault set and 
normal operation. The linearized power flow constraints, 
power balance constraints, voltage constraints, and capacity 
constraints are given in (10) - (20). Constraint (21) indicates 
that the connecting status is equal to zero when there is no 
branch constructed.
2) Fault Indicator Variable Constraints
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(28)

hft
ij = sNOt

ij     if line ij is outlet branch of feeder f (29)

hft
ij £ sNOt

ij     "ijÎΨB"fÎΨF (30)

∑
f

hft
i £ 1    "iÎΨN (31)

∑
f

hft
ij £ 1    "ijÎΨB (32)

∑
ij

sNOt
ij =∑

f
∑

i

hft
i     ijÎΨBfÎΨFiÎΨNiÏΨSS (33)

Here xyÎΨB represents the failure scenario. Constraint 
(22) indicates that branch xy is outage and isolated in the 
scenario where branch xy fails. Constraint (23) determines 
that the affected nodes by the outage of branch xy must 
share the same feeder affiliation variable with the one of 
branch xy. Constraint (24) indicates the nodes not affected 
by the fault cannot loss power supply due to network recon‐
figuration. Constraint (25) indicates that if the node can re‐
store power supply after the post-fault network reconfigura‐
tion, its load level returns to the normal state; otherwise, it 
remains in the outage state. Constraints (27)-(30) are for the 
feeder affiliation variables related to the network topology in 
normal state, where (27) and (28) show that feeder affilia‐
tion variables can be propagated if branch ij is connected un‐
der normal operation conditions. Constraints (26) and (31) -
(33) are radial operation constraints under normal and fault 
conditions [25].

Regarding the problem of backbone grid planning, the fol‐
lowing constraints need to be attached.
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P t
i = {P NOt

i     "iÎΨNiÏΨ
e

D

P dt
i       "iÎΨNiÎΨ

e
D

(34)

Qt
i =

ì
í
î

QNOt
i     "iÎΨNiÏΨ

e
D

Qdt
i       "iÎΨNiÎΨ

e
D

(35)

3) Equipment Selection Constraints

l t
ij = eT

t ∑
aÎΛC( )∑

τ = 1

t

l aτ
ij g aτ

C + l a0
ij g a0

C     "ijÎΨB (36)

S Ct
ij = eT

t ∑
aÎΛC

S a
C( )∑

τ = 1

t

l aτ
ij g aτ

C + l a0
ij g a0

C     "ijÎΨB (37)

r t
ij = dije

T
t ∑

aÎΛC

r a
C( )∑

τ = 1

t

l aτ
ij g aτ

C + l a0
ij g a0

C     "ijÎΨB (38)

xt
ij = dije

T
t ∑

aÎΛC

xa
C( )∑

τ = 1

t

l aτ
ij g aτ

C + l a0
ij g a0

C     "ijÎΨB (39)

λt
ij = dije

T
t ∑

aÎΛC

λa
C( )∑

τ = 1

t

l aτ
ij g aτ

C + l a0
ij g a0

C     "ijÎΨB (40)

mt
Tr = eT

t ∑
aÎΛT( )∑

τ = 1

t

maτ
Tr g aτ

T +ma0
Tr g a0

T     "TrÎΨT (41)

S Ct
Tr = eT

t ∑
aÎΛT

S a
Tr( )∑

τ = 1

t

maτ
Tr g aτ

T +ma0
Tr g a0

T     "TrÎΨT (42)

∑
τ = 1

t

nτs + n0
s £ 1    "sÎΨSS (43)

∑
τ = 1

t ∑
TrÎΨT

mτ
Tr £Ns ( )∑

τ = 1

t

nτs + n0
s     "sÎΨSS (44)

Constraints (36)-(43) indicate that an available equipment 
must already exist or be constructed at the planning stage. 
Logic constraint between the installation of transformers and 
the existence of substation is demonstrated as constraint (44).
4) Calculation of Reliability Index

CIDt
i = ∑

xyÎΨB

λt
xyτ

SW
xy pxyt

i + ∑
xyÎΨB

λt
xy (τ RP

xy - τ
SW
xy )qxyt

i     "iÎΨN (45)

SAIDI t = ∑
iÎΨN

NC t
i ×CIDt

i ∑
iÎΨN

NC t
i (46)

SAIDI t £ εt
SAIDI (47)

Equations (45) and (46) are the commonly used reliability 
indices, and (47) is the reliability constraint expressed by 
SAIDI. For the sub-area planning problem, since the failure 
rate and repair time of the EOB are also variables, (45) 
should be rewritten as:

CIDt
i = ∑

xÏΨ e
S

yÎΨx

λt
xyτ

SW
xy pxyt

i + ∑
xÏΨ e

S

yÎΨx

λt
xy (τ RP

xy - τ
SW
xy )qxyt

i + ∑
xÎΨ e

S

yÎΨx

nxyt
i

"iÎΨN
(48)

ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

nxyt
i ³ ut

xy - (1 - pxyt
i )M

nxyt
i ³-pxyt

i M

nxyt
i £ ut

xy + (1 - pxyt
i )M

nxyt
i £ pxyt

i M

    xÎΨ e
S yÎΨx (49)

III. PARALLEL SOLUTION PROCESS WITH ACCELERATION 
METHOD

This section introduces a parallelizable augmented La‐
grangian algorithm [37], which is applicable for the split-
variable reformulation of mixed-integer optimization prob‐
lems, and is adopted to solve the coordination planning prob‐
lem of the backbone grid and sub-areas. Independent plan‐
ning of the backbone grid and sub-areas is achieved by solv‐
ing the sub-problems in parallel. The global coordination is 
achieved by the iteration between the coordination layer and 
sub-problems.

A. Decomposable RcDNP Model

The algorithm presented in [37] is adapted to solve prob‐
lems with the following form:

min
xi zi "i

ì
í
î
∑
i = 1

n

fi (x i ):Qi x i = z ix iÎXi"i (z T
1 z

T
2 ..z

T
n )TÎ Z

ü
ý
þ

 (50)

where fi is the objective function; Qi is a matrix; and Z is 
the set of coordination variables. The model presented in the 
previous reference is a centralized model, which needs to be 
reorganized to adapt to the decomposition. 

Combining the backbone grid and sub-areas, we can obtain 
the decomposed RcDNP model of the entire system:

ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïï
ï

ï

min  f (xb ,xs )= fb (xb )+∑
n = 1

nsub

fs,n (xs,n )

s.t.  (10)-(47) for backbone grid

       (10)-(33), (36)-(44), (46)-(49) for sub-areas

       (1)-(6)

(51)

With the substitution of variables in (49), constraint (6) 
can be written as:

ut
i″j″=CIDet

i′     i′ÎΨ e
Di″ÎΨ

e
S  j″ÎΨi″ (52)

To further organize the model into a form suitable for the 
parallelizable augmented Lagrangian algorithm, the decom‐
posable RcDNP model can be written as the compact matrix 
form:

ì

í

î

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

min f (xb xs )= fb (xb )+∑
n = 1

nsub

fsn (xsn )

s.t.  xbÎXb

       xsnÎXsn 

       Qb xb =Qsn xsn

       n = 12...nsub

(53)

In order to make the structure of the model clearer, we 
further define zb and zsn as:

Qb xb = zb =[CIF et
i′ CIDet

i′ P
dt
i′ Q

dt
i′ S

Ct
i′ j′ U

NOt
i′ ]T

"i′ÎΨ e
Dj′ÎΨi′ (54)

Qsn xsn = zsn =[λt
i″j″u

t
i″j″P

NOt
i″j″ Q

NOt
i″j″ S

Ct
i″j″U

sst
i″ ]T

i″ÎΨ e
Snj″ÎΨi″n = 12...nsub (55)

Finally, the set Z is used to describe the coupling relation‐
ship between the coordination variables of different models, 
which is restricted by coordination constraints (1)-(5) and (52).
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Z = { |[z T
b z

T
s1...z

T
snsub

]T (1)-(5) (52)} (56)

The coupling vectors of backbone grid zb and sub-area zsn 
are confined to the regions constructed by coordination con‐
straints. Thus, a decomposable RcDNP model is derived in 
the form of problem (50).

ì

í

î

ï

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

ï

min
xz

 f (xbxs )= fb (xb )+∑
n = 1

nsub

fsn (xsn )

s.t.  Qb xb = zb

       xbÎXb

       Qsn xsn = zsn

       xsnÎXsn

       [z T
b z

T
s1...z

T
snsub

]TÎ Z

(57)

Therefore, the parallelizable augmented Lagrangian algo‐
rithm can be adopted to solve problem (57). The detailed 
steps are described as follows.

1) Step 1: initialize. Define the augmented Lagrangian func‐
tions Lb and Lsn as:

Lb (xbwbzb )= f (xb )+w T
b Qb xb +

ρ
2
 Qb xb - zb

2
(58)

Lsn (xsnwsnzsn )= f (xsn )+w T
snQsn xsn +

ρ
2  Qsn xsn - zsn

2

(59)

Initialize parameters 
-
ϕb =-

ϕsn =-¥, ρ > 0, ε > 0, k = 0, 

T = 0, γÎ(01), where 
-
ϕb and 

-
ϕsn are dual functions in the 

planning problem of the backbone grid and the nth sub-area, 
respectively; ε is the criterion to stop iteration; and γ is the 
parameter of the serious step condition.

2) Step 2: solve initial value of the sub-problem. Solve 
the problem of the backbone grid:

ì

í

î

ï

ï

ï

ï
ïïï
ï

ï

ï

ï

ï

ï

ï
ïïï
ï

ï

ï

ï

ï

(P1)  min fb (xb )=∑
t = 1

T

[δI
t c

I
tb + δ

O
t (cM

tb +ω ×EENS t
b )]

s.t.  
-
P d

i′ £P dt
i′ £

--
P d

i′     i′ÎΨ
e

D

      
-
Qd

i′ £Qdt
i′ £

------
Qd

i′     i′ÎΨ
e

D

      
- -- -----
CIF e

i′ £CIF et
i′ £

- -- -----
CIF e

i′     i′ÎΨ
e

D

      
- -- -----
CIDe

i′ £CIDet
i′ £

- -- -----
CIDe

i′     i′ÎΨ
e

D

       (10)-(47)

(60)

Solve the planning model of each sub-area:

ì

í

î

ï

ï

ï

ï
ïïï
ï

ï

ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

ï

ï

(P2)  min  fsn (xsn )=∑
t = 1

T

[δI
t c

I
tsn + δ

O
t (cM

tsn +ω ×EENS t
sn )]

s.t.  
-
P NO

i″j″ £P NOt
i″j″ £

- -----
P NO

i″j″      i″ÎΨ e
Snj″ÎΨi″

        
-
QNO

i″j″ £QNOt
i″j″ £

- -------
QNO

i″j″     i″ÎΨ
e

Snj″ÎΨi″

        
-
λi″j″ £ λ

t
i″j″£

- -----
λi″j″     i″ÎΨ

e
Snj″ÎΨi″

        
-
ui″j″ £ ut

i″j″£
- -----
ui″j″     i″ÎΨ

e
Snj″ÎΨi″

         (10)-(33) (36)-(44) (46)-(49)

(61)

Construct the subset of the convex hull of the feasible re‐
gions Db ={x 0

b } and Dsn ={x 0
sn } using the linear combination 

of above solution, where x 0
b is the solution of the backbone 

grid planning problem, and x 0
sn is the solution of the nth sub-

area planning problem.
The coordination layer calculates coordination variables 

by solving the following optimization problem.
(P3)  z 0 =

arg min
zbzsn

ì
í
î

ü
ý
þ

 Qb x 0
b - zb

2
+∑

n = 1

nsub

 Qsn x 0
sn - zsn

2
:zbzsnÎ Z   (62)

where z 0 ={z 0
b z

0
s1...z

0
snsub

} is the set of coordination variables 

for the backbone grid and all sub-area planning problems.
3) Step 3: update k = k + 1, T = 1.
4) Step 4: execute Gauss-Seidel iteration. Update variables: 

x k
b = x k - 1

b , x k
sn = x k - 1

sn , z k = z k - 1, w k
b =w k - 1

b , w k
sn =w k - 1

sn , 
-
ϕk =
-
ϕk - 1, 

where 
-
ϕk is the value of dual function in the kth iteration.

Solve the optimization model for the backbone grid:

(P4)  x k
b = arg min

xb

{{Lb (xbw
k
b z

k
b ):xbÎDb } (63)

Solve the optimization model of each sub-area:

(P5)  x k
sn = arg min

xsn

{Lsn (xsnw
k
snz

k
sn ):xsnÎDsn } (64)

Solve the model (P3) to update the coordination variables: 

z k = arg min
zbzsn

ì
í
î

ü
ý
þ

 Qb x k
b - zb

2
+∑

n = 1

nsub

 Qsn x k
sn - zsn

2
:zbzsnÎ Z .

5) Step 5: if T £ Tmax, T = T + 1, return to Step 4. Otherwise, 
perform the following steps: ϕ͂b = -

ϕb (w k
b + ρ(Qb x k

b - z k
b )) ϕ͂sn =

-
ϕsn (w k

sn + ρ(Qsn x k
sn - z k

sn )), where 
-
ϕb (wb ) and 

-
ϕsn (wsn ) are de‐

fined as the dual functions of the original problems:

-
ϕb (wb )= min

xb

{ fb (xb )+w T
b Qb xb:xbÎXb } (65)

-
ϕsn (wsn )= min

xsn

{ fsn (xsn )+w T
snQsn xsn:xsnÎXsn } (66)

where the variables with “~” and “^” are temporary variables.
Solve the optimization model of the backbone grid:

(P6)  x̂b = arg min
xb

{
-
ϕb (w k

b + ρ(Qb x k
b - z k

b ))} (67)

Solve the optimization model of each sub-area:

(P7)  x̂sn = arg min
xsn

{
-
ϕsn (w k

sn + ρ(Qsn x k
sn - z k

sn ))} (68)

Add the vertex to the subset of the convex hull of the feasi‐
ble region: Db = conv(Db{x̂b }), Dsn = conv(Dsn{x̂sn }), εk

b =
ϕ̂b (w k

b x
k
b z

k
b )-

-
ϕk

b, ε
k
sn = ϕ̂sn (w k

snx
k
snz

k
sn )-

-
ϕk

sn, Dϕ
k
b = ϕ͂b - -

ϕk
b,

Dϕk
sn = ϕ͂sn --

ϕk
sn, where ϕ̂b (wbxbzb ) and ϕ̂sn (wsnxsnzsn ) 

are the cutting plane functions used to approximate the dual 
function (65) and (66), which are defined as:

ϕ̂b (wbxbzb )= Lb (xbwbzb )+
ρ
2
 Qb xb - zb

2
(69)

ϕ̂sn (wsnxsnzsn )= Lsn (xsnwsnzsn )+
ρ
2  Qsn xsn - zsn

2

(70)

The algorithm converges if the gaps εk
b and εk

sn are small 
enough.

6) Step 6: check the convergence criterion. If εk
b +∑

n = 1

nsub

εk
sn £ ε, 
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the algorithm converges. Otherwise, perform the following 
steps.

Calculate ηk =Dϕk
b /εk

b +∑
n = 1

nsub

Dϕk
sn /εk

sn. If ηk ³ γ, the Nesterov 

acceleration method with restart is adopted to update w k
b and 

w k
sn [38].

7) Step 7: update ρ: 
1
ρ
=min

ì
í
î

max{2
ρ

(1 - ηk )
1

10ρ


ü
ý
þ

1
ρmax

 

ü
ý
þ

10
ρ


1
ρmin

. If k > kmax, the algorithm stops. Otherwise, return to 

Step 3.
The flowchart depicting the solution process is presented 

in Fig. 3.

B. Optimality and Convergence

In Section III-A, the RcDNP model is reformed to adapt 
to the algorithm in [37]. Since the objective function f (x) is 
linear, the solution of (57) can be obtained by optimizing on 
the convex hull conv(X ) of the original domain, i.e.,

min
xz

{ f (x):Qx = zxÎ conv(X )zÎ Z} (71)

In [37], based on the conclusion of Proposition 3 and 
Lemma 1, Proposition 4 proves that the sequence {(x kz k )} 
generated by Step 4 in the main loop has limit points, which 
is optimal for (71). Thus, it is also the optimal solution of 
the original problem (57).

In order to analyze the rate of convergence, the dual func‐
tion of the convex relaxation (71) is introduced as:

ϕC (w)= min
xz

{ f (x)+w T (Qx - z)xÎ conv(X )zÎ Z} (72)

Assume that the original problem has an optimal dual solu‐
tion w *. According to Proposition 2 in [37], the sum of the gap 
between ϕC (w * ) and 

-
ϕk in all iterations is limited. For the case 

that parameter ρ is fixed, the following conclusion holds:

∑
k = 1

N

(ϕC (w * )-
-
ϕk)<¥ (73)

Considering that 
-
ϕk is non-decreasing, we have:

ϕC (w * )-
-
ϕk = o(1/k) (74)

For the case where parameters ρ and γ both vary but satis‐
fy ρk (1/γk - 1)= c, the rate of convergence can be quadratic. It 
is worth noting that the actual convergence rate may not 
reach the theoretical level since the serious step condition 
may not be guaranteed in each iteration.

After adopting Nesterov acceleration method with restart, 
the parallelizable augmented Lagrangian algorithm will per‐
form one of the following three operations when updating 
the dual variable: ① a “restart”; ② a “nonaccelerated” step 
immediately after a “restart”, in which the acceleration fac‐
tor αk = 1; ③ an “accelerated” step, in which αk > 1. Accord‐
ing to Theorem 3 in [38], the residual ck decreases by at 
least a factor of δ in an accelerated step. Therefore, after k it‐
erations, we can obtain:

ck £ c0δ
k̂ (75)

where k̂ is the number of acceleration steps performed.
If there are enough acceleration steps, we will have ck® 0. 

And after the last acceleration step, the dual variable updating 
will be equivalent to the original algorithm, for which the con‐
vergence is known. The numerical test in [38] proves the ad‐
vantages of the restart. Research works on restarted variants of 
other acceleration methods also share similar results [39].

IV. NUMERICAL TESTS

The RcDNP model and proposed solution method is tested 
on the planning of backbone grid and different numbers of 
sub-areas. System data can be accessed from [40]. All nu‐
merical tests are carried out on a laptop computer with an In‐
tel Core i7-10875H CPU and 16 GB RAM. The MILP mod‐
el is solved by Gurobi (version 9.5.0).

A. Backbone Grid and Two Sub-areas

The backbone grid consists of eight nodes and each sub-ar‐
ea consists of 20 nodes. Branch and node parameters partly 
come from [25]. The topology of the test system can be found 
in [41].

The results and solution time of the proposed method are 
compared with the centralized method [25]. The extended 

Construct the subset of convex hull of feasible region

Step 6: 

does it converge?

Step 7: update Lagrangian multiplier vectors and penalty value

Obtain the coordination variables by solving the model (P3)

Step 5: update the dual functions of original problems

Update the coordination variables

by solving the model (P3)

Y

Y

Y

N

N

N

Step 2: obtain the initial value by solving the models (P1) and (P2)

Step 1: initialize

Start

End

Step 3: k=k+1, T=1

Step 4: minimize augmented Lagrangian function

over the subset of the convex hull of the feasible

region by solving the models (P4) and (P5) 

T≤Tmax?

T=T+1

Obtain the vertex of the convex hull of the feasible 

region by solving the models (P6) and (P7) 

Add the vertex to expend the subset of

the convex hull of feasible region

k≤kmax?

Fig. 3.　Flowchart depicting solution process.
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planning results of the two methods for the backbone grid 
and two sub-areas are shown in Fig. 4. Reliability evaluation 
[5] is used to verify the results to ensure that the results 
meet the reliability requirements. The reliability indices, con‐
struction costs, and solution time of the two methods are list‐
ed in the Table I.

It can be observed that the constructed branches and the 
operation mode planned by the proposed method are the 
same as those planned by the centralized method. However, 
due to the parallel solution architecture, the proposed meth‐
od solves the problem faster than the centralized method.

B. Backbone Grid and Three Sub-areas

Another numerical test is conducted on a larger-scale case 
with a backbone grid and three sub-areas. The detailed set‐
ting of this case can be found in [41].

The planning results of the centralized planning method and 
the proposed method for the backbone grid and three sub-areas 
are shown in Fig. 5. We have compared the proposed method 
with traditional centralized method and parallel solving meth‐
od based on genetic algorithm. The construction costs and so‐
lution time of different methods are listed in Table II.

The effect of the acceleration method is shown in Fig. 6. 
It can be observed that the convergence speed is significant‐
ly improved by introducing the acceleration method. The 
method with acceleration method converges to the optimal 
value (1243 k$) at the 30th iteration, while the method with‐
out acceleration method only reaches 1255 k$ in the same it‐
eration steps.

The effect of the proposed method on multi-stage plan‐
ning problems and the model considering the uncertainties 
of load and distributed generation are shown in [41].

C. Backbone Grid and Six Sub-areas

We further expand the scale of the case to a 139-node DN 
containing a backbone grid and six sub-areas. As the scale 
of the centralized model is too large, it cannot be solved in 
an acceptable time. There are only the results of the parallel 
computing method shown in Fig. 7. The results of the pro‐
posed method with acceleration for the 139-node DN are list‐
ed in Table III. When the centralized method is adopted, the 
gap of the solution is still 22.02% after seven days, and the 
total cost of the planning scheme is 51333 k$.

D. 1495-node Test System

To further verify the scalability of the proposed method, a 
1495-node test system consisting of a backbone grid and 10 
sub-areas is used to test the proposed method. The backbone 
grid is a modified 85-node DN and the sub-area is a modi‐
fied 141-node DN, the information of which can be found in 

With acceleration method

Without acceleration method

0 5 10

103

102

101

100

10-1

10-2

10-3

15
Number of iterations

20 25 30 35

G
ap

Fig. 6.　Effects of acceleration method.

TABLE I
RELIABILITY INDICES, CONSTRUCTION COSTS, AND SOLUTION TIME OF TWO 

METHODS

Method

Central‐
ized

Proposed

Required 
SAIDI 
(area 1)

1.5

1.5

Evaluated 
SAIDI 
(area 1)

1.4997

1.4997

Required 
SAIDI 
(area 2)

2

2

Evaluated 
SAIDI 
(area 2)

1.978

1.978

Total 
cost 
(k$)

1007

1007

Solution 
time (s)

1335

929

TABLE II
CONSTRUCTION COSTS AND SOLUTION TIME OF PLANNING RESULTS OF 

DIFFERENT METHODS

Method

Centralized method

Proposed method

Parallel solving method based 
on genetic algorithm

Total cost (k$)

1243

1243

1355

Solution time (s)

6980

1935

85758

Sub-area; Unconstructed substation; Branch in operation;

Constructed substation; Tie line; Node; Circuit breaker

Fig. 4.　Extended planning results of two methods for backbone grid and 
two sub-areas.

Sub-area; Unconstructed substation; Branch in operation;

Constructed substation; Tie line; Node; Circuit breaker

Fig. 5.　Extended planning results of two methods for backbone grid and 
three sub-areas.
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MATPOWER [42]. The results of the proposed method with 
the acceleration are shown in Table IV, while the centralized 
method still cannot obtain the solution after seven days.

E. Analysis of Solution Efficiency

For MILP problems, the number of binary variables can 
roughly reflect the size of the problem. The search space of 
the MILP problem rapidly expands with the increase of bina‐
ry variables.

Table V illustrates the comparison of the number of bina‐
ry variables between centralized method and the proposed 
method for the different systems.

As the system scale increases, the number of binary vari‐
ables in the centralized method will explosively grow, lead‐
ing to a significant expansion of the search space. To pro‐
vide a more intuitive illustration, a comparison graph for the 
number of binary variables and solution time of the two 
methods at different numbers of sub-areas is shown in Fig. 8.

It can be observed that as the size of the DN increases, 
the number of binary variables in the centralized method ris‐
es rapidly, while the number of binary variables in the paral‐
lel computing method increases almost linearly with the 

TABLE V
NUMBER OF BINARY VARIABLES BETWEEN CENTRALIZED METHOD AND 

PROPOSED METHOD

System

48-node

72-node

139-node

1495-node

Number of binary variables

Centralized method

12620

24398

82820

7130296

Proposed method

4736

6800

12992

56236

Sub-area; Branch in operation;

Constructed substation; Tie line; Node; Circuit breaker

Fig. 7.　Extended planning results of proposed method for backbone grid 
and six sub-areas.

TABLE III
RESULTS OF PROPOSED METHOD WITH ACCELERATION FOR 139-NODE DN

Total cost (k$)

40429

Required SAIDI

1.9

2.6

2.2

2.8

2.4

2.9

SAIDI

1.8481

2.5951

1.9973

2.7961

2.3895

2.7823

Solution time (s)

5358

TABLE IV
RESULTS OF PROPOSED METHOD WITH ACCELERATION FOR 1495-NODE TEST 

SYSTEM

Total cost (k$)

71411

Required SAIDI

1.5

1.4

1.7

1.6

1.8

1.5

1.4

1.7

2.0

1.9

SAIDI

1.4977

1.3494

1.6998

1.5794

1.7983

1.4850

1.3749

1.6699

1.9158

1.8987

Solution time (s)

98036
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Fig. 8.　Comparison of centralized method and proposed method in terms 
of number of binary variables and solution time. (a) Number of binary vari‐
ables. (b) Solution time.
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problem size. The rapid expansion of the model size not on‐
ly makes the modeling more challenging, but also makes it 
more difficult to obtain an optimal or even feasible solution 
within an acceptable time. From the comparison graph of so‐
lution time, it can be observed that when the case increases 
to four sub-areas, the running time of centralized method has 
exceeded one day while the proposed method converges 
within the acceptable time in all the cases. The proposed meth‐
od demonstrates a significant advantage in terms of efficiency.

V. CONCLUSION

We propose a parallel computing based solution method 
for solving the RcDNP problem. A decomposition planning 
model containing the backbone grid and sub-areas is present‐
ed, in which the integer variables increase linearly with the 
size of networks, while those in the original model increase 
quadratically. A parallelizable augmented Lagrangian algo‐
rithm incorporating Nesterov acceleration method with re‐
start is adopted to solve the RcDNP model. Numerical tests 
on different systems demonstrate that the proposed method 
has significant advantages in terms of solution efficiency on 
the premise of ensuring optimality. The proposed method en‐
ables the RcDNP model with the potentiality of real-world 
application.
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