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Analytical Modeling of Disaster-induced Load 
Loss for Preventive Allocation of Mobile 
Power Sources in Urban Power Networks
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Abstract——Continuous power supply of urban power networks 
(UPNs) is quite essential for the public security of a city be‐
cause the UPN acts as the basis for other infrastructure net‐
works. In recent years, UPN is threatened by extreme weather 
events. An accurate modeling of load loss risk under extreme 
weather is quite essential for the preventive action of UPN. Con‐
sidering the forecast intensity of a typhoon disaster, this paper 
proposes analytical modeling of disaster-induced load loss for 
preventive allocation of mobile power sources (MPSs) in UPNs. 
First, based on the topological structure and fragility model of 
overhead lines and substations, we establish an analytical load 
loss model of multi-voltage-level UPN to quantify the spatial dis‐
tribution of disaster-induced load loss at the substation level. 
Second, according to the projected load loss distribution, a pre‐
ventive allocation method of MPS is proposed, which makes the 
best use of MPS and dispatches the limited power supply to 
most vulnerable areas in the UPN. Finally, the proposed meth‐
od is validated by the case study of a practical UPN in China.

Index Terms——Load loss, fragility model, pre-disaster alloca‐
tion, mobile power source, urban power network.

I. INTRODUCTION

ENSURING continuous power supply of urban power 
networks (UPNs) under uncertain operation condition is 

quite essential for the public security of a city [1]. The con‐
cept “power system resilience” is introduced to assess its 
ability to withstand and recover from significant power out‐
ages caused by natural disasters or deliberate attacks [2], [3]. 
However, enhancing the resilience of UPN is a difficult theo‐
retical and engineering task. First, the power system infra‐
structure is vulnerable to extreme weather events. For exam‐
ple, in July 2021, the torrential rain in Zhengzhou City, Chi‐

na, caused 1.2 million customers to loose power supply [4]. 
The electric power utilities dispatched over 400 repair crews 
and mobile power sources (MPSs) to restore the UPN [5]. 
Second, the UPN has complex topology and multiple volt‐
age levels, such as high-voltage transmission (HVT), high-
voltage distribution (HVD), and medium-voltage distribution 
(MVD) networks [6], [7]. The component faults at any level 
may terminate the power delivery path to end users. If N - k 
line faults occur in extreme weather, HVD and MVD net‐
works are likely to be islanded due to the low redundancy.

In recent years, MPSs are widely used in post-disaster 
UPN restoration due to its flexible positioning and islanding 
operation capability [8]. MPSs include truck-mounted diesel 
generators and truck-mounted modular battery energy stor‐
age systems (ESSs) [9]. An efficient post-disaster UPN resto‐
ration largely depends on a proper pre-disaster allocation of 
MPSs because the road network is seriously damaged or 
flooded in the disaster and long-distance transport of heavy 
trucks is infeasible or inconvenient [10], [11]. The pre-disas‐
ter stage needs an optimal resource allocation under uncer‐
tain upcoming fault scenarios. Many research works focus 
on the pre-disaster allocation in MVD networks. References 
[11]-[13] formulate the optimal distributed generator (DG) al‐
location as a tri-level robust programming. Other research 
works formulate the DG allocation problem in a two-stage 
stochastic programming [14], [15]. Reference [16] formu‐
lates the optimal deployment of ESSs in two-stage stochastic 
programming. Although the studies focus on the allocation 
of static DGs and ESSs, the mathematical models are also 
applicable to that of MPSs. References [17] and [18] formu‐
late the optimal placement of MPSs in the tri-level robust 
programming and two-stage stochastic programming, respec‐
tively.

Despite the rigorous model of pre-disaster allocation of 
MPS in [17]-[19], the modeling method of load loss uncer‐
tainty is limited to an MVD network. This method cannot be 
directly scaled to urban-level power grids for two reasons. 
On one hand, the connection relationship between MVD net‐
works and HVD networks is complex. Some distribution 
feeders are connected to a single substation while others are 
connected to two substations with a normally-open switch 
[20]-[22]. On the other hand, The load loss is also caused by 
the component faults at multi-voltage levels. Therefore, it is 
a valuable industrial and theoretical problem to pre-allocate 
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MPSs based on the spatial distribution of load loss risk. The 
allocation is naturally determined by the distribution of criti‐
cal load, multi-voltage-level system topology, and the fore‐
cast of disaster impact. A few studies focus on the transmis‐
sion-level resource allocation and preventive operation of 
generation units. Reference [23] develops a two-stage robust 
optimization model to enhance transmission system resil‐
ience against ice storms. The first stage coordinates the pre-
positioned mobile DC de-icing devices (MDIDs) and unit 
commitment. The second stage coordinates the real-time 
MDID routing and de-icing schedule. Reference [24] co-opti‐
mizes the preparatory schedules of DGs ahead of typhoon 
considering typhoon-induced outage. Reference [25] adopts a 
finite-element fragility model of transmission towers and de‐
velops a preventive day-ahead security-constrained unit com‐
mitment (SCUC) model by using stochastic optimization. 
Reference [26] presents a day-ahead stochastic tiger dam al‐
location method to protect power substations against flood 
events. As far as we know, few literatures have studied the 
analytical modeling of disaster-induced load loss risk for the 
preventive allocation of MPSs in UPN.

In summary, the load loss of an UPN results from multi‐
ple factors. The external factor includes the intensity of 
strong wind and rainfall, while the internal factor includes 
the equipment fragility, the topological redundancy, and spa‐
tial load density. It is essential for utility companies to proj‐
ect the spatial distribution of load loss several hours before 
the disaster so that they can allocate more resources in high-
risk regions. As far as we know, there lacks a method to esti‐
mate the disaster-induced load loss of the large-scale UPN 
considering the above factors. Besides, due to the huge num‐
ber of MVD network nodes, it is not feasible to use sam‐
pling-based method, e.g., Monte Carlo simulation, for estima‐
tion [14], [15], [27], [28]. This paper proposes analytical 
modeling of disaster-induced load loss for preventive alloca‐
tion of MPS in UPNs. The innovations are as follows.

1) A computationally-efficient model is proposed to obtain 
the spatial distribution of load loss risk in UPN, considering 
the fault risk of MVD lines, high-voltage overhead lines, 
and substation transformers. At the MVD level, the expected 
load loss of each distribution feeder is calculated based on 
the line fault probability and network connectivity. At the 
HVD/HVT level, a two-stage path search algorithm is pro‐
posed to quantify the impact of high-voltage component 
fault on the MVD end-users.

2) Based on the projected load loss distribution, we devel‐
op a resilience-oriented preventive allocation method of 
MPSs in the large-scale UPN. This method minimizes the ex‐
pected load loss during the mid-disaster period via the emer‐
gency power supply of MPSs.

The remaining part of this paper is organized as follows. 
Section II summarizes the topological feature and fragility 
models of UPNs. Section III proposes the probabilistic mod‐
eling of load loss in UPN. Section IV proposes the pre-disas‐
ter allocation of MPSs. Section V presents the numerical 
study. Finally, Section VI concludes the main findings of the 
paper.

II. TOPOLOGICAL FEATURE AND FRAGILITY MODELS OF 
UPNS

The UPN is a multi-voltage-level network. When specify‐
ing the disaster intensity, the load loss percentage of an UPN 
mainly depends on two factors. One is the topological redun‐
dancy of the transmission/distribution system. The other is 
the fragility model of system components such as overhead 
lines and substations. This section introduces the topology 
feature and fragility model of the UPN.

A. Topology Feature

The UPN is a partial transmission network, while it con‐
tains many distribution networks. The typical voltage levels 
of UPN are similar in different countries, as listed in Table 
I. A typical layout of UPN is presented in Fig. 1.

The UPN is a complex network in terms of topology and 
load composition. From the topology aspect, HVT network 
constitutes the backbone of the system, which receives the 
power supply from the external system. The HVD network 
distributes the power within the city. Since HVT and a few 
HVD networks are meshed, the N - 1 fault does not necessar‐
ily de-energize any nodes (substations). The MVD network 
directly connects to service transformers of a building or 
community. From the load aspect, UPN serves residential 
load, commercial load, public service load, and transporta‐
tion load. Above all, we should consider the disaster model‐
ing of both multi-voltage-level networks for the modeling of 
load loss in UPN.

B. Fragility Model

Fragility model refers to the fault probability of a system 
component subject to stochastic events. Component faults 

TABLE I
TYPICAL VOLTAGE LEVEL OF UPN

Country

Chinese mainland

USA [6]

U.K. [7]

Japan [29]

Voltage level (kV)

HVT

220

115/138, 230

275

220

HVD

110

69

132

154/77

MVD

35, 10

26, 13

33, 11

6.6

HVT substation; HVD substation; Service transformer

External

system

HVT line; HVD line; MVD line; Tie switch

Fig. 1.　Typical layout of UPN.
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can be classified into overhead line faults and substation 
faults. The overhead line fault results from strong wind, in 
which the distribution poles are damaged and overhand con‐
ductors are likely to be short-circuited. The substation fault 
results from flood, in which the main transformer is inundat‐
ed [30]. In some coastal areas, the typhoon, accompanied 
with strong rainfall, is likely to cause both overhead line 
faults and substation faults [31]. Therefore, this paper consid‐
ers the typhoon and flood scenarios as examples for the pre-
disaster allocation.

The fragility model of overhead lines is determined by 
wind speed, wind direction, and landing path. The Batts 
model [32] is adopted in this paper. The wind speed at each 
point of the typhoon wind field is expressed as:

v =

ì

í

î

ï
ïï
ï

ï
ïï
ï

vRmax( )Rmax

R

α

    R >Rmax

vRmax

Rmax

R
         R £Rmax

(1)

Rmax = exp(-0.1239(Dp(t))0.6 + 5.1) (2)

Dp(t)=Dp0 - 0.675(1 + sin φ)t (3)

vRmax = 0.865(0.865 Dp(t) - 0.5Rmax f )+ 0.5vT (4)

where Rmax is the radius corresponding to the maximum 
wind speed; R is the radius from the center of the typhoon; 
vRmax is the maximum wind speed; α is the empirical coeffi‐
cient ranging from 0.5 to 0.7; Dp(t) is the central pressure 
difference after the typhoon landing at t; Dp0 is the pressure 
difference between the center of the typhoon and the periph‐
ery of the cyclone before typhoon landing; φ is the angle be‐
tween the movement direction of typhoon and the coastline 
at the time of typhoon landing; t is the time after the ty‐
phoon lands; vT is the typhoon moving speed; and f is the 
Coriolis force of the earth’s rotation.
1)　Fault Probability of High-voltage Overhead Lines

In this paper, an exponential function is used to fit the 
fault probability of poles and wind speed [33]. The expres‐
sion is shown as:

λh
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ì
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λH
i = 1 -∏

p = 1

N P

λh
p (6)

where λh
p is the fault probability of the pole p; K1 is an em‐

pirical coefficient; vR
p is the maximum wind speed sustained 

by the pole p; vH is the designed wind speed tolerance of the 
high-voltage pole; vH

max is the maximum wind speed that the 
high-voltage overhead line can withstand; λH

i  is the fault 
probability of the high-voltage overhead line i; and N P is the 
number of poles of a high-voltage overhead line.
2)　Fault Probability of MVD Overhead Lines

The wind speed across the distribution feeder can be as‐
sumed identical because the size is much smaller than the ty‐

phoon eye. Therefore, the fault rate of the overhead line can 
be determined by the maximum wind speed [34].

λM
i =

ì

í

î

ï
ïï
ï

ï
ïï
ï

0  0 < vR
i < vM

Dl  × exp ( )K2

vR
i

vM
-K3 vM £ vR

i £ vM
max

1 vR
i > vM

max

(7)

where λM
i  is the fault probability of the medium-voltage over‐

head line i; K2 and K3 are the empirical coefficients, and K2 =
11, K3 = 18; Dl is the length of the overhead line i; vR

i  is the 
maximum wind speed sustained by the medium-voltage over‐
head line i; vM is the designed wind speed tolerance of the 
medium-voltage overhead line; and vM

max is the maximum 
wind speed that the medium-voltage overhead line can with‐
stand.
3)　Fault Probability of Substations

Typhoon is usually accompanied by torrential rains. The 
common ways in which storms affect substations can be cat‐
egorized into two types. The first is that excessive rainfall 
will cause a string short-circuit fault in the insulator of sub‐
station branch column. The second is the local flood that 
makes the equipment in the substation to be submerged in 
water, causing a total shutdown of the substation [35]. The 
rain flush probability of the insulator λF

e  is given by (8).

λF
e =

ì
í
î

ïï

ïïïï

0       δwater < 2 mm/min

0.5    0.9 £ r £ 1
1        r < 0.9

(8)

where δwater is the effective water (rain) intensity; and r is 
the AC rain flash voltage coefficient of insulator string.

The model parameters are calculated by (9)-(12).

r =Apδ
-a
water (9)

δwater =max{y2y3 } (10)

λV
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ì

í

î

ï
ïï
ï

ï
ïï
ï
ï
ï

0 RF <RF
0

exp ( )c
RF

RF
0

- d RF
0 £RF £ 1.5RF

0

1 RF > 1.5RF
0

(11)

RF = y1 + y2T1 + y3T2 - (x1 + x2 )(T1 + T2 ) (12)

where Ap, c, and d are the computer factors; a is the charac‐
teristic index indicating the effect of effective rain intensity 
on AC rain flash voltage of insulator string; y1, y2, and y3 
are the real-time water level in the substation, real-time rain‐
fall value, and forecasted rainfall value, respectively; RF and 
RF

0 are the effective rainfall and standard flood protection 
precipitation during the recurrence period specified by the 
flood protection standard of the substation, respectively; x1 
and x2 are the discharge volume of the internal drainage 
pump of the substation and the amount of natural flow in 
the substation, respectively; and T1 and T2 are the real-time 
rainfall time duration and forecasted precipitation duration, 
respectively.

The combined risk probability of the substation λS
e under 

heavy rainfall conditions is defined as:

λS
e = 1 - (1 - λF

e )(1 - λV
e ) (13)
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III. PROBABILISTIC MODELING OF LOAD LOSS IN UPN 

The probabilistic modeling of load loss indicates calculat‐
ing the expected value of load shedding under uncertain 
fault scenarios. First, a sufficient set of independent fault sce‐
narios can be generated by using stochastic sampling algo‐
rithms, e.g., Monte Carlo simulation, and calculating the av‐
erage load loss [14], [15]. The expected value is given 
by (14).

E =∑
sÎ S

DPs (14)

where E is the excepted load loss; s and S are the index and 
set of stochastic fault scenarios, respectively; and DPs is the 
load loss for scenario s.

If multiple scenarios with different fault locations result in 
the same load loss, we can cluster them and use one scenar‐
io to represent this group [15]. Then, a large group of scenar‐
ios is reduced to a small group. Equation (14) is transferred 
to (15).

E =∑
sÎ S

φsDPs (15)

where φs is the component fault probability for scenario s.
Second, the load loss can be directly calculated according 

to the power supply path and component fault probability 
[20]. Considering the radial topology of MVD network, it is 
feasible to directly generate the fault scenario set and calcu‐
late the expected value by using (15). This section proposes 
an analytical method. At the MVD level, an analytical meth‐
od is established to aggregate the load loss at the substation 
level. At the HVD level, a two-stage path search algorithm 
is proposed to describe the disaster-induced load loss uncer‐
tainty.

A. Load Loss of MVD Network

Generally, a substation supplies multiple distribution feed‐
ers (divided by transformers).
1)　Topology Reduction

In a distribution feeder, each service transformer can be re‐
garded as a node. Then, the feeder is a collection of load 
nodes and switch, as shown in Fig. 2(a). If any branch (indi‐
cated by ① -⑧) between the two sectionalizing switches 
(SSs) fails, the SS isolates this sub-section of the feeder. We 
set the branch equipped with SS as the boundary and com‐
bine all nodes between two SSs. Therefore, the structure of 
distribution networks is simplified, as shown in Fig. 2(b).
2)　Power Supply Path and Influence Node Matrix

In a radial network, the power supply path of a load node 
is unique. Thus, the relation between faulty branches and re‐
sultant load loss can be expressed by the power supply path 
and influence node matrix (denoted as PSILM) [20]. As 
shown in Fig. 3, load nodes are numbered according to the 
depth first search (DFS) algorithm to make the matrix more 
readable [36]. PSILM is generated as follows. First, generate 
node-branch incidence matrix A according to the principle: 
Aki = 1 if node k is the starting node of branch i; Aki =−1 if 
node k is the ending node of branch i; Aki = 0 if node k does 
not belong to branch i. Second, delete the first row of A (de‐
noted as Ā) and obtain the inverse Ā-1. 

Third, obtain PSILM B by calculating the absolute value 
of each component of Ā-1. Therefore, Bik = 1 indicates that 
load node k will be affected (deenergized) if branch i is 
faulty; otherwise, Bik = 0. An example of matrix generation 
is shown in Fig. 4. Each row represents the set of load 
nodes being affected by a branch fault, while each column 
represents the set of branches in the power supply path of a 
node. For example, if branch 2 fails, load nodes {2, 3, 4, 5, 
6, 7, 8} will be influenced. Also, the power supply path of 
node 7 is {1, 2, 3, 4, 5, 7}.

? ? ? ? ? ?

1 3 4 5 62

7

8

?

?

Substation p

(a)

? ? ? ? ? ?

1 3 4 5 62

7

8

?

?

Substation p Substation q

(b)

Tie switch; Load (1-8); Branch (?-?)SS; Breaker;

Fig. 3.　Layout of typical distribution feeder. (a) Single power source. (b) 
Double power source.

(a)

(b)

Substation p Substation q

Substation p Substation q

? ? ? ? ? ?

?

?

?

?

? ? ? ? ? ?

Tie switch (TS); Equivalent load pointSS (�-�); Breaker;

Fig. 2.　 Simplification of distribution network topology. (a) Original net‐
work. (b) Simplified network.
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?

?�?�?�?�?�?�?�?
1

-1

0

0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 01 1

-1 0 0 0 0 01

-1 0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 00 0 0

1

-1 1

1 0-1 1

-1

-1

1

0-1 0

2

3

4

5

6

7

8

Take

absolute

value of

inverse

1

1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1

0 0 1 1 1 1 1 1

0 0 0 1 1 1 1 1

0 0 0 0 1 1 1 1

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 1

2 3 4 5 6 7 8

Fig. 4.　An example of matrix generation.
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Some distribution lines in the UPN are connected to a sin‐
gle substation, while others are connected to two substations 
through a normally-open TS. Therefore, the power supply 
mode of these lines can be classified into two modes.

1) Mode a: the line is normally energized by only one 
substation. An example is shown in Fig. 3(a).

2) Mode b: the line is energized by one substation with 
one backup substation. An example is shown in Fig. 3(b).
3)　Power Supply Mode a

Based on matrix B and the vector of branch fault probabil‐
ity, the excepted value of load loss of feeder l is calculated 
by (16)-(18).

DP Ta
il =∑

k = 1

M

Bik (Pk -P DG
k ) "iÎΩB

l (16)

φil = λ
L
il ∏

k = 1k ¹ i

M

[Bik (1 - λL
il )+ (1 -Bik )]     "iÎΩB

l "kÎΩN
l     (17)

E Ta
l =∑

i = 1

M

φilDP Ta
il     "lÎΩL (18)

where ΔP Ta
il  is the load loss value in the case of Mode a; M 

is the number of branches; k is the index of load node; i is 
the index of branches; Pk is the load demand of node k; P DG

k  
is the distributed energy source on node k; φil is the proba‐
bility that branch i is faulty and its upstream branch is nor‐
mal; λL

il is the probability of branch i; E Ta
l  is the excepted 

load loss of Mode a; ΩB
l  and ΩN

l  are the sets of load node 
and branches within feeder l, respectively; and ΩL is the set 
of distribution feeders.

Equation (16) calculates the load loss of each N - 1 fault 
scenario. Equation (17) represents the probability in which 
the adjacent upstream branch i is faulty and other upstream 
branches are normal. The downstream branches are deener‐
gized whether they are damaged. Therefore, all fault scenari‐
os can be represented by the N - 1 fault scenario. The num‐
ber of fault scenarios is reduced from 2M to M.
4)　Power Supply Mode b

The fault scenarios in double-source feeder are more com‐
plex than those in single-substation. To simplify the calcula‐
tion process, we aggregate the sub-branch, e.g., branches {7, 
8} in Fig. 5, into one load node in the first step and add it 
back in the second step. The fault scenarios can be classified 
into three types.

1) The load node is not energized. Thus, load nodes do 
not supply power whether sub-branches are normal or not.

2) The load node is energized and all sub-branches are 
normal. All load nodes can supply power in this case.

3) The load node is energized and at least one sub-branch 
is faulty. This fault scenario is similar to single-source case.

If branch i is directly connected to substation p, e. g., 
branch 1, and substation q is the back-up source, M - 1 fault 
does not affect the power supply of any nodes. Similarly, if 
node k is connected to the substation q by SS, no branch 
fault can affect the power supply of node k. Hence, the 
PSILM of Mode b can be modified as follows. First, delete 
the k th row and ith column and inverse the matrix. Second, 
add “0” in the ith row and k th column to obtain the PSILM 
of substation q. The example is shown in Fig. 6(a).

In Mode b, only M - 2 faults need to be considered be‐
cause it includes all other load loss possibilities of M - k 
faults when 2 < k £M. Furthermore, the set of nodes affected 
by the simultaneous faults of branches i and j is the intersec‐
tion of two sets affected by the separate faults of branches i 
and j in single-source case, respectively. Then, we can ob‐
tain the set of affected nodes of substation p, Spij, via the in‐
tersection set of two branch faults. It is represented by the ith 
row of bitwise and the j th row in PSILM. Similarly, the set 
of affected load nodes Sqij can be obtained when only the sub‐
station q is supplied. Therefore, the load nodes k ∈ Spij∩ Sqij are 
affected when the TS is closed and there is no fault in both 
substations. An example of the operation process is shown 
in Fig. 6(b). When branches 2 and 4 are faulty, the affected 

? ? ? ? ? ?

1 3 4 5 62

7

8

?

?

? ? ? ? ? ?

1 3 4 62 5

Remove the sub-branch

Substation p Substation q

Substation p Substation q

TS; Load (1-8); Branch (?-?)SS; Breaker; Fault;

Fig. 5.　Simplification of two-substation system.
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-1 1

-1

.

.

.

k

011111

001111

000111

000011

000001

000000

Power supply

path matrix of 

substation q

(a)

0   1   1   1   1   1   

0   0   0   1   1   1      

?  

? 

1   2   3   4   5   6   

?
?

1   0   0   0   0   0

1   1   1   0   0   0

1   2   3   4   5   6

Bitwise or

[0   1   1   1   1   1] [1   1   1   0   0   0]

Bitwise and

[0   1   1   0   0   0 ]

? ?

?  ? 

(b)

(c)

1   0   0   0   0   0

1   1   0   0   0   0

…

0   1   1   0   0   0

…

      

?�?
?�?�

…

? ?

…

? ? 

   1   2   3   4   5   6

0   0   0   0   1   0

Fig. 6.　Correlation matrix and formation process. (a) Power supply and in‐
fluence load matrix of substation q. (b) Operation process. (c) Relationship 
matrix.

1067



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 12, NO. 4, July 2024

node set is {2, 3} by taking the intersection. The calculation 
process can be expressed as:

C =C Tp C Tq (19)

where  is the symbol for multiplying the elements of a ma‐
trix by bits; C is the relationship matrix; and C Tp and C Tq 
are the correlation matrices when the power supplies are p 
and q, respectively.

The total number of M - 2 fault scenarios on feeder l is 
M F

l = C2
N, where N equals N b

l , which is the number of load 
nodes after removing sub-branches. Since the branch fault 
condition affecting the power supply to the load node can be 
derived from the above operation, we can use a structure 
similar to B to form C, as shown in Fig. 6(c). Similarly, the 
column of C represents the load node. Cmk = 1 indicates load 
node k will be affected (deenergized) if the branch fault con‐
dition is m; otherwise, Cmk = 0. Each row element indicates 
the condition of the node affected by the branch fault. Final‐
ly, the expected load loss of the main branches on feeder l 
E Tcm

l  is calculated by (20)-(22).

DP Tb
il =∑

k = 1

M

Cik (Pk -P DG
k )     "iÎΩB

l (20)

φml = ∏
i = f max

m 

i = f min
m

λL
il ∏

i > f max
m 

i < f min
m

(1 - λL
il )     "iÎΩBM

l "mÎΩFS
l

(21)

E Tbm
l =ΦT

l DP Tb
l     "lÎΩL (22)

where ΔP Tb
il  is the load loss value in the case of Mode b; m 

is the index of fault situation; φml is the probability of the 
fault situation m; f max

m  and f min
m  are the maximum and mini‐

mum nodes in fault situation m, respectively; Φl is the proba‐
bility matrix of fault situation; ΔP Tb

l  is the matrix of load 
loss; ΩBM

l  is the set of branches after removing the sub-
branch; ΩFS

l  is the set of fault situations; and E Tbm
l  is the ex‐

pected load loss of the main branch on feeder l.
The fault situations of node with sub-branch are divided 

into two sets, which are represented by ΩF
lk and ΩU

lk, respec‐
tively. Therefore, the expected load loss is calculated by:

E Tbs
l = ∑

slÎΩSL
l

é

ë

ê
êê
ê
ê
ê ù

û

ú
úú
ú
ú
ú∑

mÎΩF
lk
( )φlm ∑

skÎΩN
sl.k

Psk + ∑
mÎΩU

lk

φlm E Ta
sl (23)

where E Tbs
l  is the expected load loss of the sub-branches on 

feeder l; ΩSL
l  is the set of load nodes with sub-branches on 

feeder l; and ΩN
slk is the set of load nodes on branch sl.

Above all, the excepted load loss of Mode b consists of 
those caused by main branch faults and sub-branch faults, re‐
spectively:

E Tb
l =E Tbm

l +E Tbs
l     "lÎΩL (24)

where E Tb
l  is the excepted load loss of Mode b.

The expected load loss of the MVD network is calculated 
by adding the expected load loss of feeders under the possi‐
ble uncertain fault of high-voltage substation e.

DP MVT
e = ∑

lÎΩL
e

El    "eÎΩEN (25)

where ΩEN is the set of high-voltage substations; and ΩL
e is 

the set of feeders for substation e.

B. Load Loss of High-voltage Network

The analytical model in Section III-A aggregates the load 
loss at the MVD network. From the perspective of UPN, the 
expected load loss not only depends on the fault of MVD 
networks, but also depends on the fault of upstream high-
voltage networks, which acts as the power supply path from 
power plants to end-users. Therefore, it is necessary to mod‐
el the fault probability of HVD/HVT lines. Considering the 
large number of feeders in a city, the proposed analytical 
method for computing expected load loss is sufficiently accu‐
rate for pre-disaster allocation.
1)　Supply Path Search Algorithm

In this part, the DFS algorithm is adopted to power sup‐
ply path from the EHV substation and the HVD substation. 
The procedure to find the power supply path of the target 
node is as follows.

1) Visit its first child node of the source node and push it 
into stack.

2) Find the first child node of the topmost node on the 
stack, repeat this step until the final destination node is 
found, and record the power supply path. Then, pop the final 
destination node and continue to search other power supply 
paths. In other words, visit the next sibling of the parent 
node. If the parent node is not adjacent to the next sibling, 
the next sibling of the grandfather node is visited.

3) Repeat the above steps until all nodes are visited and 
all power supply paths are recoded.
2)　Expected Load Loss Calculation

The expected load loss can be calculated in a method simi‐
lar to that of MVD networks. Due to the complexity of 
UPN, the result obtained from direct calculation of all nodes 
to source nodes is complex. The expected load loss is calcu‐
lated in two stages. As shown in Fig. 7, the power supply 
path from EHV substation to HVT substation and from HVT 
substation to HVD substation are regarded as two stages, re‐
spectively. Then, the expected load loss is obtained. If the 
substation fails, all the loads of this substation are outage, 
which does not affect the power supply of its downstream 
unfaulty substation. Similarly, when the upstream substation 
fails, it does not affect the power supply of the substation 
node. Therefore, the reduction formula of fault probability is 
shown by (26)-(30).

λHVTL
e = ∏

cÎΩc
e
( )1 - ∏

iÎΩkc

(1 - λH
i )     "eÎΩHVT

EN (26)

Stage 1

MVDEHV HVT HVD

Stage 2

HVT, L
λ
e

HVD, L
λ
e

HVT, S
λ
e

st1
λ
e

st2
λ
e

HVD, S
λ
e

HVD substation; MVD substation

EHV substation; HVT substation

Fig. 7.　Two-stage path search algorithm.
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λHVDL
e = ∏

cÎΩc
e

é

ë

ê
êê
ê ù

û

ú
úú
ú1 - ∏

iÎΩkc

(1 - λH
i )     "eÎΩHVD

EN (27)

λst1
e = 1 - (1 - λHVTS

e )(1 - λHVTL
e )    "eÎΩHVT

EN (28)

λst2
e = 1 - (1 - λHVDS

e )(1 - λHVDL
e )    "eÎΩHVD

EN (29)

λe = ∏
wÎΩpe

e

[1 - (1 - λst1
w )(1 - λst2

e )]     "wÎΩHVT
EN "eÎΩHVD

EN     (30)

where w is the index of high-voltage substation; λH
i  and λL

i  
are the fault probabilities of HVT and HVD lines, respective‐
ly; λHVTL

e  and λHVDL
e  are the equivalent fault probabilities of 

HVT and HVD lines, respectively; λst1
e  and λst2

e  are the equiv‐
alent fault probabilities of stage 1 and stage 2, respectively; 
λHVTS

e  and λHVDS
e  are the fault probabilities of HVT and HVD 

substations, respectively; λe is the equivalent fault probabili‐
ty of HVD network; Ωk,c is the set of power supply lines 
passed by power supply c; ΩC

e  is the set of power supply for 
substation e; and Ωpe

e  is the set of power sources that have  
power supply paths to substation e.

Equations (26) and (27) represent the overall fault proba‐
bility of the high-voltage overhead line. Equations (28) and 
(29) calculate the fault probability of the HVT and HVD 
supply paths, respectively. Finally, the fault probability of 
the whole supply path is calculated by (30). Therefore, the 
expected load loss of substation e and the total expected 
load loss are formulated as (31) and (32), respectively.

DP HVD
e = λe (Pe -DP MVT

e )    "eÎΩEN (31)

P L
e =DP MVT

e +DP HVT
e     "eÎΩEN (32)

where DP HVD
e  is the expected load loss of HVD network; and 

P L
e  is the total excepted load loss.

C. Summary

The overall technical framework is shown in Fig. 8. In the 
MVD network, the expected load loss of each feeder is esti‐
mated based on the power supply path and load distribution. 
In the HVT/HVD network, a two-stage path search algo‐
rithm is used to calculate the expected load loss of HVD net‐
work. The combination effect of line faults of multi-voltage-
level UPN is a representation of the overall load risk, which 
provides the preventive operation with essential guidance.

IV. PRE-DISASTER ALLOCATION OF MPS

This section proposes a pre-disaster allocation of MPSs in 
order to reduce the expected cost of load loss. Meanwhile, 
the post-disaster re-dispatch of MPSs is minimized. The 

MPSs consist of mobile emergency generators (MEGs), mo‐
bile energy storage systems (MESSs), and electric buses 
(EBs). Under complex disaster-induced load loss uncertainty, 
a mixed-integer linear programming model is proposed 
based on the expected value of load loss calculated in Sec‐
tion III. The objective function (33) aims to minimize the 
cost of load loss and MPS placement within the city.

min ∑
eÎΩEN

(cM
e α

M
e + cD

e β
D
e + cE

e γ
E
e + cL

eDP L
e ) (33)

where cM
e , cD

e , and cE
e  are the unit output costs of MEG, 

MES, and EB, respectively; cL
e is the cost reduction per unit 

load; αM
e , βD

e , and γE
e  are the dispatchable MEG, MESS, and 

EB, respectively; and ΔP L
e  is the load loss after the deploy‐

ment of MPS groups.
The constraints are given by (34)-(41).∑

eÎΩEN

αM
e £N M

(34)

∑
eÎΩEN

βD
e £N D

(35)

∑
eÎΩENE

γE
e £N E

(36)

0 £P M
e £ αM

e P̄ M
e     "eÎΩEN (37)

0 £P D
e £ β

D
e P̄ D

e     "eÎΩEN (38)

0 £P E
e £ γ

E
e P̄ E

e     "eÎΩENE (39)

DP L
e =P L

e -P M
e -P D

e -P E
e     "eÎΩEN (40)

0 £P M
e +P D

e +P E
e £DP L

e      "eÎΩEN (41)

where N M, N D, and N E are the total numbers of MEGs, 
MESSs, and EBs, respectively; P M

e , P D
e , and P E

e  are the real 
power outputs of MEGs, MESSs, and EBs, respectively; x̄ is 
the upper limit of variable x; ΩEN is the set of high-voltage 
substation nodes; and ΩENE is the set of high-voltage substa‐
tion nodes into which EBs can integrate.

Constraints (34)-(36) restrict the total number of allocated 
MPSs in the UPN. Constraints (37) - (39) enforce the lower 
limit and upper limit of the MPS group that is dispatched in 
each MVD network. Then, this group of MPSs can be fur‐
ther dispatched to the service transformers in this MVD net‐
work. Detailed method is beyond the scope of this paper and 
can be found in [11]. There is no need to consider the multi-
time step in the problem of pre-disaster allocation of MPSs. 
Besides, MESs and EBs are considered to be fully charged 
before the dispatch. Constraint (40) enforces that the load 
loss value after MPS deployment is the expected load loss 
minus the active power output of the MPS deployment. Con‐
straint (41) indicates that the MPS output of each node does 
not exceed the expected value of node load loss, because the 
capacity of emergency power resources is usually less than 
needed after the extreme weather events.

V. NUMERICAL STUDY 

This section presents case studies on a practical UPN. The 
optimization model is a mixed-integer linear program and 
can be directly solved by the existing solver. The computa‐
tional tasks are performed on a personal laptop computer 

Network topology and

MVD line fragility

Analytical estimation by

(14), (19), (21), and (22)

Load loss in MVD network

Network topology, HVD/HVT

substation fragility, and

HVD line fragility

Two-stage path search by

(26)-(30) 

Load loss in HVD network

Expected load loss

Factor Factor

Fig. 8.　Technical framework.
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with an Intel Core i7 Processor (2.20 GHz) and 16 GB 
RAM, and the code is implemented via the MATLAB-based 
IBM ILOG CPLEX Optimization Studio V12.8.0.

A. Description of Test Case

A layout of a practical UPN is shown in Fig. 9. The sys‐
tem corresponds to a coastal city in South China with a pop‐
ulation of 1.6 million. The system consists of 37 substation 
nodes, including 2 EHV substations (nodes 36 and 37), 6 
HVT substations, and 29 HVD substations. The schematic di‐
agram of a typical MVD network is shown in the green part 
of the 27-node connection. There are 3 feeders in Fig. 9, and 
each feeder is connected to one substation or two substations 
with a normally-open SS. The yearly peak load is 1.271 
GW. In this case, the moving track of the typhoon is as‐
sumed as follows: the typhoon center reaches the city from 
the coordinate (0, 0), the moving angle is 45° north of east, 
and the moving speed is 15 km/hour. Considering that the 
capacity of MPSs is limited, we assume that the numbers of 
MEGs, MESs, and EBs are 100, 200, and 1000, respectively. 
The total active power available from MPSs in the region is 
245 MW, of which 45 MW is for MEGs, 100 MW is for 
MESs, and 100 MW is for EBs. All MPSs are utilized ex‐
cept EBs, which can only be deployed at fixed nodes {1, 6, 
10, 15, 19, 28, 32}.

EHV substations with high importance level and protec‐
tion measures have low fault probability. Thus, we assume 
that they will not fail in extreme weather. This subsection on‐
ly discusses the load loss of nodes 1-35 and the layout of 
MPS.

B. Simulation Result

1)　Expected Load Loss in MVD Network
The fault probability of overhead line is related to the 

maximum wind speed. According to the typhoon direction, 
the maximum wind speed within the supply area of each sub‐
station node is forecasted, as shown in Fig. 10.

The maximum wind speed of each substation node in the 
area ranges from 34.8 to 39.1 m/s, as shown in Fig. 10. 
Among all substation nodes, node 6 has the smallest wind 
speed because it is on the moving path of the typhoon eye. 
Taking the distribution feeders of node 27 as an example, 
the fault probability of each branch is calculated, as shown 
in Fig. 11, which is below 0.04. The expected load losses of 
feeders 1-3 are 967.37 kW, 1401.01 kW, 160.01 kW, respec‐
tively. Feeder 3 is supplied by two substations (with one 
backup), and its load loss expectation is much smaller than 
those of other two feeders.

The expected load loss caused by the fault of the MVD 
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network is calculated, as shown in Fig. 12. Node 20 has the 
largest expected load loss of 10.60 MW, and node 11 has the 
largest load loss ratio of 26.03%.

2)　Expected Load Loss in HVD Network
As shown in Fig. 9, the EHV substation nodes 36 and 37 

are assumed not to be faulted. 
Nodes {1, 11, 18, 23, 28, 31} are HVT substation nodes 

and the other nodes are HVD substation nodes. The calculat‐
ed fault probabilities of HVT substation to EHV substation 
are 0.0683, 0.0037, 0.0026, 0.0683, 0.0064, and 0.0036, re‐
spectively. The results obtained by the two-stage path search 
algorithm are shown in Fig. 13. Since there are two power 
supply paths between nodes 11, 18, 28, 31 and EHV substa‐
tion, the fault probability is much smaller those that of 
nodes 1 and 23.

The results of fault probability are shown in Fig. 14. The 
expected load losses of HVT and MVT substations are 
shown in the Fig. 15. In the absence of MPS, the total load 
losses value is 182.50 MW. The expected load losses of 
HVT and MVT substations are 78.97 MW and 103.53 MW, 
respectively.

The total cost of MPSs carried out by the method de‐
scribed in Section IV is 1.012×106 RMB. Besides, the solu‐
tion time is approximately 5 s and the total calculation time 
is approximately 10 s. The typical voltage level of UPN is 
shown in Table II.

All MPSs are utilized except EBs, which can only be de‐
ployed at fixed nodes {1, 6, 10, 15, 19, 28, 32}, and these 
nodes have a load loss of 0. By deploying MPSs, the load 
loss in this area is reduced to 15.18 MW. Although the load 
losses of nodes 27 and 30 are large, they are interruptible 
loads.

C. Discussion

The analytical model of expected load loss serves as a 
tool for the decision makers to identify vulnerable MVD net‐
works and to pre-allocate emergency resources for the up‐
coming typhoon event and a guidance for preventive action. 
The accuracy of the load loss is determined by the forecast 
of disaster intensity and the empirical fragility model of com‐
ponents. Due to the multi-dimensional uncertainty of ex‐
treme weather events and the individual difference of UPN 
components, there are some errors in the estimation. Howev‐
er, the errors can be minimized in the future if a more de‐
tailed forecast information of typhoon and flood is available.

VI. CONCLUSION 

This paper establishes analytical modeling of disaster-in‐
duced load loss for preventive allocation of MPSs in UPNs. 
First, an analytical model of the expected load loss of MVD 
network is constructed. In particular, a two-stage path search 
algorithm is used to calculate the expected load loss of HVD 
network. Second, a pre-disaster allocation method of MPSs 
is proposed for large-scale UPN with the minimization of ex‐
pected load loss. The following conclusions can be made ac‐
cording to the case studies.

1) The analytical estimation method of load loss effective‐
ly combines typhoon prediction data, component fault proba‐
bility model, and power network topology. 
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It serves as the theoretical basis for the optimal MPS allo‐
cation for resilience enhancement.

2) The preventive allocation of MPS realizes the optimal 
utilization of limited power supply resources, prioritizes the 
power supply of important loads, and reduces the expected 
load loss. 

In addition, the analytical models established for MVT 
and HVD networks greatly reduce the computational work‐
load, which is essential in the application scenario of strict 
computation time.

REFERENCES

[1] J. Li, Y. Xu, Y. Wang, et al., “Resilience-motivated distribution system 
restoration considering electricity-water-gas interdependency,” IEEE 
Transactions on Smart Grid, vol. 12, no. 6, pp. 4799-4812, Nov. 2021.

[2] President’s Council of Economic Advisers & U.S. Dept. Energy’s Of‐
fice of Electricity & Energy Reliability. (2013, Jun.). Economic bene‐
fits of increasing electric grid resilience to weather outages. [Online]. 
Available: https://www. energy. gov/articles/economic-benefits-increas‐
ing-electric-grid-resilience-weather-outages

[3] Electric Power Research Institute. (2013, Jan.). Enhancing distribution 
resiliency: opportunities for applying innovative technologies. [On‐
line]. Available: https://www.epri.com/research/products/000000000001 
026889

[4] Z. Tao and L. Han, “Emergency response, influence and lessons in the 
2021 compound disaster in Henan Province of China,” International 
Journal of Environmental Research and Public Health, vol. 19, no. 1, 
pp. 483-488, Jan. 2022.

[5] J. W. Busby, K. Baker, M. D. Bazilian et al., “Cascading risks: under‐
standing the 2021 winter blackout in Texas,” Energy Research & So‐
cial Science, vol. 77, pp. 1-10, Jul. 2021.

[6] Office of Electricity Delivery and Energy Reliability at U. S. Depart‐
ment of Energy. (2015, Sept.). United States electricity industry prim‐
er. [Online]. Available: https://www.energy.gov/sites/prod/files/2015/12/
f28/united-states-electricity-industry-primer.pdf#page=13&zoom=100,
93,172

[7] Electricity Network Strategy Group. (2012, Feb.). Our electricity trans‐
mission network: a vision for 2020. [Online]. Available: https://assets.
publishing. service. gov. uk/government/uploads/system/uploads/attach‐
ment_data/file/48275/4264-ensg-summa ry.pdf.

[8] A. Abessi and S. Jadid, “Internal combustion engine as a new source 
for enhancing distribution system resilience,” Journal of Modern Pow‐
er Systems and Clean Energy, vol. 9, no. 5, pp. 1130-1136, Sept. 2021.

[9] B. Taheri, A. Safdarian, M. Moeini-Aghtaie et al., “Distribution sys‐
tem resilience enhancement via mobile emergency generators,” IEEE 
Transactions on Power Delivery, vol. 36, no. 4, pp. 2308-2319, Aug. 
2021.

[10] A. Arif, Z. Wang, J. Wang et al., “Power distribution system outage 
management with co-optimization of repairs, reconfiguration, and DG 
dispatch,” IEEE Transactions on Smart Grid, vol. 9, no. 5, pp. 4109-
4118, Sept. 2018.

[11] Q. Shi, H. Wan, W. Liu et al., “Preventive allocation and post-disaster 
cooperative dispatch of emergency mobile resources for improved dis‐
tribution system resilience,” International Journal of Electrical Power 
& Energy Systems, vol. 152, pp. 1-13, Oct. 2023.

[12] W. Yuan, J. Wang, F. Liu et al., “Robust optimization-based resilient 
distribution network planning against natural disasters,” IEEE Transac‐
tions on Smart Grid, vol. 7, no. 6, pp. 2817-2826, Nov. 2016.

[13] X. Wang, M. Shahidehpour, C. Jiang et al., “Resilience enhancement 
strategies for power distribution network coupled with urban transpor‐
tation system,” IEEE Transactions on Smart Grid, vol. 10, no. 4, pp. 
4068-4079, Jul. 2019.

[14] S. Ma, S. Li, Z. Wang et al., “Resilience-oriented design of distribu‐
tion systems,” IEEE Transactions on Power Systems, vol. 34, no. 4, 
pp. 2880-2891, Jul. 2019.

[15] Q. Shi, F. Li, T. Kuruganti et al., “Resilience-oriented DG siting and 
sizing considering stochastic scenario reduction,” IEEE Transactions 
on Power Systems, vol. 36, no. 4, pp. 3715-3727, Jul. 2021.

[16] H. Chen, J. Wang, J. Zhu et al., “A two-stage stochastic mixed-integer 
programming model for resilience enhancement of active distribution 
networks,” Journal of Modern Power Systems and Clean Energy, vol. 
11, no. 1, pp. 94-106, Jan. 2023.

[17] S. Lei, J. Wang, C. Chen et al., “Mobile emergency generator pre-posi‐
tioning and real-time allocation for resilient response to natural disas‐
ters,” IEEE Transactions on Smart Grid, vol. 9, no. 3, pp. 2030-2041, 
May 2018.

[18] Q. Zhang, Z. Wang, S. Ma et al., “Stochastic pre-event preparation for 
enhancing resilience of distribution systems,” Renewable and Sustain‐
able Energy Reviews, vol. 152, pp. 1-13, Dec. 2021.

[19] H. Gao, Y. Chen, S. Mei et al., “Resilience-oriented pre-hurricane re‐
source allocation in distribution systems considering electric buses,” 
Proceeding of the IEEE, vol. 105, no. 7, pp. 1214-1233, Jul. 2017.

[20] C. Wang, T. Zhang, F. Luo et al., “Fault incidence matrix based reli‐
ability evaluation method for complex distribution system,” IEEE 
Transactions on Power Systems, vol. 33, no. 6, pp. 6736-6745, Nov. 
2018.

[21] R. Cheng, N. Shi, S. Maharjan et al., “Automatic self-adaptive local 
voltage control under limited reactive power,” IEEE Transactions on 
Smart Grid, vol. 14, no. 4, pp. 2851-2862, Jul. 2023.

[22] Q. Shi, W. Liu, B. Zeng et al., “Enhancing distribution system resil‐
ience against extreme weather events: concept review, algorithm sum‐
mary, and future vision,” International Journal of Electrical Power & 

TABLE II
TYPICAL VOLTAGE LEVEL OF UPN

No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

Total

αM
e

0

18

1

6

8

0

5

4

0

0

2

0

0

0

0

29

9

1

0

0

8

1

12

10

1

4

4

0

1

2

2

0

15

6

1

150

βD
e

0

3

31

10

9

0

4

11

10

0

6

13

5

10

0

0

4

0

0

21

3

17

2

3

7

4

1

0

13

0

1

0

0

10

2

200

γE
e

21

0

0

0

0

60

0

0

0

16

0

0

0

0

51

0

0

0

6

0

0

0

0

0

0

0

0

5

0

0

0

66

0

0

0

225

P M
e

0

 5.40

 0.30

 1.80

 2.40

0

1.48

1.20

0

0

 0.60

0

0

0

0

8.70

2.70

0.23

0

0

2.39

0.30

3.60

3.00

0.30

1.20

1.20

0

0.30

0.60

0.60

0

4.50

1.80

0.29

44.89

P D
e

0

1.5

15.5

5.0

4.5

0

2.0

5.5

5.0

0

3.0

6.5

2.5

5.0

0

0

2.0

0

0

10.5

1.5

8.5

1.0

1.5

3.5

2.0

0.5

0

6.5

0

0.5

0

0

5.0

1.0

100.0

P E
e

2.03

0

0

0

0

5.97

0

0

0

1.60

0

0

0

0

5.05

0

0

0

0.56

0

0

0

0

0

0

0

0

0.40

0

0

0

6.58

0

0

0

22.19

DP L
e

0

0.02

0.01

0.06

0.11

0

0

0.16

0.96

0

0.31

0.13

0.38

0.34

0

0.12

0

0

0

0

0

0.42

0

0.04

0

0.01

7.98

0

0.06

3.95

0.02

0

0.05

0.05

0

15.18

1072



WANG et al.: ANALYTICAL MODELING OF DISASTER-INDUCED LOAD LOSS FOR PREVENTIVE ALLOCATION OF MOBILE POWER...

Energy Systems, vol. 138, pp. 1-13, Jun. 2022.
[23] M. Yan, X. Ai, M. Shahidehpour et al., “Enhancing the transmission 

grid resilience in ice storms by optimal coordination of power system 
schedule with pre-positioning and routing of mobile DC de-icing de‐
vices,” IEEE Transactions on Power Systems, vol. 34, no. 4, pp. 2663-
2674, Jul. 2019.

[24] H. T. Nguyen, J. Muhs, and M. Parvania, “Preparatory operation of au‐
tomated distribution systems for resilience enhancement of critical 
loads,” IEEE Transactions on Power Delivery, vol. 36, no. 4, pp. 
2354-2362, Aug. 2021.

[25] Y. Sang, J. Xue, M. Sahraei-Ardakani, “An integrated preventive oper‐
ation framework for power systems during hurricanes,” IEEE System 
Journal, vol. 14, no. 3, pp. 3245-3255, Sept. 2020.

[26] M. Movahednia, A. Kargarian, and C. E. Ozdemir, “Power grid resil‐
ience enhancement via protecting electrical substations against flood 
hazards: a stochastic framework,” IEEE Transactions on Industrial In‐
formatics, vol. 18, no. 3, pp. 2132-2143, Mar. 2022.

[27] E. L. Barrett, K. Mahapatra, M. Elizondo et al., “A risk-based frame‐
work for power system modeling to improve resilience to extreme 
events,” IEEE Open Access Journal of Power & Energy, vol. 10, pp. 
25-35, Jan. 2023.

[28] A. Arab, A. Khodaei, S. K. Khator et al., “Stochastic pre-hurricane res‐
toration planning for electric power systems infrastructure,” IEEE 
Transactions on Smart Grid, vol. 6, no. 2, pp. 1046-1054, Mar. 2015.

[29] Y. Tian and W. Chen, “Selection principle of neural grounding mode 
of distribution power network and its fault processing technology in Ja‐
pan,” Distribution & Utilization, vol. 34, no. 5, pp. 14-20, May 2017.

[30] U.S. Department of Energy. (2016, Sept.). Distribution system automa‐
tion: results from the smart grid investment grant program. [Online]. 
Available: https://www.energy.gov/sites/prod/files/2016/11/f34/Distribu‐
tion%20Automation%20Summary%20Report_09-29-16.pdf

[31] Y. Wu, Y. Xue, H. Wang et al., “Extension of power system early-
warning defense schemes by integrating typhoon information,” in Pro‐
ceedings of International Conference on Sustainable Power Genera‐
tion and Supply, Hangzhou, China, Sept. 2012, pp. 1-7.

[32] S. Zhang, Y. He, J. Cai et al., “A new method based on Monte Carlo 
simulation for reliability evaluation of distribution network considering 
the influence of typhoon,” in Proceedings of International Conference 
on Power System Technology, Guangzhou, China, Nov. 2018, pp. 3341-
3346.

[33] Y. Chen, S. Wang, B. Chen et al., “Evaluation of the failure probabili‐
ty of power transmission corridors during typhoons using digital eleva‐
tion information,” Power System Technology, vol. 42, no. 7, pp. 2295-
2302, Jul. 2018.

[34] M. Panteli, C. Pickering, S. Wilkinson et al., “Power system resilience 
to extreme weather: fragility modeling, probabilistic impact assess‐
ment, and adaptation measures,” IEEE Transactions on Power Sys‐
tems, vol. 32, no. 5, pp. 3747-3757, Sept. 2017.

[35] W. Huang, N. Liu, J. Wang et al., “A risk assessment method and ear‐
ly warning system for substation under heavy rainfall,” China, Patent 

111738617, Jul. 1, 2020.
[36] R. C. Agarwal, C. C. Aggarwal, and V. V. V. Prasad, “A tree projec‐

tion algorithm for generation of frequent item sets,” Journal of Paral‐
lel and Distributed Computing, vol. 61, no. 3, pp. 350-371, Mar. 2001.

Zhuorong Wang received the B.S. degree in Taiyuan University of Technol‐
ogy, Taiyuan, China, in 2021. She is now pursuing the M.Sc. degree in the 
School of Electrical and Electronic Engineering, North China Electric Pow‐
er University, Beijing, China. Her research interests include resilient urban 
power system and power system restoration.

Qingxin Shi received the B. S. degree in Zhejiang University, Hangzhou, 
China, in 2011, the M.Sc. degree in University of Alberta, Edmonton, Cana‐
da, in 2014, and the Ph. D. degree in The University of Tennessee, Knox‐
ville, USA, in 2019, where he worked as a Research Assistant Professor 
from 2019 to 2020. Currently, he is an Assistant Professor in the School of 
Electrical and Electronic Engineering, North China Electric Power Universi‐
ty, Beijing, China. His research interests include demand response, frequen‐
cy regulation, and resilient urban power system.

Ke Fan received the B.S. degree in North China Electric Power University, 
Beijing, China, in 2021. He is now pursuing the M.Sc. degree in the School 
of Electrical and Electronic Engineering, North China Electric Power Uni‐
versity. His research interests include frequency regulation and power sys‐
tem operation with high renewable energy penetration.

Haiteng Han received the B.S. and Ph.D. degrees in Southeast University, 
Nanjing, China, in 2010 and 2019, respectively. He is currently an Assistant 
Professor in the College of Energy and Electrical Engineering, Hohai Uni‐
versity, Nanjing, China. His research interests include power system security 
assessment, demand response, and electricity market.

Wenxia Liu received the B.S. degree in radio technology from Nanjing Uni‐
versity of Science and Technology, Nanjing, China, in 1990, and M.S. and 
Ph. D. degrees in electrical engineering and automation from Northeast of 
China Electrical Power University in 1995 and 2009, respectively. She is 
currently Professor in the School of Electrical and Electronic Engineering, 
North China Electrical Power University, Beijing, China. Her research inter‐
ests include risk assessment in power system, power system dispatch, and 
management automation.

Fangxing (Fran) Li received the B. S. E. E. and M. S. E. E. degrees from 
Southeast University, Nanjing, China, in 1994 and 1997, respectively, and 
the Ph. D. degree from Virginia Polytechnic Institute and State University, 
Blacksburg, USA, in 2001. Currently, he is the James McConnell Professor 
at The University of Tennessee (UT), Knoxville, USA. His research inter‐
ests include renewable energy integration, demand response, electricity mar‐
ket, power system control, and power system computing.

1073


