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Abstract—To tackle emerging power system small-signal sta-
bility problems such as wideband oscillations induced by the
large-scale integration of renewable energy and power electron-
ics, it is crucial to review and compare existing small-signal sta-
bility analysis methods. On this basis, guidance can be provided
on determining suitable analysis methods to solve relevant
small-signal stability problems in power electronics-dominated
power systems (PEDPSs). Various mature methods have been
developed to analyze the small-signal stability of PEDPSs, in-
cluding eigenvalue-based methods, Routh stability criterion, Ny-
quist/Bode plot based methods, passivity-based methods, posi-
tive-net-damping method, lumped impedance-based methods, bi-
furcation-based methods, etc. In this paper, the application con-
ditions, advantages, and limitations of these criteria in identify-
ing oscillation frequencies and stability margins are reviewed
and compared to reveal and explain connections and discrepan-
cies among them. Especially, efforts are devoted to mathemati-
cally proving the equivalence between these small-signal stabili-
ty criteria. Finally, the performance of these criteria is demon-
strated and compared in a 4-machine 2-area power system with
a wind farm and an IEEE 39-bus power system with 3 wind
farms.

Index Terms—Impedance-based method, oscillation analysis,
power electronic converter, power electronics-dominated power
system, renewable power generation, small-signal stability.

[. INTRODUCTION

HE growth of renewable energy penetration is an inevi-
table trend in response to the carbon neutrality target.
Growing renewable power generation via power electronic
devices is foreseeable, which may introduce new wideband
oscillation problems to modern power systems [1]-[4]. In
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power electronics-dominated power systems (PEDPSs), oscil-
lations involve not only traditional synchronous generators
(SGs) but also different control circuits of power electronic
converters, e.g., phase locked loop and current loop control.
Compared with the SG-induced oscillations, the power elec-
tronic converter-induced oscillations have very different
mechanisms and present a wider oscillation frequency range,
posing critical challenges for existing small-signal stability
analysis.

In order to analyze the small-signal stability of PEDPSs,
many small-signal stability criteria (SC) have been devel-
oped and successfully implemented, e.g., eigenvalue/pole
based methods [5]-[17], Routh stability criterion [18]-[20],
Nyquist/Bode plot based methods [21]-[30], passivity-based
methods [31]-[35], positive-net-damping method [36]-[39],
lumped impedance-based methods [40] - [42], bifurcation-
based methods [43]-[46]. Based on these methods, the small-
signal stability of a PEDPS can be analyzed in time domain
[51-19], s domain (i.e., complex frequency domain) [15],
[16], [18], [19], and frequency domain [21]-[24], [39]-[41],
[47], [48]. The time-domain-based methods mainly include
time-domain simulation and eigenvalue analysis based on ac-
curate and detailed state-space models. A transfer function
with respect to a complex argument, i.c., s, is used for the s-
domain-based methods. The frequency-domain-based meth-
ods refer to the analysis of a transfer function with respect
to a real argument, i.e., frequency. So-called impedance-
based methods mainly employ the s-domain-based methods
and the frequency-domain-based methods to analyze imped-
ance-based transfer functions [7], [49]. Different limitations
are encountered in PEDPSs due to the characteristics of
these methods [23], [39], [50]. Specifically, some criteria
may become inaccurate or infeasible under certain condi-
tions. Massive power electronic converters pose a serious
challenge in obtaining accurate models required by these
methods. Furthermore, although these methods have seeming-
ly different criteria for determining the frequencies and mar-
gins of oscillations, they are essentially linked. Therefore, to
provide effective guidance on finding suitable analysis tools
for emerging oscillation problems in PEDPSs, it is crucial to
clearly reveal and explain the connections and discrepancies
among different small-signal SC and the causes of their limi-
tations. In [50], the impedance-based sufficient SC and Ny-
quist/Bode plot based methods are reviewed in a vehicle-
grid system. In [23], a typical impedance-based method, Ny-
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quist/Bode plots, and eigenvalue analysis are compared in a
weak grid with a voltage source converter. Six types of con-
servative impedance-based small-signal SC in DC power dis-
tribution systems are discussed in [51]. In existing literature,
the connections between these criteria, especially some
emerging methods (e.g., lumped impedance-based methods
and positive-net-damping method), are rarely discussed.
Moreover, the SC and the oscillation mode identification cri-
teria (OMIC) of these methods are seldom investigated sys-
tematically or compared rigorously in a large-scale system.

Hence, eight types of small-signal stability analysis meth-
ods are reviewed and compared in this paper. The connec-
tions and discrepancies between different criteria are mathe-
matically and thoroughly revealed. Meanwhile, the causes of
the invalidation of these criteria under some conditions are
explained.

The organization of this paper is as follows. Section II
summarizes different small-signal models in a PEDPS. Sec-
tion III details eight types of small-signal SC for PEDPSs in
detail. Section IV compares different SC to analytically dem-
onstrate their essential equivalence and discrepancies. Case
studies are implemented in Section V to numerically com-
pare the performance of different SC. Section VI discusses
future challenges. Finally, conclusions are given in Section
VIIL

II. SMALL-SIGNAL MODELING FOR PEDPSs

Accurate small-signal stability analysis relies on an appro-
priate model of a power system. The increasing renewable
power generation via power electronic devices raises a dy-
namic behavior different from that of a conventional power
system dominated by SGs. A recent report in [52] summariz-
es the emerging stability phenomena induced by converters.
It is indicated that the PEDPS exhibits a dynamic response
that is more dependent on fast-response converters compared
with the conventional power system dominated by SGs, re-
sulting in emerging challenges regarding black-box model-
ing, high model dimension, wideband frequency characteris-
tics, and new oscillation mechanisms. Specifically, the de-
tailed structure and parameters of converters are kept usually
confidential by manufacturers, and thus can hardly be mod-
eled as white-box models. The number and order of convert-
er models are obviously more than those of SGs, resulting in
an extremely high-order system model. The frequency of
power electronic switches or control loops can be from sev-
eral to several thousand Hertz. Thus, small-signal stability
problems in multiple time scales co-exist in the PEDPS, re-
sulting in oscillations in a wide frequency range rather than
only the conventional electromechanical low-frequency oscil-
lations (LFOs). The mechanism of the emerging wideband
oscillations is quite different from the conventional LFOs, re-
quiring new and accurate models. These characteristics of
PEDPS introduce tricky challenges for small-signal model-
ing and analysis. It is necessary to clarify appropriate mod-
els for analyzing the oscillatory phenomena in the PEDPS.

Converters have nonlinear and periodic behaviors.

1) A switching modulation process can be neglected or av-
eraged over an appropriate period to eliminate the discontinu-
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ity. Then, a linear-time-invariant model can be derived in the
dg-frame [8], [9]. The converter models in the dg-frame can
be conveniently integrated with other dg-frame models of
conventional components, e.g., SGs, for further analysis. It
should be noted that the effects of three-phase unbalance
and harmonics can hardly be analyzed based on the dg-
frame model since the model would become time-varying
[49], [53].

2) Considering the periodic time-varying features induced
by three-phase unbalance and harmonics, harmonic lineariza-
tion techniques, dynamic phasor (DP) techniques, and har-
monic state-space (HSS) techniques can be employed. Har-
monic linearization techniques enable linearizing a converter
model at a time-varying operating point, and thus a sequence
impedance model can be derived to analyze both balanced
and unbalanced power systems as well as the effects of har-
monics [53], [54]. The harmonic linearization involves
lengthy algebra and thus a high computational cost for a sys-
tem with massive converters. DP techniques [55], [56] and
HSS techniques [49], [57] can also be employed for small-
signal modeling considering any harmonics and frequency-
coupling dynamics. The HSS techniques use linearization
first and then Fourier series expansion to derive an HSS
model. The DP techniques employ Fourier series expansion
by generalized averaging operators first and then lineariza-
tion to yield a linear-time-invariant model. The harmonic lin-
earization, DP, and HSS techniques are valid for both bal-
anced and unbalanced power systems, and thus are worthy
of further study.

According to associated domains, these small-signal mod-
els can be divided into state-space models in time domain,
transfer function models in s domain, and transfer functions
in frequency domain. The dg-frame models can be described
by state-space models in time domain and transfer functions
in s domain or frequency domain. When considering period-
ic time-varying features induced by system unbalance and
harmonics, the state-space models can be derived by DP and
HSS techniques. The transfer function models in either s do-
main or frequency domain can be obtained by harmonic lin-
earization techniques and the harmonic transfer function de-
rived from an HSS.

The state-space model is a white-box model requiring a
detailed knowledge of the power system. By contrast, the
transfer function models are quite popular and considered
promising for small-signal stability analysis in the PEDPS
since they can be derived from a black-box representation of
converters by measurement. The transfer function models in
s and frequency domains can be conveniently modeled as im-
pedance. Hence, the small-signal stability analysis in s and
frequency domains is often collectively referred to as imped-
ance-based analysis. However, an additional step of estimat-
ing techniques, e.g., vector fitting [58], [59], is necessary for
deriving the s-domain model from measurements. Therefore,
the frequency-domain-based modeling is easier to realize
compared with the s-domain-based modeling.

Based on different types of models, various SC can be em-
ployed for small-signal stability analysis in the PEDPS,
which is introduced in Section III.



CHEN et al.: SMALL-SIGNAL STABILITY CRITERIA IN POWER ELECTRONICS-DOMINATED POWER SYSTEMS: A COMPARATIVE REVIEW

III. DIFFERENT SMALL-SIGNAL SC FOR PEDPSSs

A. Eigenvalue

The eigenvalue-based methods, including modal analysis
[6], [60] and damping torque analysis [61], [62], are well-
known tools for the small-signal stability of traditional pow-
er systems, which have been successfully employed in
PEDPSs with various power electronic devices, e.g., voltage
source converter [23] and modular multilevel converter [30].

A PEDPS can be described by a set of differential-algebra-
ic equations (DAEs) as:

x=f(xy.p,)
0=g(x.y.p,)

where x € R" is a dynamic variable vector; y € R” is an alge-
braic variable vector; x € R" is the derivative of x; p, e R" is
a parameter vector of the power system; and feR" and
ge R™ are two groups of mapping functions.

For small-signal stability analysis, the dynamics of the
variables of a PEDPS can be treated as almost linear. Thus,
the DAEs can be linearized at a steady operating condition
as [60], [61]:

(M

Ax=AAx+BAy

~ - 2)
0=CAx+ DAy

where A denotes a deviation operator; and Ae R™"
BeR"™ CeR™", and D e R™" are the corresponding Ja-
cobian matrices which are dependent on p_.

By deleting Ay in (2), we can yield:

Ax=A Ax 3)
A, e R"" can be derived by:
A —A-BD'C @)

In this paper, the small-signal SC for each method is sum-
marized, and the OMIC is summarized if existing.

According to Lyapunov’s first method, the small-signal
stability can be analyzed using eigenvalues of A, as indicat-
ed by SC 1 [6].

SC 1: the whole power system is stable if the real part of
all eigenvalues is negative; otherwise, the system is unstable.

The potential oscillation modes (OMs) can be obtained by
OMIC 1 [6].

OMIC 1: each pair of conjugate eigenvalues o= jf5, where
j is an imaginary unit, corresponds to a specific OM. The os-
cillation frequency is f/(2m) Hz. If 6<0, the OM is stable;
otherwise, the OM is unstable. The smaller o is, the more
stable the OM is.

In addition to state-space equations, the PEDPS can be de-
scribed by transfer functions. A closed-loop transfer function
(CLTF) F(s) can be determined by (5), and the block dia-
gram is shown in Fig. 1, where AW} and AU; are the input
and output, respectively.

F(s)=(1+G(s)H(s)) G(s) (5)

where s is a complex variable; G(s) and H () are the trans-
fer functions of the forward and feedback paths, respective-
ly; G(s)H (s) is the open-loop transfer function (OLTF);
and 1 will be replaced by an identity matrix I if F(s) is a
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multiple-input multiple-output (MIMO) CLTF.

}7 AU
H

AW
F 4 G(s)

H(s)

Fig. 1. Block diagram of a closed-loop PEDPS.

An open-loop subsystem corresponding to G(s) or H (s)
individually can be described by a group of state-space equa-
tions as:

AX=AAX+ BAU
AW=CAX+DAU

where X is a system state variable vector; X is the derivative
of X; U is an input vector; W is an output vector; and A4, B,
C, and D are the state-space matrices.

The state-space equations in (6) can be transformed to a
state-space model in s domain by Laplace transformation.
Then, the corresponding unique transfer function G(s) or
H () can be derived by:

G(s)orH(s)=C(sI-A)" B+D (7)

The pole set of the CLTF F(s) is the subset of the eigen-
values of 4. Specifically, the poles are completely equal to
the eigenvalues if zero-pole cancellation (ZPC) does not ex-
ist [63]. Thus, SC 1 and OMIC 1 can be adopted to analyze
the small-signal stability based on the poles of F ().

Concrete and accurate mathematical models are necessary
for the application of eigenvalue-based methods. The analy-
sis results are extremely reliable if the mathematical models
are accurate enough. Thus, the results of eigenvalues and
poles are usually adopted as a benchmark.

(6)

B. Routh Stability Criterion

The essence of calculating eigenvalues or poles is to solve
the roots of an n™ order polynomial like:

P(s)=a,+a,s+a,s’+...+a,s"

@®)
where a,,a,, ..., a, are the coefficients of the polynomial.

The polynomial is extremely high order for practical pow-
er system models, resulting in difficult solutions. Thus, the
Routh stability criterion is proposed to determine the sign of
the real part of eigenvalues or poles without solving the
polynomial [18]. Customarily, making a, positive, the power
system is unstable if any coefficient in (8) is not positive.
Otherwise, a Routh table as (9) can be listed for further anal-
ysis.

an an—2
anfl an73
b, b, ©)
¢ ¢
b 1 d ¢ an anfli . 1 2 10
= e 1=1,4,...
boa,, Ayt Ay (2iv) (10)
1 a, 1 an—(2i+l):' .
c;=———det i=12,... 11
b, ([ b, biy (0
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The elements in (9) are calculated row by row from top to
bottom until all remaining elements to be calculated are ze-
ros. The number of eigenvalues with non-negative real parts
is the number of sign changes of the elements in the first
column of (9). Then, the small-signal stability can be judged
by SC 2.

SC 2: the whole power system is stable if all coefficients
in (8) are positive and the sign of the elements in the first
column of (9) is positive; otherwise, the system is unstable.

The cornerstone of the Routh stability criterion is SC 1.
However, the frequency of oscillations cannot be identified
by the Routh stability criterion.

C. Nyquist Plot Based Methods

The above eigenvalue-based methods rely on the state-
space models or CLTFs in s domain. By contrast, Nyquist
plots can be employed to analyze the small-signal stability
for a closed-loop power system only based on the frequency
response of an OLTF. The Nyquist plot based methods have
been widely implemented to analyze the small-signal stabili-
ty in PEDPSs [50], [64].

Define an OLTF as:

L(s)=G(s)H (s) (12)

By replacing s of L(s) with jo, a Nyquist plot can be de-

rived, where w e (-, +0) is an angular frequency variable.

Draw the locus of L( jco) in a complex plane, as shown in
Fig. 2(a).

Imaginary axis (p.u.)

Il Real axis (p.u.)

Magnitude (dB)

Frequency (Hz)

Phase (°)
{1 S—

2180 freeeens [T
Phase margin . | |
540 Lo ase rhargin |

Frequency (Hz
b) quency (Hz)
% (-1, j0); — Stable case; — Unstable case; — Misjudged case for Bode plot
---- Unit circle; 11 Condition of (19) for Bode plots in stable case;
i1 Condition of (19) for Bode plots in unstable case;
@ Valid identified OMs in stable case; ® Valid identified OMs in unstable case;
o Invalid identified OMs in stable case;
o Invalid identified OMs in unstable case; ® Condition of (17) for Bode plots

Fig. 2. Nyquist/Bode plots of L( jw) for stable or unstable power systems.
(a) Nyquist plots. (b) Bode plots.

JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 12, NO. 4, July 2024

The encirclements in Nyquist plots satisfy:
Ny =N, ,—N, (13)
where N, is the number of the poles of the CLTF F(s) in

the right-half plane (RHP); N, is the number of the poles of
L(jo) in the RHP; and N, is the number of anticlockwise en-
circlements around point (—1, jO) in L(jw) locus.

According to SC 1, the small-signal stability can be
judged by whether the poles of F(s) exist in the RHP.
Therefore, the Nyquist stability criterion is given as follows.

SC 3A: the closed-loop power system is stable when N, =
0; otherwise, the system is unstable.

In practice, the open-loop subsystems usually are designed
to be independently stable [23], [48]. Thus, G(s) and H (s)
have no RHP poles, i.e., N,,=0. On this premise, SC 3B
can be derived as follows.

SC 3B: the closed-loop power system is stable when N=
0; otherwise, the system is unstable.

If L( jw) is an single-input single-output (SISO) function,
SC 3A/3B can be adopted directly. If L(jw) is an MIMO
function, a generalized Nyquist criterion can be employed
[22], [23], [65], [66]. Specifically, the eigenvalues of the MI-
MO L( jw) can be calculated at each frequency point. Sever-
al SISO frequency characteristics of the eigenvalues can be
derived. Then, SC 3A/3B can be adopted to the eigenvalue
loci, thereby analyzing the small-signal stability of the MI-
MO closed-loop power system.

Based on Nyquist plots, potential OMs can be identified
by OMIC 3.

OMIC 3 [22], [66]: the oscillation frequency is the fre-
quency where the locus of L( Jco) intersects the unit circle,
i.e., w/(2m) Hz that satisfies (14). The stability margin of an
oscillation can be evaluated by the corresponding phase mar-
gin. For a stable oscillation, the larger the corresponding
phase margin is, the more stable the oscillation is. The oscil-
lation is critically stable when the phase margin is 0°.

|L(jo)| =|G(jo) H (jo)| =1 (14)

where || denotes the modulus.

As shown in Fig. 2(a), it should be pointed out that not
all intersection points are valid for determining the oscilla-
tion frequencies. Only the intersection points close to
(—1, jO) are meaningful, and the corresponding frequencies
are close to the true oscillation frequencies [50]. Taking an
SISO system as an example, the reasons are given as fol-
lows. Equation (15) can be satisfied only when s is a pole of
the CLTF.

1+L(s)=0 (15)

For a pole s,=0,%jf,, L(sl) equals to (—1, jO). If g, is

small enough to make o,+jf,=0+jf5,, (16) can be achieved.

L(jp) =L(o,£jB,) = (~1.j0) (16)

When (16) is satisfied for an OM, the corresponding inter-
section may be found nearby (—1, jO) in Nyquist plots. If
o,£jp, is not approximate to 0+jf,, (16) may not be satis-
fied. Poles that do not satisfy the above condition cannot be
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found in the Nyquist plot, resulting in the neglection of non-
critical oscillations. Hence, only the frequencies of critically
stable/unstable oscillations can be determined by OMIC 3
correctly. It is difficult to give a specific threshold that can
determine whether an intersection point is close to (-1, j0)
enough since the standard varies with OMs and operating
conditions.

Nyquist plots are a kind of graphical method in frequency
domain. The small-signal stability of a closed-loop PEDPS
can be identified correctly on the premise that the number of
the RHP poles of G(s)H (s) is known. Moreover, the order
of the PEDPS model is high due to the increasing number of
power electronic devices. Hence, the Nyquist plots may be-
come too complex to clearly check the encirclements in the
PEDPS, which may limit the application of the Nyquist plots.

D. Bode Plot Based Methods

The Bode plots can be regarded as another form of Ny-
quist plots. A Bode plot consists of a magnitude-frequency
plot and a phase-frequency plot. Based on the Bode plot of
L(jow), the small-signal stability can be judged by SC 4
[23], [67], [68].

SC 4: the closed-loop power system is stable if the magni-
tude and phase of L( ja)) satisfy (17).

M(|L(jo)|) <0 -
ZL(jo) =-180°+N,

phase.360c>
M(-)=20lg(-) (18)
is an integer; and M(‘L(Jw)’) and LL(Ja)) are

the magnitude and phase of L( jw), respectively.

where N

phase

As Fig. 2(b) shows, the condition in (17) can also be re-
written as:

M(|L(jo)) =0 "

ZL(jo) #—180°£ N, - 360°

In fact, SC 4 can be derived from SC 3B, which is regard-
ed as a simplified Nyquist stability criterion. It should be
noted that SC 4 is a sufficient and unnecessary condition for
small-signal stability. This is because there may be a frequen-

cy, where /L(jo) satisfies (17) but M(‘L(jw)‘)>0 in a

stable closed-loop power system. This case can be observed
if L(jw) crosses the negative real axis to the left of —1 but
does not encircle (—1,j0) in the corresponding Nyquist plot,
as shown by the purple lines in Fig. 2 [23], [68]. Thus, SC 4
is conservative.

Similar to the Nyquist plot based methods, the potential
OMs can be determined based on Bode plots as follows [67].

OMIC 4: the oscillation frequency is the frequency where
the magnitude of L( jw) satisfies (20). For a stable oscilla-
tion, the larger the corresponding phase margin is, the more
stable the oscillation is. The oscillation is critically stable
when the phase margin is 0°.

M(|L(jo)])=0 (20)
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The same as the analysis in Section III-C, OMIC 4 shares
the same limitation in the PEDPS as OMIC 3. Different
from the Nyquist plot based methods, SC 4 can only be em-
ployed on the premise that G(s)H (s) have no RHP poles.
Compared with the Nyquist plot based methods, the Bode
plot based methods are more intuitive in a high-order
PEDPS. In addition, the Bode plot based methods can be em-
ployed to analyze an MIMO PEDPS that is decoupled by
the generalized Nyquist method [23].

E. Impedance-/Admittance-based Methods

For convenience, the impedance-/admittance-based meth-
ods are hereafter named impedance-based, as impedance and
admittance can be easily converted to each other. The imped-
ance-based methods gain interest from manufacturers and op-
erators in a PEDPS since it is possible to model the power
electronic devices without full information [7], [40], [48],
[50], [67]. The impedance model of the PEDPS can be con-
structed in s domain or frequency domain. Moreover, the im-
pedance model in frequency domain can be derived by fre-
quency scanning, online measurement, etc., thereby reducing
the difficulty in modeling [69], [70]. The core of impedance-
based methods is to determine the transfer functions of a
PEDPS based on impedance models. There are several forms
to achieve it as follows.

A PEDPS can be divided into two subsystems at a point
of common coupling (PCC). Especially, for a power system
with converters, the converters at the same location and the
rest of the power system can be regarded as two subsystems
to analyze the oscillations between the converters and the
rest of the power system [39].

A PEDPS described by a Thevenin equivalent circuit con-
nected with a Norton equivalent circuit is taken as an exam-
ple, as shown in Fig. 3(a).

(b)

Fig. 3. Different impedance-based small-signal stability analysis models.
(a) Impedance model 1. (b) Impedance model 2.

In Fig. 3(a), the current between the two sub-circuits can
be derived by [23], [48]:

Lo(s) = (1+7,(5)Z,(5)) (1,(s) =¥, (s)Va(s))  @1)

where 7,.(s) is the current at PCC from the Norton equiva-
lent circuit to the Thevenin equivalent circuit; Y,(s) and
1,(s) are the equivalent admittance and current source in the
Norton equivalent circuit, respectively; and Z,(s) and V,(s)
are the equivalent impedance and voltage source in the
Thevenin equivalent circuit, respectively.

If two assumptions are satisfied (i.e., V,(s) is stable, and
the system is stable when Z,(s) is zero), the CLTF of the
whole PEDPS can be expressed as [23]:

Fi(s)=(1+Z,(s)Y,(s))" (22)
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where the input is /,(s) - Y,(s)V,(s) and output is 7 .(s).

In addition, there is another form to get a CLTF based on
the transfer functions of the two subsystems, as shown in
Fig. 3(b) [15], [16], [39], [71]. The two subsystems can be
described by two groups of state-space equations, like the
forms in (6). By making voltage V. (current /,.) as input U
and making current /. (voltage V) as output W, the trans-
fer functions of the two subsystems can be regarded as an
admittance Y,(s) (impedance Z,(s)) as:

Y,(s) orZy(s) =C(sI-A)" B+D (23)
By setting V., and [ (or [, and V) as the input and
output of the CLTF, respectively, the CLTF can be expressed
by (24) or (25) [16].
1

Fy(s)=(1+Y,(s)Zy(s)) Y(s)

Fy(s) = (1+2,(s)v,(5)) " Zy(5) (25)

Although the CLTFs in (22), (24), and (25) seemingly
have different forms, they share the same poles without con-
sidering ZPC. After deriving the impedance-based transfer
functions of the PEDPS, various methods can be utilized to
analyze the small-signal stability as follows.

1) Pole-based Analysis for Impedance Models

The poles of the impedance-based CLTF can be calculat-
ed. Then, SC 1 and OMIC 1 can be adopted to analyze the
small-signal stability, as introduced in Section III-A.

2) Nyquist/Bode Plot Based Analysis for Impedance Models

According to the CLTFs in (22), (24), and (25), the OLTF
in frequency domain can be derived as:

L(Ja)) :Yl(ja))Zz(ja)) or L(_]a)) :Zz(ja))Yl(ja)) (26)

Then, the generalized Nyquist plot and Bode plot of
L( ja)) can be drawn for further analysis by SC 3A/3B, SC
4, OMIC 3, and OMIC 4.

In addition, several derived sufficient and unnecessary cri-
teria have been proposed, including Middlebrook criterion
[72], gain and phase margin criterion [73], opposing argu-
ment criterion [74], and energy source analysis consortium
(ESAC) criterion [74]. Different forbidden regions are intro-
duced in these criteria. L( _]a)) is limited in the forbidden re-
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gions to guarantee the stability of a PEDPS. The comparison
of different forbidden region boundaries is given in Fig. 4.

Imaginary axis (p.u.)

ESAC criterion; — Opposing argument criterion; ---- Unit circle;
Middlebrook criterion; — Gain and phase margin criterion

(-1,j0)" Real axis (p.u.)

Fig. 4. Different forbidden region boundaries in s plane.
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In Middlebrook criterion [72], L( _]a)) is required to satisfy:
|L(jo)| <1 27)

The gain and phase margin criterion defines a forbidden
region by (28) [73]:

| L(jo)|>Mg'

(28)
—180°+M,< ZL(jw) < 180° M,

where M, and M, are the defined gain margin and phase
margin, which are 2 and 60° in [73], respectively.

The opposing argument criterion proposes a forbidden re-
gion defined by [74]:

Re(L(jo)) <-Mg' (29)

where Re(+) denotes the value of real part.

In ESAC criterion [75], the boundary of the forbidden re-
gion consists of two lines starting from negative infinity and
paralleling the real axis. The two lines terminate at the unit
circle and are connected by lines from the intersection points
to (=Mg', j0), as shown in Fig. 4.

These criteria can be regarded as simplified SC 3B rather
than SC 3A since the stability is guaranteed by no encircle-
ment of (—l, ]0) They are design-oriented for easily guiding
the design of the individual electronic component. Therefore,
all these criteria are conservative.

3) Passivity-based Method

Taking the impedance model of a PEDPS shown in Fig. 3(a)
as an example, the passivity of subsystem Y, (or Z,) can be
judged as follows [31]-[35]. The subsystem is passive if (D
all poles of Y,(s) (or Z,(s)) are in the left-half-plane; and
@ Re(Yl(ja))) (or Re(Zz(ja)))) is nonnegative for Vo.
Based on the concept of passivity, the small-signal stability
of the whole power system can be identified as follows
[31]-[35].

SC 5: the closed-loop power system is stable if all open-
loop subsystems are passive.

The passivity of Yl(ja)) and Zz(ja)) indicates that LL(ja))
is within [-180°, 180°], thereby guaranteeing that the Ny-
quist plot does not encircle the point (—1, _]0) [34], [35].
However, a stable system allows a case that the point
( -1, JO) is not encircled, and meanwhile, LL( Jw) is beyond
[-180°, 180°]. Hence, SC 5 is a sufficient and unnecessary
criterion for small-signal stability. The passivity-based meth-
od argues that the frequency ranges with negative
Re(Yl(jw)) and Re(Zz(jw)) are related to potential reso-
nance destabilization. Then, the stability of the whole power
system can be improved by minimizing the negative-real-
part ranges.

4) Positive-net-damping Method

The positive-net-damping method can be proven as a sim-
plified representation of the Nyquist stability criterion [36].
Based on (26), if Z,(s) and Y,(s) have no RHP poles, the
sufficient conditions for a stable PEDPS derived from SC
3B can be expressed as:
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Re(Z,(jo)Y,(jw))>-1
Im(Z,(jw)¥,(jw)) =0

where Im (+) denotes the value of imaginary part; and Y,(jo)

(30)

and ZQ( ja)) can be expressed by (31) and (32), respectively.
Ylil(jw)zzl(jw) :R1(w) +jX](a)) 31
(32)

where R,, R, and X, X, are the resistances and reactances of
subsystem 1| and subsystem 2, respectively.

By substituting (31) and (32) into (30), we can yield
[36], [39]:

Z2(ja)) :Rz(a’) +jX2(CU)

R/(ow)+R,(w)>0
Xz(w) _ Rz(w)
Xl(w) Rl(w)

(33)

Therefore, the positive-net-damping criterion can be ex-
pressed as follows [36], [39].

SC 6: the closed-loop power system is stable if (33) is sat-
isfied.

The potential OMs can be identified as follows [37], [39].

OMIC 6: the oscillation frequency is the frequency where
Im(Zz( jo)Y,( Jw)) is 0. At the oscillation frequency, the os-

cillation is stable if R ,(w) +R,(w) is larger than 0.

SC 6 and OMIC 6 mean that the impedance model is pas-
sive around oscillation frequencies, thereby guaranteeing sta-
bility. Similar to SC 4, the positive-net-damping criterion is
sufficient and unnecessary for small-signal stability. In addi-
tion, not all frequencies of potential OMs can be correctly
determined by OMIC 6. The positive-net-damping criterion
is easy to apply in practice since the physical meaning is
clear, and the contribution of each subsystem for stability
can be evaluated. For an MIMO power system, the MIMO
impedance needs to be decoupled into SISO impedance, and
then the passive-net-damping method can be employed
[38], [39].

5) Lumped Impedance-based Method

In [40], a lumped impedance-based method is proposed to
analyze the small-signal stability. The whole PEDPS can be
represented by an impedance network model. Through cir-
cuit transformation, the impedance network model can be re-
duced into a lumped impedance Z,,, or a lumped admittance
Y, in frequency domain. Taking Z,,, as an example, a re-
sponse current occurs by injecting a small voltage distur-
bance into the network, as shown in (34).

Lauli@) =Vi(io) Ziu(je) (34)
where ZLIM( ja)) is the frequency response of the CLTF for
the power system.

Taking the impedance model shown in Fig. 3(a) as an ex-
ample, Z, ,, can be derived by:

ZLIM(jw) szl(jw) +Zz(jw) =R (@) +iX (@) (35)
where R, ,(w) and X, ,,(w) are the real part and imaginary

part of ZUM( ja)), i.e., lumped resistance and lumped reac-
tance, respectively.
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It is assumed that oscillations with corresponding eigenval-
ues o+£jf can satisfy:

lo| <A (36)

It means that the oscillations are critically stable/unstable.
In this case, the small-signal stability can be analyzed based
on R, (@) and X, ,(w), as follows [40].

SC 7: the oscillation at a frequency w is stable when (37)
is satisfied; otherwise, the oscillation is unstable.

dX; (o
RLIM(CU) Lé]\;)( ) >0

Xiu(@) =0
The potential OMs satisfying (36) can be identified as fol-
lows [41].

OMIC 7: the oscillation frequency is the frequency where
X m(w) is 0. The stability margin of the oscillation can be

(37

preliminarily assessed by |RLIM(a))| at the oscillation frequen-
cy. The larger |R,,(@)| at the oscillation frequency is, the
more stable (unstable) the corresponding oscillation is.

In (37), the zero-crossing points on X;,,(®) can not only
be caused around the frequencies of zeros but also the fre-
quencies of poles. Oscillations are related to the zeros of
Z () according to (34). Thus, only the zero-based zero-
crossing points are valid for using SC 7 and OMIC 7. An ex-
perience-based judgment method is to observe the absolute
value of the slope of X,,,(w) at the zero-crossing point. If
the value is relatively small, the zero-crossing point is
caused by a zero [40].

In some special cases, the oscillation-related zero-crossing
point can be caused on R, (). In this case, the oscillation
is stable if (38) can be satisfied [40].

XLIM(w)dR%w(w)

RLIM(a)) =0

<0
(38)

Similarly, only the zero-based zero-crossing points are val-
id. The details can be found in [40].

In practice, ZLIM( Ja)) is usually a 2x2 matrix in the dg
frame. In this case, the form of (39) or (40) can be em-
ployed to analyze the small-signal stability [40], [42].

(39

ZLIM,DZZLIMA,IIZLIM,ZZ _ZLIM,ZIZLIMA, 12

Zinae= 5 (Zuona+ Zinan) +3(Zinin = Zim) | (40)

where Z,,,,, is the element in the /" row and the " column
of Z,,,. Equation (40) is only available for the symmetrical
or slightly asymmetrical impedance [42].

Through the lumped impedance-based method, the poten-
tial OMs can be identified without computing zeros or poles.
Therefore, the method is easy to apply in practice. However,
the preconditions of this method limit the analysis of non-

critically stable/unstable oscillations.

F. Bifurcation-based Method

In theory, bifurcation is the appearance of a new pattern,
e.g., instability, caused by the continuous changes of parame-
ters in a PEDPS [46], [76]. Thus, the structural stability can
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be analyzed by the bifurcation-based method. Specifically,
the dynamics of a PEDPS can be described by DAEs like
(1) with parameters p_ [46]. After linearizing DAESs, the state
matrix 4, can be derived as (4). The small-signal stability
can be judged by the eigenvalues of 4, which depends on
P.. Therefore, a bifurcation can be regarded as a specific set
of p, that can make the PEDPS marginally stable/unstable.

In the small-signal stability analysis, there are mainly
Hopf bifurcation, saddle-node bifurcation, singularity-in-
duced bifurcation, and limit-induced bifurcation [43], [44].
Among them, the Hopf bifurcation is related to the oscillato-
ry stability since it is caused by the move of a pair of com-
plex conjugate eigenvalues [45]. A Hopf bifurcation can be
identified by checking the requirements as [46]:

f(xc’yc’pHB) =0

(41)
g(x.yepus) =0
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where x_ € R" and y_e R" are the vectors of the dynamic
variables and algebraic variables at the current equilibrium
point, respectively; p,s € R” is the value of p, under the bi-
furcation condition, i.e., Hopf bifurcation value; and only a
pair of conjugate eigenvalues 1, can satisfy (42).

The requirements above describe the crossing of a com-
plex conjugate pair of eigenvalues on the imaginary axis. By
identifying or predicting the bifurcations, the parameter
space can be divided into a stable region and an unstable re-
gion, thereby providing guidance on evaluating and improv-
ing the small-signal stability. The bifurcation-based method
still relies on other analysis methods, e.g., the eigenvalue/
pole based methods, to evaluate the stability at specific sys-
tem parameters.

IV. DISCUSSIONS ON DIFFERENT SMALL-SIGNAL SC

A. Connection and Discrepancy Between Multiple Criteria

The above methods can be divided into time-domain-
based methods, s-domain-based methods, and frequency-do-
main-based methods according to employed models. The
connections between these criteria are demonstrated in Fig. 5.

|

jLHB = iJ[’) (42)
d
~—Re(A(pys)) %0 (43)
dp
| Small-signal stability modeling |
i Zero-pole Zero-pole l
| State-space model }Mﬁ Transfer function |<M{ Impedance/admittance model |
Timedomainy | 'sdomain} i Frequency domain |
i i | CLTF F(s) | OLTF L(jw)
!
Known RHP

pole number

3
polynomial
,,,,,, ,

|oi<<Ip|
No RHP pole

I

}

Eigenvalues/poles based Routh SC

(SC 1 and OMIC 1)

Nyquist plot based
(SC 3A/3B and OMIC 3)

Bode plots based
(SC 4 and OMIC 4)

Passive-based
(SC 5)

Lumped impedance-based
(SC 7 and OMIC 7)

Positive-net-damping
(SC 6 and OMIC 6)

[_] Sufficient and necessary criterion; [__] Sufficient and unnecessary criterion; [___] Insufficient and necessary criterion

Fig. 5. Connections among different small-signal SCs.

Emerging issues have been induced in the PEDPS, includ-
ing aspects from black-box modeling, high model dimen-
sion, wideband frequency characteristics, and new oscillation
mechanisms, for the covered methods. These issues seriously
affect the effective application of the above methods, which
are analyzed in detail as follows.

The time-domain-based methods analyze the small-signal
stability by computing eigenvalues via state-space models,
requiring a thorough knowledge of the structure and parame-
ters of the system.

A main challenge induced by the converters is how to ob-
tain an accurate state-space model and solve effective eigen-
values [49], [53], [77]. Different from conventional compo-
nents (e.g., SGs and transformers) that have matured and
standard analytical models, the converters lack standard mod-
els since the characteristics are mainly determined by their
control structures and algorithms. The detailed structure and
algorithm of a converter are usually kept confidential by the
manufacturer to protect intellectual property, thereby further
hindering the accurate state-space model of the converter. In

this case, [78] provides an optional solution to estimate the
state-space representation for the converter. An estimated
transfer function in s domain is regarded as an approxima-
tion of the state-space model. By modeling the black-box
converter as RLC branches, the parameters of the RLC
branches can be computed from the pole/residue values of
the estimated transfer function in s domain. Then, the con-
verter is represented by a state-space model of the RLC
branches. It should be noted that the relationships between
the parameters in the RLC branches and real control parame-
ters may not be clearly observed, resulting in difficulty in
stability optimization. Hence, the state-space modeling for
the black-box converters still needs further research and
breakthroughs.

In addition, the order of the state transform matrix may be
extremely high. The dynamics of a converter in electromag-
netic time-scale should be considered in the state-space mod-
el, resulting in a high order for the device model. Mean-
while, there are far more converters than SGs in the PEDPS.
Hence, the detailed state-space model for a large-scale multi-
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machine power system with converters is super high order,
resulting in the difficulty in effectively solving eigenvalues
and explaining the model intuitively in terms of physical
meaning [49]. The formation of the state-space model of the
whole power system with massive converters can be simpli-
fied by a component connection method (CCM), but the
model order is still high [79]. The model order reduction is
a solution that is worth further studying for improving the
solvability of eigenvalues [80].

When the system is unbalanced or harmonic interaction of
converters is considered [49], [53], the linearized model can
be time-periodic and cannot be employed for eigenvalue
analysis directly. Some emerging methods including DP
[55], [56] and HSS [49], [57] may provide potential solu-
tions in this case.

The s-domain-based methods analyze the small-signal sta-
bility by computing poles via a CLTF with respect to a com-
plex argument s. Mathematically, a unique transfer function
can be derived from a state-space model. SC 1, OMIC 1,
and SC 2 are valid for both the time-domain-based methods
and the s-domain-based methods.

The s-domain-based methods are one of the most popular
methods for small-signal stability analysis in the PEDPS.
The s-domain model of a black-box converter can be regard-
ed as an impedance without knowing the inner details. A so-
lution to model the black-box converter is to estimate the s-
domain model from measurement data or simulation by esti-
mating techniques, e.g., vector fitting [58], [59]. The linear-
ized time-periodic characteristics can be modeled by harmon-
ic linearization [53], [54] and harmonic transfer function
[49], [57] techniques. It should be pointed out that the order
of the estimated s-domain model is usually determined manu-
ally, thereby resulting in estimation errors and spurious poles
[81], [82]. The fitting errors of different devices may be fur-
ther cumulated into the system model. Hence, the large-scale
use of estimated s-domain models should be done with cau-
tion. The Routh stability criterion only gives the number of
poles with non-negative real parts, and thus the effects of
the estimated errors and spurious poles can hardly be no-
ticed and mitigated.

Noticeably, ZPC may be caused when forming a transfer
function, affecting the analysis results. The impedance-based
transfer functions are widely employed in small-signal stabil-
ity analysis of the PEDPS, which suffer from the ZPC issue.
Different forms of CLTFs consisting of Y,(s) and Z,(s) can
be expressed by (22), (24), (25), and the inversion of (35).
Y,(s) and Z,(s) can be expressed by corresponding pole
polynomials (P, and P,,) and zero polynomials (P, and P,,)
as:

P,(s
ns) = 240 9
Zs) = A (45)

By substituting (44) and (45) into (22), (24), (25), and the
inversed (35), we can yield:

F o) Pa(s) Py (5)

B Pzz(S)le(S) +Pp2(s)Ppl(S)

(40)
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P,(s) Pyo(s)

P = Opa ) P P(s) @D
Poa(s) Py (s)

B = b (5P (s) +Po(5)Poy(s) (48)

| P, (s)Po(s) -

Zu($) " Pa(s)P(s) +P,(5)P(s)

Obviously, the four different forms of CLTFs have the
same poles without considering the ZPC issue. Essentially,
different approaches for forming CLTFs generate different
closed-loop zeros. The closed-loop zeros consist of open-
loop zeros and/or poles. It can be inferred that once an OM
in a subsystem is not affected by the forming of the closed
loop, the corresponding open-loop poles and closed-loop
poles are the same. In this case, if the open-loop poles be-
long to the pole polynomials existing in the numerator part
of a CLTF, the corresponding closed-loop poles can be can-
celled. A recommended approach to solve the issue is to
form the CLTF by dividing the whole PEDPS at different
PCCs [63]. Then, the analysis results of different CLTFs can
be comprehensively considered.

Although eigenvalues and poles can provide detailed and
accurate analysis results for oscillations, detailed state-space
models or s-domain transfer functions of the PEDPS are re-
quired. Similar to the s-domain model, the frequency-domain
model of a black-box converter can also be derived from
measurement data or simulation data [40], [48]. However,
the additional step of estimating techniques, e.g., vector fit-
ting [58], [59], is not necessary, and thus the frequency-do-
main modeling is easier to realize compared with the s-do-
main modeling.

The small-signal stability of the whole PEDPS can be de-
termined correctly based on Nyquist plots if the number of
the open-loop RHP poles is known. Moreover, if the open-
loop subsystems are stable, Bode plots and the positive-net-
damping method can also be employed, which are conserva-
tive. Guaranteeing the requirements of RHP pole number is
challenging in the PEDPS, since the control parameters of a
converter may change with operating points and interactions
within the subsystem may cause instability [83], [84]. By
contrast, the knowledge about the number of open-loop RHP
poles is not required by the lumped impedance-based meth-
od since it is based on the CLTF essentially. However, the
non-critically stable/unstable oscillations may not be identi-
fied by the lumped impedance-based method. Although the
non-critically stable/unstable oscillations also may not be
identified by the Nyquist/Bode plot based and positive-net-
damping methods, the impacts of these non-critical oscilla-
tions can still be considered when judging the stability of
the whole power system.

B. Sufficiency and Necessity of Multiple Criteria on Stable
Region

According to the above analysis, the stable regions given
by different criteria are compared in Fig. 6, which aims to
demonstrate the containment relationship of the stable/unsta-
ble regions defined by different criteria.



1012

Unstable region

Stable region

(O Area A: eigenvalue analysis

("> Area B: pole analysis, Routh stability criterion, and Nyquist
plot based methods

" Area C: Bode plot based and positive-net-damping methods
Area D: lumped impedance-based method

Reduced stable region caused by misjudging special stable cases
as shown in Fig. 2

Extended stable region caused by ZPC

Extended stable region caused by missing noncritical OMs

Fig. 6. Comparison of stable regions of different small-signal SC.

The grey area (Area A) presents the stable region deter-
mined by eigenvalue analysis. Area A is regarded as the actu-
al stable region as SC 1 based on ecigenvalues is the suffi-
cient and necessary condition for stability.

Compared with the actual region, the stable region (Area
B) determined by the pole analysis, Routh stability criterion,
and Nyquist plot based methods is larger. The extended area
is caused by the ZPC issue when deriving transfer functions.
Without considering the ZPC issue, the corresponding crite-
ria are sufficient and necessary for stability.

Compared with Area B, the stable region determined by
the Bode plot methods and positive-net-damping methods
(Area C) is reduced. The reason is that the special stable cas-
es that L( Jw) crosses the negative real axis to the left of —1
but does not encircle (—1, jO) in the complex plane can be
misjudged as unstable cases by the methods of Area C but
can still be accurately judged by the methods of Area B.
Hence, a reduction of the stable region in Area C occurs due
to the misjudgment of the special stable cases. The methods
of Area C are sufficient but unnecessary without consider-
ation of the ZPC issue. Compared with Area A, the extended
stable region of Area C is caused by the ZPC issue.

Comparing the stable region (Area D) determined by the
lumped impedance-based method with Area B, the extended
stable region is caused by the assumption of (36). Non-criti-
cal OMs may not be identified, and thereby, more unstable
cases may be misjudged. Compared with Area C, the actual
stable region in Area D is extended because the special sta-
ble cases may be ignored but would not be misjudged by the
lumped impedance-based method. Thus, it is necessary but
insufficient for stability.

Generally, the accurate stable region can be provided by
the eigenvalue analysis. If no unstable OMs are ignored by
the ZPC, the accurate stable region can be provided by the
pole analysis, Routh stability criterion, and Nyquist plot
based methods. The Bode plot based methods, positive-net-
damping method, and lumped impedance-based method can
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hardly provide an accurate stable region even if the impact
of the ZPC is ignored.

According to the above discussions, the eigenvalue analy-
sis and pole analysis are preferred if the required accurate
state-space models or s-domain transfer functions can be de-
rived easily. Otherwise, the frequency-domain-based meth-
ods are more applicable. Combining two or more frequency-
domain-based methods is recommended to analyze wideband
oscillations in the PEDPS due to their different limitations in
stability judgment and OM identification. For example, after
obtaining the impedance models in frequency domain, Ny-
quist/Bode plots based method and positive-net-damping
method can be employed to guarantee the small-signal stabil-
ity of the whole PEDPS. Meanwhile, the lumped impedance-
based method can be adopted to identify potential critical
wideband oscillations.

V. CASE STUDY

To demonstrate and compare the performance of different
small-signal stability analysis methods in PEDPSs, including
eigenvalue/pole based methods, Nyquist/Bode plot based
methods, and emerging impedance-based methods, two test
power systems with different scales (modified 4-machine 2-
area (4M2A) power system and modified IEEE 39-bus pow-
er system) are employed in this section.

A. Modified 4M2A Power System

The modified 4M2A power system with a permanent mag-
net synchronous generator (PMSG) based wind farm is em-
ployed as the test system. The single-line diagram of this
test system is shown in Fig. 7.

1 56 7 8 9 10 11 3

- BT e

| Load; Generator; () PMSG
N

Fig. 7. Single-line diagram of modified 4M2A power system.

1) Eigenvalue-based Analysis in Modified 4M2A Power Sys-
tem

The system is modeled under the dg-frame. By dividing
the whole power system into two subsystems at bus 12, the
admittance of the PMSG-based subsystem Y}, and the im-
pedance of the rest of the power system Z,,pg, can be re-
garded as the corresponding transfer functions, respectively.
Then, the CLTF can be derived according to (25), and the
poles of the CLTF can be calculated. The obtained conjugate
eigenvalues and poles are compared in Table I.

In addition to the conjugate eigenvalues/poles in Table I,
all real eigenvalues/poles are negative. Hence, according to
SC 1, the power system is stable because all the real parts
of eigenvalues/poles are negative. However, compared with
the eigenvalues, three pairs of poles can hardly be found
since they are cancelled by zeros.
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TABLE I
CONJUGATE EIGENVALUES AND POLES IN MODIFIED 4M2A POWER SYSTEM

Eigenvalue Pole Frequency (Hz)  Damping ratio (%)
—22.680+j97.89 —22.680+j97.89 15.58 22.57
—12.4904j69.68 —12.490+j69.68 11.09 17.64

—0.091+j9.87 —0.091+j9.87 1.57 0.92
—0.670+j5.80 —0.670+j5.80 0.92 11.48
—0.6104j5.78 —0.6104j5.78 0.92 10.50
—0.3304j3.09 —0.330+j3.09 0.49 10.62
—0.0374j0.82 —0.037+j0.82 0.13 4.51
—2.5004j22.22 None 3.54 11.18
—2.1804j22.21 None 3.53 9.77
—0.3204j1.55 None 0.25 20.22

2) Nyquist/Bode Plot Based Analysis in Modified 4M2A
Power System

According to (26), the OLTF is Ypy6,Zrops;- TWO decou-
pled eigenvalue loci, i.e., Agye, and Agyc,, are derived by
generalized Nyquist plot based method. Correspondingly, the
generalized Nyquist plot and corresponding Bode plot are
drawn in Fig. 8 and Fig. 9, respectively.

Imaginary part (p.u.)
o

Real part (p.u.)

X(-1,30); - Agnes — Agneos - Unit circle
Fig. 8.

tem.

Results of generalized Nyquist plot in modified 4M2A power sys-

_ F 0.15 Hz '
2 ol 0.12Hz
<
A~ e
-180 % 5 ‘]\* o
107 10 10 20
Frequency (Hz)
- Aenets — 4anes

Fig. 9. Results of Bode plot in modified 4M2A power system.
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Zrops; and Yoo, are designed to be stable. Thus, the pow-
er system is stable according to SC 3B and SC 4.

According to OMIC 3, eight intersections of the general-
ized Nyquist plot and the unit circle can be found. However,
only the intersections close to (—1, jO) are available for identi-
fying potential OMs. Hence, two OMs at 0.12 Hz and 1.57
Hz can be identified, corresponding to the eigenvalues with
the smallest two stability margins, i. e., —0.037£j0.82 and
—0.091479.87. According to OMIC 4, these two OMs can be
identified in the Bode plot. The other OMs with higher stabili-
ty margins cannot be identified through OMIC 3 and OMIC 4.
3) Emerging Impedance-based Analysis in Modified 4M2A
Power System

In this part, the lumped impedance-based method is adopt-
ed. According to (35), the lumped impedance Z,,,,, can be
derived by Zyops;+ Yeusgi- Then, based on (40), the 2x2
lumped impedance is approximately represented by a 1x1
impedance, as shown in Fig. 10.

3r
5 12.05 Hz, R, >0
SO
& [014HZ R\>0 1,60 Hz Ry p<0
3 .
3r
2 1.60 Hz, dX, /dw<0
Z 0% < ’
- 0.14 Hz, dX, ,,/dw>0 12.05 Hz, dX, j/dw>0
3 . . s
10" 10° 10" 20

Frequency (Hz)

Fig. 10. Results of lumped impedance-based method in modified 4M2A
power system.

There are three zero-based zero-crossing points on the
X,y curve. According to OMIC 7, the identified oscillation
frequencies are 0.14, 1.60, and 12.05 Hz, respectively. Ac-
cording to SC 7, the three oscillations are stable. The three
OMs correspond to the eigenvalues —0.0374j0.82, —0.091+
j9.87, and —12.490+j69.68, respectively. The frequencies of
the first and second oscillations with small stability margins
are almost the same as the actual frequencies derived from
eigenvalues. Compared with the Nyquist/Bode plot based
method, one more OM at around 11.09 Hz can be identified.
However, the identified frequency is not very close to the ac-
tual frequency (12.05 Hz v.s. 11.09 Hz) since (36) can hard-
ly be satisfied well.

The positive-net-damping method is applicable to an SISO
system. There is no evidence supporting that the positive-net-
damping method is available based on the approximate SISO
impedance models like the lumped impedance-based method.
However, the effectiveness of the positive-net-damping meth-
od can be inferred from the results of the Nyquist/Bode
plots in Fig. 9 according to their interlinks revealed in the 4"
part in Section III-E.

The lumped impedance-based method and the positive-net-
damping method can share the same lumped resistance
curve. For a stable oscillation, the lumped resistance is al-
lowed to be positive or negative by the lumped impedance-
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based method, but only allowed to be positive by the posi-
tive-net-damping method. This is because the oscillation fre-
quencies identified by these two methods are different. The
oscillation frequencies are identified through the zero-cross-
ing points of the imaginary part of Zyops + ¥pusg: in the
lumped impedance-based method, while through the zero-
crossing points of the imaginary part of Z;,.s Yoy 10 the
positive-net-damping method.

B. Modified IEEE 39-bus Power System

The modified IEEE 39-bus power system with 3 PMSG-
based wind farms at buses 40, 41, and 42 is employed as the
test system, as shown in Fig. 11.

1) Eigenvalue-based Analysis in Modified IEEE 39-bus Pow-
er System

By dividing the whole power system into two subsystems
at bus 40, the admittance of the PMSG-based subsystem
Yousq, and the impedance of the rest of the power system
Zyps, can be regarded as the corresponding transfer functions,
respectively. Then, the CLTF can be derived according to (25),
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and the poles of the CLTF can be calculated. The obtained con-
jugate eigenvalues and poles are compared in Table II.
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Fig. 11. Single-line diagram of modified IEEE 39-bus power system.

TABLE I

CONJUGATE EIGENVALUES AND POLES IN MODIFIED IEEE 39-BUS POWER SYSTEM

Eigenvalue Pole Frequency (Hz)  Damping ratio (%) Eigenvalue Pole Frequency (Hz) Damping ratio (%)
—22.070+j96.66 —22.070+£j96.66 15.38 22.26 —0.0714j3.16 —-0.0714j3.16 0.50 2.26
—20.6404j93.56 —20.640+j93.56 14.89 21.55 —0.0914j0.83 —0.091+j0.83 0.13 11.01
—12.4204j69.70 —12.420+j69.70 11.09 17.55 —0.088+j0.82 —0.088+j0.82 0.13 10.69
—12.4304j69.67 —12.430+j69.67 11.09 17.56 —0.088+j0.82 —0.088+j0.82 0.13 10.71
—12.4304j69.67 —12.4304j69.67 11.09 17.56 —3.7904j0.79 —3.790+j0.79 0.13 97.91

—0.106£j10.62 —0.106+j10.62 1.69 1.00 —2.500+j22.22 None 3.54 11.18
—0.110+j10.43 —0.110+j10.43 1.66 1.04 —2.500+j22.22 None 3.54 11.18
—0.190+j7.84 —0.190+j7.84 1.25 2.42 —2.5004j22.22 None 3.54 11.18
—0.160+j7.74 —0.160+j7.74 1.23 2.05 —2.440+j22.20 None 3.53 10.91
—0.350+j7.59 —0.350+j7.59 1.21 4.64 —2.4404j22.20 None 3.53 10.91
—0.028+j6.49 —0.028+j6.49 1.03 0.43 —2.4404j22.20 None 3.53 10.91
—0.099+j6.45 —0.0994j6.45 1.03 1.54 —0.0634j1.12 None 0.18 5.61
—0.160+£j5.97 —0.1604j5.97 0.95 2.72 —0.0634j1.12 None 0.18 5.61
—0.040+j5.31 —0.0404j5.31 0.85 0.75 —0.0634j1.12 None 0.18 5.61
—1.440+j4.85 —1.4404j4.85 0.77 28.43

In addition to the conjugate eigenvalues/poles in Table II,
all real eigenvalues/poles are negative. Hence, according to
SC 1, the power system is stable because all the real parts
of eigenvalues/poles are negative. However, compared with
the eigenvalues, nine pairs of poles can hardly be found
since they are cancelled by zeros.

2) Nyquist/Bode Plot Based Analysis in Modified IEEE 39-
bus System

According to (26), the OLTF is Ypy60Zrops2- Lhe general-
ized Nyquist plot and corresponding Bode plot are drawn in
Figs. 12 and 13, respectively.

Zyops, and Y, o are designed to be stable. Thus, the pow-
er system is stable according to SC 3B and SC 4.

According to OMIC 3, 12 intersections of the generalized
Nyquist plot and the unit circle can be found. However, only
the intersections close to (-1, jO) are available for identify-
ing potential OMs. Therefore, 3 OMs at 0.50, 0.85, and 1.66

Hz can be identified, corresponding to the conjugate eigen-
values —0.071+j3.16, —0.040+j5.31, and —0.110+j10.43, re-
spectively. According to OMIC 4, these 3 OMs can be identi-
fied in the Bode plot. Other OMs cannot be identified
through OMIC 3 and OMIC 4.

3) Emerging Impedance-based Analysis in Modified IEEE
39-bus Power System

In this part, the lumped impedance-based method is adopt-
ed. According to (35), the lumped impedance Z,, can be
derived by Zyzops+ ¥ouisce- Then, based on (40), the 2x2
lumped impedance is approximately represented by a 1x1
impedance, as shown in Fig. 14.

There are four zero-based zero-crossing points on the
curve of X, . According to OMIC 7, the identified oscilla-
tion frequencies are 0.51, 0.85, 1.66, and 18.74 Hz. The fre-
quencies of the first 3 OMs (i.e., 0.51, 0.85, and 1.66 Hz) are
quite close to the results of the Nyquist plot and Bode plot.
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However, the identified frequency of the last OM is not
very close to the actual frequency (18.74 Hz v.s. 15.38 Hz)
since (36) can hardly be satisfied. According to SC 7, the
four identified oscillations are all stable.

The effects of the increasing scale of a PEDPS on results
of different criteria can be analyzed by comparing the results
in the two PEDPSs with different scales, as follows. By com-
paring the generalized Nyquist plots in the modified IEEE
39-bus power system and the modified 4M2A power system,
the encirclements become growingly complex and difficult
to count clearly due to the increasing order of the power sys-
tem model. According to the OM identification results of dif-
ferent criteria in the two power systems with different
scales, the number of OMs that can be successfully identi-
fied by existing criteria does not increase significantly as the
number of actual potential OMs increases. It is indicated that
the ability of existing criteria to identify potential OMs in a
large-scale PEDPS still needs to be improved further, and
otherwise, massive OMs may be ignored in the large-scale
PEDPS.

VI. CHALLENGES FOR SMALL-SIGNAL SC IN PEDPSSs

With the wide deployment of power electronics and renew-
able energy sources, the small-signal stability problems are
not only limited to conventional LFOs but also involve wide-
band oscillations. In a future large-scale high-order PEDPS,
thousands of OMs in a wide frequency range may be found.
It is very challenging to analyze the small-signal stability
and identify key OMs in such a power system. The increas-
ing difficulty in small-signal modeling hinders the analysis
based on state-space models and s-domain transfer functions.
By contrast, the frequency-domain-based methods have great
application potential for future PEDPS, while there are still
many challenges to these methods.

The reviewed sufficient criteria in frequency domain rely
on the knowledge of the number of open-loop RHP poles. In
a PEDPS with thousands of OMs, it is challenging to ana-
lyze the small-signal stability when the number of open-loop
RHP poles is unknown. Using an impedance-based CLTF is
an effective and promising approach to solve the limitation
of the strict assumption of no RHP poles compared with us-
ing an impedance-based OLTF.

All impedance-based methods suffer from the ZPC issue.
Especially, different frequency responses can be generated
by CLTFs with different forms even using the same imped-
ance models of subsystems, which may result in neglecting
some important OMs. Thus, there is a need to understand
whether the frequency response associated with an oscilla-
tion is cancelled or weakened to avoid incorrect or incom-
plete results.

Nyquist stability criterion and its derivatives provide effec-
tive tools to analyze the stability of the whole PEDPS. How-
ever, the frequencies and stability margin of most potential
oscillations can hardly be obtained by existing frequency-do-
main-based methods. Only some critically stable/unstable os-
cillations can be effectively found due to various strict as-
sumptions. However, the structures and parameters of con-
verters may change with operating points, thereby affecting
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the induced oscillation. In this case, a non-critical converter-
induced oscillation may have a large unstable risk and not
be identified timely. Thus, using the frequency response to
identify more oscillations deserves more effort.

Benefiting from the ability to use black-box converter
models, the frequency-domain-based methods are widely em-
ployed in the PEDPS. The existing frequency-domain-based
methods mainly provide the numerical results of stability, os-
cillation frequency, and margin, but may hardly give an in-
sight into the mechanism of oscillations and formulate stabil-
ity control strategies accordingly.

The frequency-domain modeling for a PEDPS usually re-
lies on measurement technologies. The results of these crite-
ria may be affected by measurement errors. Analyzing and
mitigating the impacts of the errors is crucial for the large-
scale application of frequency-domain-based small-signal sta-
bility analysis.

In general, more research efforts are expected to address
the above emerging challenges in the future PEPDS.

VII. CONCLUSION

In this paper, the applicability of the eight types of small-
signal stability analysis methods for PEDPSs is reviewed
and compared. Regarding the accuracy of stability judge-
ment and oscillation mode identification, the eigenvalues
methods can provide the most accurate results. In s domain,
the stability of a power system and potential OMs may not
be fully identified correctly since the pole-based analysis can
be affected by the ZPC issue. The Routh stability criterion
can evaluate the stability but cannot provide the information
of OMs. In frequency domain, the stability can be identified
by the Nyquist stability criterion correctly if the number of
RHP poles in open-loop systems is known. Based on the Ny-
quist stability criterion, the Bode plot based method and oth-
er design-oriented methods can be employed to analyze the
stability conservatively. In the Nyquist/Bode plot, critical
OMs can be identified through the intersections of the fre-
quency response and unit circle/0 dB. Only the intersections
close to point (-1, j0)/~180° in the Nyquist/Bode plot are val-
id to identify potential OMs. These limitations are also valid
for the positive-net-damping criterion. More critical OMs
may be identified by the lumped impedance-based method,
but the stability of the whole power system cannot be evalu-
ated well. Nyquist plot based criterion (SC 3A/3B) is the on-
ly sufficient and necessary criterion among the introduced
frequency-domain-based methods. The sufficiency and neces-
sity of Bode plot based method, passivity-based method, and
positive-net-damping method can be explained by the Ny-
quist plot based criterion.

Regarding modeling difficulty in the PEDPS, their ranking
is inversed. The white-box state-space modeling in time do-
main is challenging in the PEDPS, while the s-domain mod-
eling and frequency-domain modeling can be realized by im-
pedance measurement techniques. Fitting errors and spurious
poles may be generated when estimating s-domain models.
Hence, the frequency-domain-based methods have the lowest
implementation difficulty.
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