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Abstract——Aiming at multi-agent coordinated scheduling prob‐
lems in power systems under uncertainty, a generic projection 
and decomposition (P&D) approach is proposed in this letter. 
The canonical min-max-min two-stage robust optimization 
(TSRO) model with coupling constraints is equivalent to a con‐
cise robust optimization (RO) model in the version of mixed-in‐
teger linear programming (MILP) via feasible region projec‐
tion. The decentralized decoupling of the non-convex MILP 
problem is realized through a dual decomposition algorithm, 
which ensures the fast convergence to a high-quality solution in 
the distributed optimization. Numerical tests verify the superior 
performance of the proposed P&D approach over the existing 
distributed TSRO method.

Index Terms——Coordinated scheduling, multi-agent system, 
distributed robust optimization, projection and decomposition.

I. INTRODUCTION 

WITH the growing penetration of renewables, its strong 
uncertainty brings considerable challenges to power 

system scheduling. In addition, due to the coexistence of 
multiple agents in power systems, the efficient coordination 
of independent stakeholders considering privacy-preserving 
has become the focus of the current research [1]. Distributed 
two-stage robust optimization (TSRO) models have been in‐
vestigated for multi-agent coordinated scheduling under un‐
certainty [2].

At present, the traditional distributed TSRO method deals 
with uncertainty by constructing a centralized min-max-min 
RO model. The augmented Lagrangian method, e.g., the al‐
ternating direction method of multipliers (ADMM) [3] or the 
analysis target cascading (ATC) method [4], further decou‐
ples the centralized TSRO model in a distributed manner. 
The above method has been applied to a few coordinated 
scheduling problems [2] - [5]. Nonetheless, some limitations 
exist in the application of the traditional distributed TSRO 
method.

1) TSRO is generally solved by an iterative algorithm, 
such as the column and constraint generation (C&CG) algo‐
rithm or the Benders decomposition. The iterative calcula‐
tions could hardly satisfy the computational requirements in 
practical cases due to their large calculation expense. Such a 
burden grows particularly heavy if the conventional iterative 
solution algorithm is embedded in distributed decomposition 
[6]. The TSRO and the iterative solution algorithm would be 
therefore inappropriate to execute online distributed calcula‐
tion for scheduling.

2) The representative augmented Lagrangian-based distrib‐
uted methods can equivalently decouple convex centralized 
models, and such methods could derive the identical results 
as the centralized optimization [7]. However, the TSRO mod‐
el features the programming in a min-max-min formulation, 
and the computational optimality and convergence cannot be 
warranted for such complex models using conventional dis‐
tributed methods [8]. Although some techniques have been 
devised to address the convergence and optimality issues [9], 
they are not universally efficient, especially when coupling 
constraints exist in both stages of a TSRO model. As the 
computational performance of the traditional distributed 
TSRO model could hardly fulfill the requirements of practi‐
cal applications, there arises a need to bring a concise yet 
strong approach for distributed decomposition of TSRO 
scheduling problems in power systems.

In view of the above research gaps, this letter proposes a 
novel projection and decomposition (P&D) approach for 
multi-agent coordinated scheduling problems under uncertain‐
ty. Compared to the traditional distributed TSRO method, 
the proposed P&D approach identifies a high-quality solu‐
tion with low computational cost and strong scalability.
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II. GENERAL MODEL OF CENTRALIZED TSRO 

The centralized TSRO model for multi-agent scheduling 
with uncertainty in power systems is written in matrices as 
(1). The compact model M1 minimizes the total operation ob‐
jective for system scheduling in the predicted nominal sce‐
nario, and enforces the power balance under uncertainty. The 
feasibility of these basic scheduling plans in the nominal sce‐
nario is ensured for all uncertainty scenarios, thus keeping 
the safe operation of the system [10].
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where xi denotes the first-stage variables of agent i before 
uncertainty, that is, the basic scheduling plans, including the 
binary commitments and the continuous unit outputs; cT

i x i 
denotes the local operation objective of agent i in the nomi‐
nal scenario, and the total operation objective of all agents i =
12m is minimized in the first-stage optimization. The 
second line of M1 represents the local constraints of agent i 
in the nominal scenario, mainly containing the unit operation 
and network security within its jurisdiction, and the third 
line denotes the coupling constraints among agents, such as 
the consistency for shared line power. In the fourth line,
Φ(x1x2xm ) denotes the second-stage optimization mod‐
el; and yi denotes the continuous recourse variables of agent 
i after uncertainty. The second-stage recourse plans modify 
xi to hedge the uncertainty. ξ i denotes the non-negative slack 
variables introduced to characterize power imbalance with 
two parts (ξ +

i ξ
-
i ). Note that when there is an inflow power 

imbalance, ξ -
i > 0 and ξ +

i = 0; otherwise, when an outflow 
power imbalance emerges, ξ +

i > 0 and ξ -
i = 0. ui denotes the 

uncertainty decision variables of agent i, e.g., the uncertainty 
in source-load power; and Ωi denotes the uncertainty set, 
such as the boxed or polyhedral set. The fifth and sixth lines 
represents the local constraints of agent i and the coupling 
constraints between multiple agents under uncertainty, re‐
spectively. Bi, ei, Ci, f, Gi, hi, Li, Mi, Ki, and g are the con‐
stant matrices for the first- and second-stage constraints.

III. PROPOSED P&D APPROACH 

Considering that a centralized TSRO model with coupling 
constraints in both stages cannot be decoupled with guaran‐
teed optimality in distributed optimization, this section pro‐
poses a P&D approach to tackle this problem.

A. Feasible Region Projection of TSRO Model

For M1, the decision-making of the second stage intrinsi‐
cally checks the scheduling feasibility under uncertainty, in‐
dicating that with the first-stage solution x i, there exists yi 
for any uncertainty scenario that ensures ξ i = 0. Hence, M1 is 
recast as:
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(2)

Compared to M1, the slack variables ξ i are omitted in M2. 
The max-min bi-level model in the second stage is described 
as a multi-dimensional feasible region of the recourses, 
which is defined by the inner-layer linear programming con‐
straints with respect to uncertainty. According to the Fourier-
Motzkin elimination [11], such a region in the max-min opti‐
mization for each agent represented by the constraints in the 
fifth line of M2 is projected to the domain formed by xi in 
the first stage and ui, so as to eliminate the second-stage 
variables yi [12]. After eliminating yi, the linear constraints 
can be generated as:

AX
i x i +AU

i ui £ k i (3)

where AX
i , AU

i , and k i are the parameter matrices produced in 
the elimination; and i identifies the constraint set generated 
by the corresponding agent. The general procedures are giv‐
en in [13] to clarify how to derive such kinds of constraints 
in (3) by the Fourier-Motzkin elimination. Some accelerating 
policies such as redundant constraint filtering could be em‐
ployed to enhance the computational performance of the Fou‐
rier-Motzkin elimination [14]. Furthermore, considering that 
the recourses and second-stage constraints are built by se‐
ries, the Fourier-Motzkin elimination can uniformly handle 
each constraint series, thereby further improving its perfor‐
mance.

It is worth mentioning that the last term in (2) essentially 
represents the coupling constraints among agents only on 
their coupling variables in yi under uncertainty, and it does 
not involve any internal variables of other agents. Such 
types of constraints are shared among the neighboring 
agents, e.g., the consistency constraints on tie-line variables 
between different areas in power systems. Therefore, as 
agent i knows these coupling variables and constraints with 
its neighbors, the projection for the second-stage optimiza‐
tion could be conducted independently by agent i without 
the privacy of its neighboring agents, and each agent can ob‐
tain the linear constraints in (3). A simple multi-agent optimi‐
zation model with coupling constraints is provided in [13] to 
clarify the elimination procedures.

According to the property of the Fourier-Motzkin elimina‐
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tion, we can get all feasible solutions of a linear program‐
ming model from the solution results fitting these linear con‐
straints generated by the Fourier-Motzkin elimination with 
two presuppositions [15]: ① the optimization of the original 
mathematical programming has a nonempty set; and ② the 
constraint coefficients of the original programming are not 
all zero. The specific meaning of the feasible region projec‐
tion for this model is that for all agents, if (x i, ui ) denotes a 
solution set filling (3), yi certainly exists so that (x i, yi, ui ) is 
a set of solutions falling into the feasible region character‐
ized in the third and fourth lines in M2. After the projection, 
M2 is equivalently expressed as:
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(4)

M3 is still intractable because Φ(x1x2xm ) contains in‐
finite uncertainty scenarios. As ui is exogenous, to ensure (3) 
valid for "uiÎΩi, the only need is to meet:

AX
i x i + max

uiÎΩi

AU
i ui £ k i (5)

In the above formulation, the rth dimensional maximum 
optimization for ui is derived as:
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i ]rui　

s.t.  Ωi ={ui|C
U
i ui £ d U

i :[δi ]r ³ 0}
(6)

where C U
i  and d U

i  denote the coefficient matrices related to 
Ωi of agent i; and [δi ]r denotes dual variables for the rth di‐
mensional constraint. In practice, the max objectives AU

i ui 
can be directly determined by setting ui as the boundaries of 
the uncertainty interval. For example, if AU

i > 0 and ui takes 
the upper boundaries, (5) can be satisfied, then (3) must 
hold for "uiÎΩi. Without loss of generality, the duality ex‐
pression for each dimension in (5) identifies the same max 
values.

After substituting the dual formulation of the max optimi‐
zation for each dimension in (6), M3 is transformed as:
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where δi collects [δi ]r by columns for all dimensions. As the 
Fourier-Motzkin elimination is an exact equivalent proce‐
dure, the original min-max-min TSRO model, i. e., M1, is 
equivalent to a mixed-integer linear programming (MILP) 
problem M4 after feasible region projection. The solution of 
M4 does not need any iteration compared with M1, which is 

convenient for the engineering implementation.

B. Dual Decomposition of Equivalent MILP Problem

The MILP problem M4 after projection is refined into a 
compact formulation P1.

P1:
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where δi in M4 is integrated as the decision variables of 
agent i to form the new variable vector xi for each agent in 
P1; Ai, b, Di, and di are the constant matrices or vectors for 
the coupling and local constraints in the refined formulation; 
Xi is the compact set of all local constraints for agent i in 
M4, i.e., the first, third, and fourth constraints in (7). The sec‐
ond line of (8) represents the corresponding coupling con‐
straints, that is, the second constraint in (7), where the di‐
mension of b is q.

The traditional ADMM and ATC method are less effective 
for an MILP because such a non-convex problem no longer 
meets the optimality and convergence conditions of the tradi‐
tional decomposition approaches [8]. Hence, a dual decompo‐
sition algorithm is deployed for the decoupling of the pro‐
jected MILP problem to guarantee the solution convergence 
and quality [16]. The main steps include dualizing the cou‐
pling constraints using the Lagrange multipliers and han‐
dling the Lagrangian dual programming to obtain the dual 
variables. Then, the primal solution is recovered by solving 
the local MILP of each agent given the dual variables. This 
guarantees the recovered primal solution satisfies the local 
constraints but does not ensure that the obtained primal solu‐
tion satisfies the coupling constraints because of the non-con‐
vexity of MILP. Hence, the dual subgradient algorithm itera‐
tively generates the tentative solution and updates the dual 
variables by each agent in a decentralized manner. By suit‐
ably averaging these tentative solutions during iterations, we 
could identify one solution that fits both the coupling and lo‐
cal constraints via the iteration between the primal and dual 
problems. Besides, to enforce the feasibility of the obtained 
dual solution, the constraint tightening strategy is adopted to 
restore the feasible primary solution, which shrinks the duali‐
ty gap and guarantees the solution quality. A tightened ver‐
sion for P1 is defined as P2 after introducing the non-nega‐
tive tightening coefficients ρ.

P2:

ì

í

î

ï
ïï
ï

ï
ïï
ï

min
x1x2xm

∑
i = 1

m

cT
i x i

s.t.  ∑
i = 1

m

Ai x i £ b - ρ    ρ ³ 0 x iÎXiXi ={x i: Di x i £ d i }"i

   (9)

Its Lagrangian dual expression is formulated as:

max
λ ³ 0

(-λT (b - ρ))+∑
i = 1

m

min
xiÎXi

(cT
i + λ

T A i ) x i (10)

where λ denotes the q-dimensional dual variables; and the 
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definition of ρ is as follows: finding the maximal difference 
in the contributions of feasible solution to the coupling con‐
straints.

[ρ]j = q × max
iÎ{12m}( )max

xiÎXi

[A i ]j x i - min
xiÎXi

[A i ]j x i (11)

where j is the index of the matrix line in the coupling con‐
straints.

For traditional distributed scheduling, a coordination cen‐
ter is set up to collect the optimal results of all shared vari‐
ables among agents. Their contributions to the coupling con‐
straints help update ρ and λ, which are broadcast to all 
agents for the next iteration. In fact, it is a burden to set a 
coordination center for the whole network in the real-world 
cases. A max consensus algorithm is further devised to as‐
sign λ and ρ to avert a coordination center. The detailed 
steps of the decentralized algorithm are listed as below.

In Step 4, agent i gathers λ j (k) of its connected agent j, 
and the average ψ i (k) for λ j (k) is constructed by using the 
weighted factor αij (k); and Ni denotes the group of the neigh‐
boring agents for agent i. The dual variables of agent i are 
fixed as ψ i (k), and the min optimization is performed in 
Step 5 to reap a tentative primary solution x i (k + 1). In Steps 
6-9, each agent refines the coefficient ρi (k + 1) via the max 
and min optimizations s+i (k + 1) and s-i (k + 1) of components 
ϕi (k), respectively. Specifically, Steps 7 and 8 obtain the 
worst contributions of Ai x i (k + 1) to the coupling constraints 
by the tentative solution x i (k + 1), and a tightening coeffi‐
cient ρi (k + 1) is derived as the maximum one of ρi (k) and 
ρj (k) in Steps 6 and 9. In Step 10, the dual variables are up‐
dated along the gradients via x i (k + 1); β(k) denotes the step 
size whose selection rules can be found in [17] to ensure the 
convergence property of this algorithm; and [·]+ denotes a 
projection to the non-negative quadrant with q-dimensions. 
Note that Steps 4 and 6 realize the decentralization of the du‐
al decomposition, and each agent does not need to disclose 
its privacy information, but only the tentative λ i (k) and ρi (k).

Note that the decentralized solution converges to the dual 
optimal solution in finite iterations with the dual subgradient 

algorithm. Going into detail, the dual variable sequence λ i (k) 
created by Step 10 guarantees the convergence to the dual 
optimal solution. Such a dual finite-time convergence propo‐
sition for MILP models is presented in [17]. Since a duality 
gap for the solutions of the primal and dual programming 
will exist due to non-convexity, the coupling constraint tight‐
ening in P2 recovers a feasible primal solution using the dual 
solution of the tightened primal problem [16]. The primal fi‐
nite-time feasibility property has been proven (see Theorem 
1 in [18]). Meanwhile, Theorem 2 in [18] further indicates 
the optimal performance property. Therefore, the dual decom‐
position algorithm could derive a decentralized feasible solu‐
tion for the primal programming that fills tight performance 
bounds within finite iterations. Interested researchers can re‐
fer to [18] for elaborated mathematical proofs on the algo‐
rithmic optimal and convergent properties of MILP problems.

C. Remarks on Proposed P&D Approach

In this study, we consider the source-load power uncertain‐
ty shown in (1) for multi-agent coordinated scheduling of 
power systems. Note that there would be uncertainty in the 
availability of power generation or consumption resources in 
practice, while the proposed P&D approach is not limited 
considering certain kinds of uncertainty. In other words, the 
scheduling model in (1) is general for multiple uncertainty. 
For instance, when we further consider the N - k output un‐
certainty of power units [19], which is a typical uncertainty 
in the availability of generation, we only need to incorporate 
the uncertainty set of unit outage into ui and Ωi, and this 
does not affect the essential formulation of the mathematical 
model in (1). Hence, the proposed P&D approach is still ap‐
plicable under this condition.

It is noteworthy that this paper focuses on how to achieve 
an effective decentralized solution to a centralized RO prob‐
lem and ensure that the derived decentralized results are as 
close as possible to the optimal results of the centralized 
method. From the perspective of game theory, the relation‐
ship of the multi-agent objectives in this paper belongs to 
the cooperative game. There also exists the condition of mul‐
tiple agents with conflicting objectives in scheduling. Cur‐
rently, some effective models or methods have been investi‐
gated to address this problem, such as the Stackelberg game 
model [20] and the Nash equilibrium model, but this topic 
goes beyond the scope of this work.

IV. NUMERICAL TESTS 

Three cases of multi-area scheduling are evaluated to veri‐
fy the superiority and scalability of the proposed P&D ap‐
proach. Case 1 is a small-scale 2-area 12-bus system with 
one wind farm integrated into each area and an interconnect‐
ed tie-line. Case 2 and Case 3 both adopt a 1441-bus system 
with practical size, which are divided into 4 areas and 8 ar‐
eas, respectively. The real 1441-bus system contains 130 
wind farms, 320 conventional generators, 2057 internal 
lines, and 23 tie-lines connecting multiple areas with a volt‐
age level of 500 kV. Detailed data of the two test systems 
are available in [9] and [2], respectively. For each case, the 
proposed P&D approach (A0), the centralized TSRO method 

Algorithm: decentralized dual decomposition algorithm for P1

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

Step 9:

Step 10:

Step 11:

Step 12:

Initialize k = 0, set λi (0)= 0, ρi (0)= 0, s+i (0)=-¥, s-i (0)=+∞, for 
all i = 12m

Repeat

For i = 12m do

ψi (k)=∑
j ∈Ni

αij (k)λj (k) 

xi (k + 1)= arg min
xi ∈Xi

(cT
i +ψi (k)T Ai )xi 

ϕi (k)= max
j ∈Ni

{ρj (k)} 

s+i (k + 1)= max{s+i (k)Ai xi (k + 1)} 

s-i (k + 1)= min{s-i (k)Ai xi (k + 1)} 

ρi (k + 1)= max{ϕi (k)q(s+i (k + 1)- s-i (k + 1))} 

λi (k + 1)=[ψi (k)+ β(k)(Ai xi (k + 1)- (b- ρi (k + 1))/m]+ 

k = k + 1 

Until x1 (k)x2 (k)xm (k) satisfy the coupling constraints
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(A1) [10], and the distributed TSRO method based on AD‐
MM (A2) [4] are used for comparison. The detailed central‐
ized TSRO model before distributed decomposition is formu‐
lated in [13]. All TSRO models in compared methods are 
tackled by the C&CG algorithm with strong duality. Besides, 
1000  stochastic scenarios are generated for Case 1 and 
20000 for Cases 2 and 3, to check the feasibility of their ba‐

sic plans, and those scenarios with power balance are record‐
ed. The optimization horizon and the period interval are 24 
hours and 1 hour, respectively. Numerical tests are imple‐
mented on a laptop under 2.30 GHz i5-CPU and 8 GB 
RAM, and CPLEX 12.8 solves all MILPs. The optimal re‐
sults of different cases using various robust scheduling meth‐
ods are listed in Table I.

In Case 1, it is noteworthy that the total operation cost of 
A0 is approximately equal to the referring centralized solu‐
tion in A1, and the relative optimality gap is 0.025%, where‐
as the gap for A2 is 1.39%. The dual decomposition algo‐
rithm realizes the effective decoupling of the non-convex 
MILP problem, and the constraint tightening contracts the 
duality gap that ensures the solution quality. The number of 
distributed iterations and the total solution time of A2 are 
3.4 and 30.5 times of those in A0, respectively. The reason 
is that the dual decomposition algorithm updates the dual 
variables in the direction of gradients, which accelerates the 
convergence of the problem solution. The update of the mul‐
tipliers and the penalty factors in ADMM depends on the 
empirical values, resulting in a low convergence speed. In 
addition, each agent directly solves the MILP-type robust 
scheduling model after projection, which greatly reduces the 
computational time for each distributed iteration.

For larger-scale testing systems in Case 2 and Case 3, the 
optimality gap between A0 and A1 is further reduced. In par‐
ticular, the optimality gaps for Case 2 and Case 3 are 
0.022% and 0.019%, respectively, indicating that the optimal 
cost is closer to the centralized objective with more agents. 
Besides, the iteration of A0 increases slowly, hence its com‐
putational performance is relatively stable. The solution with‐
in minutes in A0 fully meets the scheduling requirements, 
while the iteration number of A2 is 4.8 times of that by A0, 
and the total run time even reaches 40-54 times. It can also 
be observed that the increase of the modeling scale leads to 
a significant rise in the iterations and the run time of A2, 
and the hour-level computational time hinders its practical 
application. Although the total number of constraints after 
elimination in A0 increases compared with A1 and A2, the 

dual decomposition further divides the entire problem into 
smaller local scheduling problems for each agent, hence it 
will not further pose huge computational challenges to the 
decentralized implementation by agents. Therefore, A0 en‐
joys stable computational performance and high scalability 
in terms of agent number and system size, and these 
strengths are more prominent compared with A2. Besides, 
for all cases, the three methods (A0, A1, and A2) derive the 
optimal power plans that guarantee 100% feasibility to all 
stochastic scenarios, indicating the robustness of their solu‐
tion results.

V. CONCLUSION 

This letter proposes a novel P&D approach for the robust 
coordinated scheduling of multiple agents under uncertainty. 
Numerical tests denote that the proposed P&D approach 
overcomes the defects of low computational efficiency, slow 
convergence, and suboptimality in the traditional distributed 
TSRO method. The merits of the proposed P&D approach in 
optimality and computational performance are more notable 
with the enlargement of the system scale and agent quantity. 
Note that the proposed P&D approach is a universal distrib‐
uted TSRO method that can be easily extended to numerous 
coordinated scheduling problems such as multi-area unit 
commitment, transmission-distribution coordination, energy 
management of networked microgrids, peer-to-peer trading 
in prosumers, and integrated energy system dispatch. Future 
research will consider extending the P&D approach for dis‐
tributed TSRO methods with binary recourses and endoge‐
nous uncertainty. Besides, further research is needed on dis‐
tributed scheduling of multiple agents with conflicting objec‐
tives under uncertainty.

TABLE I
OPTIMAL RESULTS OF DIFFERENT CASES

Case

Case 1
(2-area 12-bus system)

Case 2
(4-area 1441-bus system)

Case 3
(8-area 1441-bus system)

Method

A1

A0

A2

A1

A0

A2

A1

A0

A2

Cost ($)

150243

150280

152326

29376412

29382876

29768991

29376412

29381995

29617300

Iteration

N/A

23

78

N/A

27

132

N/A

30

146

Time (s)

4.9

37.6

1146.5

100.4

95.2

3880.6

100.4

63.3

3433.7

Number of 
scenarios

1000

1000

1000

20000

20000

20000

20000

20000

20000

Problem scale

Number of constraints

22646

28126

22694

1248106

1512704

1248298

1248106

1512822

1248490

Number of variables

10638

7352†

10710‡

465184

303374†

465568‡

465184

303402†

465952‡

Note: † represents the total constraints and variables of the models after elimination for all agents; and ‡ represents the total constraints and variables of the 
decoupled models after ADMM for all agents.
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