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Deep Reinforcement Learning
Jie Xu, Hongjun Gao, Renjun Wang, and Junyong Liu

Abstract——The increasing integration of intermittent renew‐
able energy sources (RESs) poses great challenges to active dis‐
tribution networks (ADNs), such as frequent voltage fluctua‐
tions. This paper proposes a novel ADN strategy based on multi-
agent deep reinforcement learning (MADRL), which harnesses 
the regulating function of switch state transitions for the real-
time voltage regulation and loss minimization. After deploying 
the calculated optimal switch topologies, the distribution net‐
work operator will dynamically adjust the distributed energy re‐
sources (DERs) to enhance the operation performance of ADNs 
based on the policies trained by the MADRL algorithm. Owing 
to the model-free characteristics and the generalization of deep 
reinforcement learning, the proposed strategy can still achieve 
optimization objectives even when applied to similar but unseen 
environments. Additionally, integrating parameter sharing (PS) 
and prioritized experience replay (PER) mechanisms substan‐
tially improves the strategic performance and scalability. This 
framework has been tested on modified IEEE 33-bus, IEEE 118-
bus, and three-phase unbalanced 123-bus systems. The results 
demonstrate the significant real-time regulation capabilities of 
the proposed strategy.

Index Terms——Reconfiguration, active distribution network, 
distributed energy resource, real-time control, deep reinforce‐
ment learning, parameter sharing, scalability.

I. INTRODUCTION 

THE large-scale integration of intermittent distributed 
generation such as renewable energy sources (RESs) 

presents prospects for enhancing the energy decarbonization 
and flexibility of active distribution networks (ADNs). How‐
ever, the uncertainty of RES output also challenges the oper‐
ation of ADNs, including more frequent voltage violations 
and increased network loss [1]. Therefore, optimizing the 
ADN operation against the backdrop of high renewable ener‐
gy penetration has emerged as a pressing issue that must be 

addressed.
Existing cutting-edge approaches in the field of ADN oper‐

ation optimization mainly include model-based methods such 
as mathematical programming [2]-[4], and heuristic methods 
[5], [6] such as evolutionary methods. Nevertheless, the mod‐
el-based methods rely heavily on precise global information 
to solve the optimal power flow (OPF) problem with poor 
computation time as the system complexity increases. The 
heuristic methods suffer from dimensionality curse, resulting 
in time-consuming calculations for ADN management. Con‐
sidering these inherent drawbacks, it is critically important 
to propose an adaptive optimization strategy for the real-
time control of ADNs.

With respect to the dynamic adaptive strategy for real-
time control, the deep reinforcement learning (DRL) is a 
promising alternative algorithm with model-free characteris‐
tics [7]-[9]. DRL can make near-optimal decisions in a short 
time to address the dynamic transitions of an ADN by utiliz‐
ing the knowledge extracted from historical data. Thus, the 
DRL-based methods can be applied to unseen scenarios with‐
out resolving the models [7], which is impossible using mod‐
el-based methods. Reference [7] applies the proximal policy 
optimization (PPO) algorithm for the real-time control of an 
ADN [7], and the experimental results demonstrate the good 
generalization of DRL against unknown information as well 
as the rapid decision-making rate against environmental un‐
certainties.

Notably, the aforementioned literature predominantly uti‐
lizes centralized methods that require global system data for 
decision-making, resulting in possible single-point failures. 
For the centralized single-agent DRL, a high-dimensional ac‐
tion space may incur dimensionality curses [8]. Consequent‐
ly, some scholars have explored the applicability of multi-
agent DRL (MADRL) algorithms [8]-[14] in this domain. In 
[9], the multi-agent deep deterministic policy gradient 
(MADDPG) algorithm is leveraged to perform voltage/var 
control (VVC), alleviating the concerns of the aforemen‐
tioned single-agent DRL. Moreover, it is worth noting that 
the operating timescales of different devices in ADNs are dif‐
ferent [10]-[12]. Discrete electrical devices such as switches 
cannot operate randomly owing to risk concerns, making 
them more suitable for day-ahead-determined 1-hour interval 
deployment. In contrast, the flexible regulating function of 
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continuous devices such as photovoltaics (PVs) must be ful‐
ly exploited to handle real-time environmental fluctuations. 
Consequently, [10] and [11] propose the two-stage DRL-
based VVC strategy with a day-ahead capacitor bank (CB), 
on-load tap-changer (OLTC) scheduling, and a real-time PV 
inverter control. Reference [12] integrates graph reinforce‐
ment learning into this two-stage VVC strategy to extract 
better topological information. However, [7]- [12] ignore the 
potential benefits of switch state transitions when designing 
the DRL-based ADN optimization strategies, highlighting 
the need for further research. Simultaneously, treating each 
distributed energy resource (DER) as an agent [9]-[11] poses 
scalability issues in ADNs that contain a large number of 
DERs. Reference [13] partitions the entire distribution net‐
work into multiple subnetworks and treats each of them as 
an agent to control internal DERs, thus significantly reduc‐
ing the number of agents and promoting the scalability of 
the method. Reference [14] notes the unsatisfactory scalabili‐
ty of the existing DRL-based methods and proposes a scal‐
able algorithm called distributed proximal policy optimiza‐
tion (DPPO) to address the issue of electric vehicle (EV) 
charging management. References [15]-[17] utilize MADRL 
to address the reactive power optimization, reconfiguration, 
and VVC issues in three-phase unbalanced systems. Howev‐
er, with the characteristics of multiphase and phasic cou‐
pling, the complexity of three-phase ADN optimization is ag‐
gravated. Thus, the scalability of the MADRL algorithm 
should be given more attention.

To address the limitations of prior studies, this paper pro‐
poses a novel MADRL-based real-time optimization strategy 
for ADN that fully harnesses switch state transitions while 
ensuring scalability. After adopting the optimal switch de‐
ployment calculated by the prior reconfiguration preliminary, 
the real-time management of DERs based on the MADRL-
trained strategies can be executed to optimize the ADN oper‐
ation. Unlike [18], which treats topology transitions as ran‐
dom variants, our framework leverages them as regulating 
mechanisms for mitigating loss and voltage violations, 
which is widely recognized as beneficial [19], [20], but rare‐
ly combined with DRL-based DER control. Furthermore, 
this paper integrates the parameter sharing (PS) [21] mecha‐
nism into the twin delayed deep deterministic policy gradi‐
ent (TD3) algorithm [22] to overcome the non-stationarity of 
the multi-agent environment and promote scalability in larg‐
er systems [23]. The PS mechanism allows all agents to 
share the parameters of a single policy if the agents are ho‐
mogenous or exhibit similar behaviors, enabling each agent 
to benefit from the episodic experiences and learned knowl‐
edge of other agents [24], [25].

The major contributions of this paper are summarized as 
follows.

1) A novel MADRL-based DER control method that inte‐
grates a preliminary model-based switch reconfiguration is 
proposed to optimize the ADN in real time. To the best of 
our knowledge, the existing DRL-based ADN control strate‐
gies are primarily combined with the day-ahead scheduling 
of CB and OLTC [10], with the minimal exploration of the 

potential benefits that could be derived from the switch re‐
configuration.

2) The PS mechanism is integrated into the TD3 algo‐
rithm to solve the formulated problem. By sharing identical 
network parameters and samples gathered by all agents, this 
mechanism considerably enhances the algorithmic scalability 
in larger systems [22], [24]. In addition, the regional agent 
partitioning improves scalability at the model level by reduc‐
ing the number of agents [13].

3) The proposed MADRL-based optimization strategy ex‐
hibits superior real-time decision-making capability and gen‐
eralization performance against various unseen scenarios, 
which has been verified in several test systems.

The remainder of this paper is organized as follows. Sec‐
tion II presents the problem formulation of ADN optimiza‐
tion model. Section III formulates the proposed model with‐
in the decentralized partially observable Markov decision 
process (Dec-POMDP) framework. Section IV discusses the 
proposed parameter sharing−prioritized experience replay−in‐
dependent twin delayed deep deterministic policy gradient 
(PS-PER-ITD3) algorithm. The simulation results and conclu‐
sions are presented in Sections V and VI, respectively.

II. PROBLEM FORMULATION OF ADN OPTIMIZATION MODEL 

A. Prior Reconfiguration Preliminary

To fully utilize the regulating function of switch state tran‐
sitions in ADN operation optimization, we first calculate the 
optimal 24-hour switch states by solving a mixed-integer sec‐
ond-order-cone programming (MISOCP) reconfiguration 
problem [19] with the stipulation of a 1-hour switch schedul‐
ing interval.
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where T is the operation period segment; Ωbus and Ωbranch are 
the bus set and branch set of ADN, respectively; Ωrootbus is 
the set of buses linked to substation; Nrootbus is the number 
of buses linked to substations; Nbus is the number of buses of 
ADN; αijt is the switch status of branch ij at time t (0 repre‐
sents off and 1 represents on); βijt is the auxiliary variable to 
ensure connectivity; jÎ i indicates that j is the downstream 
bus of i; P RESMPPT

jt  and QRESMPPT
jt  are the maximum active and 

reactive power that the RES device installed on bus j can 
output under external weather conditions at time t, respec‐
tively; P load

jt  is the active load demand of bus j; Pijt is the ac‐
tive power flow on branch ij at time t; Qijt is the reactive pow‐
er flow on branch ij at time t; rij and xij are the resistance and 
impedance of branch ij, respectively; vijt and Iijt are the ampli‐
tudes of voltage and current phasors, respectively; the sub‐
scripts min and max represent the minimum and maximum 
values, respectively; and M is a huge relaxation coefficient.

Formulas (2) and (3) restrict the topology of ADN at any 
time to be radial and connective, where (2) ensures the con‐
nectivity and (3) prevents the appearance of “island” [19]; 
and (4) represents the network power flow constraints. For‐
mulas (5) and (6) are the adjusted voltage droop constraints 
to which the big-M relaxation is added to address the recon‐
figuration issue. The meanings of U sqr

jt  and lijt are expressed 
in (7). Formula (8) is a second-order cone relaxation con‐
straint. The optimal switch deployment results can be easily 
obtained by solving (1)-(8).

Subsequently, whether it is during offline training or on‐
line execution, the MADRL-based DER control of ADN will 
be used under the topology with the optimal 24-hour switch 
state, which has often been neglected in previous studies [7]-
[17] but is considered in our study.

B. Objective Function

The objective function of the real-time optimization model 
for ADN operation is composed of the cost of network loss 
and the voltage violation penalty, as given by:

F = min
P DER

it

∑
tÎ T

(κ1closs
t P loss

t + κ2cpen
t V vio

t ) (9)

V vio
t = ∑

jÎΩbus

(ReLU(vjt - vmax )+ReLU(vmin - vjt )) (10)

P loss
t = ∑

iÎΩbus

∑
jÎΩbus

eitejt (Gijt cos( fit - fjt )+Bijt sin( fit - fjt ))

  (11)

where F is the objective of ADN optimization in the entire 
period; P DER

it  is the active power output of DER installed on 
bus i at time t that can be adjusted; closs

t  is the unit cost of 
active power loss P loss

t ; cpen
t  is the penalty factor of voltage 

violation V vio
t ; κ1 and κ2 are the target coefficients of loss 

cost and voltage penalty, respectively; ReLU(x)=max(0x) is 
the function for depicting nodal voltage violation [26]; vjt is 
the amplitude of the voltage phasor vjt; [vminvmax ] is the ac‐
ceptable range of nodal voltage; eit is the real component of 

the voltage phasor vit on bus i at time t; fit is the complex 
component of the voltage phasor vit on bus i at time t; and 
Gijt and Bijt are the real and complex components of admit‐
tance for branch ij at time t, respectively. Note that the opti‐
mization of ADN is under the topology with the optimal 24-
hour switch states calculated by the preliminary reconfigura‐
tion. Therefore, the admittance matrix of branch changes dy‐
namically according to the varying ADN structures.

C. Constraints

1)　Power Flow Constraints

P DER
it -P load

it = eit∑
jÎ i

(Gijtejt -Bijt fjt ) - fit∑
jÎ i

(Gijt fjt +Bijtejt )

(12)
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jÎ i

(Gijt fjt +Bijtejt )

(13)

where QDER
it  is the reactive power output of the DER in‐

stalled on bus i at time t. DERs consist of RESs and energy 
storage systems (ESSs).
2)　Security Operation Constraints

Ensuring the secure operation of the ADN necessitates 
maintaining nodal voltages within predetermined ranges and 
preventing the RES device from surpassing its maximum 
power output. As the inverter-based RESs have not yet been 
widely adopted, we employ the traditional method of curtail‐
ing the active power output of RES to optimize the ADN op‐
eration.

vmin £ vit £ vmax    "iÎΩbustÎ T (14)

0 £P RES
it £P RESMPPT

it     "iÎΩbustÎ T (15)

0 £QRES
it £QRESMPPT

it     "iÎΩbustÎ T (16)

where P RES
it  and QRES

it  are the active and reactive power out‐
puts of the RES installed on bus i at time t, respectively.

Formula (14) represents the nodal voltage constraint and it 
is achieved by adding penalty terms in this paper.
3)　ESS Operation Constraints

ESSs are introduced into our model to further enhance the 
regulatory effect in ADN optimization. The mathematical 
model of ESS can be expressed as:

SOCit = SOCit - 1 + ηcharDt ×max(P ESS
it 0)+Dt ×min(P ESS

it 0)/ηdisc

(17)

SOC min
i £ SOCit £ SOC max

i (18)

where SOCit is the state of charge (SOC) of ESS installed 
on bus i at time t; ηdisc and ηchar are the discharging and 
charging efficiencies, respectively; P ESS

it  is the output power 
of ESS installed on bus i at time t; and SOC min

t  and SOC max
t  

are the minimum and maximum SOCs of ESS, respectively.

III. DEC-POMDP MODELING FOR OPTIMIZATION STRATEGY 

In this section, we formulate the proposed optimization 
strategy within the MADRL framework. First, the basic con‐
cepts of the Markov decision process (MDP) and Dec-POM‐
DP are briefly explained to facilitate the modeling proce‐
dure. Second, the optimization problem is constructed as a 
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Dec-POMDP model that focuses on determining the state 
variables, action variables, and other essential factors.

A. MDP and Dec-POMDP

1)　MDP
First, the concept of an MDP in single-agent DRL is intro‐

duced. An MDP can be modeled as a tuple M = (SAprγ) 
consisting of state space S, action space A, state transition 
probability p(s'|sa):"s'sÎ S"aÎA, reward function r(sa):
S ´A®R"sÎ S"aÎA, and the discount factor γ. In the 
MDP, an agent will make action atÎA at each time step 
tÎ T based on the environmental observation stÎ S; then, it 
will obtain a reward rt = r(stat ). Meanwhile, the state is 
transmitted to the next new state st + 1 according to the state 
transition probability p(s'|sa).

We define τ ={s0a0s1a1sT - 1aT - 1sT } as the trajecto‐
ry of MDP and π(·|s) as the mapping of the action probabili‐
ty distribution for each state. The objective of the agent is to 
find a control policy π that can maximize the cumulative re‐

ward J(π)=Eτ~π( )∑
t ³ 0

γtrt + 1 .

2)　Dec-POMDP
Dec-POMDP is a variant of MDP under a multi-agent full 

cooperation mode, which indicates that each agent shares an 
identical target and reward. It can be described by a tuple 
(KSOARTγ), including K agents, global state variable 
sÎ S, the local observation of agent k (okÎO1:K ), the action 
of agent k (akÎA1:K ), reward r1 = r2 = = rK = r, state transi‐
tion function T(so1:Ka1:K ), and discount factor γ. The inter‐
action process of POMDP is similar to that of the MDP; 
thus, it is not repeated here.

B. Dec-POMDP Modeling

1)　Brief Introduction
A schematic of the complete framework of the proposed 

optimization strategy is shown in Fig. 1. This strategy com‐
prises two processes: offline centralized training and online 
decentralized execution. The offline centralized training pro‐
cess is described as follows. After adopting the 24-hour opti‐
mal ADN topologies calculated by the preliminary reconfigu‐
ration, each divided regional agent obtains the optimal con‐
trol strategy through continuous interactions with the virtual 
distribution network environment.

The online decentralized process is described as follows. 
After receiving the trained policies, each regional agent can 
achieve online local DER control without the need for infor‐
mation exchange, which has been learned in the offline cen‐
tralized training process.
2)　Setup of Dec-POMDP Model

This part describes the construction of the DER control 
problem as a Dec-POMDP model that contains several fun‐
damental elements.

1) Observation space: the observation of agent k is ex‐
pressed as:

okt = (SOCjtvjtP
load
jt Qload

jt )    "jÎΩk (19)

where jÎΩk represents the buses that belong to region k.

2) Action space: aktÎAkt is the action of the regional 
agent k at time t, which refers to the active power output of 
DER that regional agent k can control:

akt = (P PV
jt P

WT
jt P

ESS
jt ) "jÎΩk (20)

where P PV
jt  is the active power output of the PV installed on 

bus j; and P WT
jt  is the active power output of the wind tur‐

bine (WT) installed on bus j.
3) Constraints: the action space and observation space 

must satisfy the RES output and SOC constraints:

ì
í
î

ïï

ïï

P PV
jt Î[0P PVMPPT

jt ]

QPV
jt = λ

PV
jt P PV

jt

(21)

ì
í
î

ïï

ïï

P WT
jt Î[(1 - χ)P WTMPPT

jt P WTMPPT
jt ]

QWT
jt = λ

WT
jt P WT

jt     "jÎΩk

(22)

where λPV
jt  and λWT

jt  are the power factors of the PV and WT 
installed on bus j, respectively.

Formulas (21) and (22) represent the boundaries of the ac‐
tive and reactive power outputs of the RESs, respectively. 
Here, the active power output of WT is restricted to partial 

Online decentralized execution
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Fig. 1.　Complete framework of proposed optimization strategy.
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curtailable only, with a maximum curtailment range of χ 
times the predicted output.

P ESSpre
jt Î[-P ESSmax

jt P ESSmax
jt ]    "jÎΩk (23)

P ESS
jt =

ì
í
î

min(P ESSpre
jt  (SOC max

j - SOCjt - 1 ))    P ESSpre
jt > 0

max(P ESSpre
jt  (SOC min

j - SOCjt - 1 ))    P ESSpre
jt < 0

   (24)

P DER
jt =P PV

jt +P WT
jt +P ESS

jt (25)

where P ESSpre
jt  is the predicted active power output of ESS 

that has not been clipped within safe range.
Formulas (23) - (25) represent the constraints of ESS that 

can prevent its SOC from violating feasible regions regard‐
less of the offline centralized training or online decentralized 
execution stages of the DRL-based optimization task [24], 
which is unavoidable if a penalty function is used to restrict 
the charging/discharging behavior [27], [28]. 

4) Reward function: as this paper constructs the optimiza‐

tion problem as a Dec-POMDP model under a full coopera‐
tive framework, each agent shares an identical reward as:

rt = κ1closs
t P loss

t + κ2cpen
t V vio

t (26)

The reward function in (26) includes the penalty of the 
voltage violation and the cost of the network loss, as ex‐
pressed in (9)-(11).

IV. PROPOSED PS-PER-ITD3 ALGORITHM 

Figure 2 shows the centralized training framework of the 
proposed PS-PER-ITD3. At the offline training stage, the his‐
torical operation data of the regional agents are collected by 
the MADRL aggregator for training, and the centralized ag‐
gregator is discarded during online execution. Thus, real-
time distributed decision-making can be implemented by 
sending the local observation of each agent to the well-
trained policies. The details of the algorithm are as follows.

A. ITD3

Compared with DDPG, TD3 has been widely recognized 
for its effectiveness in alleviating the “bootstrapping” phe‐
nomenon, owing to the double-Q clipped learning technique 
[22] that it utilizes. In this study, we combine TD3 with an 
independent Q-learning [29] structure to obtain ITD3, which 

can be extended to multi-agent framework.
Under the ITD3 framework, each agent behaves as an in‐

dependent TD3 learner that is unable to capture transitions 
gathered by other agents, leading to a nonstationary Markov‐
ian environment [23], [29]. To solve this problem, [30] pro‐
poses that each agent could utilize one global critic 
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Q(o1to2toKta1ta2taKt ) that can receive the joint 
action-state space (oktakt ) of all agents. Under this global 
critic framework, agents can learn experiences from each 
other, thus overcoming the nonstationary environment 
caused by independent training.

However, as global critics must receive global informa‐
tion, the algorithms such as MADDPG [30] or MATD3 [31] 
that rely on this face the challenge of a large agent size (net‐
work parameters), which leads to poor scalability with the 
rise in system scale [32]. To maintain a stationary environ‐
ment and enhance the scalability of the proposed strategy, a 
PS mechanism is introduced.

B. PS

PS [21] is a mechanism that allows homogeneous agents 
to share identical network parameters. In this paper, all ho‐
mogenous regional agents share the parameters of two critic 
networks Q(oktakt ) and one actor network μ(okt ), which 
still allows agents to take different actions based on their dif‐
ferent local observations at test time. The PS mechanism sig‐
nificantly curtails the network parameters that need to be up‐
dated during training, leading to the improvement in scalabil‐
ity [24].

Furthermore, the shared networks can be updated based 
on the experiences collected by all agents [25]. This updat‐
ing mode based on experience sharing among multiple 
agents enables the learned behavior of one agent to be influ‐
enced by the experiences of other agents. Consequently, the 
integrated PS mechanism can enhance the algorithmic scal‐
ability of ITD3 without breaking the stationarity of the RL 
environment, owing to its sharing structure [21], [24], [25]. 
In addition, integrating this algorithm with the ADN parti‐
tioning approach can lead to improvements in scalability at 
both the algorithmic and model levels as the number of 
agents decreases significantly [13].

A comparison between the PS-integrated MADRL algo‐
rithm and the conventional global critic based algorithm (e.g., 
MADDPG) is presented in Fig. 3, where πk represents the 
policy of regional agent k.

C. PER

The TD3 algorithm is an improvement of DDPG [22], and 
PS indicates that all agents share the policy and replay buf‐
fer [24]. Thus, the PS-integrated ITD3 (PS-ITD3) remains 

an off-policy algorithm. Consequently, any behavioral policy 
can be utilized to collect experiences for model training. As 
conventional experience replay fails to distinguish the impor‐
tance of various transitions, a PER [33] mechanism is added 
to the current algorithm and PS-PER-ITD3 is formulated. 
The calculation process of PER is presented as follows.

1) Setting the absolute value of the temporal difference 
(TD) error |δm| of the mth experience transition 
(om

k a
m
k r

m
k o

m + 1
k ) as its priority p(m), where m represents the 

index of transition.
p(m)= |δm| = |Qθ (om

k a
m
k )- y| =Qθ (om

k a
m
k )-

|(r m
k + γ ×min(Qθ′ (o

m + 1
k am + 1

k )Qψ′ (o
m + 1
k am + 1

k ))| (27)

where Qθ′ and Qψ′ are the target networks of twin critic net‐

works Qθ and Qψ, respectively.
2) Computing the sampling probability P for each experi‐

ence in the replay buffer based on their priority:

P(m)= pα (m) ∑
m = 1

NM

pα (m) (28)

where NM is the number of transitions stored in the replay 
buffer; and α is the priority exponent that needs to be adjust‐
ed.

3) Sampling a minibatch of Nb transitions stored in the re‐
play buffer according to their computed probability P.

4) Computing the importance sampling weights ω for the 
sampled transitions as:

ω(m)= (Nb P(m))-β (29)

where β is the importance sampling exponent that needs to 
be adjusted. The importance sampling weight ω and TD er‐
ror will be used to calculate the critic loss.

The PER mechanism deviates from uniform sampling by 
assigning higher sampling weights to transitions with higher 
learning values, as indicated by the absolute TD error. This 
error is positively correlated with the extent to which the 
critic has been inadequately trained for the corresponding ex‐
perience. Therefore, sampling these experiences during the 
updating process can effectively enhance the model perfor‐
mance.

D. Training Procedure

The complete training framework of the proposed PS-PER-
ITD3 is illustrated in Fig. 2. Each agent shares an actor net‐
work μϕ, twin critic networks Qθ and Qψ, their target net‐
works Qθ' and Qψ', and the replay buffer.

The regional agent k firstly receives the local observation 
okt at time t and generates an action akt according to the lo‐
cal observation and the shared policy network μϕ. Subse‐
quently, the output action akt will be added with a random 
Gaussian noise N(σ) to promote exploration. The aggregated 
action set {a1ta2taKt } is then implemented on the virtu‐
al ADN, whose topology Xt at time t is calculated using the 
optimal reconfiguration preliminary (1) - (8). Subsequently, 
each agent receives the same reward rt = rkt and its next ob‐
servation okt + 1 by solving the power flow issues. Finally, the 
transitions {oktaktrktokt + 1 }k = 1:K of all regional agents at 
time t are formulated and sent to the shared experience re‐

π1

o1 a1 ok

Q1 Qk

ak

πk…

…

…
min min

Shared critic 1

Shared critic 2

Shared actor
π1 = π2 = … = πk
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Qψ, kQψ, 1 =

(a) (b)

Fig. 3.　Comparison between PS-integrated MADRL algorithm and conven‐
tional global critic based algorithm. (a) PS-integrated MADRL algorithm. 
(b) Global critic based algorithm.
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play buffer. During each episode of the centralized offline 
training, the MADRL aggregator will choose each agent k 
and sample Nb transitions {(om

k a
m
k r

m
k o

m + 1
k )}mÎΩb

 from the 

shared buffer to update the model parameters, where Ωb is 
the set of minibatch samples. A more concise training frame‐
work of the proposed optimization strategy is shown in 
Fig. 4.

After sampling transitions from the buffer, the mean-
squared TD error δ1 of the sampled transitions is then calcu‐
lated as the loss of critic Qθ:

δ1 = L(θ)=N -1
b ∑

mÎΩb

ω(m)(Qθ (om
k a

m
k )- ym

k )2 /2 (30)

The target value ym
k  is calculated using the predicted next 

action am + 1
k  that is approximated by the target actor network 

μϕ' (o
m + 1
k ):

ym
k = r m

k + γ ×min(Qθ′ (o
m + 1
k μϕ′ (o

m + 1
k ))Qψ′ (o

m + 1
k μϕ′ (o

m + 1
k )))

   (31)

Similar operations are executed again with another crit‐
ic Qψ:

δ2 = L(ψ)=N -1
b ∑

mÎΩb

ω(m)(Qψ (om
k a

m
k )- ym

k )2 /2 (32)

Subsequently, the two loss functions are utilized to update 

the weights of corresponding shared twin critics through the 
gradient descent algorithm:

ì
í
î

ïï
ïï

θ¬ θ - αθÑθL(θ)

ψ¬ψ - αψÑψL(ψ)
(33)

where αθ is the learning rate of Qθ; and αψ is the learning 
rate of Qψ.

As for the actor network μϕ (·), the policy gradient for up‐
dating can be expressed as:

ÑϕJ(μϕ )=N -1
b ∑

Nb

Ñϕ μϕ (om
k ) × Ñakm

Qθ (om
k a

m
k ) (34)

Finally, the weights of the three shared target networks 
are updated softly according to their corresponding networks 
with the fixed frequency τ:

ì
í
î

θ′¬ τθ + (1 - τ)θ′
ψ′¬ τψ′+ (1 - τ)ψ (35)

V. NUMERICAL ANALYSIS 

In this paper, the modified IEEE 33-bus system [34], 
IEEE 118-bus system [35], and three-phase unbalanced 123-
bus system [36] are utilized to evaluate the performance of 
the proposed strategy.

A. Corresponding Setting

The tanh(·) function is used as the terminal activation func‐
tion of the actor network to limit its output to [-11], which 
can be linearly scaled back to the output power of the DER 
device. Both the MADRL algorithm and power flow calcula‐
tions are run in MATLAB 2022b with an Intel Core i9 CPU 
and Nvidia RTX4090 GPU. The topology, DER installation, 
and subnetwork division results for each test system are pre‐
sented in Appendix A. The operation optimization model for‐
mulated for the three-phase unbalanced 123-bus system is 
presented in Appendix B. Detailed parameters such as load 
ratio and branch impedance can be learned from MATPOW‐
ER [34].

B. Strategic Performance on Modified IEEE 33-bus System

First, the reconfiguration issue of the modified IEEE 33-
bus system is solved using GUROBI to acquire 24-hour opti‐
mal switch deployment, which is presented in Appendix A. 
Subsequent MADRL training and execution occur under the 
calculated topologies with the optimal 24-hour switch states.
1)　Training Comparison Among Different Algorithms

To explore the optimal operation control strategies, several 
DRL algorithms are applied, i. e., the single-agent DDPG 
(SADDPG), MADDPG, PS-ITD3, and PS-PER-ITD3. The 
training performances of these algorithms in the reconfig‐
ured IEEE 33-bus system are presented in Fig. 5.

1) All the DRL algorithms converge terminally, except for 
SADDPG. The optimization objective is to adjust the output 
of the nine DERs in the IEEE 33-bus system to promote se‐
curity and economy. However, the dimensionality of the ac‐
tion space in SADDPG, which is nine, is too large to learn a 
stable control strategy, thus resulting in severe fluctuations. 
Similarly, other single-agent DRL approaches exhibit poor 
scalability in the scenarios with numerous DERs.
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Fig. 4.　Training framework of proposed PS-PER-ITD3.
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2) Comparing the volatility of the three MADRL algo‐
rithms during the 300th to 1000th episodes, we can observe 
that PS-PER-ITD3 converges the fastest, reaching a stable re‐
ward of approximately -70 by the 300th episode; PS-ITD3 at‐
tains this value until the 800th episode, whereas MADDPG 
fails to achieve this reward within 1000 episodes. This illus‐
trates the effectiveness of the PER mechanism in improving 
the sampling efficiency and accelerating convergence.

3) By analyzing the convergence performances of the 
three MADRL algorithms during the 2000th to 3000th epi‐
sodes, it is found that all of them eventually reach conver‐
gence with an approximate reward of -70. However, the con‐
vergence time of MADDPG (the 1700th episode) is signifi‐
cantly longer than those of PS-ITD3 and PS-PER-ITD3, 
which verifies the superiority of the PS-based algorithms 
over the conventional MADDPG.

The variations in the average loss cost and voltage viola‐
tion penalty of the PS-PER-ITD3 are shown in Fig. 6. This 
illustrates that agents successfully learn to mitigate losses 
and violations, with the average loss cost from $145 to $125 
and average voltage violation penalty from 55 to 10.

2)　Evaluation of Decision-making Effects
As shown in Table I, the proposed PS-PER-ITD3 exhibits 

the best performance compared with the other four DRL-
trained algorithms utilized for online decision-making. Its to‐
tal loss cost on the test day outperforms other algorithms 

and nearly reaches the theoretical optimum calculated by 
MISOCP.

However, none of the four DRL-based algorithms violate 
the voltage limits. This illustrates that the optimization task 
in the IEEE 33-bus system is not difficult; thus, a larger sys‐
tem is required to test the methodological scalability rigor‐
ously.
3)　Scenario Comparison Analysis

Subsequently, a comparative experiment is conducted to 
verify the significance of the reconfiguration prior to the pro‐
posed optimization strategy. This involved two scenarios: 
one without reconfiguration (scenario 1) and the other with 
reconfiguration (scenario 2). The comparisons of average 
training rewards are presented in Fig. 7, and the compari‐
sons of the real-time online decision-making effects are pre‐
sented in Table II.

1) The terminal rewards of PS-ITD3 and PS-PER-ITD3 in 
scenario 1 both converge at -100, which is 30 less than that 
of PS-PER-ITD3 in scenario 2.

2) The online execution results indicate that both the PS-
ITD3 and the PS-PER-ITD3 in scenario 1 cannot strictly re‐
strict the nodal voltage within a safe range, with approxi‐
mately 1% of the buses violating the limits over 24 hours. 
Conversely, an identical PS-PER-ITD3 in scenario 2 rectifies 
this issue. Furthermore, the loss cost in scenario 1 is $20 
more than that in scenario 2. These observations demonstrate 

TABLE I
COMPARISONS OF DECISION-MAKING EFFECTS IN RECONFIGURED 

IEEE 33-BUS SYSTEM

Algorithm

MISOCP

SADDPG

MADDPG

PS-ITD3

PS-PER-ITD3

Voltage violation rate (%)

0

0

0

0

0

Loss cost ($)

117.72

127.89

126.77

124.65

121.84
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Fig. 6.　Average loss cost and voltage violation penalty of PS-PER-ITD3 in 
reconfigured IEEE 33-bus system. 
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TABLE II
COMPARISONS OF DECISION-MAKING EFFECTS IN IEEE 33-BUS SYSTEM

Scenario

1

2

Algorithm

MISOCP

PS-ITD3

PS-PER-ITD3

PS-PER-ITD3

Voltage violation rate (%)

0

1.340

1.091

0

Loss cost ($)

140.03

142.87

143.90

121.84
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the necessity of a preliminary reconfiguration in ADN opti‐
mization.

C. Strategic Performance on IEEE 118-bus System

Similar operations are implemented to calculate the opti‐
mal reconfiguration deployment for an IEEE 118-bus sys‐
tem. A 24-hour reconfiguration period is stipulated because 
of the concerns that more frequent switch operations could 
promote potential risks.
1)　Training Comparison of Different Algorithms

The aforementioned MADRL algorithms are tested in a re‐
configured IEEE 118-bus system to evaluate their scalability. 
The reward convergence curves of different algorithms in 
the reconfigured IEEE 118-bus system are presented in 
Fig. 8.

1) MADDPG in the reconfigured IEEE 118-bus system 
shows considerable volatility, with several collapses and 
surges during training, and converges until the 3700th epi‐
sode. Conversely, the PS-ITD3 and PS-PER-ITD3 converge 
approximately during the 500th episode and remain stable 
during subsequent episodes. Additionally, all the algorithms 
show a larger fluctuation extent than the IEEE 33-bus sys‐
tem, which can be attributed to the increased complexity and 
scale of the optimization issue.

2) The terminal rewards of PS-PER-ITD3, PS-ITD3, and 
MADDPG are approximately -395, -400, and -405, respec‐
tively. Compared with the IEEE 33-bus system, the PS-PER-
ITD3 exhibits significant superiority over MADDPG in 
terms of training reward and convergence rate in the recon‐
figured IEEE 118-bus system. This demonstrates that the per‐
formance gap between the PS-integrated algorithms and the 
conventional MADRL algorithms increases with the system 
scale.
2)　Scenario Comparison Analysis

To enable better reward convergence, the target coeffi‐
cients κ1 and κ2 in the original IEEE 118-bus system without 
reconfiguration are set distinct from the reconfigured IEEE 
118-bus system. Owing to this stipulation, a comparison of 
the comprehensive rewards of two scenarios, as shown in 
Fig. 7, is meaningless. Therefore, the loss cost closs

t P loss
t  and 

voltage violation penalty cpen
t V vio

t  of the two scenarios are 
separately compared during training. The results are present‐
ed in Fig. 9.

1) The loss cost of the reconfigured IEEE 118-bus system 
converges at approximately $475, whereas that of the origi‐
nal IEEE 118-bus system converges at $750.

2) The voltage violation penalty of the reconfigured IEEE 

118-bus system converges at 32, whereas that of the original 
IEEE 118-bus system converges at 185.

3) In summary, the PS-PER-ITD3 in scenario 2 exhibits 
superior mitigation effects on both the loss cost and voltage 
violation, which preliminarily confirms the necessity and ef‐
fectiveness of the integrated reconfiguration.

3)　Evaluation of Decision-making Effects
The online decision-making effects of different algorithms 

in the reconfigured and original IEEE 118-bus systems are 
compared in Table III.

1) In contrast to the IEEE 33-bus system, the task difficul‐
ty of the IEEE 118-bus system increases significantly, as re‐
flected by the higher voltage violation rates.

2) With the observation that both the voltage violation 
penalty and loss cost in scenario 1 are markedly higher than 
those in scenario 2, the necessity of the reconfiguration prior 
to the DRL-based ADN operation optimization is again veri‐
fied in the larger IEEE 118-bus system.

3) In both scenarios 1 and 2, the voltage violation penalty 
and loss cost of the proposed PS-PER-ITD3 are close to the 
values calculated by MISOCP, demonstrating its superiority 
in approaching the theoretical optimum. Notably, the PS-
PER-ITD3 abnormally outperforms MISOCP in scenario 1, 
which originates from the random noise added to the renew‐
able predicted output during the MADRL training.
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118-bus system. (a) Reconfigured IEEE 118-bus system (scenario 2). (b) 
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TABLE Ⅲ
COMPARISONS OF DECISION-MAKING EFFECTS IN RECONFIGURED AND 

ORIGINAL IEEE 118-BUS SYSTEMS

System

Original 
IEEE 118-bus

Reconfigured 
IEEE 118-bus

Algorithm

MISOCP

PS-PER-ITD3

MISOCP

MADDPG

PS-ITD3

PS-PER-ITD3

Voltage violation
rate (%)

4.926

5.525

0.812

0.983

1.017

0.983

Loss cost 
($)

748.30

736.43

427.39

494.87

478.12

470.70
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4)　Comparisons of Decision-making Time
The decision-making time for different optimization algo‐

rithms in the reconfigured IEEE 118-bus system and recon‐
figured IEEE 33-bus system are compared in Table IV. In 
this context, all references to decision-making time refer to 
single time-step values.

Table IV lists notable observations regarding the online de‐
cision-making rates of different algorithms for the two test 
systems. Specifically, the MADRL algorithms exhibit faster 
decision-making rates (millisecond level) by leveraging expe‐
riences extracted from training. This renders them well suit‐
ed for addressing almost any short-term control requirement 
involving ADN fluctuation mitigation.

However, with the decision-making time of 1.107 s and 
1.232 s for MISOCP in the reconfigured IEEE 33-bus sys‐
tem and reconfigured IEEE 118-bus systems, respectively, 
there is no overwhelming superiority in terms of speed for 
the MADRL algorithms regarding online real-time control. 
This is likely due to the simplicity of the test system. There‐
fore, further assessment of larger systems is necessary.
5)　Algorithmic Generalization on Test Day Sets

Based on the stipulated 10% uncertainty in the renewable 
predicted output, 50 test days are generated to verify the gen‐
eralization of the proposed PS-PER-ITD3 against unseen sce‐
narios (unknown renewable predicted output). All the renew‐
able predicted output data from the test days are excluded 
from the training process. The performance of the proposed 
PS-PER-ITD3 on the test day set is compared with that of 
MISOCP, as shown in Fig. 10, and the identical test objec‐
tives are adopted in the MADRL and MISOCP with κ1 = κ2 = 1.

1) The proposed PS-PER-ITD3 shows significant decision-
making effects on the test day set because the gap from the 
optimum calculated by MISOCP is small, which confirms its 

superior generalization in similar but unseen scenarios.
2) Although the proposed PS-PER-ITD3 does not acquire 

the same effects as the MISOCP algorithm, it still exhibits 
nearly unique and overwhelming generalization and decision-
making rates that are well suited for the real-time control of 
ADNs. However, the model-based algorithms require re-com‐
putation whenever the ADN scenario changes.

D. Strategic Performance on Three-phase 123-bus System

The proposed PS-PER-ITD3 is then tested on a three-
phase unbalanced 123-bus system to evaluate its scalability 
and decision-making effects. With three phases per bus, the 
scale and complexity of the 123-bus system far exceed those 
like IEEE 118-bus system. Invalid load nodes and vacant 
branches are omitted so only 114 valid buses remain. The 
corresponding numerical results are presented in Table V 
and Fig. 11. In Fig, 11, lines with different colors corre‐
spond to different hours.

1) Both the MISOCP [37] and the PS-PER-ITD3 elimi‐
nate voltage violations, as shown in Fig. 11. However, a loss 
gap occurs between the two algorithms in an unbalanced 
123-bus system, which originated from:
① Existing model-based algorithms (such as MISOCP) 

for solving three-phase optimal power flow issues commonly 
assume that the voltage phasors are nearly balanced [37]; 
otherwise, the nonconvex mathematical model is intractable. 
This assumption induces a computational error in the opti‐
mal loss calculated using MISOCP.
② MISOCP aims to discover a unique optimal solution 

for a given scenario, whereas DRL is prone to exploring a 
policy that can be utilized to acquire near-optimal decision-
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Fig. 10.　 Generalization validation on test day set in reconfigured IEEE 
118-bus system.

TABLE Ⅳ
COMPARISONS OF DECISION-MAKING TIME IN RECONFIGURED IEEE 33-BUS 

SYSTEM AND RECONFIGURED IEEE 118-BUS SYSTEM

System

Reconfigured 
IEEE 33-bus

Reconfigured 
IEEE 118-bus

Algorithm

MISOCP

PS-ITD3

PS-PER-ITD3

MISOCP

PS-ITD3

PS-PER-ITD3

Decision-making time (s)

1.1070

0.0118

0.0099

1.2320

0.0137

0.0124

TABLE Ⅴ
COMPARISONS OF DECISION-MAKING EFFECTS IN THREE-PHASE 

UNBALANCED 123-BUS SYSTEM

Algorithm

MISOCP

PS-PER-ITD3

Decision-making time (s)

5.240

0.049

Loss (kWh)

1197

1334

0.965

0.980

0.995

1.010
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Fig. 11.　 24-hour voltage distribution comparisons in three-phase unbal‐
anced 123-bus system. (a) MISOCP. (b) PS-PER-ITD3.
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making effects in numerous unseen scenarios. This normally 
incurs a weak sacrifice of solution optimality in the DRL-
based algorithm, which further aggregates owing to the mul‐
tiphase coupling nature of the 123-bus system and the multi‐
agent learning mode of the PS-PER-ITD3.

2) In contrast to the IEEE 33-bus and IEEE 118-bus sys‐
tems, the decision-making time of MISOCP in the three-
phase unbalanced 123-bus system significantly exceeds that 
of the PS-PER-ITD3. Consequently, for large-scale three-
phase unbalanced distribution systems, the conventional 
MISOCP is limited to day-ahead or intraday optimizations 
with minute-level decision intervals. However, PS-PER-
ITD3 still exhibits online millisecond-level decision-making 
capabilities.

In conclusion, compared with the conventional model-
based MISOCP, the proposed PS-PER-ITD3 exhibits over‐
whelming generalization and decision-making rates in a 
three-phase unbalanced 123-bus system. In addition, the inte‐
grated PS mechanism retains sufficient optimization capabili‐
ty and scalability in the three-phase unbalanced test system 
because its gap from MISOCP is acceptable, even with the 
aforementioned unavoidable inherent sacrifices.

VI. CONCLUSION 

An MADRL-based real-time optimization strategy of 
ADN is proposed to mitigate the voltage violations and net‐
work losses. Adopting the optimal switch deployment calcu‐
lated by the prior reconfiguration preliminary, the ADN is 
then partitioned into multiple parallel regional agents and 
trained by the proposed PS-PER-ITD3. The PS mechanism 
is integrated into the ITD3-based MADRL algorithm, which 
significantly enhances its scalability and stability in larger 
systems by substituting the conventional global critic mecha‐
nism with shared network parameters and replay buffer.

In the numerical studies, the PS-PER-ITD3 and several 
other algorithms are tested on IEEE 33-bus, IEEE 118-bus, 
and three-phase unbalanced 123-bus systems. The simulation 
results confirm the scalability and superiority of the pro‐
posed PS-PER-ITD3 for real-time operation control of ADN. 
Moreover, a scenario-based comparative experiment demon‐
strates the necessity and effectiveness of the preliminary re‐
configuration in the proposed PS-DER-ITD3. Based on the 
aforementioned experiments, the proposed PS-DER-ITD3 
outperforms others on its convergence rapidity, online deci‐
sion-making rate, excellent generalization, and scalability.

Further studies are required to explore better coordination 
modes between reconfiguration and DER control under the 
MADRL-based framework and to improve strategic scalabili‐
ty in large-scale systems.

APPENDIX A 

A. Information of Test Distribution Systems

The information of the test distribution systems is shown 
in Tables AI-AIII and Figs. A1-A4. In Fig. A2, under the 
original topology without reconfiguration, lines with red tri‐
angle are closed, and dashed lines are open; under the recon‐

figured topology, lines with red triangle are open, and 
dashed lines are closed (remain unchanged for 24 hours).

1) To simplify the issue and reduce risks, the period of re‐
configuration in the IEEE 118-bus system is 24-hour where‐
as that in the IEEE 33-bus system is 1-hour.

TABLE AI
REGIONAL AGENT PARTITIONING RESULTS

System

IEEE 33-bus

IEEE 118-bus

123-bus

Partitioning result

Region 1

Buses 1-11

Buses 1-29

Buses 1-28

Region 2

Buses 12-22

Buses 30-58

Buses 29-56

Region 3

Buses 23-33

Buses 59-87

Buses 57-85

Region 4

-

Buses 88-116

Buses 85-112

TABLE AII
DER INSTALLATIONS IN TEST SYSTEMS

System

IEEE 33-bus

IEEE 118-bus

123-bus

PV

Buses 6, 13, and 27

Buses 9, 55, 80, and 
114

Buses 6, 14, 28, 35, 46, 52, 57, 62, 75, 92, 101, 107 
(only inverter-based PV)

WT

Buses 10, 16, 
and 30

Buses 23, 51, 
67, and 104

ESS

Buses 4, 15, 
and 29

Buses 10, 39, 
60, and 91

TABLE AIII
24-HOUR OPTIMAL SWITCH DEPLOYMENT OF RECONFIGURED 

IEEE 33-BUS SYSTEM

Time (hour)

1

2

3

4

5

6

7

8

9

10

11

12

Open branch

14, 28, 33, 34, 37

9, 14, 28, 34, 37

9, 14, 28, 34, 37

5, 14, 33, 35, 36

5, 14, 28, 34, 35

14, 28, 33, 34, 35

9, 14, 28, 34, 37

9, 14, 28, 34, 37

9, 28, 34, 35, 37

9, 14, 28, 34, 37

14, 33, 34, 36, 37

9, 19, 28, 34, 35

Time (hour)

13

14

15

16

17

18

19

20

21

22

23

24

Open branch

33, 34, 35, 36, 37

5, 14, 33, 35, 36

9, 14, 34, 36, 37

9, 34, 35, 36, 37

9, 34, 35, 36, 37

14, 33, 34, 35, 36

9, 34, 35, 36, 37

9, 14, 28, 34, 37

9, 28, 33, 34, 35

5, 9, 14, 28, 34

5, 9, 14, 28, 35

5, 9, 14, 34, 37

1-33: bus index; 1-33: branch index

Sectionalizing switch (normally closed); Tie switch (normally open)

181 3 4 5
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Fig. A1.　Topology of IEEE 33-bus system.
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2) All the vacant branches and invalid buses of the three-
phase unbalanced 123-bus system are omitted, and hence, 
there are only 114 valid buses.

3) As discussed in [13], the conventional partitioning of 
regional agents is based on a voltage-sensitivity matrix to op‐
timize the regulatory effects. However, the proposed strategy 
is based on a preliminary reconfiguration; therefore, the to‐
pology of ADN during MADRL training is dynamic, which 
leads to a dynamic voltage sensitivity matrix. Therefore, the 
method in [13] has little effect, and we directly partition the 
ADN according to the bus sequence.

B. Operation Optimization Model of Three-phase Unbal‐
anced 123-bus Network

The operation optimization model of three-phase unbal‐

anced 123-bus network is shown in Fig. A4.

1) Objective Function
An optimization model for the three-phase unbalanced 

ADN is constructed to minimize the comprehensive objec‐
tive, which is composed of active network loss and voltage 
violation penalty. 

The detailed mathematical form is given as:

Obj =min ( )∑
t = 1

T

P loss
t + γ∑

jÎΩbus

∑
ϕÎ{abc}

∑
t = 1

T

V ϕpen
jt (A1)

where γ, V ϕpen
jt , and ϕ represent the multiplying coefficient of 

voltage violation penalty, voltage violation penalty, and phas‐
es in {abc}, respectively. The corresponding two composi‐
tions are calculated by

P loss
t = ∑

ijÎΩbranch

∑
ϕÎ{abc}( )(P ϕ

ijt )
2 + (Qϕ

ijt )
2

(vϕit )
2

r ϕij (A2)

V ϕpen
jt =ReLU(vmax - vϕjt )+ReLU(vϕjt - vmin ) (A3)

where P ϕ
ijt and Qϕ

ijt are the real-time active and reactive pow‐
er flows of branch ij at phase ϕ, respectively; r ϕij is the self-
resistance of branch ij at phase ϕ; V ϕpen

jt  is the penalty to 
voltage violation with ReLU(x)=max (0x); (vminvmax ) is the 
acceptable range of voltage at each phase; and vϕjt is the volt‐
age amplitude of bus j at phase ϕ.
2) Constraints

1) Three-phase unbalanced power flow equation

P it = |vit|∑
jÎΩbus

(Gij⨀C(θijt )+Bij⨀S(θijt )) |vjt| (A4)

Qit = |vit|∑
jÎΩbus

(Gij⨀S(θijt )-Bij⨀C(θijt )) |vjt| (A5)

where P it =[P a
itP

b
itP

c
it ]

T represents the active power injec‐
tions on bus i; Qit =[Qa

itQ
b
itQ

c
it ]

T represents the reactive 
power injections on bus i; Gij and Bij are the real and imagi‐
nary submatrices of branch ij in the admittance matrix 
YÎR3n# ´ 3n#, respectively, n# is the number of bus set Ωbus; 
C(·) denotes the cosine calculation; S(·) denotes the sine cal‐
culation; vit =[va

jtv
b
jtv

c
jt ]

T; and θijt is denoted as:

θijt =
é

ë

ê

ê
êê
ê

ê ù

û

ú

ú
úú
ú

úθ a
it - θ

a
jt θ a

it - θ
b
jt θ a

it - θ
c
jt

θ b
it - θ

a
jt θ b

it - θ
b
jt θ b

it - θ
c
jt

θ c
it - θ

a
jt θ c

it - θ
b
jt θ c

it - θ
c
jt

(A6)

ì
í
î

ïï
ïï

P ϕ
jt =P PVϕ

jt -P loadϕ
jt

Qϕ
jt =QPVϕ

jt -Qloadϕ
jt

    jÎΩbus \ref (A7)
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Fig. A2.　Topology of IEEE 118-bus system.
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Fig. A3.　Topology of three-phase unbalanced 123-bus system.
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Fig. A4.　Operation optimization model of three-phase unbalanced 123-bus 
system.
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ì
í
î

ïï
ïï

P ϕ
jt =P rootϕ

jt +P PVϕ
jt

Qϕ
jt =Qrootϕ

jt +QPVϕ
jt

    jÎ ref (A8)

where jÎ ref  represents the root bus of the unbalanced distri‐
bution system.

2) Operation constraints of inverter-based PV

0 <P PVϕ
jt <P PVMPPTϕ

jt     "jÎΩbus"t (A9)

- (S invϕ
j )2 - (P PVϕ

jt )2 <QPVϕ
jt < (S invϕ

j )2 - (P PVϕ
jt )2

"jÎΩbus"t (A10)

where P PVMPPTϕ
jt  is the maximum output active power of the 

inverter-based PV installed on phase ϕ of bus j; S invϕ
j  is the 

nominal capacity of the PV inverter; and QPVϕ
jt  is the actual 

output reactive power of PV inverter installed on phase ϕ of 
bus j, which can be adjusted in quadrants I and IV of the P-
Q coordinate system dynamically. Note that only the unbal‐
anced test system utilizes inverter-based PV in this paper.
3) POMDP Modeling

This paper formulates the operation optimization of three-
phase unbalanced distribution system as a Dec-POMDP mod‐
el.

1) Observation of the k th agent

okt = (P PVϕ
jt vϕjtP

load
kt Qload

kt )    "jÎΩkϕÎ{abc} (A11)

where P load
kt  is the total active load in regional agent k; and 

Qload
kt  is the total reactive load in regional agent k.
2) Action of agent k

akt =QPVϕ
jt     "jÎΩkϕÎ{abc} (A12)

3) Constraints of agent k

0 <P PVϕ
jt <P PVMPPTϕ

jt     "jÎΩkϕÎ{abc} (A13)

- (S invϕ
j )2 - (P PVϕ

jt )2 <QPVϕ
jt < (S invϕ

j )2 - (P PVϕ
jt )2

"jÎΩkϕÎ{abc} (A14)

4) Reward

rt =-P loss
t - γ∑

jÎΩbus

∑
ϕÎ{abc}

V ϕpen
jt (A15)
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