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Data-driven Anomaly Detection Method Based 
on Similarities of Multiple Wind Turbines

Xiangjun Zeng, Ming Yang, Chen Feng, Mingqiang Wang, and Lingqin Xia

Abstract——The operating conditions of wind turbines (WTs) in 
the same wind farm (WF) may share similarities due to their 
shared manufacturing process, control strategy, and operating 
environment. However, the similarities of WTs are seldom con‐
sidered in WT anomaly detection, resulting in the disregard of 
useful information. This paper proposes a method to improve 
the reliability and accuracy of WT anomaly detection using the 
supervisory control and data acquisition (SCADA) data of mul‐
tiple WTs in the same WF. First, a similarity assessment meth‐
od based on a comparison of different observation time series is 
proposed, which objectively quantifies the similarities of WT op‐
erating conditions. Then, the SCADA data of the target WT 
and selected WTs that are similar are used to establish several 
estimation models through a long short-term memory (LSTM) 
algorithm. LSTM models that exhibit good estimation perfor‐
mance are used to construct a combined estimation model that 
estimates the variations in the monitored variables of the target 
WT. Finally, an anomaly detection method that jointly com‐
pares the effective value and information entropy of the residu‐
als is proposed to identify anomalies. The effectiveness and ac‐
curacy of the proposed method are verified using the data of 
two actual WFs.

Index Terms——Anomaly detection, information entropy, long 
short-term memory, similarity assessment, wind farm, wind tur‐
bines.
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I. INTRODUCTION 

WIND turbine (WT) is a complex electromechanical hy‐
brid system designed to convert wind energy into 

electrical energy. However, because of challenging operating 
environments, WTs are prone to failures. These frequent fail‐
ures not only compromise operational reliability but also 
lead to increased operation and maintenance costs. Conse‐
quently, it is of great significance to explore anomaly detec‐
tion methods that can adapt to diverse complex conditions 
and detect abnormal operational states of WTs with precision 
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and at the earliest possible stage.
Condition-monitoring-based anomaly detection methods 

can identify the abnormal states of WTs by observing vari‐
ous measurements such as vibration, electrical, and tempera‐
ture signals. Depending on the analytical methods used, 
these detection methods can be classified into three catego‐
ries: ① knowledge-based, ② signal-processing-based, and ③ data-driven. Knowledge-based methods rely on expert 
knowledge or experience. In [1], an offshore WT tower fault 
detection method based on the fuzzy set theory was pro‐
posed. In [2], a WT fault detection method based on expert 
experience and non-singleton fuzzy-logic inference was pro‐
posed. However, these methods often suffer from subjectivi‐
ty and limited accessibility, as they rely heavily on individu‐
al expertise and may lack comprehensive knowledge regard‐
ing relevant faults.

Signal-processing-based methods primarily rely on time-
frequency analyses such as Fourier and wavelet transforms 
as well as envelope and power spectrum analyses to extract 
fault characteristics from the monitored signals and identify 
any anomalies. In [3], a wavelet energy transmissibility func‐
tion was proposed for main-bearing fault detection. In [4], a 
sparse coefficient spectrum analytical method was proposed 
for bearing fault characteristic order identification. In [5], a 
method combining mean-shift clustering and short-time Fou‐
rier transform was proposed for rotating mechanical fault de‐
tection. In [6], a multiscale filter reconstruction method for 
gearbox fault detection was proposed. Although signal-pro‐
cessing-based methods generally yield reliable detection re‐
sults, these methods are highly specialized, which means 
that different monitoring signals may require different signal 
analytical techniques. In addition, these methods impose 
higher demands on signal quality and sampling frequency, 
thus requiring more expensive installations of dedicated sen‐
sors.

Data-driven anomaly detection methods estimate the val‐
ues of state variables through the learning and inference of 
extensive data. Then, whether the operating status of the 
components or subsystems of WTs is normal must be deter‐
mined by comparing actual and estimated values. In general, 
the data collected by the supervisory control and data acqui‐
sition (SCADA) system of a WT can support anomaly detec‐
tion in many imported components or subsystems. In [7], a 
sparse Bayesian learning probability estimation model was 
proposed for detecting anomalies in gearbox oil temperature. 
Using probability estimation, this model considers the effects 
of uncertain factors on the detection results. In [8], a multi-
fault detection method using an improved triplet-loss algo‐
rithm was proposed. This method enhances fault detection 
accuracy by employing a new and enhanced mapping func‐
tion. In [9], a deep joint variational autoencoder (JVAE) 
based method was proposed to detect WT gearbox failures. 
This method uses a JVAE to reconstruct errors and incorpo‐
rates a statistical process control chart for gearbox anomaly 
detection. In [10], a two-layer sparse filtering algorithm was 
employed to extract robust features from the current signal 
for WT gearbox diagnosis. In [11], cloud computing based 
on a hierarchical extreme learning machine algorithm was 
proposed for gearbox fault detection, which has the advan‐

tages of fast computing speed and nearly unlimited storage.
Compared with knowledge-based and signal-processing-

based methods, data-driven methods provide greater flexibili‐
ty and practicality. However, these methods have certain lim‐
itations that can affect the reliability and accuracy of anoma‐
ly detection results. One of these limitations is the neglect of 
the temporal dependence of variables when constructing 
state estimation models. In other words, these methods as‐
sume that the current sampling values of the WT state vari‐
ables such as temperature, pressure, and rotor speed, are in‐
dependent of their previous sampling values. In fact, the 
states of these variables are often highly dependent on their 
previous states and may evolve over time [12]. In addition, 
current studies seldom pay attention to the quality and quan‐
tity of training data, which significantly affect the estimation 
results. It is generally accepted that training data should be 
collected during the normal operating period of WTs, and 
the greater the amount of training data, the better the detec‐
tion results will be [13]. However, ensuring that the collect‐
ed training data consistently represent normal operating con‐
ditions poses challenges. The latent wear and deterioration 
of components may have commenced long before. In addi‐
tion, unforeseen factors such as communication failures, acci‐
dental data loss, and regular memory cleaning can render 
normal operational data unavailable. These factors can result 
in insufficient or unreliable training data, which will ulti‐
mately affect the performance of the estimation model [14]. 
Addressing these issues is essential in ensuring the accuracy 
and effectiveness of WT anomaly detection.

A common method for incorporating the temporal depen‐
dence of the target variable in the estimation model is to in‐
clude the previous actual values of the target variable as in‐
put [15]. An alternative method that may be more effective 
utilizes an algorithm with memory functions such as a long 
short-term memory (LSTM) algorithm. As a deep-learning al‐
gorithm, LSTM has excellent feature extraction and nonlin‐
ear expression capabilities, which can mine hidden dependen‐
cies from the nonstationary and nonlinear state variables of 
WTs. In addition, the unique control gate structure of LSTM 
provides inherent advantages in capturing the temporal de‐
pendency of time series data. In [16], LSTM-based anomaly 
detection methods were used for back-to-back converter 
open-circuit switch fault detection. In [17] and [18], an 
LSTM algorithm was adopted for WT multiclass fault diag‐
nosis and bearing remaining life prediction. In [19], a convo‐
lutional bidirectional LSTM network was designed for equip‐
ment health monitoring, which leverages a convolutional 
neural network to extract local features and uses a bidirec‐
tional LSTM to capture long-term dependencies from sequen‐
tial data. Numerous studies have confirmed that LSTM-
based estimation models are highly effective in improving 
the accuracy of estimation results by mining the temporal de‐
pendence of the target variable. This provides an encourag‐
ing reference for the proposed method.

Some studies have attempted to use the SCADA data of 
other WTs in the same WF to alleviate the effects of insuffi‐
cient training data on anomaly detection. Researchers have 
observed that WTs in the same WF generally share similar 
manufacturing processes, control strategies, and operating en‐

804



ZENG et al.: DATA-DRIVEN ANOMALY DETECTION METHOD BASED ON SIMILARITIES OF MULTIPLE WIND TURBINES

vironments. Therefore, it is reasonable to assume that simi‐
larities exist in terms of their operating conditions. In [20], a 
method that compared the observations of a target WT with 
the average observations of all remaining WTs was proposed 
to realize anomaly detection. Although the proposed method 
is feasible and straightforward, its reliability is unsatisfacto‐
ry. This is because some defective WTs may affect the over‐
all average observation, thereby reducing the sensitivity and 
reliability of anomaly detection [21]. In addition, the operat‐
ing status of WTs is influenced by multiple factors, and their 
similarities should be considered from both temporal and 
spatial perspectives rather than relying solely on the statisti‐
cal similarities of individual variables.

This paper presents a novel method to enhance the reliabil‐
ity and accuracy of anomaly detection using SCADA data of 
WTs in the same WF. First, a similarity assessment method 
for WT operating conditions is proposed based on a time se‐
ries comparison. This method comprehensively considers the 
similarities of multiple state variables of WTs and objective‐
ly quantifies WT similarities. Then, multiple LSTM models 
are trained using the SCADA data of different WTs includ‐
ing the target WT, and similar WTs are then identified. 
Those models showing strong performance are then utilized 
to establish a combined state estimation model (CSEM) in 
which the weights are related to the similarities of the WTs. 
When the estimation results from different LSTM models 
are integrated at the decision level, the CSEM significantly 
improves the estimation accuracy of the operating states of 
WTs. In addition, based on leveraged multiple LSTM sub‐
models trained on historical data from different WTs, the 
CSEM demonstrates remarkable generalization and robust‐
ness in estimating the state variables of the target WT, even 
when abnormal or missing historical data exist. Finally, an 
anomaly detection method that does a joint comparison of 
the effective value and information entropy of the residuals 
is proposed. This method can reliably differentiate between 
noisy and anomalous states. The feasibility of the proposed 
method is verified based on actual SCADA data of two 
WFs. The contributions of this paper are as follows.

1) A CSEM that leverages the historical data of multiple 
WTs within the same WF is proposed. The CSEM exhibits 
excellent robustness and generalization performance and can 
estimate the state of a target WT accurately and reliably, 
even in the scenarios involving insufficient or abnormal his‐
torical data.

2) A WT operating condition similarity assessment method 
is proposed based on a time series similarity (TSS) compari‐
son method. The TSS comparison method comprehensively 
considers the macro- and micro-similarities of the WT oper‐
ating condition, enabling objective quantification of the simi‐
larities among different WTs.

3) An abnormal data detection method that does a joint 
comparison of the effective value and information entropy of 
the residuals is improved. This method can reliably distin‐
guish between noise and abnormal signals.

The remainder of this paper is organized as follows. Sec‐
tion II describes the SCADA data used for anomaly detec‐
tion and introduces the anomaly detection framework. Sec‐
tion III presents the proposed WT similarity assessment 

method. The CSEM and anomaly detection method are pro‐
posed in Section IV. Case studies are presented in Section V, 
and a conclusion is presented in Section VI.

II. SCADA DATA DESCRIPTION AND ANOMALY DETECTION 
FRAMEWORK 

A. SCADA Data Description

The SCADA system of a WT collects a large amount of 
operational data that can be categorized into three types: en‐
vironmental monitoring, operating conditions, and behavior 
indication. Environmental monitoring data include wind 
speed, wind direction, ambient temperature, and humidity. 
The data related to operating conditions reflect the operating 
status of the WT, including various rotor speeds (e.g., wind 
wheel and generator), temperatures (e. g., bearings, shafts, 
and lubricating oil), and electrical signals (e.g., output pow‐
er, voltage, and current). The behavior indication data reflect 
the actions of different equipment such as relay devices, ca‐
pacitors, and drive motors. The majority of action indication 
data are represented in Boolean format, which limits their 
ability to provide detailed information about the operating 
conditions of equipment. Therefore, only the first two data 
types are used in this paper.

B. Anomaly Detection Framework

Figure 1 shows the framework of the proposed anomaly 
detection method, which consists of three parts. 

The first part selects the state variables and evaluates the 
similarities between different WTs. The selection of vari‐
ables must combine expert experience and data correlation 
analytical results. A similarity assessment of the WT operat‐
ing conditions is introduced in the subsequent section. The 
second part preprocesses the SCADA data and trains differ‐
ent LSTM models with data from different WTs. Data pre‐
processing includes missing-value imputation, noise reduc‐
tion, and normalization. As these are common data prepro‐
cessing methods, this paper does not introduce them in de‐
tail. The preprocessed data are divided into training data, val‐
idation data, and detection data. The training data and valida‐
tion data are collected during the normal operating period of 
the WTs, whereas the detection data may contain fault infor‐
mation. The evaluation of the performance of each LSTM 
model is presented in this subsection. The third part identi‐
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models with different data
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Anomaly detection based on CSEM

Fig. 1.　Framework of proposed anomaly detection method.
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fies the abnormal states of the detected object. First, a 
CSEM is constructed using multiple LSTM models through 
a weighted combination, and its performance is verified us‐
ing a validation dataset. An abnormal state is then detected 
by evaluating two indices, namely the effective value and in‐
formation entropy of the residuals of the target variable. 
Their thresholds are then set based on the maximum values 
obtained during the normal operating period. If the effective 
value of the residual exceeds its threshold and the informa‐
tion entropy is less than the corresponding threshold, the de‐
tection target may be in an abnormal operating state.

III. PROPOSED WT SIMILARITY ASSESSMENT METHOD 

The similarity assessment of individual state variables 
serves as the foundation for assessing the similarities of WT 
operating conditions. In this section, the limitations of exist‐
ing similarity assessment methods are discussed, and a novel 
TSS comparison method and the corresponding WT similari‐
ty assessment method are developed.

A. Defects of Current Similarity Assessment

Some studies rely solely on statistical characteristics to de‐
termine the similarities between operating conditions and 
thus neglect the temporal properties of state variables. Figure 
2 shows the main shaft temperature comparison of the two 
actual WTs for the same period, where the corresponding sta‐
tistical characteristics of temperature are provided in Table I. 
It shows that the statistical characteristics of the temperature 
data of the two WTs are very similar, and the temperature 
distributions are nearly the same. However, the similarity be‐
tween the actual main shaft temperature curves is not signifi‐
cant. This is because a similarity assessment based on statis‐
tical characteristics does not consider the time synchroniza‐
tion of the state variables. Therefore, when the similarities 
of the operating conditions of different WTs are evaluated, 
the synchronization of these variables in a time sequence 
must be considered.

In addition, some methods have assessed the similarities 
of different WT operating conditions by comparing only a 
specific variable [22]. SCADA data of one month from 33 
WTs in the same WF were used to illustrate the defects of 
this type of method. The data distributions for the monitor‐
ing of wind speed and gearbox oil temperature for different 
WTs are presented using boxplots, as shown in Fig. 3. The 
figure shows that the external wind speeds captured by all 
WTs are very close, but the gearbox oil temperature distribu‐
tions are quite different. The k-means clustering algorithm 
was also used to cluster the WTs based on the similarity be‐
tween the wind speed and gearbox oil temperature. The clus‐
tering results are shown in Fig. 3. Classes A, B, and C are 
three classes obtained based on the mean, mode, and quartile 
of each variable as clustering conditions. Being classified in‐
to the same category indicates that their values are statistical‐
ly similar. In addition, IQR stands for interquartile range, 
which is the range between the first quartile (Q1) and the 
third quartile (Q3) of the data. Classifying WTs based on the 
similarities of different variables yields varying results. Con‐
sequently, evaluating the overall similarity of WT operating 
conditions cannot rely solely on a specific variable. It is cru‐

cial to consider the similarities of multiple associated state 
variables to assess accurately the similarities between differ‐
ent WTs.
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Fig. 2.　 Main shaft temperature comparison of two actual WTs for the 
same period. (a) Temperature curve and corresponding statistical characteris‐
tics. (b) Temperature distribution histograms.

TABLE Ⅰ
CORRESPONDING STATISTICAL CHARACTERISTICS OF TEMPERATURE

WT
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41.5
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Fig. 3.　Data distribution and rank correlation of state variables of different 
WTs in the same WF. (a) Wind speed. (b) Gearbox oil temperature.
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B. Similarity Assessment of Time Series

Based on different measurement principles, the similarity 
assessment method for time series primarily includes dis‐
tance and characteristic assessment methods [23]. The com‐
monly used distance assessment methods are the Euclidean 
and Manhattan distances. The principle of these types of dis‐
tance assessment method is simple. However, the assessment 
results are significantly affected by the dimensionality of the 
variables. The characteristic assessment method realizes simi‐
larity assessment by comparing the data features of the time 
series such as statistical indicators, distribution patterns, and 
change trends [24]. Although the method is efficient, it does 
not provide a quantification value for similarity. In addition, 
both distance and characteristic assessment methods have 
limitations in terms of capturing the temporal correlations be‐
tween variables. To address these limitations, comprehensive 
methods that consider the synchronicity and similarity of 
time series have been proposed. The two most widely used 
methods are the dynamic time wrapping (DTW) [25] and 
shape-based distance (SBD) [26]. These methods offer en‐
hanced accuracy and conciseness in evaluating the temporal 
correlations between the variables, where the time complexi‐
ties of DTW and SBD are O(N2) and O(Nlg(N)), respective‐
ly. Although these two methods enable an objective assess‐
ment of the similarity of the time series, their computational 
efficiency is low, and considerable time is required to assess 
the similarity of long time series. Therefore, it is necessary 
to develop a TSS assessment method with high accuracy and 
computational efficiency.

To address the shortcomings of the current TSS compari‐
son methods, a new method for assessing the similarities of 
state variables in WTs is proposed in this paper. Consider 
two time series curves with equal lengths, denoted by l1 and 
l2 (as shown in Fig. 4), each composed of L + 1 continuous 
sampling points. These two curves can be approximated by 
L broken lines using the point-by-point piecewise lineariza‐
tion method. Clearly, these broken lines have only three 
changing trends: rising, falling, and remaining. Let 1, -1, 
and 0 represent these three trends. The states of curves l1 
and l2 can then be described by sets S1 and S2 as:

ì
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ïï
ï
ï
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ïï
ï
ï
ï

S1 ={(t0t1Dms1
1 Dys1

1 ) (t1t2Dms1
2 Dys1

2 )

        (tn - 1tnDms1
n Dys1

n )}

S2 ={(t0t1Dms2
1 Dys2

1 ) (t1t2Dms2
2 Dys2

2 )

        (tn - 1tnDms2
n Dys2

n )}

(1)

where superscripts s1 and s2 indicate different time series; 
and (tn - 1tnDms1

n Dys1
n ) reflects the state of the nth broken 

line in S1. The similarity STS of S1 and S2 can then be evaluat‐

ed by:

STS = 1 -
1

2 2 n
∑
i = 0

n

(Dms1
i -Dms2

i )2 + (Dys1
i -Dys2

i )2
(2)

The value range of STS is [0, 1], where the greater the val‐
ue of STS, the greater the similarity. This method considers 
numerical differences and time synchronicity. It can also 
quickly and accurately evaluate the similarities between dif‐
ferent time series. Through (2), this method comprehensively 
considers the similarities of the changing trend and changing 
amplitude distances of all broken lines. The computational 
complexity of the proposed method is O(N), which is the 
same as those of the traditional European and Manhattan dis‐
tance based similarity assessment methods. Thus, this meth‐
od exhibits a higher computational efficiency than DTW and 
SBD. However, it should be noted that the proposed method 
requires that the sampling interval and total data length of 
the time series be compared for consistency, whereas DTW 
and SBD do not have such limitations.

C. Similarity Assessment of WTs

As previously discussed, assessing the similarities of WT 
operating conditions requires the simultaneous consideration 
of multiple associated variables. Accordingly, a comprehen‐
sive similarity assessment method for WT operating condi‐
tions is proposed based on the proposed TSS comparison 
method. The state variables used for the similarity assess‐
ment can be divided into two categories of macro- and mi‐
cro-variables. The macro-variables indirectly reflect the simi‐
larities of the WTs in terms of their energy conversion effi‐
ciencies. For instance, if two WTs operate normally and 
have similar input wind speeds but significantly different ro‐
tor speeds, the efficiencies of converting wind energy into 
mechanical energy will differ. Micro-variables are used to 
compare the similarities in terms of the operating conditions 
of the detection component or subsystem, which includes 
multiple monitoring variables that can directly or indirectly 
reflect the operating conditions of the detection component 
or subsystem.

After the similarity of each selected variable of different 
WTs is evaluated, the regular polygonal radar chart shown in 
Fig. 5 is drawn with the selected variables as axes. 

The distance from the center of the radar chart to any ver‐
tex is defined to be 1. The blue arrows point from the center 
to the vertices along different axes. The length of the blue ar‐
row indicates the similarity between the corresponding vari‐
ables evaluated using the TSS method. Next, connecting the 
endpoints of these blue arrows to form a closed image (shad‐
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Fig. 4.　Piecewise linear representation of time series.
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ed area in the figure), and the percentage of this area in the 
entire radar chart is used to quantify the similarities of the 
WT operating conditions. The quantized value γ can be ex‐
pressed as:

γ =
Sa

S0

=
1
V ( )∑

i = 1

V - 1

S i
TSS i + 1

TS + S 1
TSS n

TS                 n ³ 3 (3)

where the value of γ is related to the number of selected 
variables V and similarity S i

ST of each variable. If the criteri‐
on of γ is set to be 0.64, the mean of S i

ST of all selected vari‐
ables should be approximately 0.8.

IV. CSEM AND ANOMALY DETECTION METHOD 

A. LSTM Unit

LSTM is an extension of the recurrent neural network 
(RNN) and is well suited for time series learning. Figure 6 
shows a schematic of the RNN and LSTM. The RNN con‐
tains only a single neural layer, whereas the LSTM consists 
of four interacting layers. The three added layers constitute 
three special control gate structures: forget gate ft, input gate 
it, and output gate Ot. In Fig. 6, C is the cell state; h is the 
hidden information; X is the input information; σ and tanh 
are the different activation functions; and subscripts t and t -
1 represent different moments. The forget gate determines 
whether the information from the previous cell state Ct - 1 
should be discarded or retained. The input gate it updates the 
cell state Ct, whereas the output gate outputs the new state 
Ct and the new hidden state of the cell ht.

Stacking LSTM layers can improve the nonlinear learning 
ability without significantly increasing the memory size and 

learning cost [27]. This paper uses a two-level LSTM struc‐
ture to build learning models. The construction and perfor‐
mance evaluation of the two-level LSTM are shown in Fig. 
7. The purpose of the loss function of the two-level LSTM 
is to minimize the estimation error. The general loss function 
can be expressed as:

floss =
1
N∑i = 1

N

(yi - y*
i )2 (4)

Historical data of the target WT and selected similar WTs 
are used to train multiple LSTM models individually. The 
output of each LSTM model is the estimated value of the tar‐
get variable for the corresponding WT. The input variables 
for each LSTM model derive from the corresponding WT, 
and these input variables are strongly correlated with the tar‐
get variable. Based on the performance evaluations of all of 
the LSTM models, those with relatively good performance 
are used as sub-models to construct the CSEM.

B. CSEM Construction

To ensure the accuracy of CSEM estimation results, sub-
models with good performance are selected to construct the 
CSEM. A comprehensive score β is designed to evaluate the 
performance of different models and is calculated by:
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(5)

where Emae evaluates the average error between observations 
and expectations; and Ermse measures the degree of dispersion 
between observations and expectations. The smaller the val‐
ues of Emae and Ermse, the more accurately R2 reflects the 
goodness of fit between the data and model. The range of R2 
is [0, 1], where the larger the value of R2, the better the re‐
sult. The value of β is closely related to the value of the 
aforementioned three indices, and the larger the value of β, 
the better the comprehensive performance of the model.

The LSTM models in which β has relatively large values 
are used to construct the CSEM by:

MC =
∑
i = 0

m

γiMi

∑
i = 0

m

γi

(6)
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Fig. 6.　Schematic of RNN and LSTM. (a) RNN. (b) LSTM.
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Here, the contribution of each submodel to the CSEM is 
proportional to the similarity between the operating condi‐
tions of the selected and target WTs. In fact, CSEM is simi‐
lar to an ensemble learning model, and its output is the 
weighted sum of the estimated results for each sub-model. 
When multiple LSTM models with good performance are in‐
tegrated, the CSEM exhibits the advantages of diverse 
LSTM models, resulting in superior generalization and accu‐
racy performance compared with the LSTM model trained 
solely on individual WT historical data. M0 represents the 
LSTM model trained by the SCADA data of the target WT, 
and the corresponding γ0 = 1. If significant data gaps or ex‐
tensive abnormal data exist in the historical data of target 
WT, obtaining a reliable M0 is impossible. The value of γ0 is 
set to be 0, and thereafter, M0 does not participate in the con‐
struction of the CSEM.

C. Anomaly Detection

An anomaly in the target variable can be determined by 
analyzing the residual, i.e., the difference between the actual 
and estimated values of target variables. An anomaly in the 
target variable considerably changes the value of the residual 
and the reverse information entropy of the residual sequence. 
Therefore, an anomaly detection method that does a joint 
comparison of the effective value and information entropy of 
the residuals is proposed. Two indices have been used to de‐
termine whether the residuals are abnormal. The first index 
Rm measures the overall degree of deviation in the residual 
sample. The greater the value of Rm, the higher the probabili‐
ty that the detection sample is abnormal. The other index En 
is used to evaluate the degree of uncertainty in which the de‐
tection sample is abnormal [28]. The lower the value of En, 
the greater the certainty that the detection sample is abnor‐
mal. To improve the detection accuracy, the proposed meth‐
od divides the long time series of the target variable into 
many short periods for anomaly detection using sliding win‐
dow sampling. The values of Rm and En for each short detec‐
tion period can be calculated by:
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(7)

In this paper, three statistical intervals are set to calculate 
the information entropy for each detection period. These sta‐
tistical intervals are determined using the boxplot of all the 
target variable residuals obtained based on the validation da‐
taset, as shown in Fig. 8(a). The figure shows that the three 
statistical intervals are the normal, risk, and high-risk inter‐
vals, which are indicated by different colors. Four key val‐
ues of the boxplot, given as Qlow, Q1, Q3, and Qup, are used 
to divide the intervals, where Q1 and Q3 are the 0.25 and 
0.75 quartiles of the residual sequence, respectively, and Qup 
and Qlow are the upper and lower bounds of the boxplot, re‐
spectively, which can be calculated by:

ì
í
î

Qup =Q3 + 1.5(Q3 -Q1 )

Qlow =Q1 - 1.5(Q3 -Q1 )
(8)

Figure 8(b) shows the relationship between the proportion 
pi (i = 123) contained in the three intervals and the corre‐
sponding En. The figure shows that when a large proportion 
of residuals fall in the same area, En is small, reflecting the 
high probability of the occurrence of an event. Figure 8(c) 
shows the anomaly detection flow, which includes two judg‐
ment processes. The first process determines whether Rm of 
the detection period exceeds the given threshold Hrm. If it 
does not exceed it, no anomaly occurs. Otherwise, another 
judgment based on En is required to determine whether Rm 
exceeding Hrm is caused by sporadic noise or abnormal oper‐
ation. If En is less than the given threshold Hen, Rm exceeding 
Hrm is likely caused by an abnormal operation. The values of 
Hrm and Hen are obtained based on the normal operation data. 
First, the residuals of the target variable are calculated based 
on the validation data. Next, the target variable time series 
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are divided into different detection segments using sliding-
window sampling. The values of Rm and En of each detection 
segment are then calculated. Finally, the maximum values of 
Rm and En in all detection segments are taken as the values 
of Hrm and Hen, respectively.

V. CASE STUDIES

Case studies were conducted based on the SCADA data of 
two actual onshore WFs, labeled as WF1 and WF2, to verify 
the effectiveness of the proposed method. WF1 is located in 
the hilly area of the Shandong Peninsula, China, and WF2 is 
located in the Gobi of Gansu Province, China. Each WF con‐
tains 33 WTs, labeled as WT0-WT32, where WT0 is the tar‐
get WT. Table II lists the data information of different WFs. 
Data may have been deleted under certain conditions such as 
during shutdowns, maintenance periods, or periods of very 
low wind speeds (i.e., less than the cut-in wind speed). One 
important consideration is that if the data from a specific pe‐
riod of one WT are deleted, the data from other WTs during 
the same period will also be removed. Tr was set to be 1 
hour. In this paper, Python 3.8.3 programming language and 
Pytorch 1.7.1 architecture were used to build all the models. 
The computer was configured with an Intel i9-9900KF CPU 
with 32 GB of RAM and a NVIDIA GeForce RTX 2060 
GPU.

A. Case 1

Case 1 was conducted based on the data of WF1, where 
those from November 1, 2018 to April 17, 2019 were used 
as the training data. These data were also used to evaluate 
the similarities of different WTs. The data from April 18, 
2019 to May 15, 2019 were used as validation data to test 
the combined estimation model. The data from May 16, 
2019 to June 15, 2019 were used to evaluate the anomaly de‐
tection method. The number of training data points was 
246240, 224273 of which were available for similarity as‐
sessment and model training after screening. Eight variables 
were selected to evaluate the similarities among the WTs, in‐
cluding three macro-variables and five micro-variables. The 
three macro-variables were wind speed, main shaft rotation 
speed, and output power. They can reflect the energy conver‐
sion efficiencies of WTs from wind energy to mechanical en‐
ergy and from mechanical energy to electrical energy. The 
five micro-variables were the target variable gearbox front-
bearing temperature and its four closely related variables.

Figure 9 shows the importance coefficients between gear‐
box front-bearing temperature and different variables, ob‐

tained using a random forest algorithm. Based on the results 
shown in Fig. 9, the other four selected micro-variables were 
the gearbox oil temperature (Gearbox_oil_T), gearbox rear-
bearing temperature (Gearbox_rear_bearing_T), generator 
front-bearing temperature (Gen_front_bearing_T), and na‐
celle temperature (Nacelle_T). The wind speed was not se‐
lected and instead used as a macro-variable.

Following the selection of variables, the similarity be‐
tween each WT in WF1 and WT0 could be quantified ac‐
cording to the proposed similarity assessment method, with 
the results shown in Fig. 10. Five WTs, i. e., WT6, WT11, 
WT17, WT23, and WT32 (in orange color), with relatively 
high similarities to WT0 were preliminarily selected to pro‐
vide their SCADA data for sub-model training, where their 
similarity quantization values are listed in Table III. Figure 
11 shows a similarity radar chart between WT0 and the five 
WTs in WF1. The figure shows that the similarity between 
each variable of the selected WTs and the corresponding 
variable of WT0 exceedes 0.8.

The SCADA data of WT0 and five similar WTs were 
used to train six LSTM models, respectively. The output 
variable for each model is the expected gearbox front-bear‐
ing temperature of the corresponding WT. The input vari‐

TABLE ⅠI
DATA INFORMATION OF DIFFERENT WFS

WF

WF1

WF2

Start and end 
dates

November 1, 
2018-June 15, 

2019

February 1, 
2018-April 15, 

2018

Sampling 
interval (min)

1

5

Fault alarm 
time of WT0

12:40, June 12, 
2019

21:20, April 9, 
2018

Fault alarm 
information

Gearbox front-
bearing tempera‐

ture abnormal

Gearbox oil 
temperature 
over-limited
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Variable
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V1: gearbox oil temperature
V2: gearbox rear bearing temperature
V3: generator front bearing temperature
V4: wind speed
V5: nacelle temperature
V6: gearbox inlet oil temperature
V7: output power
V8: generator rotor speed
V9: gearbox high speed shaft temperature
V10: generator rear bearing temperature
V11: ambient temperature
V12: gearbox low speed shaft temperature
V13: main shaft rotor speed
V14: main shaft torque

Fig. 9.　Importance coefficients between gearbox front-bearing temperature 
and different variables.
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ables for each model include the gearbox oil temperature, 
gearbox rear-bearing temperature, generator front-bearing 
temperature, wind speed, and nacelle temperature of the cor‐
responding WT. The trained models were tested to assess 
their suitability for constructing a CSEM. The performance 
evaluation of these models, trained using the SCADA data 
of similar WTs, consists of two parts: testing the estimation 
accuracy of the model using its own validation data, and test‐
ing the adaptability of the model using the validation data of 
WT0. Table III lists the performance assessment results of 
the different LSTM models in WF1. These results demon‐
strates that all of the models exhibited favorable estimation 
accuracy when being tested using their respective validation 
data. However, when the models trained with the data from 
similar WTs were tested using the validation data of WT0, 
the comprehensive score β of all the models decreased. This 
indicates that the different models exhibited different adapt‐
abilities to the WT0 SCADA data. Notably, the sub-models 
corresponding to the WT with high similarity to WT0 exhib‐
ited good adaptability. In this paper, the model trained ac‐
cording to the data of WT0 and the three models with rela‐
tively good performances in both tests (i. e., models trained 
using the data of WT6, WT11, and WT23) were selected to 
construct the CSEM.

Next, three CSEM combination schemes were designed to 
verify the feasibility of the proposed method, as listed in Ta‐
ble IV. The performance of each CSEM in the three schemes 
was assessed based on the validation data of the WT0. Fig‐
ure 12 shows the bearing temperature estimation results of 
WT0 under normal operation according to different schemes. 
Table V lists the model performance evaluation indices and 
the corresponding anomaly detection thresholds of the differ‐
ent schemes. The temperature curve estimated using the 
CSEM of Sch3 is the closest to the actual temperature 
curve. The performance evaluation indices of the CSEM in 
Sch3 are also better than those of the other two CSEMs, in‐
dicating that using the data of multiple similar WTs could 
improve the accuracy of the estimation results. In addition, 
the performance indices of the CSEM in Sch1 and Sch2 
were very close, confirming that using only the data of simi‐
lar WTs could also be used to construct an effective CSEM 
for estimating the state variables of WT0.

Following the performance test, the anomaly detection ef‐
fectiveness of the three schemes was evaluated using the de‐

TABLE ⅡI
PERFORMANCE ASSESSMENT RESULTS OF DIFFERENT LSTM MODELS 

IN WF1

WT

WT0

WT6

WT11

WT23

WT17

WT32

Γ

1.00

0.79

0.75

0.73

0.71

0.67

Accuracy verification

Emae

0.319

0.325

0.271

0.289

0.333

0.314

Ermse

0.377

0.382

0.357

0.375

0.392

0.386
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0.967

0.969

0.981

0.972

0.979
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1.371
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1.384
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0.527

0.614
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Fig. 11.　 Similarity radar chart between WT0 and five selected WTs in 
WF1.

TABLE IV
DIFFERENT COMBINATION SCHEMES

Scheme

Sch1

Sch2

Sch3

State estimation model

CSEM is the LSTM model trained using only the data of WT0

CSEM is combined with LSTM models and trained based on 
the data of selected similar WTs, excluding the LSTM trained 

with the data of WT0

CSEM is combined with multiple LSTM models and trained 
with the data of WT0 and those of all selected similar WTs
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Fig. 12.　Bearing temperature estimation results of WT0 under normal oper‐
ation according to different schemes.

TABLE V
PERFORMANCE EVALUATION RESULTS OF DIFFERENT SCHEMES

Scheme

Sch1

Sch2

Sch3

Emae

0.319

0.331

0.291

Ermse

0.377

0.408

0.323

R2

0.967

0.958

0.978

β

1.389

1.296

1.593

Hrm

0.865

0.937

0.543

Hen

0.328

0.351

0.296
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tection data of WT0. Figure 13(a) compares the actual and 
estimated gearbox front-bearing temperatures. Figure 13(b) -
(d) show the anomaly detection results of schemes Sch1, 
Sch2, and Sch3, respectively. 

Each subfigure clearly shows that the recognized anomaly 
periods are consistent with the observed abnormal periods. 
This consistency verified the reliability of the proposed 
anomaly detection method. It should also be noted that Sch3 
exhibited the earliest detection of abnormal temperatures, 
with the earliest time at 06:00 on May 29, 2019. This detec‐
tion preceded the system fault alarm for 14 days, highlight‐
ing the early warning capability of Sch3. This result indicat‐

ed that comprehensive utilization of the SCADA data of 
WT0 and other similar WTs could effectively improve the 
sensitivity of anomaly detection, and this is beneficial for 
early discovery of anomalies. In addition, the earliest time 
for Sch1 and Sch2 for determining an abnormal temperature 
is nearly the same. These schemes could detect abnormal 
temperatures 10 days prior to system failure, indicating that 
using the SCADA data of similar WTs to detect anomalies 
in WT0 was feasible.

B. Case 2

The data used in Case 2 were obtained from WF2. As the 
amount of available data is relatively small, using the 
SCADA data of similar WTs to improve the reliability of 
anomaly detection is more practical. The training, validation, 
and detection data were from the periods of February 1, 
2018 to March 4, 2018, March 5, 2018 to March 23, 2018, 
and March 24, 2018 to April 14, 2018, respectively. In this 
case, the data in the total period of February 1, 2018 to 
March 23, 2018 were used to evaluate the similarities 
among the different WTs because the condition monitoring 
data of WTs in WF2 are insufficient. Of the total data avail‐
able during this period, which amounted to 14688 records, 
only 12727 records passed the data screening process and 
are suitable for similarity assessment. The first 8436 records 
were used for model training. Similar to Case 1, eight vari‐
ables were selected to evaluate the similarities under operat‐
ing conditions of the WTs. Three macro-variables are wind 
speed, rotation speed, and output power. Five micro-
variables considered included the target variable of the gear‐
box oil temperature and four other closely related variables. 
After the importance coefficients of the different variables to 
the gearbox oil temperature were compared, we selected the 
gearbox rear-bearing temperature, gearbox high-speed shaft 
temperature, gearbox inlet oil temperature, and gearbox front-
bearing temperature as the remaining four micro-variables. 
The model output was the gearbox oil temperature during 
the subsequent training of the LSTM model. The model in‐
put included the four selected micro-variables as well as 
wind speed and nacelle temperature.

Figure 14 shows the similarity assessment results between 
WT0 and the other WTs in WF2. It shows that the operating 
conditions of WT1, WT3, WT5, WT8, and WT15 are rela‐
tively similar to WT0, where their similarity quantification 
values were obtained, as shown in Table VI. Based on a 
comparison of the performance evaluation index of each 
model under the estimation accuracy and adaptability test, 
the LSTM models trained by the data of WT0 and the data 
of WT1, WT5, and WT8 were selected to construct the 
CSEM.

The performances of the three CSEMs under the different 
schemes were tested using the validation data of WT0. Table 
VII lists the performance indices and anomaly detection 
thresholds of the different schemes. Figure 15 shows the ac‐
tual and estimated gearbox oil temperature curves for the dif‐
ferent schemes. A comparison of the performance evaluation 
indices and estimation curves revealed that the CSEM in 
Sch3 had the highest performance. The performances of the 
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Fig. 13.　Anomaly detection results of WT0 in WF1 by different schemes. 
(a) Comparison of estimation curves of bearing temperature based on differ‐
ent schemes and real curves. (b) Anomaly detection results of Sch1. (c) 
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CSEMs under Sch1 and Sch2 are very similar. The results al‐
so indicated that using data from similar WTs was beneficial 
in improving the estimation accuracy of the CSEM. When 
the SCADA data of multiple similar WTs were used, a CSEM 
could be constructed to estimate the state variables of WT0.

Figure 16 shows the anomaly detection results for WT0 in 
WF2 by different schemes. A comparison of the anomaly de‐
tection results of different schemes revealed that Sch3 is still 
the earliest scheme to discover the abnormal gearbox oil tem‐
perature, and the earliest time is 22:00 on March 30, 2018, 
10 days ahead of the SCADA system fault alarm. In addi‐
tion, the earliest time for Sch1 and Sch2 to detect the abnor‐
mal state of the oil temperature is 05: 00 on April 1, 2018 
and 03:00 on April 1, 2018, respectively. The anomaly detec‐
tion results also proved the feasibility and effectiveness of 
the proposed anomaly detection method.

Under the combined results of Cases 1 and 2, we found 
that the amount of data used to train the model significantly 
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TABLE ⅤI
PERFORMANCE EVALUATION RESULTS OF DIFFERENT LSTM MODELS 

IN WF2

WT
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WT1
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WT3

γ
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0.692
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TABLE VII
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affected its performance. The more training data the model 
used, the better the estimation accuracy. When the historical 
data of the target WT are insufficient, a CSEM could be con‐
structed using data from similar WTs to improve the accura‐
cy of the model estimation results. Also, it is noteworthy 
that the anomaly detection instances in both cases aligned 
with significant deviations between the estimated and actual 
values. This confirmed the efficacy of utilizing the effective 
value and information entropy of the residuals for precise 
anomaly identification.

C. Comparative Verification

1)　Comparison of TSS Method with Other Methods
Two TSS measurement methods, namely, DTW [25] and 

SBD [26], were adopted for comparison to verify the effec‐
tiveness of the proposed TSS method. The wind speed and 
gearbox front-bearing temperature data of all WTs in WF1 
from November 1, 2018 to April 17, 2019 were used for sim‐
ilarity comparison. Histograms and colored lines are used in 
Fig. 17 to show the similarity assessment results. The figure 
also shows the analytical time costs of the different methods. 
For comparison, the assessment results of the different meth‐
ods were scaled to [0, 1]. The closer the assessment value 
was to be 0, the stronger the similarities of different time se‐
ries.
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Fig. 17.　 Similarity assessment results of different methods. (a) Wind 
speed. (b) Bearing temperature.

As each similarity assessment method uses different calcu‐
lation techniques, the method outcomes are also different, 
even when the similarities of the same time series are mea‐

sured. As no unified quantitative standard exists for the simi‐
larity assessment of time series, accurately comparing the 
proposed method and DTW or SDB is challenging. Howev‐
er, based on the trend of the histogram and two line charts 
shown in Fig. 17, the assessment outcomes obtained by the 
three methods exhibited a consistent pattern despite different 
objectives. This demonstrated the effectiveness of the pro‐
posed TSS method. A comparison of time costs revealed that 
the TSS method significantly outperformed the SBD and 
DTW methods in terms of efficiency, which was consistent 
with theoretical analysis based on time complexity.
2)　Anomaly Detection Comparison with Other Methods

Four data-driven WT anomaly detection methods were 
used for validation and comparison. The estimation models 
of these methods were constructed based on different algo‐
rithms, including the deep neural network (DNN) [29], gated 
recurrent unite (GRU) [30], convolutional neural network-
LSTM (CNN-LSTM) [31], and multi-model combined 
(MMC) estimation [32]. All four benchmarking models used 
only the historical SCADA data of WT0 to train and test the 
corresponding estimation model. It should be noted that the 
MMC differs from the proposed CSEM, where the MMC 
was constructed based on different shallow learning sub-
models, and each sub-model was trained using the same his‐
torical SCADA data from the WT0. In addition, the com‐
bined weights of the MMC were obtained using an optimiza‐
tion algorithm. The objective function minimizes the sum of 
the squares of the estimated residuals of all sub-models. To 
incorporate the temporal dependence of the target variable in‐
to the aforementioned benchmarking methods, the actual val‐
ue of the target variable at the previous moment was includ‐
ed as model input at the current moment.

The performances of the four benchmark models and the 
CSEM of Sch3 were compared based on the data from the 
aforementioned two cases. Figure 18 presents the perfor‐
mance evaluation results of the different models when the 
validation data were used. It should be noted that the com‐
prehensive scores β of all models shown in the figure are 
the normalized values, and the normalized cardinality is the 
maximum β of the five models.

Figure 18 shows that the performance of the CSEM mod‐
el was better than those of the other models. The differences 
in performance among the different models may be related 
to the total amount of training data. When the training data 
of Case 1 are sufficient, the performance difference among 
the different models is relatively small, as shown in Fig. 
18(a). However, for relatively insufficient training data for 
Case 2, the performances of all models except CSEM exhib‐
ited a significant decline, as shown in Fig. 18(b). The CSEM 
could maintain a relatively better performance because the 
construction of CSEM used the training data of multiple sim‐
ilar WTs, ensuring sufficient data for model training.

Next, different degrees of anomaly detection effectiveness 
of the different methods were compared based on the detec‐
tion dataset of the two cases. For comparison, all methods 
adopted the abnormal recognition method proposed in this 
paper. Figure 19 shows the comparison of anomaly detection 
results of different methods.
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When the training data are sufficient, the detection results 
of CSEM and MMC are similar. Both CSEM and MMC 
could detect the abnormal temperature of the gearbox front-
bearing temperature 14 days earlier than the system fault 
alarm. In addition, these two combined-model-based meth‐
ods detected anomalies significantly earlier than the other 
single-model-based methods. However, when the training da‐
ta of WT0 are insufficient for Case 2, the anomaly detection 
results of the different models as shown in Fig. 19(b) were 
different, and the proposed method could detect the abnor‐
mal state of the gearbox oil temperature earlier than the oth‐
er methods. These comparison results revealed that the pro‐
posed method are more sensitive to anomalies, and the per‐
formance of the CSEM could be guaranteed even when the 
training data of the WT are insufficient.

The anomaly detection reliabilities of the different meth‐
ods were compared when the training data contained abnor‐
mal data. The anomaly detection results shown in Fig. 19 re‐
veal that the target variables of the two failed WTs were de‐
tected abnormally many times prior to the SCADA system 
fault alarm. 

M
ay

 1
6

M
ay

 2
0

M
ay

 2
4

M
ay

 2
8

Ju
n.

 1

Ju
n.

 5

Ju
n.

 9

Ju
n.

 1
3

Date
(a)

(b)

20 24

Anomaly 
 R
m

 E
n

 Area where R
m
 is smaller than H

rm

 Area where E
n
 is smaller than H

en

CSEM

MMC

CNN-LSTM

GRU

DNN

Detectio
n m

ethod

R
m
, 
E
n

0
0.4
0.8
1.2
1.6
2.0 06:00, May 29

07:00, May 29

22:00, May 29

13:00, May 30

DNN: H
rm

 = 0.781, H
en

 = 0.323

GRU: H
rm

 = 0.632, H
en

 = 0.317

CNN-LSTM: H
rm

 = 0.625, H
en

 = 0.318

MMC: H
rm

 = 0.587, H
en

 = 0.307

CSEM: H
rm

 = 0.543, H
en

 = 0.296

CSEM

MMC

CNN-LSTM

GRU

DNN

Detectio
n m

ethod

R
m
, 
E
n

0
0.6
1.2
1.8
2.4
3.0 22:00, Mar. 30

18:00, Mar. 31

12:00, Apr. 2

10:00, Apr. 1

07:00, Apr. 1

Fault alarm
21:20, Apr. 9

M
ar

. 2
4

M
ar

. 2
7

M
ar

. 3
0

A
pr

. 2

A
pr

. 5

A
pr

. 8

A
pr

. 1
1

A
pr

. 1
4

Date

DNN: H
rm

 = 0.806, H
en

 = 0.493

GRU: H
rm

 = 0.794, H
en

 = 0.512

CNN-LSTM: H
rm

 = 0.824, H
en

 = 0.524

MMC: H
rm

 = 0.723, H
en

 = 0.421

CSEM: H
rm

 = 0.741, H
en

 = 0.384

Fault alarm
12:40, Jun. 12

01:00, May 30

Anomaly 
 R
m

 E
n

 Area where R
m
 is smaller than H

rm

 Area where E
n
 is smaller than H

en

Fig. 19.　Comparison of anomaly detection results of different methods. (a) Case 1. (b) Case 2.

Emae Ermse R
2

P
er

fo
rm

an
ce

 v
al

u
e

 CSEMMMC;CNN-LSTM;GRU;DNN;

β
0

0.50

1.00

1.25

0.75

0.25

(a)

Index

Emae Ermse R
2

P
er

fo
rm

an
ce

 v
al

u
e

β
0

0.50

1.00

0.75

0.25

(b)

Index

Fig. 18.　Performance evaluation results of different models when valida‐
tion data were used. (a) Case 1. (b) Case 2.

815



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 12, NO. 3, May 2024

Therefore, this contrast experiment used a portion of the 
detection data containing abnormal data to train the estima‐
tion models. Since the amount of detection data for Case 2 
is small, this contrast experiment used only the detection da‐
ta for Case 1. As new training data, 12774 records from 
May 25, 2019 to June 5, 2019 were used. Based on the 
anomaly detection results of Sch3 for Case 1, the abnormal 
data accounted for 26.4% of the new training data. In addi‐
tion, the data from June 6, 2019 to June 15, 2019 were used 
as new detection data. The four comparison methods used 
only the historical data of WT0 to train their estimation mod‐
els, whereas the proposed method used both the historical da‐
ta of WT0 and three selected similar WTs in the same peri‐
od to construct the CESM. The input and output variables 
for each model are the same as those for Case 1. In this con‐
trast experiment, no validation data were used, and the anom‐
aly detection thresholds Hrm and Hen were determined based 
on the new training data.

Figure 20 shows the anomaly detection results of the dif‐

ferent methods. The figure shows that under abnormal data 
in the training data, the anomaly detection results of the dif‐
ferent methods were different. All methods could detect the 
abnormal temperature of the gearbox front bearing prior to 
the SCADA system fault alarm. CSEM is the first to discov‐
er abnormal temperatures and could also detect multiple tem‐
perature anomalies prior to the system fault alarm. In addi‐
tion, a comparison of the anomaly detection results of the 
different methods, as shown in Fig. 19(a) and Fig. 20(b), re‐
vealed that the anomaly detection results of the CSEM are 
roughly the same after June 6. However, the anomaly detec‐
tion results of the DNN, GRU, CNN-LSTM, and MMC 
were significantly different after June 6. The GRU, CNN-
LSTM, and MMC identified the normal data as abnormal, 
whereas the DNN did not detect the abnormal temperature at 
the time of the system fault alarm. The aforementioned re‐
sults prove that the proposed method could effectively allevi‐
ate the effects of abnormal training data of the target WT on 
the anomaly detection results.
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D. Discussion

The comparison results of the three schemes in Cases 1 
and 2 demonstrated that the proposed CSEM outperformed 
the LSTM model trained solely on historical data from a sin‐
gle WT in terms of estimation accuracy and model stability. 
This was primarily because the CSEM uses a decision-layer 
fusion method to combine the advantages of multiple LSTM 
models. This not only undermines the effects of anomalous 
and insufficient training data on the estimation results of a 
single LSTM model, it also enhances the reliability of the 
CSEM when dealing with various complex scenarios. In ad‐
dition, the proposed method can reliably and efficiently as‐
sess the similarities of two time-series as follows. First, the 
TSS employs a piecewise linearization method for segment 
comparison, which ensures the reliability of time series anal‐
ysis. Second, Euclidean distance is used to calculate the am‐
plitude and trend change distances of each segment, making 
it more efficient than DTW and SBD. Finally, the CSEM 
demonstrated superior accuracy and reliability in detecting 
anomalies as compared with the other models. Its success 
can be attributed to its robustness and generalization capabili‐
ties, which can use historical data from similar WTs to miti‐
gate the effects of abnormal or insufficient data on model 
training. The proposed method was demonstrated to be effec‐
tive and feasible through case studies and comparative exper‐
iments. This offers a new perspective on leveraging valuable 
information from the condition-monitoring data of multiple 
WTs.

VI. CONCLUSION 

This paper proposed a method to improve anomaly detec‐
tion accuracy using the SCADA data of WTs under similar 
operating conditions in the same WF. An operating condition 
similarity assessment method was first presented that could 
objectively quantify the operating condition similarities of 
different WTs by considering the similarities of multiple vari‐
ables. Different LSTM models were then trained using SCA‐
DA data from the target WT and selected similar WTs. A lin‐
ear combination method was used to combine the LSTM 
models with superior performance to construct a CSEM for 
estimating the expected state of the detection target variable. 
In addition, an improved abnormal state identification meth‐
od combining residuals effective value and information entro‐
py comparisons was proposed to identify the abnormal state 
of the target variable. The effectiveness of the proposed 
method was verified using actual SCADA data from two on‐
shore WFs. The results demonstrated that the sensitivity and 
reliability of the CSEM could be improved by using the 
SCADA data of similar WTs. Even when only the historical 
data of similar WTs are used, a CSEM could be constructed 
to conduct anomaly detection for the target WT. Experiments 
were conducted to compare and verify the detection accura‐
cy of the proposed method with those of other anomaly de‐
tection methods. The experimental results showed that the 
proposed method had more advantages than the other meth‐
ods and could maintain good detection accuracy when the 
historical training data of the target WT were insufficient or 
contained abnormal data.
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