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Data-driven Anomaly Detection Method Based
on Similarities of Multiple Wind Turbines

Xiangjun Zeng, Ming Yang, Chen Feng, Mingqiang Wang, and Lingqin Xia

Abstract—The operating conditions of wind turbines (WTs) in
the same wind farm (WF) may share similarities due to their
shared manufacturing process, control strategy, and operating
environment. However, the similarities of WTs are seldom con-
sidered in WT anomaly detection, resulting in the disregard of
useful information. This paper proposes a method to improve
the reliability and accuracy of WT anomaly detection using the
supervisory control and data acquisition (SCADA) data of mul-
tiple WTs in the same WF. First, a similarity assessment meth-
od based on a comparison of different observation time series is
proposed, which objectively quantifies the similarities of WT op-
erating conditions. Then, the SCADA data of the target WT
and selected WTs that are similar are used to establish several
estimation models through a long short-term memory (LSTM)
algorithm. LSTM models that exhibit good estimation perfor-
mance are used to construct a combined estimation model that
estimates the variations in the monitored variables of the target
WT. Finally, an anomaly detection method that jointly com-
pares the effective value and information entropy of the residu-
als is proposed to identify anomalies. The effectiveness and ac-
curacy of the proposed method are verified using the data of
two actual WFs.

Index Terms—Anomaly detection, information entropy, long
short-term memory, similarity assessment, wind farm, wind tur-
bines.

NOMENCLATURE

s Comprehensive score of each long short-term
memory (LSTM) submodel

Y Similarity quantified value of two wind turbine
(WT) operating conditions

d, Number of residual samples within the i" interval

E.. Average error of estimation result

E Information entropy sample residual

E, Root-mean-square error of estimation result

Jross Loss function of two-level LSTM algorithm
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H, Threshold of residual information entropy
H, Threshold of residual effect value
L Number of linear segments of time series based

on point-by-point segmentation

M., M, Combined state estimation model (CSEM) and
the /" LSTM submodel

m Number of submodels used to build CSEM

Am, Change in distance of the n" broken line

N Number of training samples

N, Number of statistical intervals of the residual

N, Number of samples in each residual statistical in-
terval

n Number of broken lines in a time series lineariza-
tion

P, Proportion of residual samples in the i" interval

R Determination coefficient

R, Effective value of a sample residual

S S, Area of a regular polygon and shaded part therein

S Similarity of time series

Sts Similarity assessment value of the i" time series

T.. Sampling interval of supervisory control and data
acquisition (SCADA) system

T Time scale of each detection

t,_1,t, Start and end time of the n" broken line

Vv Number of variables used for WT similarity as-
sessment

Vo Vi Real and estimated values of the /" target variable

y Average value of target variable

Ay, Amplitude change distance of the n™ broken line

[. INTRODUCTION

IND turbine (WT) is a complex electromechanical hy-

brid system designed to convert wind energy into
electrical energy. However, because of challenging operating
environments, WTs are prone to failures. These frequent fail-
ures not only compromise operational reliability but also
lead to increased operation and maintenance costs. Conse-
quently, it is of great significance to explore anomaly detec-
tion methods that can adapt to diverse complex conditions
and detect abnormal operational states of WTs with precision
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and at the earliest possible stage.

Condition-monitoring-based anomaly detection methods
can identify the abnormal states of WTs by observing vari-
ous measurements such as vibration, electrical, and tempera-
ture signals. Depending on the analytical methods used,
these detection methods can be classified into three catego-
ries: (D knowledge-based, (2 signal-processing-based, and
@ data-driven. Knowledge-based methods rely on expert
knowledge or experience. In [1], an offshore WT tower fault
detection method based on the fuzzy set theory was pro-
posed. In [2], a WT fault detection method based on expert
experience and non-singleton fuzzy-logic inference was pro-
posed. However, these methods often suffer from subjectivi-
ty and limited accessibility, as they rely heavily on individu-
al expertise and may lack comprehensive knowledge regard-
ing relevant faults.

Signal-processing-based methods primarily rely on time-
frequency analyses such as Fourier and wavelet transforms
as well as envelope and power spectrum analyses to extract
fault characteristics from the monitored signals and identify
any anomalies. In [3], a wavelet energy transmissibility func-
tion was proposed for main-bearing fault detection. In [4], a
sparse coefficient spectrum analytical method was proposed
for bearing fault characteristic order identification. In [5], a
method combining mean-shift clustering and short-time Fou-
rier transform was proposed for rotating mechanical fault de-
tection. In [6], a multiscale filter reconstruction method for
gearbox fault detection was proposed. Although signal-pro-
cessing-based methods generally yield reliable detection re-
sults, these methods are highly specialized, which means
that different monitoring signals may require different signal
analytical techniques. In addition, these methods impose
higher demands on signal quality and sampling frequency,
thus requiring more expensive installations of dedicated sen-
sors.

Data-driven anomaly detection methods estimate the val-
ues of state variables through the learning and inference of
extensive data. Then, whether the operating status of the
components or subsystems of WTs is normal must be deter-
mined by comparing actual and estimated values. In general,
the data collected by the supervisory control and data acqui-
sition (SCADA) system of a WT can support anomaly detec-
tion in many imported components or subsystems. In [7], a
sparse Bayesian learning probability estimation model was
proposed for detecting anomalies in gearbox oil temperature.
Using probability estimation, this model considers the effects
of uncertain factors on the detection results. In [8], a multi-
fault detection method using an improved triplet-loss algo-
rithm was proposed. This method enhances fault detection
accuracy by employing a new and enhanced mapping func-
tion. In [9], a deep joint variational autoencoder (JVAE)
based method was proposed to detect WT gearbox failures.
This method uses a JVAE to reconstruct errors and incorpo-
rates a statistical process control chart for gearbox anomaly
detection. In [10], a two-layer sparse filtering algorithm was
employed to extract robust features from the current signal
for WT gearbox diagnosis. In [11], cloud computing based
on a hierarchical extreme learning machine algorithm was
proposed for gearbox fault detection, which has the advan-
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tages of fast computing speed and nearly unlimited storage.

Compared with knowledge-based and signal-processing-
based methods, data-driven methods provide greater flexibili-
ty and practicality. However, these methods have certain lim-
itations that can affect the reliability and accuracy of anoma-
ly detection results. One of these limitations is the neglect of
the temporal dependence of variables when constructing
state estimation models. In other words, these methods as-
sume that the current sampling values of the WT state vari-
ables such as temperature, pressure, and rotor speed, are in-
dependent of their previous sampling values. In fact, the
states of these variables are often highly dependent on their
previous states and may evolve over time [12]. In addition,
current studies seldom pay attention to the quality and quan-
tity of training data, which significantly affect the estimation
results. It is generally accepted that training data should be
collected during the normal operating period of WTs, and
the greater the amount of training data, the better the detec-
tion results will be [13]. However, ensuring that the collect-
ed training data consistently represent normal operating con-
ditions poses challenges. The latent wear and deterioration
of components may have commenced long before. In addi-
tion, unforeseen factors such as communication failures, acci-
dental data loss, and regular memory cleaning can render
normal operational data unavailable. These factors can result
in insufficient or unreliable training data, which will ulti-
mately affect the performance of the estimation model [14].
Addressing these issues is essential in ensuring the accuracy
and effectiveness of WT anomaly detection.

A common method for incorporating the temporal depen-
dence of the target variable in the estimation model is to in-
clude the previous actual values of the target variable as in-
put [15]. An alternative method that may be more effective
utilizes an algorithm with memory functions such as a long
short-term memory (LSTM) algorithm. As a deep-learning al-
gorithm, LSTM has excellent feature extraction and nonlin-
ear expression capabilities, which can mine hidden dependen-
cies from the nonstationary and nonlinear state variables of
WTs. In addition, the unique control gate structure of LSTM
provides inherent advantages in capturing the temporal de-
pendency of time series data. In [16], LSTM-based anomaly
detection methods were used for back-to-back converter
open-circuit switch fault detection. In [17] and [18], an
LSTM algorithm was adopted for WT multiclass fault diag-
nosis and bearing remaining life prediction. In [19], a convo-
lutional bidirectional LSTM network was designed for equip-
ment health monitoring, which leverages a convolutional
neural network to extract local features and uses a bidirec-
tional LSTM to capture long-term dependencies from sequen-
tial data. Numerous studies have confirmed that LSTM-
based estimation models are highly effective in improving
the accuracy of estimation results by mining the temporal de-
pendence of the target variable. This provides an encourag-
ing reference for the proposed method.

Some studies have attempted to use the SCADA data of
other WTs in the same WF to alleviate the effects of insuffi-
cient training data on anomaly detection. Researchers have
observed that WTs in the same WF generally share similar
manufacturing processes, control strategies, and operating en-
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vironments. Therefore, it is reasonable to assume that simi-
larities exist in terms of their operating conditions. In [20], a
method that compared the observations of a target WT with
the average observations of all remaining WTs was proposed
to realize anomaly detection. Although the proposed method
is feasible and straightforward, its reliability is unsatisfacto-
ry. This is because some defective WTs may affect the over-
all average observation, thereby reducing the sensitivity and
reliability of anomaly detection [21]. In addition, the operat-
ing status of WTs is influenced by multiple factors, and their
similarities should be considered from both temporal and
spatial perspectives rather than relying solely on the statisti-
cal similarities of individual variables.

This paper presents a novel method to enhance the reliabil-
ity and accuracy of anomaly detection using SCADA data of
WTs in the same WF. First, a similarity assessment method
for WT operating conditions is proposed based on a time se-
ries comparison. This method comprehensively considers the
similarities of multiple state variables of WTs and objective-
ly quantifies WT similarities. Then, multiple LSTM models
are trained using the SCADA data of different WTs includ-
ing the target WT, and similar WTs are then identified.
Those models showing strong performance are then utilized
to establish a combined state estimation model (CSEM) in
which the weights are related to the similarities of the WTs.
When the estimation results from different LSTM models
are integrated at the decision level, the CSEM significantly
improves the estimation accuracy of the operating states of
WTs. In addition, based on leveraged multiple LSTM sub-
models trained on historical data from different WTs, the
CSEM demonstrates remarkable generalization and robust-
ness in estimating the state variables of the target WT, even
when abnormal or missing historical data exist. Finally, an
anomaly detection method that does a joint comparison of
the effective value and information entropy of the residuals
is proposed. This method can reliably differentiate between
noisy and anomalous states. The feasibility of the proposed
method is verified based on actual SCADA data of two
WFs. The contributions of this paper are as follows.

1) A CSEM that leverages the historical data of multiple
WTs within the same WF is proposed. The CSEM exhibits
excellent robustness and generalization performance and can
estimate the state of a target WT accurately and reliably,
even in the scenarios involving insufficient or abnormal his-
torical data.

2) A WT operating condition similarity assessment method
is proposed based on a time series similarity (TSS) compari-
son method. The TSS comparison method comprehensively
considers the macro- and micro-similarities of the WT oper-
ating condition, enabling objective quantification of the simi-
larities among different WTs.

3) An abnormal data detection method that does a joint
comparison of the effective value and information entropy of
the residuals is improved. This method can reliably distin-
guish between noise and abnormal signals.

The remainder of this paper is organized as follows. Sec-
tion II describes the SCADA data used for anomaly detec-
tion and introduces the anomaly detection framework. Sec-
tion III presents the proposed WT similarity assessment
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method. The CSEM and anomaly detection method are pro-
posed in Section IV. Case studies are presented in Section V,
and a conclusion is presented in Section VI.

II. SCADA DATA DESCRIPTION AND ANOMALY DETECTION
FRAMEWORK

A. SCADA Data Description

The SCADA system of a WT collects a large amount of
operational data that can be categorized into three types: en-
vironmental monitoring, operating conditions, and behavior
indication. Environmental monitoring data include wind
speed, wind direction, ambient temperature, and humidity.
The data related to operating conditions reflect the operating
status of the WT, including various rotor speeds (e.g., wind
wheel and generator), temperatures (e. g., bearings, shafts,
and lubricating oil), and electrical signals (e.g., output pow-
er, voltage, and current). The behavior indication data reflect
the actions of different equipment such as relay devices, ca-
pacitors, and drive motors. The majority of action indication
data are represented in Boolean format, which limits their
ability to provide detailed information about the operating
conditions of equipment. Therefore, only the first two data
types are used in this paper.

B. Anomaly Detection Framework

Figure 1 shows the framework of the proposed anomaly
detection method, which consists of three parts.

Variable selection and similarity assessment

Similarity assessment for

i
|
|

Similarity evaluation !
each selected variable !

3 Selection of
! of different WTs

different variables

Data preprocessing and LSTM model construction

Training of different LSTM
models with different data

i Data
| of different models

i
|

Performance evaluation||

preprocessing |
I

Anomaly detection based on CSEM

i Combination of Determination of Detection of abnormal 3
1| selected LSTM | thresholds for anomaly !
i . state of WT !
! models detection !

Fig. 1.

Framework of proposed anomaly detection method.

The first part selects the state variables and evaluates the
similarities between different WTs. The selection of vari-
ables must combine expert experience and data correlation
analytical results. A similarity assessment of the WT operat-
ing conditions is introduced in the subsequent section. The
second part preprocesses the SCADA data and trains differ-
ent LSTM models with data from different WTs. Data pre-
processing includes missing-value imputation, noise reduc-
tion, and normalization. As these are common data prepro-
cessing methods, this paper does not introduce them in de-
tail. The preprocessed data are divided into training data, val-
idation data, and detection data. The training data and valida-
tion data are collected during the normal operating period of
the WTs, whereas the detection data may contain fault infor-
mation. The evaluation of the performance of each LSTM
model is presented in this subsection. The third part identi-
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fies the abnormal states of the detected object. First, a
CSEM is constructed using multiple LSTM models through
a weighted combination, and its performance is verified us-
ing a validation dataset. An abnormal state is then detected
by evaluating two indices, namely the effective value and in-
formation entropy of the residuals of the target variable.
Their thresholds are then set based on the maximum values
obtained during the normal operating period. If the effective
value of the residual exceeds its threshold and the informa-
tion entropy is less than the corresponding threshold, the de-
tection target may be in an abnormal operating state.

III. PROPOSED WT SIMILARITY ASSESSMENT METHOD

The similarity assessment of individual state variables
serves as the foundation for assessing the similarities of WT
operating conditions. In this section, the limitations of exist-
ing similarity assessment methods are discussed, and a novel
TSS comparison method and the corresponding WT similari-
ty assessment method are developed.

A. Defects of Current Similarity Assessment

Some studies rely solely on statistical characteristics to de-
termine the similarities between operating conditions and
thus neglect the temporal properties of state variables. Figure
2 shows the main shaft temperature comparison of the two
actual WTs for the same period, where the corresponding sta-
tistical characteristics of temperature are provided in Table I.
It shows that the statistical characteristics of the temperature
data of the two WTs are very similar, and the temperature
distributions are nearly the same. However, the similarity be-
tween the actual main shaft temperature curves is not signifi-
cant. This is because a similarity assessment based on statis-
tical characteristics does not consider the time synchroniza-
tion of the state variables. Therefore, when the similarities
of the operating conditions of different WTs are evaluated,
the synchronization of these variables in a time sequence
must be considered.

In addition, some methods have assessed the similarities
of different WT operating conditions by comparing only a
specific variable [22]. SCADA data of one month from 33
WTs in the same WF were used to illustrate the defects of
this type of method. The data distributions for the monitor-
ing of wind speed and gearbox oil temperature for different
WTs are presented using boxplots, as shown in Fig. 3. The
figure shows that the external wind speeds captured by all
WTs are very close, but the gearbox oil temperature distribu-
tions are quite different. The k-means clustering algorithm
was also used to cluster the WTs based on the similarity be-
tween the wind speed and gearbox oil temperature. The clus-
tering results are shown in Fig. 3. Classes A, B, and C are
three classes obtained based on the mean, mode, and quartile
of each variable as clustering conditions. Being classified in-
to the same category indicates that their values are statistical-
ly similar. In addition, IQR stands for interquartile range,
which is the range between the first quartile (Q1) and the
third quartile (Q3) of the data. Classifying WTs based on the
similarities of different variables yields varying results. Con-
sequently, evaluating the overall similarity of WT operating
conditions cannot rely solely on a specific variable. It is cru-
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cial to consider the similarities of multiple associated state
variables to assess accurately the similarities between differ-
ent WTs.
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Fig. 2. Main shaft temperature comparison of two actual WTs for the
same period. (a) Temperature curve and corresponding statistical characteris-
tics. (b) Temperature distribution histograms.

TABLE I
CORRESPONDING STATISTICAL CHARACTERISTICS OF TEMPERATURE

Temperature (°C)

WT - - Skewness Kurtosis
Max  Min Mean Median Standard
W1 571 412 483 48.1 3.7 0.24 -0.91
W2 567 415 483 48.1 33 0.22 —-0.89
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Fig. 3. Data distribution and rank correlation of state variables of different

WTs in the same WF. (a) Wind speed. (b) Gearbox oil temperature.
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B. Similarity Assessment of Time Series

Based on different measurement principles, the similarity
assessment method for time series primarily includes dis-
tance and characteristic assessment methods [23]. The com-
monly used distance assessment methods are the Euclidean
and Manhattan distances. The principle of these types of dis-
tance assessment method is simple. However, the assessment
results are significantly affected by the dimensionality of the
variables. The characteristic assessment method realizes simi-
larity assessment by comparing the data features of the time
series such as statistical indicators, distribution patterns, and
change trends [24]. Although the method is efficient, it does
not provide a quantification value for similarity. In addition,
both distance and characteristic assessment methods have
limitations in terms of capturing the temporal correlations be-
tween variables. To address these limitations, comprehensive
methods that consider the synchronicity and similarity of
time series have been proposed. The two most widely used
methods are the dynamic time wrapping (DTW) [25] and
shape-based distance (SBD) [26]. These methods offer en-
hanced accuracy and conciseness in evaluating the temporal
correlations between the variables, where the time complexi-
ties of DTW and SBD are O(N) and O(NIg(N)), respective-
ly. Although these two methods enable an objective assess-
ment of the similarity of the time series, their computational
efficiency is low, and considerable time is required to assess
the similarity of long time series. Therefore, it is necessary
to develop a TSS assessment method with high accuracy and
computational efficiency.

To address the shortcomings of the current TSS compari-
son methods, a new method for assessing the similarities of
state variables in WTs is proposed in this paper. Consider
two time series curves with equal lengths, denoted by /, and
I/, (as shown in Fig. 4), each composed of L+ 1 continuous
sampling points. These two curves can be approximated by
L broken lines using the point-by-point piecewise lineariza-
tion method. Clearly, these broken lines have only three
changing trends: rising, falling, and remaining. Let 1, —1,
and 0 represent these three trends. The states of curves /;
and /, can then be described by sets S, and S, as:

y
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Fig. 4. Piecewise linear representation of time series.
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where superscripts s1 and s2 indicate different time series;
and (¢, ,.t,,Am',Ay'") reflects the state of the n" broken
line in S,. The similarity S;; of S| and S, can then be evaluat-
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ed by:

1 n
Sps=1- AmS' = Am ) +(Ay] - Ay Y
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The value range of Sy is [0, 1], where the greater the val-
ue of Sy, the greater the similarity. This method considers
numerical differences and time synchronicity. It can also
quickly and accurately evaluate the similarities between dif-
ferent time series. Through (2), this method comprehensively
considers the similarities of the changing trend and changing
amplitude distances of all broken lines. The computational
complexity of the proposed method is O(N), which is the
same as those of the traditional European and Manhattan dis-
tance based similarity assessment methods. Thus, this meth-
od exhibits a higher computational efficiency than DTW and
SBD. However, it should be noted that the proposed method
requires that the sampling interval and total data length of
the time series be compared for consistency, whereas DTW
and SBD do not have such limitations.

C. Similarity Assessment of W1k

As previously discussed, assessing the similarities of WT
operating conditions requires the simultaneous consideration
of multiple associated variables. Accordingly, a comprehen-
sive similarity assessment method for WT operating condi-
tions is proposed based on the proposed TSS comparison
method. The state variables used for the similarity assess-
ment can be divided into two categories of macro- and mi-
cro-variables. The macro-variables indirectly reflect the simi-
larities of the WTs in terms of their energy conversion effi-
ciencies. For instance, if two WTs operate normally and
have similar input wind speeds but significantly different ro-
tor speeds, the efficiencies of converting wind energy into
mechanical energy will differ. Micro-variables are used to
compare the similarities in terms of the operating conditions
of the detection component or subsystem, which includes
multiple monitoring variables that can directly or indirectly
reflect the operating conditions of the detection component
or subsystem.

After the similarity of each selected variable of different
WTs is evaluated, the regular polygonal radar chart shown in
Fig. 5 is drawn with the selected variables as axes.

Macro-variables

Wind speed, output power, etc.

Associated |}
riables, Var 1,
VVar 2, ...

' The targeti E
I variable :Eﬂz'va

Fig. 5. Operating status similarity assessment of different WTs.

The distance from the center of the radar chart to any ver-
tex is defined to be 1. The blue arrows point from the center
to the vertices along different axes. The length of the blue ar-
row indicates the similarity between the corresponding vari-
ables evaluated using the TSS method. Next, connecting the
endpoints of these blue arrows to form a closed image (shad-
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ed area in the figure), and the percentage of this area in the
entire radar chart is used to quantify the similarities of the
WT operating conditions. The quantized value y can be ex-
pressed as:

_ S, _ 1

Y4
where the value of y is related to the number of selected
variables V and similarity S, of each variable. If the criteri-
on of y is set to be 0.64, the mean of S§; of all selected vari-
ables should be approximately 0.8.

V-1
> Si S +85Sh | n=3 3)
i=1

IV. CSEM AND ANOMALY DETECTION METHOD

A. LSTM Unit

LSTM is an extension of the recurrent neural network
(RNN) and is well suited for time series learning. Figure 6
shows a schematic of the RNN and LSTM. The RNN con-
tains only a single neural layer, whereas the LSTM consists
of four interacting layers. The three added layers constitute
three special control gate structures: forget gate f, input gate
i, and output gate O, In Fig. 6, C is the cell state; % is the
hidden information; X is the input information; ¢ and tanh
are the different activation functions; and subscripts ¢ and 7—
1 represent different moments. The forget gate determines
whether the information from the previous cell state C,_,
should be discarded or retained. The input gate i, updates the
cell state C, whereas the output gate outputs the new state
C, and the new hidden state of the cell #,.

Stacking LSTM layers can improve the nonlinear learning
ability without significantly increasing the memory size and

learning cost [27]. This paper uses a two-level LSTM struc-
ture to build learning models. The construction and perfor-
mance evaluation of the two-level LSTM are shown in Fig.
7. The purpose of the loss function of the two-level LSTM
is to minimize the estimation error. The general loss function
can be expressed as:

1 ul * 2
.f}nm = ﬁ ;(yl _yi )

(a) (b)

Fig. 6. Schematic of RNN and LSTM. (a) RNN. (b) LSTM.

Historical data of the target WT and selected similar WTs
are used to train multiple LSTM models individually. The
output of each LSTM model is the estimated value of the tar-
get variable for the corresponding WT. The input variables
for each LSTM model derive from the corresponding WT,
and these input variables are strongly correlated with the tar-
get variable. Based on the performance evaluations of all of
the LSTM models, those with relatively good performance
are used as sub-models to construct the CSEM.

Regression layer

Two-layer LSTM structure

Fig. 7. Construction and performance evaluation of two-level LSTM.

B. CSEM Construction

To ensure the accuracy of CSEM estimation results, sub-
models with good performance are selected to construct the
CSEM. A comprehensive score f is designed to evaluate the
performance of different models and is calculated by:

B=RAE, . +E

rmse )

1 & .
E, .= N;in_yi

ha .
Ermse_ N;(yl_yl)

R= S0y 7 /S ,-97
-1 i=1

®)

where E, , evaluates the average error between observations
and expectations; and E, , measures the degree of dispersion
between observations and expectations. The smaller the val-
ues of E,,, and E, , the more accurately R® reflects the
goodness of fit between the data and model. The range of R’
is [0, 1], where the larger the value of R’, the better the re-
sult. The value of S is closely related to the value of the
aforementioned three indices, and the larger the value of f,
the better the comprehensive performance of the model.

The LSTM models in which £ has relatively large values

are used to construct the CSEM by:

iViM i
= (©)
z)’i

i=0

M.
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Here, the contribution of each submodel to the CSEM is
proportional to the similarity between the operating condi-
tions of the selected and target WTs. In fact, CSEM is simi-
lar to an ensemble learning model, and its output is the
weighted sum of the estimated results for each sub-model.
When multiple LSTM models with good performance are in-
tegrated, the CSEM exhibits the advantages of diverse
LSTM models, resulting in superior generalization and accu-
racy performance compared with the LSTM model trained
solely on individual WT historical data. M, represents the
LSTM model trained by the SCADA data of the target WT,
and the corresponding y,=1. If significant data gaps or ex-
tensive abnormal data exist in the historical data of target
WT, obtaining a reliable A/, is impossible. The value of y, is
set to be 0, and thereafter, M, does not participate in the con-
struction of the CSEM.

C. Anomaly Detection

An anomaly in the target variable can be determined by
analyzing the residual, i.e., the difference between the actual
and estimated values of target variables. An anomaly in the
target variable considerably changes the value of the residual
and the reverse information entropy of the residual sequence.
Therefore, an anomaly detection method that does a joint
comparison of the effective value and information entropy of
the residuals is proposed. Two indices have been used to de-
termine whether the residuals are abnormal. The first index
R, measures the overall degree of deviation in the residual
sample. The greater the value of R , the higher the probabili-
ty that the detection sample is abnormal. The other index E,
is used to evaluate the degree of uncertainty in which the de-
tection sample is abnormal [28]. The lower the value of E,
the greater the certainty that the detection sample is abnor-
mal. To improve the detection accuracy, the proposed meth-
od divides the long time series of the target variable into
many short periods for anomaly detection using sliding win-
dow sampling. The values of R and E, for each short detec-
tion period can be calculated by:

1 & .
Rm: EVE ( i i)2
/NT; yi=y

N,
En:_ Z,pi lnpi

diT[nv

i

@

T.>T,

inv
r

In this paper, three statistical intervals are set to calculate
the information entropy for each detection period. These sta-
tistical intervals are determined using the boxplot of all the
target variable residuals obtained based on the validation da-
taset, as shown in Fig. 8(a). The figure shows that the three
statistical intervals are the normal, risk, and high-risk inter-
vals, which are indicated by different colors. Four key val-
ues of the boxplot, given as O, O,, O,, and O, , are used
to divide the intervals, where Q, and Q, are the 0.25 and
0.75 quartiles of the residual sequence, respectively, and Q,,
and Q,,, are the upper and lower bounds of the boxplot, re-
spectively, which can be calculated by:
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Fig. 8. Anomaly detection method. (a) Segment of detection sample. (b)
Value analysis of information entropy. (c) Anomaly detection flow.

Figure 8(b) shows the relationship between the proportion
p, (i=1,2,3) contained in the three intervals and the corre-
sponding E,. The figure shows that when a large proportion
of residuals fall in the same area, E, is small, reflecting the
high probability of the occurrence of an event. Figure 8(c)
shows the anomaly detection flow, which includes two judg-
ment processes. The first process determines whether R, of
the detection period exceeds the given threshold H . If it
does not exceed it, no anomaly occurs. Otherwise, another
judgment based on E, is required to determine whether R
exceeding A is caused by sporadic noise or abnormal oper-
ation. If £ is less than the given threshold H,,, R, exceeding

en® m

H  is likely caused by an abnormal operation. The values of
H  and H, are obtained based on the normal operation data.
First, the residuals of the target variable are calculated based

on the validation data. Next, the target variable time series



810

are divided into different detection segments using sliding-
window sampling. The values of R and E, of each detection
segment are then calculated. Finally, the maximum values of
R, and E, in all detection segments are taken as the values
of H  and H,, respectively.

en®

V. CASE STUDIES

Case studies were conducted based on the SCADA data of
two actual onshore WFs, labeled as WF1 and WF2, to verify
the effectiveness of the proposed method. WF1 is located in
the hilly area of the Shandong Peninsula, China, and WF2 is
located in the Gobi of Gansu Province, China. Each WF con-
tains 33 WTs, labeled as WTO0-WT32, where WTO is the tar-
get WT. Table II lists the data information of different WFs.
Data may have been deleted under certain conditions such as
during shutdowns, maintenance periods, or periods of very
low wind speeds (i.e., less than the cut-in wind speed). One
important consideration is that if the data from a specific pe-
riod of one WT are deleted, the data from other WTs during
the same period will also be removed. 7. was set to be 1
hour. In this paper, Python 3.8.3 programming language and
Pytorch 1.7.1 architecture were used to build all the models.
The computer was configured with an Intel 19-9900KF CPU
with 32 GB of RAM and a NVIDIA GeForce RTX 2060
GPU.

TABLE 11
DATA INFORMATION OF DIFFERENT WFS

WF Start and end Sampling Fault alarm Fault alarm
dates interval (min)  time of WTO information
November 1, . Gearbox front-
WF1 2018-June 15, 1 12'40’2(";;36 12, bearing tempera-
2019 ture abnormal
February 1, . . Gearbox oil
WE2 2018-April 15, 5 21'205(’;%“1 % {emperature
2018 over-limited
A. Case 1

Case 1 was conducted based on the data of WF1, where
those from November 1, 2018 to April 17, 2019 were used
as the training data. These data were also used to evaluate
the similarities of different WTs. The data from April 18,
2019 to May 15, 2019 were used as validation data to test
the combined estimation model. The data from May 16,
2019 to June 15, 2019 were used to evaluate the anomaly de-
tection method. The number of training data points was
246240, 224273 of which were available for similarity as-
sessment and model training after screening. Eight variables
were selected to evaluate the similarities among the WTs, in-
cluding three macro-variables and five micro-variables. The
three macro-variables were wind speed, main shaft rotation
speed, and output power. They can reflect the energy conver-
sion efficiencies of WTs from wind energy to mechanical en-
ergy and from mechanical energy to electrical energy. The
five micro-variables were the target variable gearbox front-
bearing temperature and its four closely related variables.

Figure 9 shows the importance coefficients between gear-
box front-bearing temperature and different variables, ob-
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tained using a random forest algorithm. Based on the results
shown in Fig. 9, the other four selected micro-variables were
the gearbox oil temperature (Gearbox oil T), gearbox rear-
bearing temperature (Gearbox rear bearing T), generator
front-bearing temperature (Gen_front bearing T), and na-
celle temperature (Nacelle T). The wind speed was not se-
lected and instead used as a macro-variable.

V1: gearbox oil temperature

V2: gearbox rear bearing temperature

: generator front bearing temperature

: wind speed

: nacelle temperature

: gearbox inlet oil temperature

: output power

: generator rotor speed

: gearbox high speed shaft temperature
: generator rear bearing temperature

: ambient temperature

: gearbox low speed shaft temperature
: main shaft rotor speed

: main shaft torque

0 n n n n n n n n n n
VI V2 V3 V4 V5 V6 V7 V8 V9 VIOVI1IVI2VI3Vi4
Variable

0.20

Coefficient
(=]
=
|

0.05}

Fig. 9. Importance coefficients between gearbox front-bearing temperature
and different variables.

Following the selection of variables, the similarity be-
tween each WT in WF1 and WTO could be quantified ac-
cording to the proposed similarity assessment method, with
the results shown in Fig. 10. Five WTs, i.e., WT6, WT11,
WT17, WT23, and WT32 (in orange color), with relatively
high similarities to WTO were preliminarily selected to pro-
vide their SCADA data for sub-model training, where their
similarity quantization values are listed in Table III. Figure
11 shows a similarity radar chart between WTO and the five
WTs in WFI1. The figure shows that the similarity between
each variable of the selected WTs and the corresponding
variable of WTO exceedes 0.8.

1.0

0.8

0.6
o~

0.4

0.2

0 10 12 14 16 18 20 22 24 26 28 30 32
5 79

11 13 15 17 19 21 23 25 27 29 31
WT

Fig. 10.
WFI.

Similarity assessment results between WTO and other WTs in

The SCADA data of WTO and five similar WTs were
used to train six LSTM models, respectively. The output
variable for each model is the expected gearbox front-bear-
ing temperature of the corresponding WT. The input vari-
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ables for each model include the gearbox oil temperature,
gearbox rear-bearing temperature, generator front-bearing
temperature, wind speed, and nacelle temperature of the cor-
responding WT. The trained models were tested to assess
their suitability for constructing a CSEM. The performance
evaluation of these models, trained using the SCADA data
of similar WTs, consists of two parts: testing the estimation
accuracy of the model using its own validation data, and test-
ing the adaptability of the model using the validation data of
WTO. Table III lists the performance assessment results of
the different LSTM models in WF1. These results demon-
strates that all of the models exhibited favorable estimation
accuracy when being tested using their respective validation
data. However, when the models trained with the data from
similar WTs were tested using the validation data of WTO,
the comprehensive score £ of all the models decreased. This
indicates that the different models exhibited different adapt-
abilities to the WTO SCADA data. Notably, the sub-models
corresponding to the WT with high similarity to WTO exhib-
ited good adaptability. In this paper, the model trained ac-
cording to the data of WTO and the three models with rela-
tively good performances in both tests (i.e., models trained
using the data of WT6, WT11, and WT23) were selected to
construct the CSEM.

TABLE III
PERFORMANCE ASSESSMENT RESULTS OF DIFFERENT LSTM MODELS
IN WF1

Accuracy verification Adaptability verification
Epe E,. R g E,. E,. K B
0.319 0377 0.967 1.389
0.325 0382 0.969 1.371

0.981 1.562

0.271 0.357
0.289 0375 0972 1.464
0.979 1.350

0.333  0.392
0.314 0.386 0.969 1.384

WT I

WTO
WT6
WTI11
WT23
WTI17
WT32

1.00
0.79
0.75
0.73
0.71
0.67

0.458
0.428
0.477
0.527
0.614

0.461
0.552
0.536
0.632
0.731

0.937
0.925
0.922
0.899
0.871

1.020
0.944
0.910
0.776
0.648

(d)

(©
1: output power; 2: wind speed; 3: rotor speed; 4: oil temperature
5: generator front bearing temperature; 6: nacelle temperature
7: gearbox rear bearing temperature; 8: gearbox front bearing temperature

Fig. 11.
WF1.

Similarity radar chart between WTO and five selected WTs in
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Next, three CSEM combination schemes were designed to
verify the feasibility of the proposed method, as listed in Ta-
ble IV. The performance of each CSEM in the three schemes
was assessed based on the validation data of the WTO. Fig-
ure 12 shows the bearing temperature estimation results of
WTO under normal operation according to different schemes.
Table V lists the model performance evaluation indices and
the corresponding anomaly detection thresholds of the differ-
ent schemes. The temperature curve estimated using the
CSEM of Sch3 is the closest to the actual temperature
curve. The performance evaluation indices of the CSEM in
Sch3 are also better than those of the other two CSEMs, in-
dicating that using the data of multiple similar WTs could
improve the accuracy of the estimation results. In addition,
the performance indices of the CSEM in Schl and Sch2
were very close, confirming that using only the data of simi-
lar WTs could also be used to construct an effective CSEM
for estimating the state variables of WTO.

TABLE IV
DIFFERENT COMBINATION SCHEMES

State estimation model
CSEM is the LSTM model trained using only the data of WTO

CSEM is combined with LSTM models and trained based on
the data of selected similar WTs, excluding the LSTM trained
with the data of WTO

CSEM is combined with multiple LSTM models and trained
with the data of WTO and those of all selected similar WTs

Scheme
Schl

Sch2

Sch3

75

70

—Schl
65+ —Sch2
—Sch3
*‘Real )

Temperature (°C)

60 . . . .
Apr. 18 Apr.24  Apr. 30 May 6
Apr.21  Apr. 27 May 3

Date

May 12
May 9 May 15

Fig. 12. Bearing temperature estimation results of WT0 under normal oper-
ation according to different schemes.

TABLE V
PERFORMANCE EVALUATION RESULTS OF DIFFERENT SCHEMES

Scheme E, . E, . R’ B H, H,
Schl 0.319 0.377 0.967 1.389 0.865 0.328
Sch2 0.331 0.408 0.958 1.296 0.937 0.351
Sch3 0.291 0.323 0.978 1.593 0.543 0.296

Following the performance test, the anomaly detection ef-
fectiveness of the three schemes was evaluated using the de-
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tection data of WTO. Figure 13(a) compares the actual and
estimated gearbox front-bearing temperatures. Figure 13(b)-
(d) show the anomaly detection results of schemes Schl,
Sch2, and Sch3, respectively.
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Fig. 13. Anomaly detection results of WTO0 in WF1 by different schemes.
(a) Comparison of estimation curves of bearing temperature based on differ-
ent schemes and real curves. (b) Anomaly detection results of Schl. (c)
Anomaly detection results of Sch2. (d) Anomaly detection results of Sch3.

Each subfigure clearly shows that the recognized anomaly
periods are consistent with the observed abnormal periods.
This consistency verified the reliability of the proposed
anomaly detection method. It should also be noted that Sch3
exhibited the earliest detection of abnormal temperatures,
with the earliest time at 06:00 on May 29, 2019. This detec-
tion preceded the system fault alarm for 14 days, highlight-
ing the early warning capability of Sch3. This result indicat-
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ed that comprehensive utilization of the SCADA data of
WTO and other similar WTs could effectively improve the
sensitivity of anomaly detection, and this is beneficial for
early discovery of anomalies. In addition, the earliest time
for Schl and Sch2 for determining an abnormal temperature
is nearly the same. These schemes could detect abnormal
temperatures 10 days prior to system failure, indicating that
using the SCADA data of similar WTs to detect anomalies
in WTO was feasible.

B. Case 2

The data used in Case 2 were obtained from WF2. As the
amount of available data is relatively small, using the
SCADA data of similar WTs to improve the reliability of
anomaly detection is more practical. The training, validation,
and detection data were from the periods of February 1,
2018 to March 4, 2018, March 5, 2018 to March 23, 2018,
and March 24, 2018 to April 14, 2018, respectively. In this
case, the data in the total period of February 1, 2018 to
March 23, 2018 were used to evaluate the similarities
among the different WTs because the condition monitoring
data of WTs in WF2 are insufficient. Of the total data avail-
able during this period, which amounted to 14688 records,
only 12727 records passed the data screening process and
are suitable for similarity assessment. The first 8436 records
were used for model training. Similar to Case 1, eight vari-
ables were selected to evaluate the similarities under operat-
ing conditions of the WTs. Three macro-variables are wind
speed, rotation speed, and output power. Five micro-
variables considered included the target variable of the gear-
box oil temperature and four other closely related variables.
After the importance coefficients of the different variables to
the gearbox oil temperature were compared, we selected the
gearbox rear-bearing temperature, gearbox high-speed shaft
temperature, gearbox inlet oil temperature, and gearbox front-
bearing temperature as the remaining four micro-variables.
The model output was the gearbox oil temperature during
the subsequent training of the LSTM model. The model in-
put included the four selected micro-variables as well as
wind speed and nacelle temperature.

Figure 14 shows the similarity assessment results between
WTO and the other WTs in WF2. It shows that the operating
conditions of WT1, WT3, WT5, WTS8, and WT15 are rela-
tively similar to WTO, where their similarity quantification
values were obtained, as shown in Table VI. Based on a
comparison of the performance evaluation index of each
model under the estimation accuracy and adaptability test,
the LSTM models trained by the data of WTO and the data
of WT1, WTS5, and WT8 were selected to construct the
CSEM.

The performances of the three CSEMs under the different
schemes were tested using the validation data of WTO0. Table
VII lists the performance indices and anomaly detection
thresholds of the different schemes. Figure 15 shows the ac-
tual and estimated gearbox oil temperature curves for the dif-
ferent schemes. A comparison of the performance evaluation
indices and estimation curves revealed that the CSEM in
Sch3 had the highest performance. The performances of the
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CSEMs under Schl and Sch2 are very similar. The results al-
so indicated that using data from similar WTs was beneficial
in improving the estimation accuracy of the CSEM. When
the SCADA data of multiple similar WTs were used, a CSEM
could be constructed to estimate the state variables of WTO.

813

Figure 16 shows the anomaly detection results for WTO in
WF2 by different schemes. A comparison of the anomaly de-
tection results of different schemes revealed that Sch3 is still
the earliest scheme to discover the abnormal gearbox oil tem-
perature, and the earliest time is 22:00 on March 30, 2018,
10 days ahead of the SCADA system fault alarm. In addi-

1.0
tion, the earliest time for Schl and Sch2 to detect the abnor-
08¢ mal state of the oil temperature is 05:00 on April 1, 2018
0 and 03:00 on April 1, 2018, respectively. The anomaly detec-
| tion results also proved the feasibility and effectiveness of
04l the proposed anomaly detection method.
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that the amount of data used to train the model significantly
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affected its performance. The more training data the model
used, the better the estimation accuracy. When the historical
data of the target WT are insufficient, a CSEM could be con-
structed using data from similar WTs to improve the accura-
cy of the model estimation results. Also, it is noteworthy
that the anomaly detection instances in both cases aligned
with significant deviations between the estimated and actual
values. This confirmed the efficacy of utilizing the effective
value and information entropy of the residuals for precise
anomaly identification.

C. Comparative Verification

1) Comparison of TSS Method with Other Methods

Two TSS measurement methods, namely, DTW [25] and
SBD [26], were adopted for comparison to verify the effec-
tiveness of the proposed TSS method. The wind speed and
gearbox front-bearing temperature data of all WTs in WF1
from November 1, 2018 to April 17, 2019 were used for sim-
ilarity comparison. Histograms and colored lines are used in
Fig. 17 to show the similarity assessment results. The figure
also shows the analytical time costs of the different methods.
For comparison, the assessment results of the different meth-
ods were scaled to [0,1]. The closer the assessment value
was to be 0, the stronger the similarities of different time se-
ries.

1.0 TSS, time cost is 219 s
— DTW, time cost is 3342 s
—— SDB, time cost is 1983 s
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Fig. 17. Similarity assessment results of different methods. (a) Wind

speed. (b) Bearing temperature.

As each similarity assessment method uses different calcu-
lation techniques, the method outcomes are also different,
even when the similarities of the same time series are mea-

sured. As no unified quantitative standard exists for the simi-
larity assessment of time series, accurately comparing the
proposed method and DTW or SDB is challenging. Howev-
er, based on the trend of the histogram and two line charts
shown in Fig. 17, the assessment outcomes obtained by the
three methods exhibited a consistent pattern despite different
objectives. This demonstrated the effectiveness of the pro-
posed TSS method. A comparison of time costs revealed that
the TSS method significantly outperformed the SBD and
DTW methods in terms of efficiency, which was consistent
with theoretical analysis based on time complexity.

2) Anomaly Detection Comparison with Other Methods

Four data-driven WT anomaly detection methods were
used for validation and comparison. The estimation models
of these methods were constructed based on different algo-
rithms, including the deep neural network (DNN) [29], gated
recurrent unite (GRU) [30], convolutional neural network-
LSTM (CNN-LSTM) [31], and multi-model combined
(MMC) estimation [32]. All four benchmarking models used
only the historical SCADA data of WTO to train and test the
corresponding estimation model. It should be noted that the
MMC differs from the proposed CSEM, where the MMC
was constructed based on different shallow learning sub-
models, and each sub-model was trained using the same his-
torical SCADA data from the WTO. In addition, the com-
bined weights of the MMC were obtained using an optimiza-
tion algorithm. The objective function minimizes the sum of
the squares of the estimated residuals of all sub-models. To
incorporate the temporal dependence of the target variable in-
to the aforementioned benchmarking methods, the actual val-
ue of the target variable at the previous moment was includ-
ed as model input at the current moment.

The performances of the four benchmark models and the
CSEM of Sch3 were compared based on the data from the
aforementioned two cases. Figure 18 presents the perfor-
mance evaluation results of the different models when the
validation data were used. It should be noted that the com-
prehensive scores S of all models shown in the figure are
the normalized values, and the normalized cardinality is the
maximum £ of the five models.

Figure 18 shows that the performance of the CSEM mod-
el was better than those of the other models. The differences
in performance among the different models may be related
to the total amount of training data. When the training data
of Case 1 are sufficient, the performance difference among
the different models is relatively small, as shown in Fig.
18(a). However, for relatively insufficient training data for
Case 2, the performances of all models except CSEM exhib-
ited a significant decline, as shown in Fig. 18(b). The CSEM
could maintain a relatively better performance because the
construction of CSEM used the training data of multiple sim-
ilar WTs, ensuring sufficient data for model training.

Next, different degrees of anomaly detection effectiveness
of the different methods were compared based on the detec-
tion dataset of the two cases. For comparison, all methods
adopted the abnormal recognition method proposed in this
paper. Figure 19 shows the comparison of anomaly detection
results of different methods.
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1257 When the training data are sufficient, the detection results
ERT) of CSEM and MMC are similar. Both CSEM and MMC
5075 could detect the abnormal temperature of the gearbox front-
g bearing temperature 14 days earlier than the system fault
§0~50- alarm. In addition, these two combined-model-based meth-
%0251 ods detected anomalies significantly earlier than the other
= single-model-based methods. However, when the training da-

‘ Epae Epe R? B ta of WTO are insufficient for Case 2, the anomaly detection

Index results of the different models as shown in Fig. 19(b) were

(a) different, and the proposed method could detect the abnor-

g 100 mal state of the gearbox oil temperature earlier than the oth-

S 0.75 er methods. These comparison results revealed that the pro-

§050 posed method are more sensitive to anomalies, and the per-

g ) formance of the CSEM could be guaranteed even when the
£ 025 training data of the WT are insufficient.

£ The anomaly detection reliabilities of the different meth-

e Ermse R B ods were compared when the training data contained abnor-

I‘Z‘é‘;x mal data. The anomaly detection results shown in Fig. 19 re-
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Fig. 19. Comparison of anomaly detection results of different methods. (a) Case 1. (b) Case 2.
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Therefore, this contrast experiment used a portion of the
detection data containing abnormal data to train the estima-
tion models. Since the amount of detection data for Case 2
is small, this contrast experiment used only the detection da-
ta for Case 1. As new training data, 12774 records from
May 25, 2019 to June 5, 2019 were used. Based on the
anomaly detection results of Sch3 for Case 1, the abnormal
data accounted for 26.4% of the new training data. In addi-
tion, the data from June 6, 2019 to June 15, 2019 were used
as new detection data. The four comparison methods used
only the historical data of WTO to train their estimation mod-
els, whereas the proposed method used both the historical da-
ta of WTO and three selected similar WTs in the same peri-
od to construct the CESM. The input and output variables
for each model are the same as those for Case 1. In this con-
trast experiment, no validation data were used, and the anom-
aly detection thresholds /,, and H, were determined based
on the new training data.

Figure 20 shows the anomaly detection results of the dif-
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ferent methods. The figure shows that under abnormal data
in the training data, the anomaly detection results of the dif-
ferent methods were different. All methods could detect the
abnormal temperature of the gearbox front bearing prior to
the SCADA system fault alarm. CSEM is the first to discov-
er abnormal temperatures and could also detect multiple tem-
perature anomalies prior to the system fault alarm. In addi-
tion, a comparison of the anomaly detection results of the
different methods, as shown in Fig. 19(a) and Fig. 20(b), re-
vealed that the anomaly detection results of the CSEM are
roughly the same after June 6. However, the anomaly detec-
tion results of the DNN, GRU, CNN-LSTM, and MMC
were significantly different after June 6. The GRU, CNN-
LSTM, and MMC identified the normal data as abnormal,
whereas the DNN did not detect the abnormal temperature at
the time of the system fault alarm. The aforementioned re-
sults prove that the proposed method could effectively allevi-
ate the effects of abnormal training data of the target WT on
the anomaly detection results.
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Fig. 20. Anomaly detection results of different methods. (a) Real and estimated values. (b) Anomaly detection results.
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D. Discussion

The comparison results of the three schemes in Cases 1
and 2 demonstrated that the proposed CSEM outperformed
the LSTM model trained solely on historical data from a sin-
gle WT in terms of estimation accuracy and model stability.
This was primarily because the CSEM uses a decision-layer
fusion method to combine the advantages of multiple LSTM
models. This not only undermines the effects of anomalous
and insufficient training data on the estimation results of a
single LSTM model, it also enhances the reliability of the
CSEM when dealing with various complex scenarios. In ad-
dition, the proposed method can reliably and efficiently as-
sess the similarities of two time-series as follows. First, the
TSS employs a piecewise linearization method for segment
comparison, which ensures the reliability of time series anal-
ysis. Second, Euclidean distance is used to calculate the am-
plitude and trend change distances of each segment, making
it more efficient than DTW and SBD. Finally, the CSEM
demonstrated superior accuracy and reliability in detecting
anomalies as compared with the other models. Its success
can be attributed to its robustness and generalization capabili-
ties, which can use historical data from similar WTs to miti-
gate the effects of abnormal or insufficient data on model
training. The proposed method was demonstrated to be effec-
tive and feasible through case studies and comparative exper-
iments. This offers a new perspective on leveraging valuable
information from the condition-monitoring data of multiple
WTs.

VI. CONCLUSION

This paper proposed a method to improve anomaly detec-
tion accuracy using the SCADA data of WTs under similar
operating conditions in the same WF. An operating condition
similarity assessment method was first presented that could
objectively quantify the operating condition similarities of
different WTs by considering the similarities of multiple vari-
ables. Different LSTM models were then trained using SCA-
DA data from the target WT and selected similar WTs. A lin-
ear combination method was used to combine the LSTM
models with superior performance to construct a CSEM for
estimating the expected state of the detection target variable.
In addition, an improved abnormal state identification meth-
od combining residuals effective value and information entro-
py comparisons was proposed to identify the abnormal state
of the target variable. The effectiveness of the proposed
method was verified using actual SCADA data from two on-
shore WFs. The results demonstrated that the sensitivity and
reliability of the CSEM could be improved by using the
SCADA data of similar WTs. Even when only the historical
data of similar WTs are used, a CSEM could be constructed
to conduct anomaly detection for the target WT. Experiments
were conducted to compare and verify the detection accura-
cy of the proposed method with those of other anomaly de-
tection methods. The experimental results showed that the
proposed method had more advantages than the other meth-
ods and could maintain good detection accuracy when the
historical training data of the target WT were insufficient or
contained abnormal data.
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