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Rotor Angle Stability Prediction Using Temporal 
and Topological Embedding Deep Neural Network 

Based on Grid-informed Adjacency Matrix
Peiyuan Sun, Long Huo, Xin Chen, and Siyuan Liang

Abstract——Rotor angle stability (RAS) prediction is critically 
essential for maintaining normal operation of the interconnect‐
ed synchronous machines in power systems. The wide deploy‐
ment of phasor measurement units (PMUs) promotes the devel‐
opment of data-driven methods for RAS prediction. This paper 
proposes a temporal and topological embedding deep neural 
network (TTEDNN) model to accurately and efficiently predict 
RAS by extracting the temporal and topological features from 
the PMU data. The grid-informed adjacency matrix incorpo‐
rates the structural and electrical parameter information of the 
power grid. Both the small-signal RAS with disturbance under 
initial operating conditions and the transient RAS with short 
circuits on transmission lines are considered. Case studies of 
the IEEE 39-bus and IEEE 300-bus power systems are used to 
test the performance, scalability, and robustness against mea‐
surement uncertainties of the TTEDNN model. Results show 
that the TTEDNN model performs best among existing deep 
learning models. Furthermore, the superior transfer learning 
ability from small-signal RAS conditions to transient RAS con‐
ditions has been proved.

Index Terms——Rotor angle stability, topological embedding, 
deep learning, graph convolution network.

I. INTRODUCTION 

DIGITAL transformation plays an essential role in the 
modernization of the power systems. The wide deploy‐

ment of phasor measurement units (PMUs) enables data col‐
lection on wide-area power systems, facilitating engineers to 
analyze power system dynamics and predict system stability 
in a data-driven manner [1], [2]. The instability problem has 
been traditionally associated with rotor angle stability (RAS) 

[3], which refers to the ability of synchronous machines in a 
power system to remain in synchronism after being subject‐
ed to a disturbance [4]. With the increasing penetration of re‐
newable generations in modern power systems, the RAS re‐
quires a more accurate and fast prediction due to the emerg‐
ing low inertia and stochastic characteristics. Currently, the 
prediction methods of RAS can be classified into two catego‐
ries, i.e., the model-driven methods and the data-driven meth‐
ods [5].

One of the commonly used model-driven methods is the 
laborious time-domain simulation (TDS) based on high-di‐
mensional nonlinear differential-algebraic equations (DAEs) 
that express the dynamics of power systems [6]. TDS is 
time-consuming since it demands the whole state trajectories 
to reveal the system stability. Although different approaches 
have been proposed to accelerate the TDS process, such as 
parallel computing [6] and advanced hardware [7], huge 
computation resources are still required to handle the increas‐
ing complexity of power systems and diverse operational sce‐
narios. The Lyapunov function family’s model-driven meth‐
od is used for an analytical approach for stability assessment 
in power systems [8]. Unfortunately, finding a Lyapunov 
function to evaluate the RAS of power systems accurately 
has proved very difficult [9]. Therefore, some researchers 
find model-free methods based on maximum Lyapunov expo‐
nent [10].

Recently, the data-driven methods, especially the deep 
learning methods, attracted a lot of research interest in pre‐
dicting RAS in power systems [1], [2], [11], [12]. Compared 
with model-driven methods, deep learning performance does 
not rely on the prior knowledge and model details of power 
systems. Furthermore, the strong generalization ability and 
the nature of offline training and online diagnosis pattern of 
deep learning provide great potential to meet the high accura‐
cy and fast online requirements in practical applications [1].

Among the existing deep learning models, convolution 
neural network (CNN) has made significant achievements in 
many fields [13], including RAS prediction in power sys‐
tems. For example, [2] proposed a fast power system RAS 
evaluation model based on CNN and the voltage phasor com‐
plex plane image. Reference [11] designed cascaded CNNs 
to capture data from different TDS time intervals, extract fea‐
tures, predict stability probability, and determine TDS termi‐
nation. Besides, other deep learning models are also used for 
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predicting RAS, such as stacked denoising autoencoder 
(SDAE) [14] and long short-term memory (LSTM) network 
[12]. The prediction results from deep learning models can 
be used to accomplish further operational tasks such as pre‐
ventive control [15]. However, since power systems are com‐
plex dynamical networks, the architectures of the above-men‐
tioned deep learning models need proper interpretability with 
the spatial correlations of power systems. Therefore, effec‐
tively using the important topological information of power 
network structures in deep learning remains challenging.

The graph neural network (GNN) is a promising deep 
learning model to extract features of the spatial correlations 
of power systems since GNN can naturally map the power 
network structure into its neural network connections. As 
one of the GNN family, graph convolution network (GCN) 
[16] combines topological structure with convolution algo‐
rithm and has been proven extremely powerful for the com‐
plex dynamical network analysis [17]. GCN demonstrates 
good classification and prediction capability with the graph-
structured data in power systems [18]. For example, [19] de‐
veloped an interpretable GCN to guide cascading failure 
search efficiently. Nevertheless, the GCN could be more ad‐
ept at capturing the sequential characteristics, i.e., the tempo‐
ral information of time series of power system dynamics. Ad‐
ditional techniques are needed to extract features from the 
time domain of power system transient dynamics. For se‐
quence modeling [20], the convolutional technique has been 
developed extensively in recent works and outperformed the 
baseline of well-known recurrent network architectures for 
sequence modeling tasks [21]. As one of the convolutional 
technique-based recurrent architectures, temporal convolu‐
tional network, also known as TCN, has been utilized for 
time-series predictions in power systems, demonstrating pow‐
erful memory ability [22].

Some related methods of GNN family based RAS predic‐
tion have been proposed in recent studies. Reference [23] in‐
troduced the graph attention network (GAT) for both RAS 
and short-term voltage instability prediction [23]. Reference 
[24] proposed the multi-graph attention network with residu‐
al structure (ResGAT) for RAS assessment, which is adapted 
to the power system topology changes [24]. A similar GCN 
architecture with a residual mechanism was designed to over‐
come the network degradation phenomenon during model 
training [25]. Later, an attention-based hierarchical dynamic 
graph pooling network was proposed to make the deep learn‐
ing model more robust against system-scale changes [26]. A 
multi-task recurrent graph convolutional network (RGCN) 
combined with LSTM was introduced for stability classifica‐
tion as well as critical generator identification [27]. Howev‐
er, to the best of our acknowledge, no existing studies con‐
sidered the whole categories of RAS prediction, i.e., they fo‐
cused on the scenario for either small-signal RAS [25] or 
transient RAS [23], [24], [26], [27]. The comprehensive pre‐
diction performance of a GNN model on both small-signal 
and transient RAS is still unclear. Meanwhile, few related 
studies discussed the model robustness against practical mea‐
surement uncertainty, i. e., the measurement noise and sam‐

pling cycle of PMUs.
In this paper, the temporal and topological embedding 

deep neural network (TTEDNN) model is proposed by com‐
bining GCN and TCN to capture the spatio-temporal fea‐
tures of transient dynamics in power systems for RAS pre‐
diction. Generally, the main contributions of this paper are 
as follows.

1) The TTEDNN model is proposed to predict RAS by 
the temporal and spatial features extracted from the post-dis‐
turbed transient dynamics. The grid-informed adjacency ma‐
trix is used to incorporate the structural and electrical param‐
eter information of the power grid.

2) The robustness of the TTEDNN model against different 
levels of measurement noise and different PMU data cycles 
is illustrated.

In addition, the transfer learning capability of the 
TTEDNN model is investigated. It is found that the 
TTEDNN model trained with the small-signal perturbation 
dataset can be used as a pre-trained model for predicting the 
transient RAS.

The rest of this paper is organized as follows. Section II 
introduces the RAS of power systems. Section III proposes 
the architecture of the TTEDNN model. Case studies are giv‐
en in Section IV. The conclusion remarks are drawn in Sec‐
tion V.

II. RAS OF POWER SYSTEMS 

In this section, the concept of RAS in a power system, the 
RAS assessment, and disturbances imposed for the study of 
RAS are described.

A. Concept of RAS in a Power System

Generally, the dynamics of a power system is governed by 
a set of DAEs, which can be expressed in the compact form 
as:

ì
í
î

ẋ = f (xyt)
0 = g(xyt) (1)

where x and y denote the state and algebraic variables, re‐
spectively; f (×) denotes the dynamics of synchronous ma‐
chines and control systems; and g(×) denotes the load flow of 
a power system. 

Given an initial condition of x and y, the solution of (1) 
yields time-varying trajectories of the state variables x, i. e., 
the rotor angles and frequencies, and algebraic variables y, i.
e., the bus voltages and active power injections. The RAS of 
a power system is concerned with the ability of the intercon‐
nected synchronous machines in a power system to remain 
in synchronism under normal operating conditions and to re‐
gain synchronism after being subjected to a small or large 
disturbance [28]. According to the nature of stability prob‐
lems, the RAS can be classified in terms of two subcatego‐
ries: the small-signal RAS for small disturbances and the 
transient RAS for large disturbances. The small-signal RAS 
depends on the initial operating state of the system [4], i.e., 
the initial condition of x in (1). The transient RAS is con‐
cerned with severe disturbance such as N - 1 contingency 
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[4], i.e., short circuits on transmission lines, which can be re‐
flected by the change of y in (1).

B. RAS Assessment

The transient stability index (TSI) σ [29], a common indi‐
cator for assessing the stability status of the system, is used 
in this paper:

σ =
360 - ||Dδij

max

360 + ||Dδij
max

(2)

where ||Dδij
max

 is the maximum absolute value of the differ‐

ence between the rotor angles of the synchronous machines i 
and j. The system is stable if σ > 0; otherwise, it is unstable. 
The traditional method to evaluate TSI requires the dynamic 
trajectories of rotor angles from TDS, i.e., numerically solv‐
ing the DAEs in (1). For power systems with relatively large 
scales, the TDS becomes time-consuming, and the demand 
for fast on-line RAS assessment cannot be satisfied. We pro‐
posed an effective data-driven RAS prediction model called 
the TTEDNN model by utilizing the information embedded 
in PMU data, which will be introduced in Section III.

C. Disturbances

For the small-signal RAS, the disturbances of initial oper‐
ating conditions in power systems have varieties of sources, 
including load variations, market trading, and renewable en‐
ergy fluctuations. For example, energy trading happens most 
of the time, inducing several considerable local frequency de‐
viations per day, even four times per hour. We mainly focus 
on the two most important variables, i.e., the rotor angle and 
rotor angular speed, for the RAS assessment and generator 
stability ranking [6]. The distribution of the frequency in re‐
alistic power systems demonstrates the non-Gaussian charac‐
teristics of heavy tail and skewness, which can be more ac‐
curately described by the Levy-stable distribution [30]. Addi‐
tionally, the maximum fluctuations of frequency should also 
be set to be an appropriate value; otherwise, the disturbances 
will be too small to disturb the system or too large to be 
found in realistic power systems. Normally, the disturbances 
of frequency Df are bounded to ±1% to ±4% of rated fre‐
quency (50 Hz or 60 Hz) [31]. Thus, we set the disturbance 
limit of angular speed as Dωmax = 2πDf = 10 rad/s. Consider‐
ing a power system with N nodes, we define m <N to be the 
number of nodes simultaneously disturbed, where m = 1 and 
m > 1 refer to the single-node disturbance case and the multi‐
ple-node disturbance case, respectively. We focus on the dis‐
turbances of small-signal RAS on rotor angle and angular 
speed [δiωi ], i = 12N. For the transient RAS, power sys‐
tems are subjected to more severe disturbances, i.e., the N - 1 
contingency. We consider scenarios by triggering short cir‐
cuits of transmission lines and predict the transient RAS at 
post-fault stages. The more severe disturbances such as N - s 
(s ³ 2) contingencies are rare events in power systems [32] 
and are not taken into account in this paper.

III. ARCHITECTURE OF TTEDNN MODEL 

The TTEDNN model is proposed to predict the RAS in 

power systems by extracting the temporal and topological 
features embedded in the time-series data of PMUs.

A. Data Representation

A sample for training and testing the TTEDNN model 
composes of an input X and its corresponding label y. The 
data of transient dynamics after disturbances is collected by 
PMUs and used as the input of the TTEDNN model, repre‐
senting the multivariate time series of state variables X =
{x1x2xF }ÎRF ´N ´ l, where F is the number of state vari‐
ables; N is the number of nodes in power systems; l is the 
length of time series under fixed sampling frequency fs of 
PMUs; and x i is the time series of the ith state variables, 
which can be expressed as:

x i =

é

ë

ê

ê

ê

ê
êê
ê

ê

ê

ê ù

û

ú

ú

ú

ú
úú
ú

ú

ú

úx1
i (0) x2

i (0)  xN
i (0)

x1
i (1) x2

i (1)  xN
i (1)

  
x1

i (l - 1) x2
i (l - 1)  xN

i (l - 1)

T

(3)

where the jth column of x i is the post-fault time series of 
node j ( j = 12N) in power systems. Four state variables 
are used for the input of the TTEDNN model, including the 
bus relative phase Uθ, the bus voltage magnitude ||U , the ro‐
tor angle δ, and the rotor angular speed ω, and therefore F =
4. Although the rotor angle and rotor angular speed of syn‐
chronous machines cannot be measured directly by PMU, re‐
cent studies have shown that signals of rotor angle and rotor 
angular speed are available by PMU data based estimation 
algorithms [33], [34].

The label y is a binary, indicating the final RAS concerns 
the input X. According to the TSI defined in (2), y is deter‐
mined as:

y = {1 σ > 0
0 σ £ 0

(4)

where y = 1 and y = 0 correspond to the stable state and unsta‐
ble state, respectively. The output of the TTEDNN model 
gives the probability p that the power system will evolve to 
a stable or unstable state. Numerically, we take p > 0.5 for 
the stable state and p £ 0.5 for the unstable state.

B. Structure of TTEDNN Model

The structure of the TTEDNN model is shown in Fig. 1. 
The structure has three main parts, the graph convolution 
(GC) modules, temporal convolution (TC) module, and 
multi-layer perception (MLP) prediction layer. Each GC 

module has five neurons, where hi and h'i (i = a to e) repre‐
sent the input states of the five neurons in each GC module. 
The operation of the GC module is to update the output 
state of the focused neurons (red) using the adjacency ma‐
trix, which is only relevant to the adjacent neurons (blue) 
rather than others (gray). The topological features are then 
extracted by the fully-connected (FC) layer and further pro‐
cessed by the TC module, composed of R residual blocks 
with dilated factors d1 to dR. In the end, the MLP layer gen‐
erates the prediction probability function.
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1)　GC Modules
The TTEDNN model starts with n GC modules to extract 

topological features. Each GC module is sequentially com‐
posed of a GCN layer, a batch normalization (BN) layer, 
and a rectified linear unit (ReLU) activation function. 

The structure of the GCN layer can be represented as an 
undirected graph [16] G = (V E B), where VÎRN is the set 
of neurons; EÎRE is the set of links between neurons; and 
BÎRN ´N is the adjacency matrix of the graph. The re-nor‐
malized adjacency matrix B̂′ is often used in the GCN layer:

B̂′= D̂
-

1
2 B̂D̂

-
1
2 (5)

where B̂ =B + IN denotes the adjacency matrix with self-
loop, and IN is the identity matrix; and D̂ is the diagonal 
node degree matrix, D̂ii =∑

j

B̂ij.

The operation of the ith GC module is defined as:

H i + 1 =ReLU(BN(B̂′H iW i + bi )) (6)

where ReLU(×) denotes the activation of ReLU function; 
H i + 1ÎRN ´C denotes the output states of the ith GC module 
as well as the input states of the (i + 1)th GC module; BN(×) is 
the batch normalization function; W iÎRC ´F is the network 
weight of GCN layer; and biÎRN ´F denotes the bias. Then, 
the last GC module is connected to a flatten layer to reshape 
the output states. Following the flatten layer, a FC layer is 
adopted to extract the topological features to feed into the 
TC module.
2)　TC Module

The TC module is used to further extract temporal fea‐
tures based on the output of the last GC module. As shown 
in Fig. 1, the TC module is composed of R residual blocks 
using the 1D fully convolutional network (1D-FCN). The 

1D-FCN utilizes the dilated casual convolution consisting of 
the dilated convolution technique and casual convolution 
technique, and a residual connection. The solely 1D-FCN 
structure produces an output with the same length as its in‐
put, and the casual convolution technique ensures that the 
output emitted by a 1D-FCN layer at time step t is con‐
volved only with elements from time step t and earlier in the 
previous layer. Therefore, the TC module considers the 
whole history information for future prediction. The disad‐
vantage is that the casual convolution technique can only 
look back to the historical information with the size linear to 
the network depth. The casual convolution can be optimized 
with the dilated convolution technique by introducing the ex‐
ponential receptive field. Therefore, the TC module can take 
all historical information into account with smaller network 
depth. Specifically, the dilated convolution operation F(×) of 
the rth residual block (r = 12R) can be defined as a dilat‐
ed transformation of a 1D time series data x:

F( j)=∑
i = 0

k - 1

f (i)xj - dr × i (7)

where f (i) is the convolution filter f: 01k - 1®R; k de‐
notes the filter size; dr denotes the dilated factor of the rth re‐
sidual block, and there are R dilated factors for R residual 
blocks as d1 to dR; and j = 12n, and n is the size of x. 
Adjusting the dilation size can allow the top level of 1D-
FCN to represent a wider range of the input as much as pos‐
sible, thus expanding the receptive field extensively. More‐
over, the residual connection is used to stabilize the network 
training to make the layers learn deep residual information 
as the modifications to the identity mapping when the casual 
convolution is dilated with considerable depth. As a result, 
the operation of the rth residual block is defined as:
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Fig. 1.　Structure of TTEDNN model.
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zr =ReLU(xr + LF(F(xr ))) (8)

where r = 12R; xr and zr denote the input and output of 
the r th residual block, respectively; and LF(×) denotes the lay‐
er normalization technique.
3)　MLP Prediction Layer

Finally, MLP with the sigmoid activation function is uti‐
lized to generate the prediction as a probability function.

Two custom-made training technics called the grid-in‐
formed adjacency matrix and class-weighted loss function 
are also introduced to improve the prediction performance of 
the TTEDNN model.

1) Grid-informed adjacency matrix
Taking the electrical and structural properties of a power 

system into consideration, three different grid-informed adja‐
cency matrices B are proposed in the GC modules for the 
spatial feature extraction. First, according to [16], we choose 
the binary adjacency matrix of a power system added with 
self-connection (denoted as B1), whose element is expressed 
in (9). It considers the topology of the power system but ig‐
nores the weight of edges. Second, the active power flows 
are added as the weights of edges in the adjacency matrix 
(denoted as B2), whose element is expressed in (10). Third, 
we treat the maximum transmission capability of a transmis‐
sion line as off-diagonal elements in the adjacency matrix to‐
gether with active power injections for diagonal ones (denot‐
ed as B3), whose element is expressed in (11).

B1
ij =

ì
í
î

ïï
ïï

1    (ij)Î E norm
p  or i = j

0    (ij)Ï E norm
p  or (ij)Î E con

p

(9)

B2
ij =

ì
í
î

ïï
ïï

Kij sin(δi - δj )    (ij)Î E norm
p

0                            (ij)Ï E norm
p  or (ij)Î E con

p

(10)

B3
ij =

ì

í

î

ïïïï

ï
ïï
ï

Kij    (ij)Î E norm
p

0       (ij)Ï E norm
p  or (ij)Î E con

p

Pi     i = j

(11)

where E norm
p  and E con

p  are the normal and faulty transmission 
line sets under contingencies, respectively; (ij) denotes the 
transmission line between node i and node j; Kij is the maxi‐
mum transmission capability of the transmission line (ij); 
and Pi is the active power injection of node i. If 
(ij)Ï E norm

p  E con
p , no transmission line exists between node i 

and node j. If (ij)Î E con
p , (ij) is a faulty transmission line 

during the contingency.
2) Class-weighted loss function
For training the TTEDNN model, the class-weighted bina‐

ry cross entropy (BCE) is used as the loss function Loss 
with the L2 regularization:

Loss =∑
i

[α1 yi log2 pi + α0 (1 - yi )log2 (1 - pi )] +

β∑1
2 ( ) wk

2
+  bk

2
(12)

where yi and pi denote the label and the model output of the 
ith sample, respectively; α0 and α1 denote the weight factors 
corresponding to the stable state and unstable state, respec‐
tively; wk and bk are the learnable network parameters; and β 

is the regularization weight. Class-weighted BCE is proven 
significantly helpful for the training dataset with the great 
imbalance. In the training dataset for RAS prediction, there 
are fewer samples concerning unstable states. The imbalance 
of the dataset results from the fact that practical power sys‐
tems are stable in most of the time under common distur‐
bances (see the disturbance discussed in Section II-C).

IV. CASE STUDY 

In this section, the IEEE 39-bus and IEEE 300-bus power 
systems are used to test the performance, scalability, effect 
of PMU data cycles, and robustness against measurement 
noise of the TTEDNN model. Furthermore, the transfer 
learning ability of the TTEDNN model trained on the small-
signal RAS dataset to predict the transient RAS is discussed.

A. Training Setup

The specific parameters of IEEE 39-bus and IEEE 300-
bus power systems for the evaluation and scalability valida‐
tion of the TTEDNN model are derived from the PST tool‐
box [35] and Matpower 6.0 toolbox [36]. Following the dis‐
turbance discussed in Section II-C, disturbances on the ini‐
tial states of rotor angle and angular speed [δiωi ] are consid‐
ered for the small-signal RAS. The training dataset contains 
the set under the single-node disturbance case (m = 1), while 
the test dataset consists of the set under both the single-node 
and multiple-node disturbance cases (m > 1).

Given a power system with N nodes, procedures for gener‐
ating the dataset under the single-node disturbance case are 
described as follows.

1) Solve the power flow and let the solution be the undis‐
turbed initial state.

2) The undisturbed initial state for each node i = 12N 
is randomly disturbed Ki times individually according to the 
distribution of frequency fluctuations.

3) For each disturbed initial state, conduct TDS and use 
the resulting trajectories to label its TSI.

For each sample in the dataset under the multiple-node 
disturbance case, m (m > 1) different nodes are simultaneous‐
ly disturbed. The corresponding data generation processes 
are as follows.

1) Solve the power flow and let the solution be the undis‐
turbed initial state.

2) Randomly select M groups of nodes, and each group in‐
cludes m nodes.

3) Within each group of nodes, the undisturbed initial 
states of m nodes are randomly disturbed Km times simulta‐
neously according to the distribution of frequency fluctua‐
tions.

4) For each group of disturbed initial states, conduct TDS 
and use the resulting trajectories to label its TSI.

For the single-node disturbance dataset of the IEEE 39-
bus power system, given Ki = 1000, 39000 samples in total 
are generated with 33004 samples of stable states and 5996 
samples of unstable states. For the single-node disturbance 
dataset of the IEEE 300-bus system, given Ki = 441, 52038 
samples in total are generated with 48186 samples of stable 
states and 3852 samples of unstable states. For the multiple-
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node disturbance dataset of the IEEE 39-bus power system, 
given m = 3, M = 60, and Km = 200, 12000 samples in total 
are generated with 7377 samples of stable states and 4623 
samples of unstable states. For the multiple-node disturbance 
dataset of the IEEE 300-bus power system, given m = 3, M =
60, and Km = 200, 12000 samples in total are generated with 
11132 samples of stable states and 868 samples of unstable 
states. The single-node disturbance dataset is used for the 
training of the TTEDNN model, and 60%, 20%, and 20% of 
the dataset are used for training, validation, and testing, re‐
spectively. The model trained with the single-node distur‐
bance dataset is directly used for predicting RAS under 
multi-node disturbance. Therefore, 100% of the multi-node 
disturbance dataset is used for testing. We have two test data‐
sets, one for predicting the RAS under single-node distur‐
bance, and the other for predicting the RAS under multi-
node disturbance.

The dataset of N - 1 contingencies for the transient RAS 
prediction is generated as follows.

1) Randomly change all loads from 80% to 120% at the 
basic load levels.

2) Solve power flow and let the solution be undisturbed 
initial state.

3) Conduct the TDS based on the undisturbed initial state, 
trigger a three-phase short-circuit fault on a randomly select‐
ed transmission line, and clear the fault after 0.1 s.

4) Label the TSI with the post-fault state.
Consequently, for the IEEE 39-bus system, 28328 samples 

are generated with 20986 samples of stable states and 7342 
samples of unstable states. For the IEEE 300-bus system, 
30850 samples are generated with 21808 samples of stable 
states and 9042 samples of unstable states.

The confusion matrix is helpful for the evaluation of the 
prediction model, which defines four values based on actual 
and predicted results, i. e., TP, FP, TN, and FN, where TP 
(TN) is the extent to which the model correctly predicts the 
positive (negative) class, and FP (FN) is the extent to which 
the model wrongly predicts the negative (positive) class. In 
this paper, the stable/positive and unstable/negative are inter‐
changeable. Four metrics including accuracy ACC, false posi‐
tive rate FPR, false negative rate FNR, and F-score Fscore are 
used to measure the performance of the TTEDNN model.

ACC =
TP + TN

TP + TN +FP +FN
(13)

FPR =
FP

FP + TN
(14)

FNR =
FN

FN + TP
(15)

Fscore = (1 + γ2 )
Precision Recall

γ2 Precision +Recall
(16)

where Precision = TP (TP +FP ) denotes the fraction of TP 

among the models classified as positive class; and Recall =
TP (TP +FN) denotes the fraction of TP among the total 

number of positive samples. While ACC, FPR, and FNR can 
reveal whether the predictions are good or not, Fscore could 
evaluate the prediction of the model of imbalanced samples 

more comprehensively for it indicates how much more im‐
portant recall is than precision or vice-versa. We set γ = 1 in 
this paper.

The TTEDNN model is based on Tensorflow 2.3.1 and de‐
ployed on a server with Intel Xeon CPU E5-2620 v3. Two 
groups of GC modules (n = 2F) with the kernel sizes of 16 
and 8 are used to extract topological features from PMU da‐
ta input. The TC module has five RBs (R = 5), where the ex‐
ponential dilated factors d = 2r - 1 for r = 12R, the kernel 
size k is 2, and the number of filters is 32, respectively, for 
each residual block. The MLP prediction layer has the di‐
mensions of (16, 1) and (32, 1) for the input layer and the 
hidden layer, respectively. The learning rate and batch size 
for the training are set to be 10-3 and 128. L2 regularization 
weight β is set to be 5 ´ 10-4. Weight factor α0 is set to be 1, 
and α1 is calculated on each batch as:

α1 =

ì

í

î

ï
ïï
ï

ï
ïï
ï
ï
ï

256∑
i = 1

256

yi - 1    ∑
i = 1

256

yi ¹ 0

0                           ∑
i = 1

256

yi = 0

(17)

B. Small-signal RAS Prediction

For small-signal RAS prediction, Fig. 2 shows the valida‐
tion performance of the trained TTEDNN model in terms of 
ACC and class-weighted loss at different training epochs in 
both the IEEE 39-bus and IEEE 300-bus power systems. It 
can be found that ACC increases sharply to 98% within 20 
epochs, and the training of the TTEDNN model converges 
quickly and smoothly after nearly 150 epochs.

Table I shows the performance metrics for small-signal 
RAS prediction under the single-node disturbance dataset in 
the IEEE 39-bus and IEEE 300-bus power systems.

Six existing models including support vector machine 
(SVM), MLP, CNN [13], LSTM, GCN [19], and RGCN 
[27] are used to compare the performance metrics with the 
proposed TTEDNN model. It can be observed from Table I 
that the TTEDNN model outperforms the compared deep 
learning models under almost all performance metrics. Spe‐
cifically, the TTEDNN model has the best performance in 
terms of ACC of 99.63% and Fscore of 0.9965 for the IEEE 
39-bus power system, and ACC of 99.88% and Fscore of 
0.9989 for the IEEE 300-bus power system. 
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Fig. 2.　 Validation performance of trained TTEDNN model in terms of 
ACC and Loss at different training epochs for small-signal RAS prediction 
in both IEEE 39-bus and IEEE 300-bus power systems.
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The correct prediction of unstable states is critically impor‐
tant in the practical implementation, which can be reflected 
by the FPR, the proportion of the fault prediction in all un‐
stable samples. The TTEDNN model has the best FPR of on‐
ly 0.47%, i.e., among all the unstable samples, only six sam‐
ples are mistakenly predicted to be stable. The MLP has the 
best FPR of 0.14% under the single-node test dataset of the 
IEEE 300-bus power system, slightly better than that of the 
TTEDNN model with 0.17%.

The performance metrics for small-signal RAS prediction 
under the multiple-node disturbance dataset in the IEEE 39-
bus and IEEE 300-bus power systems are also investigated, 
since the multiple-node disturbances are more likely to hap‐
pen in reality and make the prediction task more complicat‐
ed. As shown in Table II, the TTEDNN model has the best 
performance on predicting the small-signal RAS under multi‐
ple-node disturbances, i. e., ACC of 98.60% and Fscore of 
0.9862 for the IEEE 39-bus power system and ACC of 
97.80% and Fscore of 0.9785 for the IEEE 300-bus power sys‐
tem. It is worth noting that the compared existing models 
show a 3%-18% drop in terms of ACC and Fscore when the 
condition changes from single-node disturbances to multiple-
node disturbances, while the proposed TTEDNN model only 
has very small changes. Hence, the TTEDNN model is more 
robust than the existing models for the scenario where the 
system is subjected to multiple-node disturbances.

C. Transient RAS Prediction

The TTEDNN model is also trained for transient RAS pre‐
diction, the dataset of which is generated under disturbances 
of N - 1 contingencies. The validation performance of the 
trained TTEDNN model in terms of ACC and Loss for the 
transient RAS at different training epochs in both the IEEE 
39-bus and IEEE 300-bus power systems are shown in Fig. 
3. Both the ACC and Loss converge successfully after 200 
epochs. The ACC increases to approximately 98% after 100 
epochs.

The same six existing models shown in Table I are used 
to compare the performance metrics with the proposed 
TTEDNN model under disturbances of N - 1 contingencies 
in the IEEE 39-bus and IEEE 300-bus power systems, as 
shown in Table III and Table IV, respectively. 

TABLE III
PERFORMANCE METRICS FOR TRANSIENT RAS PREDICTION IN 

IEEE 39-BUS POWER SYSTEM

Model

SVM

MLP

CNN

LSTM

GCN

RGCN

Proposed

ACC (%)

96.21

99.15

98.87

99.15

98.20

99.28

99.63

FNR (%)

2.12

0.41

0.75

0.58

1.19

0.58

0.34

FPR (%)

3.21

1.32

1.54

1.14

2.46

0.88

0.40

Fscore

0.9624

0.9919

0.9892

0.9919

0.9828

0.9930

0.9964
TABLE II

PERFORMANCE METRICS FOR SMALL-SIGNAL RAS PREDICTION UNDER 
MULTIPLE-NODE DISTURBANCE DATASET IN IEEE 39-BUS AND 

IEEE 300-BUS POWER SYSTEMS

Method

SVM

MLP

CNN

LSTM

GCN

RGCN

Proposed

IEEE 39-bus system

ACC 
(%)

81.27

82.49

80.73

82.49

93.21

90.26

98.60

FNR 
(%)

15.56

16.16

11.93

16.16

2.31

11.66

0.98

FPR 
(%)

18.29

21.27

39.68

21.27

10.45

4.41

2.56

Fscore

0.8130

0.8250

0.8072

0.8251

0.9321

0.8999

0.9862

IEEE 300-bus system

ACC 
(%)

86.96

90.46

95.29

90.71

96.78

97.36

97.80

FNR 
(%)

10.92

2.44

0.41

2.37

1.90

0.52

0.68

FPR 
(%)

16.43

20.86

11.57

20.32

4.86

10.34

5.95

Fscore

0.8695

0.9048

0.9530

0.9072

0.9710

0.9742

0.9785

TABLE I
PERFORMANCE METRICS FOR SMALL-SIGNAL RAS PREDICTION UNDER 

SINGLE-NODE DISTURBANCE DATASET IN IEEE 39-BUS AND 
IEEE 300-BUS POWER SYSTEMS

Model

SVM

MLP

CNN

LSTM

GCN

RGCN

Proposed

IEEE 39-bus system

ACC 
(%)

84.27

98.45

98.36

96.19

96.19

98.15

99.63

FNR 
(%)

10.36

0.97

0.86

3.33

3.33

2.20

0.29

FPR 
(%)

12.17

7.24

9.33

18.53

18.53

8.91

0.47

Fscore

0.8921

0.9930

0.9907

0.9558

0.9558

0.9852

0.9965

IEEE 300-bus system

ACC 
(%)

87.43

99.69

99.62

99.25

99.25

99.53

99.88

FNR 
(%)

8.98

0.14

0.23

0.18

0.18

0.18

0.17

FPR 
(%)

13.24

6.64

5.78

2.15

2.15

6.14

0.00

Fscore

0.9135

0.9845

0.9928

0.9978

0.9978

0.9921

0.9989
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Fig. 3.　 Validation performance of trained TTEDNN model in terms of 
ACC and Loss for transient RAS at different training epochs in both IEEE 
39-bus and IEEE 300-bus power systems.

TABLE IV
PERFORMANCE METRICS FOR TRANSIENT RAS PREDICTION IN 

IEEE 300-BUS POWER SYSTEM

Model

SVM

MLP

CNN

LSTM

GCN

RGCN

Proposed

ACC (%)

97.24

98.98

98.33

99.19

98.75

99.42

99.72

FNR (%)

2.04

0.80

1.44

0.46

1.12

0.34

0.23

FPR (%)

4.48

1.45

2.21

1.66

1.55

1.16

0.39

Fscore

0.9725

0.9918

0.9835

0.9920

0.9876

0.9941

0.9973
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It can be observed that the proposed TTEDNN model out‐
performs all compared existing models for each performance 
metric. Specifically, the proposed TTEDNN model obtains 
ACC of 99.63% and Fscore of 0.9964 for the IEEE 39-bus 
power system, and ACC of 99.72% and Fscore of 0.9973 for 
the IEEE 300-bus power system.

Meanwhile, the advanced prediction performances in 
IEEE 300-bus power system under both the small-signal 
RAS and transient RAS also demonstrate the scalability of 
the proposed TTEDNN model to apply relatively large pow‐
er systems. The time for predicting the RAS is also evaluat‐
ed, which is important for fast online implement. Based on 
the Intel Xeon CPU E5-2620 v3, it takes approximately 5 
ms for the trained TTEDNN model to predict both the small-
signal RAS and transient RAS per batch, which is much fast‐
er than the traditional TDS.

D. Effect of PMU Data Cycles

The observation window length of post-fault PMU data af‐
fects the ACC and computational training time of the pro‐
posed TTEDNN model. Longer observation window length 
provides more information about the system dynamics that 
can increase the prediction performance, as shown in Table 
V, while longer computational training time is required. The 
observation window length is also called response time and 
is often measured by the unit of cycles [37]. With different 
cycles, the trade-off between ACC and computational train‐
ing time per batch for the proposed TTEDNN model trained 
in the IEEE 39-bus power system is illustrated in Fig. 4. 
ACC of both the small-signal RAS and transient RAS scenar‐
ios increases to the maximum at 5 cycles while the computa‐
tional training time monotonically increases. Thus, 5 cycles 
are chosen to be the optimal length of observation window 
length for the TTEDNN model, i. e., only first 5 cycles of 
post-fault PMU data are needed to achieve the highest ACC 
with the shortest computational training time. The existing 
work [38] shows the cycles of PMU data observed are lon‐
ger versus the average response time around 1.5 cycles by 
time-adaptive methods. Nevertheless, 5 cycles are acceptable 
for the RAS prediction task for the following reasons. The 
control actions will not be executed until a waiting time of 
0.15 s to 0.4 s is reached after the fault is cleared, which is 
still much longer than the first 5 cycles of the post-fault 
PMU data. Additionally, ACC and FPR indicate that the 
TTEDNN model has superior prediction performance and is 
more robust in the unstable sample prediction for the control 
action than the time-adaptive method.

E. Effect of Grid-informed Adjacency Matrices

In (9) - (11), we introduce three grid-informed adjacency 
matrices incorporating the structural and electrical parameter 
information of the power grid. The grid-informed adjacency 
matrices of the IEEE 39-bus power system are visualized in 
Fig. 5, where the colors of each small pixel blocks represent 
the corresponding element value of the four adjacency matri‐
ces. The corresponding prediction performances are shown 
in Fig. 6. It can be observed from Fig. 6 that the adjacency 
matrix B2 shows the worst performance. This can be ex‐
plained by the very sparse adjacency matrix visualization in 
Fig. 5, which indicates that although B2 contains the informa‐
tion of active power flow distribution, other useful information 
about the power system topology and electrical properties is 
discarded. The performance measurements of B1 and B3 are al‐
most the same, while B3 is slightly better on true positive rate 
TPR. Hence, the grid-informed adjacency matrix B3 is used for 
the TTEDNN model to predict the small-signal RAS.

As for the transient RAS prediction task, when a distur‐
bance of N - 1 contingency happens between node i and 
node j, the power grid topology is changed, i.e., the transmis‐
sion line (ij) is removed during the short circuit. To this 
end, we revise B3 by letting B3

ij and B3
ji be zero. The revised 

matrix is denoted as B̂3 and used for the TTEDNN model to 
predict the transient RAS. The performance comparison of 
transient RAS prediction by using different grid-informed ad‐
jacency matrices is shown in Table VI.

F. Robustness Against Noise

For RAS prediction in practical power systems, the noise 
in PMU data is of great concern to the performance of a pre‐
diction method [39]. The noise in PMU data has a standard 
deviation ranging from 0.0005 to 0.01 [40], resulting a typi‐
cal signal-to-noise rate (SNR) of 45 dB. Table VII exhibits 
the performance on both the small-signal and transient RAS 
predictions in IEEE 39-bus power system under different 
SNR levels of PMU data. 

TABLE V
TRANSIENT RAS PREDICTION WITH DIFFERENT CYCLES OF POST-FAULT 

PMU DATA IN IEEE 39-BUS POWER SYSTEM

Number of cycles

2

4

6

8

10

ACC (%)

91.58

95.43

99.60

99.68

99.63

FNR (%)

8.38

3.28

0.37

0.31

0.34

FPR (%)

8.46

5.34

0.44

0.33

0.40

Fscore

0.9187

0.9548

0.9961

0.9969

0.9964
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Fig. 4.　ACC and computational training time per batch with different cy‐
cles for proposed TTEDNN model trained in IEEE 39-bus power system. 
(a) Small-signal RAS prediction. (b) Transient RAS prediction.
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The best performance is realized in the ideal environment 
without noise. When SNR reduces to 40 dB (lower than the 
typical SNR), the performance still maintains at a high level, 
i.e., only 0.1% and 0.25% decreases of ACC for the small-sig‐
nal and transient RAS predictions, respectively. For strong 
noise levels with SNR of only 20 dB, the prediction perfor‐
mance degrades slightly, i.e., 0.78% and 1.20% drops of ACC 
for the small-signal and transient RAS predictions, respec‐
tively. Besides the ACC, other performance metrics also dem‐
onstrate only slight degrades with the decreasing SNR. 
Hence, the TTEDNN model is robust against the noise in 
PMU data.

The performances of the proposed TTEDNN model and 
the RGCN model are compared under different noise levels 
in terms of the SNR. Six existing models shown in Table III 
are used to compare the performance of transient RAS pre‐
diction, and the RGCN model has the best performance 
among them. Figure 7 shows the comparison of ACC be‐
tween the proposed TTEDNN model and the RGCN model 
under different SNR levels. It can be observed that as the 
SNR decreases, ACC of the TTEDNN model decreases slow‐
er than that of the RGCN model. Specifically, when SNR is 
20 dB, ACC of the RGCN model decreases by 2.31%, which 
is twice as much as 1.20% of the TTEDNN model.

G. Transfer Learning Ability

The transfer learning ability of the proposed TTEDNN 
model trained on the small-signal RAS dataset to predict the 
transient RAS is worthful to be investigated. Usually, small 
disturbances happen more commonly in real power systems 
than serve N - 1 contingencies. Hence, the dataset for small-
signal RAS is easier to be collected. The small-signal RAS 
dataset can provide certain information on stable and unsta‐
ble patterns for the transient RAS prediction task. Learning 
based on the small-signal RAS dataset can be useful for the 
few-shot learning of transient RAS prediction.

To investigate the transfer learning ability of pre-trained 
TTEDNN on the small-signal RAS dataset, three re-training 
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Fig. 7.　Comparison of ACC between TTEDNN model and RGCN model 
under different SNR levels.

(a) (b)

(c) (d)

1.0

0.8

0.6

0.4

0.2

0

Value
1.0

0.8

0.6

0.4

0.2

0

Value

1.0

0.8

0.6

0.4

0.2

0

Value
1.0

0.8

0.6

0.4

0.2

0

Value

Fig. 5.　Visualization of grid-informed adjacency matrices. (a) B1. (b) B2. 
(c) B3. (d) B̂3.

1.00

0.98

0.99

0.97

0.96

0.95

V
a
lu
e

ACC TNR TPR F
socre

Metric

B
1

B
2

B
3

Fig. 6.　Performance comparison of grid-informed adjacency matrices.

TABLE VI
PERFORMANCE COMPARISON OF TRANSIENT RAS PREDICTION BY USING 

DIFFERENT GRID-INFORMED ADJACENCY MATRICES

Matrix

B3

B̂3

ACC (%)

99.59

99.63

FNR (%)

0.31

0.34

FPR (%)

0.51

0.40

Fscore

0.9961

0.9964

TABLE VII
PERFORMANCE ON BOTH SMALL-SIGNAL AND TRANSIENT RAS PREDICTIONS 

IN IEEE 39-BUS POWER SYSTEM UNDER DIFFERENT SNR LEVELS OF 
PMU DATA

RAS prediction

Small-signal

Transient

SNR (dB)

No

60

50

40

30

20

No

60

50

40

30

20

ACC (%)

99.63

99.65

99.59

99.53

99.31

98.85

99.63

99.61

99.58

99.38

99.10

98.43

FNR (%)

0.29

0.29

0.33

0.38

0.60

0.91

0.34

0.34

0.37

0.54

1.02

1.42

FPR (%)

0.47

0.41

0.50

0.58

0.80

1.44

0.40

0.44

0.51

0.70

0.77

1.72

Fscore

0.9965

0.9968

0.9962

0.9926

0.9916

0.9893

0.9964

0.9963

0.9958

0.9941

0.9913

0.9849
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tests are introduced and compared. ① Training from scratch 
(TFS): the whole network parameters are updated without 
pre-trained initialization. ② Full fine-tuning (FFT): the 
whole network parameters are updated with pre-trained ini‐
tialization. ③ Local fine-tuning (LFT): only the layers close 
to the output are updated with pre-trained initialization.

The TFS test updates all the parameters of GC modules, 
TC modules, and MLP layer of the TTEDNN model with a 
random weight initializer. The FFT test updates all the pa‐
rameters of the TTEDNN model with the pre-trained model 
with the small-signal RAS dataset. For the LFT test, part of 
the GC modules are frozen to keep the ability of topological 
feature extraction and update the parameters of the TC mod‐
ule and MLP layer. The performance comparison of the 
three re-training tests is given as follows.

Figure 8 shows the validation performance in terms of 
Loss and ACC during the training process of three re-train‐
ing tests. The transfer learning with pre-trained initialization 
is proved to be effective, i. e., the Loss values of FFT and 
LFT smoothly converge to 1.5 times smaller values than 
those of the TFS. Moreover, it can be observed from Fig. 8(b) 
that the FFT and LFT enable faster early-stop with a given 
acceptable performance so that the training cost is re‐
duced, i. e., only 30 to 70 epochs are needed for FFT and 
LFT to reach 99.5% of ACC while more than 200 epochs 
are needed for the TFS to reach the same ACC.

Table VIII shows the performance metrics for three re-
training tests in the IEEE 39-bus power system. It is worth 
noticing that the performance metrics of transient RAS in 
the model pre-trained with the small-signal RAS dataset is 
even better than those in the model directly trained with the 
transient RAS dataset, which indicates that small-signal RAS 
dataset provides useful information for the transient RAS 

prediction.

The time consumption of the three re-training tests in the 
IEEE 39-bus power system is listed in Table IX. We can no‐
tice that with the same data generation time, the FFT reduc‐
es the training time of 5042 s compared with TFS, and the 
LFT further reduces about 350 s compared with FFT due to 
part of the layers do not need to be updated.

To explain the mechanism of LFT for transfer learning 
more intuitively, the outputs of the hidden layer in the 
TTEDNN model are visualized with the t-distributed stochas‐
tic neighbor embedding (t-SNE) dimensionality reduction 
technique [41], which is shown in Fig. 9. The green dots are 
the samples of stable states correctly predicted, the black 
dots are the samples of unstable states correctly predicted, 
and the red dots are the samples incorrectly predicted. At ep‐
och 0 (before training), more samples are predicted correctly 
with LFT. This is because for LFT, the TTEDNN model car‐
ries the information from the pre-trained dataset, while net‐
work parameters of the TTEDNN model are randomly initial‐
ized for TFS without further useful information. As the train‐
ing epochs increase, fewer prediction errors and more clear 
classification boundaries are shown in Fig. 9(e) - (h), which 
demonstrates fast converge speed and better prediction abili‐
ty for the LFT.

V. CONCLUSION

We proposed the TTEDNN model for small-signal and 
transient RAS predictions in power systems. The TTEDNN 
model maps the spatial information of power system topolo‐
gy into the GC modules as well as extracts the temporal fea‐
tures from the PMU data with TC modules. The TTEDNN 
model has the following advantages. 

First, it shows the best prediction performance compared 
with the existing deep learning models under both small dis‐
turbances and N - 1 contingencies. 

Second, it can make a fast prediction with only the PMU 
data of the first five post-disturbed cycles, demonstrating its 
potential for online implementation. 
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Fig. 8.　Validation performance in terms of Loss and ACC for three re-
training tests. (a) Loss. (b) ACC.

TABLE VIII
PERFORMANCE METRICS FOR THREE RE-TRAINING TESTS IN IEEE 39-BUS 

POWER SYSTEM

Test

TFS

FFT

LFT

ACC (%)

99.63

99.68

99.77

FNR (%)

0.34

0.27

0.20

FPR (%)

0.40

0.37

0.26

Fscore

0.9964

0.9969

0.9978

TABLE IX
COMPARISON OF TIME CONSUMPTION OF THREE RE-TRAINING TESTS IN 

IEEE 39-BUS POWER SYSTEM

Test

TFS

FFT

LFT

Data generation 
time (s)

6170

6170

6170

Training time 
(s)

6593

1551

1227

Testing time per 
batch (ms)

4.08

4.08

4.08
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Third, it is robust against the measurement noise of PMU 
data, which is necessary for practical applications. 

Finally, it provides the superior transfer learning ability 
from small-signal RAS conditions to transient RAS condi‐
tions.
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