
JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 12, NO. 3, May 2024

A Comprehensive Review on Charging 
Topologies and Power Electronic Converter 

Solutions for Electric Vehicles
Abdelfatah Ali, Hossam H. H. Mousa, Mostafa F. Shaaban, Maher A. Azzouz, and Ahmed S. A. Awad

Abstract——Electric vehicles (EVs) are becoming more popular 
worldwide due to environmental concerns, fuel security, and 
price volatility. The performance of EVs relies on the energy 
stored in their batteries, which can be charged using either AC 
(slow) or DC (fast) chargers. Additionally, EVs can also be used 
as mobile power storage devices using vehicle-to-grid (V2G) 
technology. Power electronic converters (PECs) have a construc‐
tive role in EV applications, both in charging EVs and in V2G. 
Hence, this paper comprehensively investigates the state of the 
art of EV charging topologies and PEC solutions for EV appli‐
cations. It examines PECs from the point of view of their classi‐
fications, configurations, control approaches, and future re‐
search prospects and their impacts on power quality. These can 
be classified into various topologies: DC-DC converters, AC-DC 
converters, DC-AC converters, and AC-AC converters. To ad‐
dress the limitations of traditional DC-DC converters such as 
switching losses, size, and high-electromagnetic interference 
(EMI), resonant converters and multiport converters are being 
used in high-voltage EV applications. Additionally, power-train 
converters have been modified for high-efficiency and reliability 
in EV applications. This paper offers an overview of charging 
topologies, PECs, challenges with solutions, and future trends in 
the field of the EV charging station applications.

Index Terms——Charging station, charging topology, electric ve‐
hicle, power electronic converter, vehicle-to-grid.

I. INTRODUCTION 

USING fossil fuels for power generation, heat genera‐
tion, and transportation results in high CO2 and industri‐

al emissions. Figure 1 shows total emissions in United 
States in 2020. The transportation sector generates the larg‐
est share of greenhouse gas emissions in United States [1]. 
Emissions of greenhouse gas from transportation are primari‐
ly generated through burning fossil fuels in cars, trucks, 
ships, trains, and planes. Low- or zero-emission vehicles are 
essential to reduce the emissions that are generated by the 
transportation sector and enhance the sustainability of the 
transportation systems. Since electric power systems are al‐
most available everywhere, electric vehicles (EVs) are con‐
sidered to be one of the best options for reducing emissions. 
EVs have been encouraged by governments in many coun‐
tries all over the world. Figure 2 shows the expected EV 
market share of light-duty vehicles. In 2030, EVs are expect‐
ed to represent about 42%, 27%, and 48% of light-duty vehi‐
cles in Europe, United States, and China, respectively [2]. 
This high penetration of EVs will cause severe issues for the 
electric power systems such as upgrading the transmission 
lines, transformers being overloaded, and power quality prob‐
lems. Most of these challenges are directly connected to the 
charging method and the characteristics of EV chargers.
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Fig. 1.　Total emissions in United States in 2020.
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Fig. 2.　Expected EV market share of light-duty vehicles.
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With the recent expansion of EV driving ranges, there re‐
mains a need for further investigation into the charging pro‐
cess for several reasons. One is that the driving ranges of 
most available EVs on the market are lower than those of 
their gasoline counterparts. For instance, the battery of the 
Nissan Leaf, with a range of 240 km, would require recharg‐
ing after a few hours of continuous operation. Also, the dura‐
tion of EV charging is still way higher than the refueling 
time for conventional vehicles. For instance, charging a Nis‐
san Leaf’s battery from 0 to 100 using a 50-kW fast charger 
requires approximately one hour [3]. Moreover, although the 
EV driving ranges will continue to expand in the coming 
years, the modeling of innovative charging technologies is 
still significant for several applications. For example, EV 
charging can be synchronized with smart grid control sys‐
tems to provide ancillary services [4], which will be helpful 

for the electrical power grid and ride-hailing service provid‐
ers.

To regulate the power flow for several electrical applica‐
tions such as EVs [5], [6], uninterruptable power supplies 
(UPSs) [7], and renewable energy sources (RESs) and ener‐
gy storage systems like solar photovoltaic (PV) systems [8], 
fuel cells (FCs) [9], and wind energy conversion systems 
[10], power electronic converters (PECs) are widely utilized 
[11]-[14]. Hence, several recent review papers have investi‐
gated PEC categorizations, structures, control schemes, appli‐
cations, design comparisons, and their influences on the pow‐
er quality of utility grids [15]. Furthermore, the discussion 
extends to various important features related to the various 
topologies of the PECs in the EV applications such as re‐
search trends and evaluation. Brief literature survey of recent 
review papers for PECs [6] is illustrated in Table I.

The PECs can be classified into various topologies: DC-
DC converters, AC-DC converters, DC-AC converters, and 
AC-AC converters for high-voltage and low-voltage applica‐
tions, mainly for EV charging stations [13], [23]. Bidirection‐
al DC-DC converters represent the major research field in 
the PEC topologies instead of conventional unidirectional 
converters to interface different energy sources and energy 
storage elements [24]-[26]. The PEC topologies possess vari‐
ous features, such as minimizing electrical and thermal 
stresses related to switching patterns [27], enhancing overall 
efficiency, achieving high power density, and preserving bat‐
tery state of charge (SOC) for EV applications [28]-[30].

To cope with the restrictions of the DC-DC converters 
such as switching losses, size, and electromagnetic interfer‐
ence (EMI), resonant converters and multiport converters 
(MPCs) have been extensively implemented in high-voltage 
EV applications depending on the number of reactive ele‐
ments and independent voltage sources [22], [31], [32].

Soft-switching converters also recognized as resonant con‐
verters, have been implemented in both low- and high-volt‐

age EV applications to get rid of hard switching problems ei‐
ther in zero current switching (ZCS) or zero voltage switch‐
ing (ZVS) modes [12], [33]. 

Resonant DC-DC converters can be classified according 
to the number of reactive elements and their connections in‐
to several topologies such as series, parallel, and hybrid reso‐
nant DC-DC converters [34]-[39]. In contrast, multilevel con‐
verters are employed to diminish the drawbacks of the two-
level converters. Multilevel converters sustain low-voltage 
ratings, switching losses, and switching frequency below the 
same output voltage compared with the conventional two-lev‐
el converters, with high efficiency [40]-[42]. Moreover, MPCs 
contribute to increasing the demand for multi-input multi-out‐
put (MIMO) applications that are appropriate for the integra‐
tion of independent voltage sources in EVs relative to their 
merits such as the economic operation, compact size, cost ef‐
fectiveness, high efficiency and reliability, and power-train 
performance improvements [19], [43] - [46]. Regarding the 
complete configuration of the power-train in EV applications 
and charging systems, the deployment of AC-DC converters, 

TABLE I
BRIEF LITERATURE SURVEY OF RECENT REVIEW PAPERS FOR PECS

Ref.

[11]

[16], [17]

[18], [19]

[20]

[13], [21]

[12], [22]

[6]

This work

Year

2019

2020
2021

2021

2021

2021

2022

2022

Remarks and contributions

Consider DC-DC converters for EVs concerning their topologies and applications, especially paying 
special attention to charging stations without investigating control schemes or their optimization methods

Discuss various topologies of non-isolated unidirectional DC-DC converters in FC EVs; however, the 
control and energy management systems, challenges, and future aspects of DC-DC converters are not 
discussed in addition to other topologies of PECs

Investigate only state-of-the-art multiport DC-DC converters based on EV applications

Deliberate briefly challenges and solutions of PECs, configurations of EVs and applied control schemes

Review only bidirectional, resonant, and multilevel DC-DC converters in terms of various aspects without 
considering other topologies of PECs

Analyze and assess current research trends of multidisciplinary technologies in EV applications including 
various configurations of PECs, energy storage systems, control methods, optimization techniques, and 
energy efficiency, transfer, and management aspects; declare the research gap and focus on the latest 
industrial applications and their practical issues

Study in detail state-of-the-art EV charging topologies and PEC solutions for EV applications from the 
point of view of their groupings, configurations, control methods, and future research projections and 
their impacts on the power quality of the utility grids based on recent review papers
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DC-AC converters, and AC-AC converters are required to be 
implemented to sustain high efficiency, reliability, and opera‐
tional performance [37], [38], [40], [47]. Focusing on DC-
AC converters, they achieve high power density without ex‐
cessive switching losses. However, the complexity of control 
scheme and fabrication is a problem [48]. Therefore, innova‐
tive circuit constructions have emerged, combining various 
topologies such as multilevel converters, MPCs, and reso‐
nant converters, with novel modulation techniques and con‐
trol methods [8], [42], [49], [50].

In [51], the AC-DC converters are divided into two main 
groups: single-phase and three-phase conversion stages. Dif‐
ferent control schemes are adopted to accomplish DC fast-
charging stations, EV power conversion, and enhancing the 
performance index of power exchange flow in vehicle-to-
grid (V2G) applications. Also, these converters enhance the 
power quality at AC inputs of distribution systems by reduc‐
ing the switch voltage stress, total harmonic distortion 
(THD), and EMI noise. Furthermore, AC-DC converters 
achieve a high-power factor and maintain a ripple-free DC 
output voltage under both load and supply interruptions [52]-
[55]. Additionally, the AC-AC converters are utilized in the 
power-train for EV applications such as cyclo or matrix con‐
verters combined with resonant and MPCs without using the 
DC-link capacitor [56], [57]. However, these converters have 
some challenges and influences on vehicular system or pow‐
er system operating performance such as control loop com‐
plexity in which future research aspects are involved.

According to the above-mentioned discussion, the main 
contributions of this paper can be summarized as follows.

1) Investigating the EV charging topologies in terms of 
charger placement, power rating, physical contact, and pow‐
er flow direction.

2) Presenting a comprehensive review of the PEC solu‐
tions to the EV applications in terms of their classifications, 
configurations, and control methods related to recently pub‐
lished paper reviews.

3) Discussing the role of soft-switching converters, multi‐
level converters, and MPCs as current solutions to the power-
train challenges in EV applications.

4) Exposing the future research prospects, challenges, and 
impacts of the PECs on the vehicular system and power 
quality of the utility grids based on recent review papers.

II. EV CHARGING TOPOLOGIES 

The charging station is one of the main parts of the grid 
infrastructure, which can be installed along the roads, public 
garages, home garages, and parking lots. The main target of 
the charging station is to supply power to EVs to charge 
their batteries. Many topologies can be used for EV charging 
such as AC single-phase charging, AC three-phase charging, 
DC charging with rectification, and bidirectional charging 
(grid-to-vehicle (G2V) and V2G) [58]. The AC single-phase 
charging topology utilizes a single-phase AC power supply 
for EV charging. It is commonly used for low-power charg‐
ing, typically found in residential or slow-charging scenari‐

os. Single-phase charging is typically constrained by power 
level limitations. In addition, the topology of AC three-phase 
charging involves using a three-phase AC power supply, 
which allows for higher-power delivery compared with sin‐
gle-phase charging. This topology is commonly used in com‐
mercial and public charging stations, enabling fast-charging 
rates. In the DC charging topology, AC power is converted 
into DC power by using an external rectifier, which is then 
directly supplied to the EV battery. Compared with AC 
charging, DC charging is well-suited for public fast-charging 
stations and long-distance travel due to its ability to offer 
fast-charging rates. This topology often utilizes high-power 
chargers capable of delivering power level ranging from tens 
to hundreds of kilowatts. Furthermore, bidirectional charging 
enables power flow in both directions, allowing the EV to 
not only receive power but also supply power back to the 
grid or other devices. This topology is useful for V2G inte‐
gration, where EVs can act as energy storage units and pro‐
vide power to the grid during peak demand or support local 
energy demands. Bidirectional charging typically requires ad‐
ditional hardware and control systems within the charging in‐
frastructure.

The EV chargers can be classified based on their place‐
ment and power rating [59]. Regarding the placement of the 
EV chargers, they are classified as offboard and onboard 
with unidirectional or bidirectional power flow. The unidirec‐
tional power flow charger enhances battery degradation, re‐
duces hardware requirements, and simplifies interconnection 
issues. In addition, the bidirectional power flow charger can 
be employed for both G2V and V2G functionalities. The on‐
board charger is installed inside the EV, while the offboard 
charger is installed outside the EV. The onboard chargers are 
commonly employed for slow-charging systems, while the 
offboard chargers can be employed for fast-charging sys‐
tems. Figure 3 shows EV infrastructure with onboard and 
offboard charging topologies and charging power level.

The power level of the charger indicates the charging rate, 
location, charging time, cost, equipment, and effect on the 
power grid. Characteristics of different levels of chargers are 
shown in Table II. Level 1 EV chargers do not require spe‐
cial installation as they receive the electrical supply from a 
conventional power plug. Level 2 EV chargers are the typi‐
cal ones to be installed in households but require special in‐
stallation. Level 3 EV chargers are known as the DC fast-
charging ones as they have high-power delivery capabilities. 
DC fast chargers are typical commercial ones [21], [59], 
[60]. Figure 4 shows the organization of level 1, 2, and 3 
EV chargers. This figure illustrates that the AC charger 
charges the EV battery through the onboard charging of the 
EVs, whereas the EV battery can be directly charged by the 
DC charger bypassing the onboard charger. Moreover, in the 
DC charger, modular converters that can be stacked are uti‐
lized to achieve high power level (120 kW-240 kW). Howev‐
er, the stacking of the converters inside the EV makes it 
bulky. Therefore, these converters are stacked and placed 
outside the vehicle and represent the charging station of the 
EVs [61], [62].
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Furthermore, EV chargers can be classified based on their 
physical contact into conductive and inductive chargers. The 
conductive charging method involves transferring power by 
making direct contact with the vehicles, whereas the induc‐
tive charging method relies on an electromagnetic field to 
transfer power to the vehicles (i.e., wireless charging method 
(WLC)). However, the conductive charging method is more 

efficient than the WLC [63]. The wireless power transfer 
(WPT) technology makes power transfer very easy for the 
charging process. The main idea of WPT technology is to 
convert AC energy into DC energy and then invert it again 
to AC energy with high frequency to generate magnetic 
fields [64]. 

TABLE II
CHARACTERISTICS OF DIFFERENT LEVELS OF CHARGERS

Classification

Electrical 
characteristic

Onboard/
offboard

Location of 
installation

Typical useage

Energy supply interface

Socket

Charging time

Range per hour/mile

Safety

Desirable 
characteristics

Level 1 (AC slow charging)

120 V, 1.4 kW (12 A), 120 V, 1.9 kW (16 A)
200-450 V DC, up to 36 kW (80 A)

Onboard (single-phase)

Parking lots for employees, long-term cus‐
tomers, visitors, etc.

Charging at home or office during the work‐
day, long-term parking (more than 8 
hours)

Suitable outlet

Household/domestic socket

6-10 hours

5

Basic protection (e. g., circuit breaker, earth 
leakage protection, and earthing system) 
with an in-cable protection device

Amenities at charging location

Level 2 (AC accelerated charging)

240 V, up to 182 kW (80 A)
200-450 V DC, up to 90 kW (200 A)

Onboard (single-phase or three-phase)

Municipalities, private parking lots, 
shopping centers, etc.

Charging at home with fast-charging or 
commercial charging places (e.g., pub‐
lic garages)

Dedicated EV supply equipment (EVSE)

Dedicated socket

1-3 hours

10-20

Basic protection (e. g., circuit breaker, 
earth leakage protection, and earthing 
system) with a control system

Facilities for pedestrians, lighting, a se‐
cure location, and other things

Level 3 (DC fast charging)

480 V, 20 kW (150 A)
200-600 V DC up to 240 kW (400 A)

Offboard (three-phase)

Close to high-capacity roadways

Fast-charging during a long journey 
to either reach a destination or pro‐
long the duration of the trip, (anal‐
ogous to fueling stations)

Dedicated EVSE

DC connection socket

0.5 hours

More than 75

Basic protection (e.g., circuit breaker, 
earth leakage protection, and earth‐
ing system) with a control system

Facilities for pedestrians, lighting, a 
secure location, and other things

AC

DC

DC

DC

DC

AC

DC

DC

DC

DC

AC-DC

converter PFC

DC-DC

converter

DC bus

Bidirectional

DC-DC

converter

Auxiliary

loads

Traction drive

Battery pack

Unidirectional/bidirectional 

power flow

Onboard charger of EV battery

Wheel

WheelWheel

Wheel

Onboard charging

Onboard  charging

Level 1

(single-phase,

120 V AC/200-450 V DC)

Private or public

Level 2

(single-phase or

three-phase,

240 V AC/200-450 V DC)

Office or home

garage

Offboard charging

Charging connector

AC grid

Electric motor

Single-phase

Three-phase

Single-phase

or three-phase

Level 3

(three-phase,

480 V AC/200-600 V DC)

Commercial 

Unidirectional

DC-DC converter Charging connector 

EV infrastructure

Fig. 3.　EV infrastructure with onboard and offboard charging systems and charging power level.
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Electrical energy can be transferred from the sender to the 
receiver based on near-field and far-field transmissions [65]. 
Far-field transmission can utilize some mediums such as mi‐
crowave, acoustic, or optical while typically involves induc‐
tive coupling or capacitive techniques that create nonradia‐
tively electric, magnetic, or electromagnetic fields. Optical 
methods can be employed to transfer the energy by a laser 
beam [66], while the energy can be transferred by micro‐
waves using frequencies in the range of 1 GHz to 1000 GHz 
[67]. Electric power can be transferred over long distances 
by employing microwaves and optical methods. Neverthe‐
less, when employing these methods for WPT, a clear line of 
sight between the transmitter and the receiver is required. 
Moreover, these methods can have harmful effects on human 
and biological life. However, researchers have proposed 
methods for EV charging using the laser [68] and micro‐
wave [69], [70], but as of now, none of these methods have 
seen commercial adoption [71]. Another WPT technology is 
the magnetic gear [72], which compromises two synchro‐

nized permanent magnets placed side by side in a different 
way from other WLCs based on coaxial cable.

The most effective technology of WPT is the mutual cou‐
pling technology [73], which can be capacitive coupling or 
inductive coupling. In the capacitive WPT (CPT) technology, 
the power is transferred through coupled capacitors that are 
realized by metal plates [74]. In addition, the power can be 
transferred using the magnetic field coupling between prima‐
ry and secondary coils, which is called inductive power 
transfer (IPT). To mitigate the leakage flux because of the 
large air gap, capacitors are utilized and connected to trans‐
mitting and receiving coils, in which the transmitter and re‐
ceiver circuits compromise an inductor and a capacitor. In 
each circuit, the inductor and capacitor are adjusted to work 
and resonance. The IPT utilizing the capacitors is called in‐
ductively CPT (ICPT) [73] or resonant inductive coupling 
(RIC). Table III shows a comprehensive comparison of dif‐
ferent WPT technologies.

AC grid

Wheel

WheelWheel

Wheel

AC grid

Battery pack

Onboard charger of EV battery

BMS
 

High-voltage

DCPilot wire

EV infrastructure

EVSE
AC

DC

DC

DC

AC-DC

converter PFC

DC-DC

converter

Wheel

WheelWheel

Wheel

Battery pack

Onboard charger of EV battery

BMS
 

Pilot wire
EVSE+AC-DC

converter

Stacked

AC

DC

DC

DC

AC-DC

converter PFC

DC-DC

converter

(a)

(b)

Bypass

High-voltage

DC

EV infrastructure

Fig. 4.　Organization of level 1, 2, and 3 EV chargers. (a) AC charging system. (b) DC charging system.

TABLE III
A COMPREHENSIVE COMPARISON OF DIFFERENT WPT TECHNOLOGIES

WPT technology

Microwave

Laser

CPT

Magnetic gear

IPT

ICPT

Cost

High

High

Low

High

Medium/high

Low

Efficiency (%)

76

1-30

83-90

81

95

71-96

Power level (kW)

1.4

0-0.5

3

1600

3-50

Up to 250

Air gap (m)

0.10

0-200

0.15-0.3

0.15

0.15

0.075-0.5

Frequency range (kHz)

1-108

More than 109

100-150

0.05-0.50

10-50

10-150

Biological effect

Damage living tissue

Damage living tissue

No harmful effects

No harmful effects

No harmful effects

No harmful effects
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The wireless charging system can be categorized into 
three main modes: ① static wireless charging (SWC), ② dy‐
namic wireless charging (DWC), and ③ quasi-dynamic wire‐
less charging (QWC) [75]. SWC has high power transfer ef‐
ficiency due to enhanced alignment. Moreover, it offers the 
benefit of suitable charging locations such as parking lots, 
home garages, traffic lights. However, this charging method 
cannot address the issues faced by EVs on highways.

In the DWC, EVs can charge while in motion by travers‐
ing along specially constructed charging roads. DWC effec‐
tively addresses numerous challenges associated with EVs, 
including battery size, range anxiety, and battery cost. The 
majority of current DWC models rely on the inductive WPT 
method. QWC is employed during brief stops such as at traf‐
fic lights. Consequently, when both SWC and DWC infra‐
structures are ubiquitously accessible, QWC becomes a via‐
ble option. This charging mode significantly enhances the 
driving range of EVs. Inductive wireless charging possesses 
certain desirable attributes such as reliability and user-friend‐
liness. However, it faces some technical challenges such as 
short-range, low-efficiency, cost effectiveness, and bulkiness. 
As the active charging methods are more efficient than the 
WLC, they are more common and established. Figure 5 
shows classifications of EV charging topologies [76]-[83].

The power flow direction between the EVs and the power 
grid can be unidirectional, where the power flows from G2V 
and resulting in what is known as a unidirectional charger. 
Conversely, the power can flow from V2G. Therefore, V2G 
is termed a bidirectional charger. This type of charger can fa‐
cilitate several demand-side management planning applica‐
tions for both G2V and V2G scenarios [84]. Moreover, it en‐
hances the reliability of the electrical system, e.g., the load 
curve can be flattened under unexpected system failures. Fur‐
thermore, the penetration of the V2G functionality can re‐
duce the investment in new power generation units [85] -
[87]. Therefore, the selection of the appropriate charging 
technology is of paramount importance when choosing a 
charger. The selected charger must have some important 

characteristics such as high-efficiency, high power density, 
and low cost. The operation of the charger depends on the 
converter used with it. Hence, in the following sections, a 
comprehensive review of PEC technologies used in EV char‐
gers is conducted.

III. PECS FOR EVS 

PECs exhibit a prominent role in EV applications as em‐
ployed to interface the various types of EVs with energy 
storage devices and charging stations especially based on 
RESs as energy inputs [11] - [14]. Therefore, various review 
papers elaborate on PEC classifications, configurations, ap‐
plied control strategies, applications, specification compari‐
sons, and their impacts on the power quality of the utility 
grids [15]. In addition to investigating various significant as‐
pects associated with various topologies of PECs in the EV 
applications, other aspects such as developing trends, assess‐
ment, and future research prospects are also studied by many 
scholars [6]. Hence, Table IV discusses recent review papers 
on PEC technologies for EV applications, where A means 
configuration, B means control strategies, C means power 
quality, D means challenges, E means optimization methods, 
F means applications, and G means comparative analysis.

To provide a broad overview of authors’  concerns in this 
field, Fig. 6 shows VOS viewer visualization for analysis of 
co-occurrence keywords based on Scopus database. The 
most utilized PEC topology for EV applications is various to‐
pologies based on DC-DC converters for charging batteries, 
energy storage devices, and EV charging stations. PEC topol‐
ogies can be classified into various technical topologies, in‐
cluding DC-DC converters, AC-DC converters, DC-AC con‐
verters, and AC-AC converters, suitable for both high-volt‐
age and low-voltage applications [21], [88]. To declare the 
significant specifications of various configurations of PECs, 
several paper comparative analysis are revealed in [6], [89], 
[90] among the topologies and their roles in the power quali‐
ty improvement. And several papers revealed perceptive chal‐
lenges and other aspects in [11], [14], [19]-[21], [90]-[94].

Furthermore, a comparison of various switching devices 
used in PECs, with different material composites such as Si, 
SiC, or GaN, is presented in [21], [95]. This comparison con‐
siders material properties, weight, volume, and peak efficien‐
cy, focusing on their extensive application in EVs. The pa‐
pers demonstrate the superiority of SiC or GaN-based switch‐
ing devices in achieving low switching losses, higher ther‐
mal capabilities, and improved configuration stability, mak‐
ing them well-suited for low- or high-power EV applications 
[21], [95]. Additionally, Table V shows the summary of per‐
formance parameters of SiC-based converters [88]. In the 
coming section, the various topologies of PECs and their ap‐
plications for EVs will be studied and conclusions for the re‐
cent research trends will be drawn.

EV charging topologies

Onboard charging Offboard charging

Renewable

charging 

Fast-charging

station

Wireless

charging

Wired

charging
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Fig. 5.　Classifications of EV charging topologies.
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TABLE IV
RECENT REVIEW PAPERS ON PEC TECHNOLOGIES FOR EV APPLICATIONS

Ref.

[96]

[97]

[92]

[25]

[11]

[98]

[22]

[19]

[99]

[16]

[100]

[101]

[93]

[18]

[20]

[13],

[21] 

[102]

[32]

[48], 

[103]

[15]

[91]

[104]

[90]

[14],
[88]

[31]

[12]

[6]

Year

2017

2018

2019

2019

2019

2020

2020

2021

2021

2020

2021

2021

2021

2021

2021

2021

2022

2022

2022

2022

2022

2022

2022

2022

2022

2022

2022

Objectives and keywords

A

√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√

√

√

√

√

√
√
√
√

√
√

√

B

×

×

×

√
×

√
×

×

×

×

×

√
×

×

√
×

×

×

×

×

×

×

×

×

√
√

√

C

×

×

×

×

×

×

×

×

×

×

×

×

√
×

×

×

×

×

×

√

√
√
×

×

×

√

√

D

×

√
√
×

√
√
√
√
√
√
√
√
√
√
√
√

√

√

√

√

√
√
√
√

√
√

√

E

×

×

×

×

×

×

×

×

×

√
√
×

×

×

√
×

×

×

×

×

×

×

×

×

×

×

√

F

√
×

×

×

×

×

√
√
√
√
√
×

√
√
√
√

√

√

√

√

√
√
√
√

√
√

√

G

√
√
√
√
√
√
√
√
√
√
√
√
√
√
√
√

√

√

√

√

√
√
√
√

√
√

√

Remarks and contributions

Deliberate role of PECs in charging EV battery interfacing with RESs and choosing suitable topology in grid 
on/off operational modes

Survey applications of energy storage systems on EV technologies integrated into various types of multi-input 
DC-DC converters to enhance EV’s efficiency and reliability

Evaluate bidirectional converters for V2G and G2V systems based on active power flows and power factor 
correction

Highlight various topologies of bidirectional DC-DC converters and their associated control schemes for several 
applications among EV applications

Outline various configurations of DC-DC converters and their applications on EV charging stations

Realize control schemes of DC-DC converters and their configurations concerning active battery charge 
balancing method

Investigate multi-input DC-DC converters and their configurations with detailed comparisons to cope with 
multiple energy sources as inputs to be interfaced with battery charging in EVs. In [31], non-isolated multi-
input high-step-up DC-DC converter configurations and assessments are studied

Study the non-isolated unidirectional DC-DC converters in FC EVs concerning their topologies, applications, 
and challenges. While in [100], control and energy management techniques, obstacles, marketing, and future 
aspects of DC-DC converters are highlighted for FC EVs

Study the bidirectional DC-DC converters concerning multilevel battery storage systems for EV and utility grid 
applications in terms of topologies and trends

Present power quality improvement challenges of utility grid during the interactions of multi-input power 
electronic technologies applied to EV charging stations

Review latest developments for multiport DC-DC converters based on EV applications in terms of various 
aspects

Discuss obstacles and solutions of EVs’  PEC configurations and applied control schemes

Review bidirectional, resonant, multilevel DC-DC converters in terms of their configurations, evaluations, 
applications, and challenges

Investigate various topologies of PECs integrated into renewable energy systems, energy storage systems, and 
EVs. Moreover, their influence on the utility grid’s stability is highlighted with advanced control strategies 
to improve overall stability

Study with a detailed comparison of the topologies of DC-DC converters with multiple outputs in different 
fields, especially several types of EVs

State reviews of PECs including their characteristics, performance, merits and demerits, challenges, and 
economic aspects

Highlight significant role of PECs and their convenient location in EV charging systems through single- or multi-
energy sources and declare importance of energy storage systems, and energy management strategies to cope 
with on-/off-grid charging modes

Indicate fast-charging station’s infrastructure using various topologies of PECs and study their significant 
influence on utility grid performance supported by perspectives for future research trends

Declare current topologies of PECs used for PV systems and utility grid interfaces and their impacts during 
charging EVs

Discuss briefly the interfaced DC-DC converters with energy storage devices to boost EV efficiency

Introduce a concentrated review of PEC topologies and their applications in EV charging stations, besides 
discussing the current research gaps to fulfill the required aims of the energy management strategies applied 
in EV technologies

Discuss the state-of-the-art resonant converters in terms of topologies, challenges, and control methods for 
renewable energy applications supported with a comprehensive comparison

Debate a comprehensive review of the resonant converters for EV chargers in terms of topologies, modulation 
methods, control schemes, commercial applications, obstacles, and development trends

Elaborate and evaluate current status of multidisciplinary technologies in EV applications including various 
configurations of PECs, energy storage systems, control methods, optimization techniques, energy efficiency, 
transfer, and management aspects. Additionally, declare research gap and focuses on latest industrial 
applications and their practical issues
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Fig. 6.　VOS viewer visualization for analysis of co-occurrence keywords based on Scopus database.

IV. PEC TECHNOLOGIES 

A. DC-DC Converters

According to the significant utilization of DC-DC convert‐
ers, it is essential to state the number of circuit elements, 
power rating and voltage gain, electrical isolation, and over‐
all efficiency to specify their appropriate type [90]. Hence, 
the DC-DC converters can be grouped associated with the 
active balancing topologies, which can be determined using 
the energy flow (bidirectional or unidirectional) or the ap‐
plied topology, especially those applied for battery balancing 
control, as discussed in [98]. In this subsection, different con‐
figurations of DC-DC converters are examined and dis‐
cussed in detail relative to the review papers. The assess‐
ment of DC-DC converters involving infrastructure and 
charging power level is investigated, with an adequate com‐
parison presented in [84]. Additionally, the review papers 
have deliberated the control strategies for DC-DC converters 
in terms of parameters, control variables (terminal cell volt‐
age, capacity, SOC), and control algorithms (high-level or 
low-level). These discussions are supported by the compari‐

son with relevant studies [13], [21], [22], [88], [90], [98], 
[105]-[107].

These converters can be classified according to the power 
exchange methodology into three main types: unidirectional, 
bidirectional, and special converters. Bidirectional converters 
regulate the power in both directions, while unidirectional 
converters have a unique power flow direction [13], [25]. In 
contrast, special converters include multi-port and soft-
switching converters for specific industrial technologies [12], 
[13], [32], [97], [108]-[112]. Looking specifically at the uni‐
directional and bidirectional converters, they can be classi‐
fied into isolated converters and non-isolated converters de‐
pending on the existence of the transformer in the power cir‐
cuit [11].
1)　Unidirectional DC-DC Converters

Using high frequency transformers, isolated DC-DC con‐
verters provide galvanic isolation between input and output 
such as full-bridge converter, flyback converter, and push-
pull converter [113] which are applied extensively in active 
balancing technologies. In non-isolated types, the construct 
classification depends on the presence of magnetic coupling 

TABLE V
SUMMARY OF PERFORMANCE PARAMETERS OF SIC-BASED CONVERTERS

Converter

DC-DC converter

DC-AC converter

AC-DC converter

Voltage level (V)

300-2500 to 22-34/520-830

1000

600-800 DC

Power rating (kW)

1-100

300

350

Power density (kW/L)

2.2-42.0

4.0-35.0

4.0-18.2

Switching frequency (kHz)

10-1000

15-50

10-1000

Efficiency (%)

87.00-99.30

95.00-99.50

95.00-98.86
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for medium- and high-power EV applications [107]. Without 
magnetic coupling, the design complexity is reduced; howev‐
er, the prominent shortcomings such as high voltage stress 
and expanded size due to more switching devices with high-
cost effectiveness are more challenging. For low-voltage-
gain applications in non-isolated topology, buck, boost, buck-
boost, Cuk, single-ended primary-inductance converter(SEP‐
IC), and Zeta converter are suggested [114]. Conversely, vari‐
ous converter types are designed for high-voltage-gain appli‐
cations [107], [114], including modified and cascaded boost 
converters, switched inductors/capacitors family, multi-stage 
dual-active bridges (DABs) [107], modified Cuk and SEPIC, 
multi-phase buck and boost [115], and multi-stage convert‐
ers. A detailed description of these types in terms of their ap‐
plication, design, parameters, and comprehensive compari‐
son, is provided in [107], [116], and [117].
2)　Bidirectional DC-DC Converters

In low-voltage EV applications of non-isolated bidirection‐
al converters, several types are used such as single-stage, 
half-full-bridge, bidirectional boost, and bidirectional buck-
boost converters [118], [119]. Multi-stage converters, inter‐
leaved or combined converters, and switched capacitor con‐
verters are proposed in high-voltage applications of non-iso‐
lated bidirectional converters [14], [25], [90], [107]. To ac‐
complish both high voltage gain and low current ripples, the 
interleaved coupled-inductor converter is employed connect‐
ing the interleaved bidirectional buck-boost converter with a 
dual-active half-bridge converter [110]. The buck-boost bidi‐
rectional (single- or multi-stage) converters are applied to re‐
duce the electrical and thermal stresses associated with the 
modes of the switching patterns [27], increase the overall ef‐
ficiency, and maintain the battery SOC for EV applications 
[28] - [30]. However, they still suffer from high-ripple cur‐
rents which directly impact the working life of the battery 
and increase the number of elements compared with conven‐
tional ones. Concerning the isolated topologies, the phase-
shift full-bridge strategy using zero voltage conduction 
(ZVC) of power switches is discussed in [111] for high-pow‐
er applications with reduced voltage stress on switches. 
Hence, DAB, push-pull, flyback, and other DC-DC convert‐
ers can be considered as vital solutions for charging limita‐
tions in EV applications, as discussed in [44], [120] - [128]. 
Further, various review papers have presented detailed expla‐
nations of the various configurations, control schemes, chal‐
lenges, and future trends of the DC-DC converters in [14], 
[25], [90].
3)　Multi-port DC-DC Converters

To deal with the MIMO applications, MPCs are extensive‐
ly implemented in EV charging stations, especially those 
that depend on the integration of different types of RESs. 
MPCs are applied to interface different energy resources for 
EV applications, grid-connected systems, and RESs. Com‐
pared with other DC-DC converter topologies, MPCs pro‐
vide fewer circuit elements and reduction in both complexity 
and cost, and ensure higher power density [129] - [134]. 
MPCs can be classified into MIMO converters [43], [46], 
[135], [136], multi-input single-output (MISO) converters 
[137] - [144], and single-input multi-output (SIMO) convert‐

ers [19], [145]-[149]. MISO converters can be used for com‐
bining different voltage sources for EV applications while SI‐
MO converters are used for portable applications. Several 
studies present a comprehensive review related to the MPCs 
in various aspects such as types, design, and detailed com‐
parison [31], [32], [18] - [19], [97], [131] - [134]. Most re‐
search trends associated with the MPCs for EV applications 
can be found in [32] and [18] supported by the current chal‐
lenges.
4)　Soft-switching DC-DC Converters

To cope with a wide range of voltage gain in the presence 
of the hybrid energy sources, the modified bidirectional DC-
DC converter using both switched-capacitor/switched-quasi-z-
source topologies is applied to control the energy flow with 
low voltage stresses in [150]. Soft-switching DC-DC convert‐
ers are extensively utilized in industrial applications, espe‐
cially in high voltage applications, due to their merits such 
as high efficiency, low switching losses, low stresses, and 
high power density, as investigated in [12], [22], [151] -
[154]. They can be classified according to their structure and 
the number of reactive components, as discussed in [12], 
[22]. Regarding the structure, they contain different cascaded 
stages: control switching network (CSN), resonant tank net‐
work (RTN), and rectifier network with low-pass filter, as 
studied in [12], [25], [155] - [158]. In addition, according to 
the number of reactive components, the soft-switching 
PEC’s family involves the quasi-multi-resonant converter, 
zero transition converter (ZTC), and resonant power convert‐
er (RPC) groups [12], [22].

Soft-switching DC-DC converters are implemented for EV 
applications, as deliberated recently in [12], [31]. To boost 
the efficiency and power density for EV applications, bidirec‐
tional half-bridge capacitor-inductor-inductor-capacitor 
(CLLC) resonant converters have been applied [112]. For 
wireless charging modules, a full-bridge three-element LLC 
converter with a hybrid modulation method is proposed in 
[159]. Additionally, a half-bridge LLC converter by integrat‐
ing two various storage devices is applied for fast-charging 
purposes [33], [160], [161]. For power factor correction, a 
modified Cuk converter fed isolated LLC resonant converter 
is performed [109]. Several recent research works have dis‐
cussed the control schemes for soft-switching DC-DC con‐
verters for maximizing the transferred power to the EV bat‐
tery with the minimum switching losses and providing fast-
charging without fluctuations [5], [162] - [165]. Other re‐
search studies have stated a comprehensive comparison 
among various topologies and given the solutions to current 
challenges with predicted future trends in [12], [22], [156], 
[158], [166]-[168].

B. AC-DC Converters

AC-DC converters are mainly utilized for DC fast-charg‐
ing stations and EV power conversion, thus enhancing the 
performance indices of power exchange flow in V2G appli‐
cations. These converters can operate as single-phase or 
three-phase conversion units, featuring various types such as 
the buck-boost converter (SEPIC converter) for low-power 
applications, and the diode bridge (half-full) rectifier with 
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boost or buck-boost power factor correction (PFC). Figure 7 
shows classifications of various PEC topologies, which are 
costly with compact size [21], [96], [169]. Several studies 
present their design and control schemes and check the mod‐
eling stability using the Lyapunov-based function [170] -
[172]. For improving the power factor with high power qual‐

ity, several research works study the novel implementation 
design of the AC-DC converters in terms of operation modes 
[173], [174], soft-switching technologies and band-gap devic‐
es [173]-[183], harmonics [184]-[187], control scheme [188]-
[191], and size [192] - [195], supported by a comprehensive 
comparison [21], [96].

C. DC-AC Converters

In this subsection, various types of DC-AC converters ap‐
plied in both low- and high-voltage applications are high‐
lighted, as stated in [48]. In EV applications, the power-train 
employs three PECs: AC-DC converters, DC-DC converters, 
and DC-AC converters. Also, some auxiliary components 
need converters at a lower power rating. Hence, the DC-AC  
converters convert the DC input voltage to AC output volt‐
age with specified magnitude and frequency because using 
AC power is more efficient and reliable, especially in indus‐
trial applications related to the EV technologies [196], [197]. 
The DC-AC inverters can be classified into two-level pulse 
width modulation (PWM) DC-AC inverters (TLIs) and multi-
level PWM inverters (MLIs). The MLI topologies have 
some merits compared with TLI topologies such as low cur‐
rent distortion, reduced voltage harmonic distortion, using 
compact filter size, requiring low switching frequencies, and 
low switching losses. However, the MLIs require a large 
number of switching components with complicated control 
schemes causing high implementation costs. As mentioned 
in several review research studies, various topologies with 

different control schemes and challenges have been proposed 
in [42], [50], [51], [196], [198]-[201] for EV applications.

D. AC-AC Converters

The AC-AC converters can be applied in the power-train 
for EV applications which can be cyclo or matrix converters. 
By using the matrix converters, direct power conversion is 
attained without using the DC-link capacitor [56], [57]. This 
is achieved by converting the constant AC input voltage into 
variable voltage or frequency output using nine bidirectional 
switches. However, the output voltage has limited capacity, 
and filters are required for the decline of the harmonics. 
These limitations cause the implementation to be complicat‐
ed and costly with low reliability [202]. In [203], the bidirec‐
tional matrix-type AC-DC converter with a flyback-based 
clamp circuit is proposed for enhancing the operation of EV 
battery charging. In [204], the matrix converter is implement‐
ed based on the resonant DABs as a single-power conver‐
sion stage which is costly and suitable for single or multiple 
EVs or V2G applications during charging and discharging 
modes. For enhancing the battery charging technology, the 
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Fig. 7.　Classifications of various PEC topologies.
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cyclo converters can be used in EV applications, as investi‐
gated in [205]-[207].

E. PEC Topologies for V2G Applications

Regarding its significance in EV applications, V2G tech‐
nology has been widely utilized to enable energy exchange 
between EV batteries and the utility grid or RESs. Various 
PEC topologies have been discussed in several review re‐
search works, including [58], [83], [92], [208], [209], and 
can be used for V2G technology. In EV charging systems 
employing V2G technology, bidirectional converters are com‐
monly used for power flow control and power factor correc‐
tion. These converters aim to achieve lower THD and ad‐
dress power quality issues. They can be implemented with 
different conversion stages and voltage levels. Previous dis‐
cussions have outlined different types of bidirectional PECs, 
categorized as bidirectional AC-DC converters and bidirec‐
tional DC-DC converters.

In bidirectional AC-DC converters used for V2G applica‐
tions, the full bridge topology is commonly employed due to 
its simplicity in control and structure, as discussed in [210]-
[212]. Another implementation is the eight-switch topology, 
which utilizes a non-isolated half-bridge converter with the 
assistance of optimization algorithms [213]. To facilitate 
power exchange among multiple sources with varying volt‐
age levels and pulse widths, the three-level topology is ap‐
plied [214], [215]. Additionally, the single-stage topology is 
utilized with different system configurations [216], [217]. 
The matrix converter-based topology offers system compact‐
ness, cost reduction, and reliable operation, as demonstrated 
in [219], [220].

Regarding bidirectional DC-DC converters, isolated topol‐
ogies are widely utilized due to their ability to handle a 
wide voltage range such as the DAB topology discussed in 
[220] - [222]. Additionally, non-isolated topologies are em‐
ployed, offering the features like soft-switching capability, 
control simplicity, and a narrow voltage range. Examples in‐
clude buck-boost converters with varying numbers of imple‐
mented switches [223], [224], and multi-phase interleaved 
converters [225]. Recently, resonant and multi-port DC-DC 
converters have emerged as promising technologies for wide-
voltage-range applications, offering benefits such as low 
EMI, high efficiency, frequent operation, and compact size 
[112], [226]-[229]. To provide a comprehensive study of var‐
ious topologies for V2G applications, comparisons among 
these topologies are presented in [58], [92], [209], supported 
by their prospects.

V. PERSPECTIVES FOR PROMINENT CHALLENGES AND 
CURRENT STATUS 

Several review research works have investigated the most 
prominent challenges and the future research trends for 
PECs utilized in EV applications in [2], [3], [4] - [7], [8], 
[12], [13], [15], [23] - [25], [29], [31], [33], [38] - [41], [48], 
[72], [73], [80], [97], [98]. To provide an overview of the re‐
search trends of published research works related to PECs 
based on EV applications, Fig. 8 shows published research 
works in field of PEC-based EV applications between 2010 

and 2023, which depicts an upward trend from 2010 to 2023 
except in 2020 which records a slightly low number of publi‐
cations due to coronavirus pandemics. The data of 2785 pub‐
lished research works are extracted from the Scopus data‐
base with the keyword of PECs of EVs. Figure 9 shows 
prominent challenges and future research opportunities of 
PEC-based EV applications. In this section, the prominent 
challenges can be summarized in terms of the current chal‐
lenges for PEC configurations and influences on the vehicu‐
lar system or power system operating performance. The PEC 
challenges in EV applications can be described as follows.

A. Challenges Related to PEC Configurations

Bidirectional converters have more advantages compared 
with unidirectional ones such as various operating modes 
and ancillary services. However, they consist of many 
switches which increase the switching losses, maximize the 
implementation cost, and decline the overall efficiency and 
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power density. Some topologies have a low number of 
switching components such as flyback and forward convert‐
ers compared with buck-boost and Cuk converters based on 
the active balancing circuits. Thus, these converters are suit‐
able for soft-switching topologies that ensure low switching 
losses during high switching frequencies. For MPCs, various 
challenges come into the picture, e.g., cross-regulation prob‐
lems, regulated output voltage, duty ratio constraints, large 
output ripples, controller complexity, and cost based on the 
EV applications. The challenges of RPCs can be highlighted 
in several aspects such as high-frequency operation, soft-
switching range, boosting the power rating, wide band gap, 
and compensation networks. In [12] and [22], the possible 
solutions to these challenges are discussed.

As the wide implementation of AC-DC converters to en‐
hance the power quality, they still suffer from harmonics, 
switching losses, size, and power factor deterioration issues, 
as discussed in [21]. For developing the DC-AC converters, 
it is essential to specify the required application first. After 
that, the parameter selection and design with soft-switching 
operation are the challenging aspects, especially in MLI to‐
pologies [48]. The implementation of AC-AC converters for 
improving the operation of EV battery charging is a costly 
and complex control scheme.

B. Influences on Vehicular Systems

In the context of PECs’  influence on vehicular systems, it 
is essential to select the suitable PEC depending on the 
switching methods, control strategies, type of input supply, 
and load demand. This selection aims to increase PEC effi‐
ciency and reduce switching losses. Moreover, robust control 
strategies play a vital role in accomplishing high-perfor‐
mance EV applications by using digital signal processing 
(DSP) coupled with PECs. In terms of EV durability, the 
lifespan of a PEC is associated with power electronic device 
longevity. Therefore, it is a challenging aspect to specify a 
suitable PEC to cope with the EV charging and discharging 
levels of batteries using a robust voltage controller, resist 
high vibration and thermal conditions, and achieve high effi‐
ciency, low cost, and small size constraints. According to the 
luxury features, a multiport DC-DC converter appears as a 
significant solution to handling various voltage ratings and 
sources in charging stations. Another aspect is safety im‐
provement, where the selection of a suitable PEC, along 
with DSP technique, participates in the detection and mitiga‐
tion of failures in the vehicular system. Besides these chal‐
lenges, reducing the overall cost of EVs should be taken in‐
to account depending on the PEC components and luxurious 
loads.

C. Power Quality Improvement

In [91] and [93], the effects and challenges of PECs are 
discussed for various applications, especially EV applica‐
tions. Also, the approaches to enhancing the power quality 
with future research trends are investigated. The most chal‐
lenging aspects of EV applications involve high THD values 
of currents, voltages, low power factor, and current unbal‐
ance due to the presence of EV battery charging stations 
[230]. To cope with adverse consequences, new power trans‐

formers can be installed near the EV charging stations [231], 
[232] as well as improving the design of PECs to operate 
with balanced currents and low THD with unity power fac‐
tor, independently of the operating power [233].

Regarding future research directions aimed at enhancing 
power quality in EV charging stations, it is worth exploring 
novel configurations of PECs such as multi-level and inter‐
leaved topologies. Additionally, conducting  investigations in‐
to advancements in the fabrication of switching components 
and elements such as SiC and GaN holds significant poten‐
tial.

VI. ANALYSIS OF GLOBAL EV MARKET 

Recently, real-world EV applications have rapidly devel‐
oped across various industrial technologies, encompassing 
several EV components such as battery technology, charger 
technology, and charging stations. In [21], [90], and [234], 
advancements in both wired and wireless charging tech‐
niques are discussed, considering the characteristics such as 
battery type, DC voltage, power level, and charging speed, 
and highlighting prominent companies in the field. Further‐
more, the characteristics of EV batteries and the EV market 
share in various countries over the past five years have been 
examined. Several companies, including Pod Point, ABB, 
and Tesla, have made significant contributions to global EV 
sales in 2021. Figure 10 shows share percentage of promi‐
nent companies in global EV sales in 2021. In terms of the 
highest percentages of total new sales in 2020, Norway 
leads with 55.90%, followed by both the UK and Iceland 
with 45%. Additionally, plug-in hybrid EV unit sales 
reached 6.6 million in 2021, compared with just 3 million in 
2020, and are predicted to reach 16.21 million by 2027.

In [90], [235], the implementation of real-world V2G proj‐
ects has been summarized, encompassing both pilot and com‐
mercial projects. Among the pilot projects, the Parker project 
in Denmark [236] has been implemented, providing frequen‐
cy containment reserve services and involving four EV mod‐
els: Nissan Evalia, Nissan Leaf, Peugeot iOn, and Mitsubishi 
Outlander plug-in hybrid EVs. Another pilot project [237] in‐
volves 30 EVs owned by the Los Angeles Air Force Base, 
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Fig. 10.　Share percentage of prominent companies in global EV sales in 
2021.
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aiming to enhance regulation capacity bids and minimize 
charging costs. The Power Plant Project, located at the 
Green Village in the Netherlands [238], focused on investi‐
gating both mobility and power generation aspects. In terms 
of commercial real-world applications, frequency regulation, 
arbitrage services, and load shifting services have been con‐
sidered in various projects, including the Frederiksberg 
Forsyning EV fleet in Denmark, the Clinton Global Initiative 
School Bus Demo in the United States, the Domestic V2G 
Demonstrator Project in the UK, and other projects in the 
Netherlands, Namibia, New Zealand, and Germany [235], 
[239], [240].

VII. FUTURE RESEARCH OPPORTUNITIES 

In the future, EVs will primarily be charged at home or at 
lower-level public charging stations due to the cost effective‐
ness and convenience of electricity at these levels. However, 
as sizes and ranges of EV battery continue to improve, and 
some EVs may need higher levels of charging to extend 
their driving range, there will be a greater demand for fast-
charging infrastructure. Despite the high cost of building this 
type of infrastructure and the difficulty in drawing large 
amounts of energy from the power grid, most people will 
still charge their EVs overnight at home or normal charging 
stations. To reach a wider market, it will be important to 
make charging options available in public places and along 
highways, ideally with fast-charging options. Therefore, the 
selection of PECs for various charging topologies will major‐
ly affect the reliability, safety, and durability, which leads to 
consumer approval of EVs.

From recent studies, it is clear that isolated converters are 
more reliable than non-isolated converters for the DC-DC 
converters between the utility grid and battery. Thus, the 
DAB converter is considered as the most favorable converter 
for EV charging stations because of achieving high power 
density, high efficiency, and small size of filter components. 
Moreover, the MPCs have gained prominence for their capa‐
bility to interface various energy resources in EV applica‐
tions, grid-connected systems, and RESs. These converters 
are characterized by fewer circuit elements, reduced com‐
plexity, lower cost, and superior power density compared 
with other DC-DC converter topologies. Relative to the 
RPCs, recent research works have been done to enhance the 
operation of the EV chargers to acquire essential objectives 
such as high power density, reliability, and efficiency with 
economical implementation and compact size. New modula‐
tion and control schemes have been proposed for developing 
EV chargers and enhancing the charging time. These sys‐
tems can reduce the switching losses, the voltage stress on 
switches, and the size of the components. Several research 
works have developed the RPCs to overcome the above-men‐
tioned limitations.

To deal with the challenges of the AC-DC converters, sev‐
eral studies have analyzed the future aspects in terms of cost 
effectiveness, number of controlled switches, filter design, 
and harmonics for EV applications, especially for DC fast-
charging technologies. Thus, the Vienna rectifier is consid‐
ered as the most promising converter type for the AC-DC 

conversion stage in high-power EV applications as it 
achieves less input current THD with the highest power den‐
sity compared with other AC-DC converters. In DC-AC con‐
verters, recent technologies for EV applications are proposed 
to specify accurately the parameters during the implementa‐
tion for reducing the switching losses and maintaining the 
compact size with an economical design. Moreover, some to‐
pologies have been employed for providing soft-switching 
without using complex control algorithms. In AC-AC con‐
verters, several research works work to propose a new de‐
sign to reduce the cost and simplify the applied control 
schemes.

Thus, prominent challenges and future research opportuni‐
ties of PEC-based EV applications can be highlighted briefly 
as follows.

1) Developing more efficient and cost-effectiveness charg‐
ing topologies by reducing the number of power conversion 
stages and switching devices with a better economical de‐
sign. Moreover, various metaheuristic optimization algo‐
rithms (such as genetic algorithm and particle swarm optimi‐
zation) can be applied in EV applications to enhance their 
implementation by minimizing the switching loss, number of 
converter components, and overall cost.

2) Ensuring that all stakeholders, including EV users, 
building operators, and power grids, benefit economically 
from co-management initiatives. This necessitates the estab‐
lishment of efficient and effective electricity pricing plans.

3) Investigating the use of artificial intelligence and ma‐
chine learning for optimizing the performance and energy ef‐
ficiency of EVs. Additionally, they can aid by analyzing and 
expecting the actual dataset of the faults which can exten‐
sively occur in PECs, for instance, open-circuit or short-cir‐
cuit faults. Hence, the hazardous incidences of PECs can be 
prevented in industrial technologies in the implementation of 
EV applications.

4) Exploring the application of WLC technologies. EVs 
equipped with wireless charging technology can simply park 
over a charging pad or use dynamic wireless charging sys‐
tems embedded in roads, allowing for convenient and seam‐
less charging. As the interest in using WLC technologies for 
EVs is increasing, future research may focus on developing 
and testing new WLC technologies and their potential appli‐
cations in different settings.

5) Enhancing the integration of EV charging with the grid 
is crucial as the number of EVs on the road increases. It will 
be important to ensure that the charging infrastructure can in‐
tegrate seamlessly with the grid. Hence, optimizing the con‐
nection between charging stations and the grid, and develop‐
ing new approaches to managing the power flow between 
them are very important.

6) Fast-charging systems capable of delivering high power 
at strategic locations will give consumers more options and 
flexibility. This involves the development of charging sys‐
tems that can deliver extremely high power level, enabling 
rapid charging sessions of just a few minutes.

7) For delivering high power density with lower losses 
and heat in passive components, new compositions of wide-
bandgap materials such as SiC and GaN, can be used for 
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PECs. As a result, the converter utilization by SiC or GaN 
semiconductor materials will attain low switching loss, high‐
er operating thermal capability, and better configuration sta‐
bility and reliability, which make the converter suitable for 
low-power or high-power EV applications.

8) Choosing suitable material composition for developing 
new topologies of the PECs for EV applications, providing 
improved reliability, cost effectiveness, and a high switching 
frequency. Moreover, enhancing the electrical design charac‐
teristics to accomplish the high frequency with low losses. 
Furthermore, mechanical design optimization should be con‐
sidered to achieve a compact size with better reliability and 
accuracy, and costly.

9) The control schemes should be improved to address 
challenges related to high harmonics in output current and 
voltage stress. Further, for better energy management with 
high efficiency, intelligent control schemes should be applied 
without any complexity through the training process and 
choose the hyperparameters. As a result, various metaheuris‐
tic optimization techniques and machine learning methods 
can be employed to determine controller parameters, reduce 
the number of components, and minimize the cost of PECs.

10) New topologies can be improved such as multi-level 
multi-phase bidirectional converters, DAB, and matrix con‐
verters, to overcome the PEC limitations and problems be‐
cause of their low current stress on switching devices, sim‐
ple control schemes, high efficiency and reliability, which di‐
rectly influence the overall operational performance.

VIII. CONCLUSION

The EVs can modernize transportation and help combat 
global warming by providing a sustainable alternative to fos‐
sil fuel-dependent vehicles. The adoption of EVs can reduce 
our reliance on finite fossil fuel resources and play a crucial 
role in mitigating the adverse effects of global warming. The 
EV charging topologies in terms of their placement, power 
rating, physical contact, and power flow direction have been 
investigated in this paper. Furthermore, a comprehensive re‐
view has been conducted on PEC solutions for EV applica‐
tions relative to their circuit arrangements, switching pat‐
terns, structure, and control approaches related to recently 
published review papers. Moreover, various PEC topologies 
that involve DC-DC converters, AC-DC converters, DC-AC 
converters and AC-AC converters in terms of their construc‐
tion, types, modulation techniques, and control schemes for 
high-voltage and low-voltage applications mainly for EV 
charging stations have been investigated in detail. In addi‐
tion to presenting the soft-switching converters, multi-level 
converters and MPCs are introduced as current solutions to 
power-train challenges in EV applications. Based on recent 
review papers, this paper offers an overview of major future 
research predictions, challenges, and impacts of PECs on ve‐
hicular systems and power quality in utility grids.
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