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Abstract——The partial differential equation (PDE) solution of 
the telegrapher is a promising fault location method among 
time-domain and model-based techniques. Recent research 
works have shown that the leap-frog process is superior to oth‐
er explicit methods for the PDE solution. However, its imple‐
mentation is challenged by determining the initial conditions in 
time and the boundary conditions in space. This letter proposes 
two implicit solution methods for determining the initial condi‐
tions and an analytical way to obtain the boundary conditions 
founded on the signal decomposition. The results show that the 
proposal gives fault location accuracy superior to the existing 
leap-frog scheme, particularly in the presence of harmonics.

Index Terms——Fault location, leap-frog, partial differential 
equation, time-domain analysis, transmission line.

I. INTRODUCTION

FAULT location is an essential function in the operation 
of modern power systems for lessening the outage time 

following a fault event [1], [2]. In addition, the accurate lo‐
cation of the fault contributes to speeding up the process of 
dispatching a specialized crew to attend to the fault restora‐
tion [3]. For long transmission lines, the time-domain and 
model-based techniques employ distributed parameters that 
necessitate a partial differential equation (PDE) solution for 
locating the fault, starting from measurements at both ends 
of the faulted line [4]-[6]. The digital computer solution is a 
finite-difference method in which discrete space-time replac‐
es continuous space-time. In discrete space-time, the finite-
difference equations substitute PDEs, giving rise to explicit 
solution methods where space-time stepping solution 
schemes can be implemented without solving large matrix 
equations. The explicit solution methods differ by how the 
partial derivatives are approximated in the discrete space-
time and include the techniques such as the standard first-or‐
der difference form, the Lax-Wendreoff scheme, and the 
leap-frog (LF) method. Reference [4] has recently shown 

that the LF method is the best among other explicit tech‐
niques for fault location applications. The Courant-Friedrichs-
Lewy criterion [7] governs its numerical stability.

This letter proposes improvements to the LF method ap‐
plied to the fault location. The first one is calculating initial 
values along the x-axis (line length) using extracted phasors, 
which provides significant improvements, particularly when 
the system is contaminated with harmonics. The issue of har‐
monics has become critical due to the widespread use of 
power electronics. The second improvement is correctly esti‐
mating the initial voltage values for the first space-time step‐
ping solution of LF. In particular, two new implicit-based 
schemes are introduced for calculating these initial values.

II. LF METHOD 

The equations of telegrapher are a pair of coupled PDEs 
that govern the voltage u(xt) and current i(xt) on the transmis‐
sion line in the function of distance x and time t:
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The coefficients of the PDEs are in terms of distributed 
parameters: R′, L′, C′, and G′ are the the series resistance, se‐
ries inductance, shunt capacitance, and shunt conductance 
(per unit length), respectively. By differentiating the set of 
PDEs in (1) with respect to t and x and eliminating the terms 
involving i(xt), a second-order hyperbolic PDE can be derived 
as:

¶2u(xt)

¶x2
- L'C'

¶2u(xt)

¶t2
= (R'C'+ G'L′ )

¶u(xt)

¶t
+ G′R′u(xt) (2)

The LF method operates on (2) and employs second-order 
central differences for approximating the space and time de‐
rivatives. Reference [4] reports that the voltage solution on 
the discrete space-time grid (as shown in Fig. 1) is obtained 
from the space-time stepping formula:

ux + 1t =-ux - 1t + (2 - 2v2b1 + Dx2b3 )uxt +

( )v2b1 -
vDt
2

b2 uxt - 1 + ( )v2b1 +
vDt
2

b2 uxt + 1 (3)

where b1 = L′C′; b2 = R′C′+ L′G′; b3 = R′G′; v = Dx/Dt; and the 
voltage subscripts x and t (without parenthesis) are integer 
values representing positions on the power grid with spac‐
ings Dx and Dt. As shown in (3), the LF calculation scheme 
requires the knowledge of values for x = 0 and x = 1 for all t. 
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Therefore, the calculation in (3) begins with x = 1 and t = 1 
and computes all values along the t-axis. After that, x is in‐
creased by one, and the calculation is repeated for all possi‐
ble values along the t-axis, as shown in Fig. 1, where nodes 
enclosed with red ellipses are used to calculate the current 
calculated point, and the arrows indicate calculation steps.

The two-ended fault location technique solves PDEs twice 
using the LF method. The first solution starts at the sending 
end and the second at the receiving end. The fault location 
can be determined by comparing the voltage profiles comput‐
ed from the sending and receiving ends; and the mismatch 
between these voltages is the least at the fault location. In 
the computation, the solution is found in the αβ0 domain, 
making the goal function (whose components are shown in 
Fig. 2) as (4). The voltage vector at point n (on x-axis) from 
the sending end is denoted as u(i)

sn, while the voltage vector 
at point N - n (on x-axis) from the receiving end is denoted 
as u(i)

rN - n. Both vectors are computed for all available time in‐
stants while the fault occurs.  ×  represents the ℓ1 vector 
norm.

f (n)= ∑
i Î{αβ0}

 u(i)
sn - u(i)

rN - n     n = 01N (4)
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Fig. 2. Goal functions |us - ur| in α, β, and 0 components for BCG fault 
(phases B and C to ground) on 240 km line, fault at x = 85 km.

A. Initial Values Along x-axis

Although the initial voltage value for t = 0 and x = 0, i. e., 
u(00), is given by the intelligent electronic device (IED) at 
the sending end of the line, the values u(x0) along the x-axis 
for t = 0 are unavailable. Therefore, to compute u(x0), the LF 
implementation in [4] uses linear interpolated values of sam‐
ples provided by IEDs on the line sending- and receiving-
end terminals. Unfortunately, this method can give poor re‐
sults whenever the voltage or current peak is at the midspan 
of the line or in the presence of significant harmonics.

Assuming that the system was in a steady state before the 
fault, one can consider the presence of a fundamental compo‐
nent voltage signal and its harmonics. This letter proposes 
an analytical procedure for calculating the pre-fault voltage 
and current profiles along the line length (x-axis) starting 
from the phasor estimation of the fundamental component 
and harmonics described in [8]. The method in [8] employs 
orthogonal component (OC) phasor estimation with a Prony 
variation on sampled measured value (SMV) data to extract 
the initial (t = 0) phasor values of the voltage and current at 
the sending end. The calculation process uses OC to com‐
pute the phasor of the fundamental component. Once ob‐
tained, the fundamental component is removed from the orig‐
inal signal, and the Prony method calculates the initial pha‐
sor values of harmonics. The initial values are then used as 
the inputs to the nonlinear least squares (NLS) technique 
[8], which has much better behavior in the presence of 
noise. Using the extracted phasors (-u k and -i k), the voltage 
values along the x-axis can be quickly obtained by (5) and 
transformed to the time-domain:

-u x =∑
k = 1

nh

(-u k cosh γk x - zk -i k sinh γk x) (5)

where zk =
R′+ ikωL′
G′+ ikωC′

, and ω is the fundamental system 

frequency; γk = (R′+ ikωL′ )(G′+ ikωC′ ); and nh is the num‐
ber of harmonics.

The use of the wavelet transformation for double-ended 
fault location has been discussed in phasor extraction [9]. 
Wavelets have been used in traveling-wave methods [10] to 
improve the performance when dealing with high harmonic 
content. The wavelet transform isolates the traveling waves 
from other signals such as harmonics on transmission lines.

B. Initial Values Along t-axis

Providing initial values for the LF method requires a solu‐
tion of PDEs of the telegrapher (1) for a single step in the 
discrete space-time representation. The process is solved im‐
plicitly for x = 1 (scheme 1 in Section II-B-1)) or x =-1 
(scheme 2 in Section II-B-2)). The general algorithmic 
framework is as follows for sending-end calculations, and 
similar computations apply to the receiving end.

Step 1: initialization. Collect the sampled data and convert 
the sampled voltage data, current data, and the line parame‐
ters to the αβ0 domain.

Step 2: implicit formulation. Formulate the diagonally 
dominant sparse matrix A and the right-hand-side vector b 
of the PDE discrete space-time representation using (6), (7) 
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Fig. 1. Required data, calculation progress, and calculation space for LF 
method.
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for scheme 1 and (8), (9) for scheme 2.
Step 3: iterative solution. Using an iterative solver, solve 

Ax = b, where x =[u11u12u1ni11i12i1n ]T for 
scheme 1 and x =[u-11u-12u-1ni11i12i1n ]T for 
scheme 2.

Step 4: LF method. Apply the LF method using the mea‐
sured voltage initial values umt =[u01u02u0n ]T, the calcu‐
lated initial values along the x-axis uct =[u10u20um0 ]T 
for scheme 1 and uct =[u-10u10um0 ]T for scheme 2, and 
the calculated initial voltage values uct =[u11u12u1n ]T 
for scheme 1 and uct =[u-11u-12u-1n ]T for scheme 2.
1)　Scheme 1 (Forward Calculation)

To provide initial values required by the LF method, this 
scheme uses an implicit solution employing a centered deriv‐
ative approximation with second-order accuracy along the t-
axis and a forward approximation of first-order along the x-
axis (represented by the green ellipses in Fig. 3) [11]:
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The solution to Ax = b in Step 3 provides all values for x =
1 (represented by the green dots in Fig. 3) after which the 
LF method can be started in Step 4. The LF method begins 
with the points enclosed in the red ellipses in Fig. 3 and cal‐
culates the red colored grid values.
2)　Scheme 2 (Backward Calculation)

Scheme 2 is similar to the first but differs from it by us‐
ing a backward approximation of first-order along the x-axis 
instead of a forward approximation [11]:
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The solution to Ax = b provides all values for x =-1 (repre‐
sented by the green dots in Fig. 4). As shown in scheme 1, 
the LF method begins with the points enclosed in the red el‐
lipses in Fig. 4 and calculates the red colored grid values. 
Scheme 2 can be only applied with phasor extraction since it 
requires the values u-10 and i-10.

III. NUMERICAL RESULTS 

The two-terminal fault location method is implemented by 
comparing the αβ0 components calculated using the samples 
from the sending- and receiving-end terminals. The calcula‐
tion is done by solving the PDEs in the forward and back‐
ward directions, i.e., starting from the sending and receiving 
ends, using the LF method. The numerical methods were im‐
plemented in MATLAB using in-house developed solvers. 
Three initialization schemes were investigated, considering 
feasible combinations of two possibilities for the boundary 
condition (ux0) and two for the initial voltage values re‐
quired to initiate the LF computation.

1) Int+ refers to linear interpolation for the initial voltage 
profile ux0 and estimation of the u1t voltages using scheme 
1. Int+ is closest to the initialization method in [4]. Int- dif‐
fers from Int+ by estimating the u-1t voltages using scheme 
2, so it is infeasible using linear interpolation. The reason is 
that the backward calculation requires the values u-10 and 
i-10, but the interpolation method cannot give these values.

2) Extr+ refers to phasor extraction followed by the analyt‐
ical voltage solution (described in Section II-A) for the ini‐
tial voltage profile ux0 and estimation of the u1t voltages us‐
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Fig. 3. Calculating initial values using unmodified space-time grid.
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Fig. 4. Calculating initial values by extending space-time grid.
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ing scheme 1. Extr- differs from Extr+ by estimating the 
u-1t voltages using scheme 2.

The tests were carried out on a transmission line (as 
shown in Fig. 4) that is 240 km long and whose positive- 
and zero-sequence resistance, inductance, capacitance, and 
conductance are as follows: R'1 = 0.006365 Ω/km, R'0 =
0.01932 Ω/km, L'1 = 0.09337 mH/km, L'0 = 0.41264 mH/km, 
C'1 = 127.4 nF/km, C'0 = 127.4 nF/km, G'1 = 0 S/km, and G'0 = 0 
S/km. The fault remains for 5 ms and has a resistance Rfalult =
1 Ω. The sampling rate of IED is fs = 20 kHz. The test setup 
of fault location is shown in Fig. 5.

Table I shows the fault location error for single line-to-
ground (AG) fault without harmonics. The first column 
shows the three actual fault locations (xf), the second column 
gives the fault inception angle (θs), and the last one gives 
the improvement factor (IF), i.e., the ratio of the worst error 
(Int+) relative to the best (Extr-). Table II is the counterpart 
of Table I, where harmonics giving a total harmonic distor‐
tion (THD) of 5% are simulated over 100 Monte-Carlo tri‐
als. The improvement, in this case, is quite remarkable and 
gives an average percentage error reaching around eight 
times lower than the standard Int+ initialization.

Table III presents fault location error comparison between 
LF Extr- and the method of characteristics (MC) [12]. The 
MC is a classical benchmark method that solves partial dif‐
ferential equations for model-based fault location. The re‐
sults are based on different fault locations (xf) and fault in‐
ception angles (θs) with 5% THD harmonics. The LF Extr- 
method consistently yields more accurate results with less er‐
ror (shown in both km and percentage). It also leads to an 
IF of up to 3.2.

Table IV presents the computational time for LF fault lo‐
cation of different fault types, based on 10 Monte-Carlo tri‐
als. The results show that the calculation requires around 
448 ms on a standard personal computer for an AG fault. Ta‐
ble IV also reports the average computational time using the 
LF method for the line-to-line (BC) fault, the double line-to-
ground (BCG) fault, and the three-phase (ABC) fault. The 
simulations were conducted on a MacBook Pro, M1 max, 32 
GB RAM, macOS Ventura 13.5. It is important to note that 
the computational time of the fault location method is not a 
valuable metric for comparing fault location methods, as the 
fault location application is not a real-time function [8]. The 
most crucial factor is ensuring that the fault location is accu‐
rately determined. In practice, fault location starts once the 
fault occurrs, requiring a crew to be dispatched to fix the is‐
sue. It may take several hours for a utility crew to fix a 
problem on-site, mainly if it occurs in a remote mountain ar‐
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Fig. 5. Test setup of fault location.

TABLE I
FAULT LOCATION ERROR FOR SINGLE LINE-TO-GROUND (AG) FAULT 

WITHOUT HARMONICS

xf 
(km)

20

65

120

θs (°)

0

45

90

0

45

90

0

45

90

Error (%)

Int+

0.716

1.147

1.322

1.163

1.205

1.970

0.683

0.831

0.998

Int-

´

´

´

´

´

´

´

´

´

Extr+

0.688

1.064

1.193

1.086

1.107

1.876

0.610

0.764

0.951

Extr-

0.627

1.008

1.163

1.034

1.079

1.789

0.607

0.731

0.899

IF

1.141

1.138

1.137

1.124

1.117

1.101

1.126

1.137

1.110

Note: ́  indicates that Int- cannot be applied.

TABLE II
FAULT LOCATION ERROR FOR AG FAULT WITH HARMONICS 

(5% THD HARMONICS, 100 MONTE-CARLO TRIALS)

xf (km)

20

65

120

θs (°)

0

45

90

0

45

90

0

45

90

Average error (%)

Int+

15.075

17.089

20.711

13.801

15.943

17.805

11.066

13.721

15.097

Int-

´

´

´

´

´

´

´

´

´

Extr+

3.765

4.325

5.802

3.774

3.765

4.097

3.876

3.096

2.973

Extr-

3.033

4.182

4.959

2.965

3.127

3.436

2.139

1.996

1.890

IF

4.971

4.086

4.177

4.655

5.098

5.182

5.173

6.875

7.987

Note: ́  indicates that Int- cannot be applied.

TABLE III
FAULT LOCATION ERROR COMPARISON BETWEEN LF EXTR- AND MC FOR 
AG FAULT WITH HARMONICS (5% THD HARMONICS, 100 MONTE-CARLO 

SIMULATIONS)

xf 
(km)

20

65

120

θs (°)

0

45

90

135

180

0

45

90

135

180

0

45

90

135

180

Estimated (km)

MC

24.812

25.713

26.440

25.913

26.728

59.276

58.301

61.855

71.029

70.312

125.013

124.997

126.713

114.992

124.947

LF

22.147

22.618

21.976

22.633

17.914

62.215

62.416

63.971

68.102

66.993

122.711

122.323

123.192

122.175

122.611

Error (km)

MC

4.812

5.713

6.440

5.913

6.728

5.724

6.699

3.145

6.029

5.312

5.013

4.997

6.713

5.008

4.947

LF

2.147

2.618

1.976

2.633

2.086

2.785

2.584

1.029

3.102

1.993

2.711

2.323

3.192

2.175

2.611

Error (%)

MC

2.005

2.380

2.683

2.464

2.803

2.385

2.791

1.310

2.512

2.213

2.089

2.082

2.797

2.087

2.061

LF

0.895

1.091

0.823

1.097

0.869

1.160

1.077

0.429

1.293

0.830

1.130

0.968

1.330

0.906

1.088

IF

2.241

2.182

3.259

2.246

3.225

2.055

2.592

3.056

1.944

2.665

1.849

2.151

2.103

2.303

1.895
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ea without road access. The time required to fix a fault in‐
creases when the fault location is not accurately known. 
Therefore, pinpointing the fault location  is crucial for 
prompt repair. The time it takes to locate faults is negligible 
compared with that for dispatching a team and repairing the 
faults.

IV. CONCLUSION

Among time-domain and model-based fault location tech‐
niques, the PDE solution of the telegrapher is the most effec‐
tive. This letter builds upon recent research [4], demonstrat‐
ing that the LF process is superior to other explicit PDE so‐
lutions. Nevertheless, the LF implementation faces challeng‐
es in determining the initial conditions in time and the 
boundary conditions in space. The letter has presented a 
promising strategy for initializing the LF solution to PDEs 
involved in time-based fault location, thereby promoting its 
adoption in operational settings. In addition, when harmonics 
are present, the proposed initialization significantly improves 
the accuracy of fault location compared with [4] and [12].
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TABLE IV
COMPUTATIONAL TIME FOR LF FAULT LOCATION OF DIFFERENT FAULT 

TYPES BASED ON 10 MONTE-CARLO TRIALS

Fault type

AG

BC

BCG

ABC

Involved component

α

√
´

√
√

β

´

√
√
√

0

√
´

√
´

Average computa‐
tional time (ms)

448.3

262.1

603.7

452.8

Note: √ and  ́ indicate that the component is involved and not involved, re‐
spectively.
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