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Abstract——In rural territories, the communities use energy 
sources based on fossil fuels to supply themselves with electrici‐
ty, which may address two main problems: greenhouse gas emis‐
sions and high fuel prices. Hence, there is an opportunity to in‐
clude renewable resources in the energy mix. This paper devel‐
ops an optimization model to determine the optimal sizing, the 
total annual investment cost in renewable generation, and other 
operating costs of the components of a hybrid microgrid. By 
running a k-means clustering algorithm on a meteorological da‐
taset of the community under study, the hourly representative 
values become input parameters in the proposed optimization 
model. The method for the optimal design of hybrid microgrid 
is analyzed in six operating scenarios considering: ① 24-hour 
continuous power supply; ② load shedding percentage; ③ die‐
sel power generator (genset) curtailment; ④ the worst meteoro‐
logical conditions; ⑤ the use of renewable energy sources in‐
cluding battery energy storage systems (BESSs)； and ⑥ the use 
of genset. A mathematical programming language (AMPL) tool 
is used to find solutions of the proposed optimization model. Re‐
sults show that the total costs of microgrid in the scenarios that 
cover 100% of the load demand (without considering the sce‐
nario with 100% renewables) increase by over 16% compared 
with the scenario with genset operation limitation. For the de‐
signs with power supply restrictions, the total cost of microgrid 
in the scenario with load shedding is reduced by over 27% com‐
pared with that without load shedding.

Index Terms——Battery energy storage system (BESS), isolated 
community, microgrid, renewable energy, optimization.

I. INTRODUCTION 

ACCESS to essential resources for daily activities is a re‐
curring issue in some isolated communities in develop‐

ing countries. Electricity is crucial as it provides access to 

schooling and technology, and it is closely linked to other 
primary necessities such as water. The national government 
unilaterally specified the selling price of fuels in Ecuador 
through a price-fixing system, which lacked the flexibility to 
adapt to active changes in the global market. The new reali‐
ty underwent a significant modification from 2020, when the 
selling price of oil-derived fuels such as diesel began to re‐
flect the fluctuations resulting from international supply and 
demand imbalances. This transition has directly impacted iso‐
lated communities in Ecuador that rely on fossil fuels for lo‐
cal energy generation [1].

In this context, hybrid microgrids appear as an alternative 
to stimulate the incorporation of renewable resources and re‐
duce fossil fuel consumption in isolated communities, with 
better environmental performances [2]. Several optimization 
algorithms have been proposed for the design of hybrid mi‐
crogrids, including linear programming and mixed-integer 
linear programming algorithms [3] - [5], particle swarm opti‐
mization (PSO) based algorithm [6]-[9], iterative Gauss-Se‐
idel algorithm [10], hybrid optimization of multiple energy 
resources (HOMER) [11]- [21], stochastic optimization algo‐
rithm [22], [23], and evolutionary algorithm [24]-[30]. These 
algorithms use different objective functions to utilize renew‐
able resources as much as possible. For this purpose, it is 
possible to minimize functions like the power produced by 
diesel generator (genset) in a defined time interval [3], [26], 
the total investment and operating cost [8] - [10], [17] - [20], 
[23], [31], [32], the levelized cost of electricity, greenhouse 
gas emissions [5], [30], and the probability of power outage 
[7]. As shown in Table I, the current trend is using financial 
indicators as a decision-making criterion for the design of 
microgrid, while the technical requirements are incorporated 
through optimization constraints.

One of the main constraints of the problem must ensure 
the balance between the power produced by different sourc‐
es and the system demand. Then, the optimization con‐
straints manage the state of charge (SOC) of the battery ener‐
gy storage systems (BESSs) and the fossil generators dis‐
patch.

On the other hand, the generation capacity of renewable 
energy sources strongly relies on resource availability accord‐
ing to geographical and meteorological conditions. Solar ra‐
diation or wind speed data vary greatly depending on the 
season or time period.
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The forecast problem of solar radiation and wind speed 
has become increasingly important over the last decade [36]. 
In broad terms, the forecast methods are classified into phys‐
ical, empirical, statistical, and machine-learning ones [37], 
[38]. The physical and empirical methods use ground or sat‐
ellite measurements to compute complex or simplified mod‐
els that estimate short-term data. The statistical and machine-
learning methods rely on the length and quality of the histor‐
ical data [39]. The clustering method looks to cluster days 
with similar behaviors, and each cluster is represented by a 
representative day [40]. Hence, large datasets are studied us‐
ing a reduced group of data. A comparison between a hybrid 
classification method based on k-means clustering and an au‐
toregressive neural network model is discussed by [41]. The 
abilities of these methods to identify data clusters with simi‐
lar characteristics used in the reconstruction of solar irradi‐
ance time series are demonstrated.

Furthermore, [42] conducts a comprehensive comparison 
of six clustering methods for the detection of patterns in so‐
lar irradiance. The results demonstrate the effectiveness of 
both conventional and unconventional methods in clustering 
historical data series. Another relevant study in [43] com‐
pares different classification methods to assess their robust‐
ness. This study utilizes the clearness index (CI) and variabil‐
ity index (VI) to identify various characteristics of solar irra‐
diance time series, such as clarity and cloudiness. The re‐
sults demonstrate the validity of classification methods in 
planning studies, although they are sensitive to data quality, 
especially in detailed analyses. An additional application of 
these classification methods is addressed by [44] and a de‐
tailed review of methods for predicting solar irradiance and 
power is presented in [36]. It is identified that hybrid classi‐
fication methods offer outstanding performance in estimating 
renewable resources. k-means clustering is highlighted as 
one of the methods yielding satisfactory results in multiple 

case studies.
This paper proposes a method for the optimal design of 

hybrid microgrids to fulfill energy needs in isolated commu‐
nities such as Cerrito de Los Morreños Island in Ecuador. 
This method integrates renewable and conventional energy 
sources alongside machine-learning algorithms for selecting 
representative values of meteorological parameters, particu‐
larly air temperature and solar irradiance. The clustering 
analysis introduces a factor related to renewable generation 
into the optimization model. This process represents a tangi‐
ble solution that is applicable and replicable in isolated com‐
munities and shares characteristics similar to the case study 
conducted in this paper. On-site data on consumption and in‐
stalled equipment are collected through an information sur‐
vey to improve the accuracy of design outcomes. This pro‐
cess involves manual collection. The collected information 
can be used in future research and enhances the strength and 
utility of the proposed method. The obtained hybrid mi‐
crogrid is rigorously examined under six operating scenarios 
to provide a comprehensive assessment. These scenarios en‐
compass: ① 24-hour continuous power supply; ② load shed‐
ding percentage; ③ diesel generator (genset) curtailment; ④ 
the worst meteorological conditions; ⑤ the use of renewable 
energy sources including BESSs; and ⑥ the use of genset. 
The optimization model is proposed and addressed using a 
mathematical programming language (AMPL) tool, and the 
results highlight significant findings.

The remainder of this paper is structured as follows. Sec‐
tion II describes the method for the optimal design of hybrid 
microgrid, highlighting the importance of the BESS for iso‐
lated communities in the optimization model. In Section III, 
the results of the optimal design for hybrid microgrid is as‐
sessed in different operating scenarios. Finally, the discus‐
sion and conclusion are drawn in Sections IV and V, respec‐
tively.

TABLE I
SUMMARY OF OPTIMAL DESIGN METHODS FOR HYBRID MICROGRID IN ISOLATED LOCATIONS REPORTED

Reference

[3]-[5]

[6]

[31]

[8]

[33]

[34]

[10]

[7]

[11]-
[21], [35]

[30]

[32]

Year

2017-
2019

2018

2019

2020

2020

2020

2021

2022

2020-
2022

2022

2022

Location

Somalia, USA

Small tropical island

Iran

Kenya

Saudi Arabia

Japan

Russia

Philippines

USA, Malaysia, Bangladesh, India, 
Namibia, Spain, and Pakistan

Algeria

USA

Objective function

Energy produced with fossil fuels and investment cost

Annual cost including initial investment, operation and 
maintenance (O&M), and power shortage penalty

Total life cost

Net present cost as a weighted sum of capital expenditure 
(CAPEX) and operational expenditure (OPEX)

Annual system cost and probability of power outage

Total cost over the microgrid lifetime

Net present cost

Levelized cost of electricity, probability of power outage, 
and greenhouse gas emissions

Net present cost

Cost of energy and probability of power outage

Cost per kWh

Optimization algorithm

Linear programming and mixed-
integer programming

PSO

Chaotic search, harmony search, and 
simulated annealing

PSO

Supply-demand based optimization

PSO

Iterative Gauss-Seidel

Multi-objective PSO

HOMER Pro software

Multi-objective slap swarm algorithm

Nonlinear reduced gradient method
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II. OPTIMAL DESIGN OF HYBRID MICROGRID 

The method for the optimal design of hybrid microgrid is 
summarized in Fig. 1. The proposed method begins with an 
information search relating to the electrical load of the com‐
munity, as well as obtaining its meteorological parameters of 
the community from the site. The latter allows the possible 
microgrid designs for the community according to the exist‐
ing renewable resources. This kind of data is fed into the k-
means clustering algorithm, which is solved by MATLAB, 
to obtain hourly representative values for each meteorologi‐
cal parameter, and then a factor related to renewable genera‐
tion is obtained. Finally, all the parameters obtained are in‐
put to the proposed optimization model.

A. Case Study

The hybrid microgrid is located in the Cerrito de los 
Morreños community, which is in the Gulf of Guayaquil, 
Guayas Province in Ecuador, with coordinates at latitude 
2°28’25.0” S and longitude 79°54’28.2” W, as shown in Ap‐
pendix A Fig. A1. This community has a permanent popula‐
tion of about 800 inhabitants, which rises to 1000 on holi‐
days. The buildings in this community consist of 96 residen‐
tial houses, one church, and one school. One of the main 
problems for the inhabitants is the lack of power supply, as 
there is no main grid nearby. Currently, a 185 kVA genset 
supplies electricity to the entire community from 18: 00 to 
midnight, which consumes about 20 gallons of diesel per 
day.

B. Estimation of Electrical Load

Although this community does not have a continuous pow‐
er supply, each home has all types of electrical appliances 
that work as soon as the generator is started. Currently, the 
frequency of use of electrical appliances in each household 
is directly dependent on the operating time of the genset, 
which is only six hours per day. The daily and annual load 
profiles are constructed considering a 24-hour power supply 
from the microgrid. The operating time of each appliance in 
a new scenario of electricity availability is surveyed on each 

household in this community.
The design of the hybrid microgrid depends mainly on the 

electrical load. The baseline data for adequately constructing 
the load profile are based on classifying the appliances (loads) 
into two groups considering the duration of power consump‐
tion during their operation. Then, from a survey performed on 
each dwelling, the appliances are classified as follows.

1) Group 1: appliances with intermittent power consump‐
tion, which operate with on/off cycles, such as refrigerators, 
freezers, and washing machines.

2) Group 2: appliances with continuous power consump‐
tion during their operation, such as television (TV) sets, 
lamps, and computers.

After classification, we summarize the electrical load in‐
formation in Cerrito de los Morreños community, which is 
identified from surveys conducted on inhabitants in Novem‐
ber 2022, as shown in Table II. The residential sector shows 
a higher concentration of appliances, i. e., this is the sector 
with the highest power consumption.

Figure 2 shows the estimated hourly load profile on a typi‐
cal day in Cerrito de los Morreños community. It can be ob‐
served from Fig. 2 that this typical day has a maximum 
peak power of 53.95 kW around 18:00. The estimated annu‐
al power consumption is 94559.00 kWh. A load growth rate 
of 1% per year is considered with a planning horizon of 15 
years for the project [45], i.e., the maximum peak power on 
a typical day can reach 65.16 kW after 15 years.

Renewable 

resource

 analysis

Solar 

irradiance

Air 

temperature

Hourly representative values

Factor related to renewable generation

MATLAB

AMPL tool using

CPLEX solver

Initial information search: electrical load and

meteorological parameters for possible microgrid designs

Estimation of

electrical load

Technical and economic

 details of microgrid

 components

k-means clustering algorithm

Minimization of anual total 

investment cost of hybrid microgrid

Fig. 1.　Summary of method for optimal design of hybrid microgrid.

TABLE II
ELECTRICAL LOAD INFORMATION IN CERRITO DE LOS MORREÑOS

 COMMUNITY

Load sector

Residential

Church

School

Street lighting

Appliance

Refrigerator

Freezer

Washing machine

TV

Blender

Iron

Toaster

Computer

Lamps

Cell-phone

Others

Lamps

Speakers

Fans

Fluorescent

LED lamps

TV

Computers

Speakers

Lighting

Quantity

24

37

42

77

33

26

9

15

388

164

9

3

2

17

14

2

20

2

3

Power (kW)

2.96

4.33

16.86

8.78

14.67

27.80

6.22

12.26

7.73

2.69

4.95

0.18

3.30

0.16

0.68

0.14

0.06

3.60

1.20

3.30

Note: the item “Others” in the residential sector corresponds to other types 
of appliances that are not widely used and/or are very rare in the dwellings 
such as printers and sewing machines.
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C. Renewable Resource Analysis Using k-means Clustering 
Algorithm

The lack of weather stations in Cerrito de los Morreños 
community is a drawback for designing a hybrid microgrid. 
Given this, the proper selection of representative values of 
each meteorological parameter is fundamental for solving op‐
timization models related to cost minimization in microgrids. 
The inadequate selection of these values can make the best 
solution of the optimization model with over-sizing compo‐
nents and therefore higher life cycle cost of the hybrid mi‐
crogrid. The solar irradiance and air temperature for this 
community are obtained from NASA meteorological datasets 
[46] for three years, from 1 January 2018 to 31 December 
2020.

Figure 3 shows the meteorological data of solar irradiance 
and air temperature for the year 2020, where only the solar 
irradiance during daylight hours is considered. In 2020-2022, 
the average daily solar irradiance is around 4.75 kWh/m2, 
and the minimum and maximum air temperatures are 
26.4 ℃ and 36.83 ℃ , respectively. The months with high 
average solar irradiance are July to November. This commu‐
nity has high solar potential for photovoltaic (PV) genera‐
tion, while other resources such as wind energy are unsuit‐
able for exploitation due to low wind speeds, as confirmed 
by local inhabitants.
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Fig. 3.　Meteorological data of solar irradiance and air temperature for year 
2020. (a) Solar irradiance. (b) Air temperature.

In this study, the k-means clustering algorithm is applied 
to obtain hourly representative values of meteorological pa‐
rameters for each month. Figure 4 shows the steps of k-
means clustering algorithm and how its results are used for 
the proposed optimization model. This algorithm can work 
with datasets and has efficient implementations with low 
computational complexity [47]. The k-means clustering algo‐
rithm divides the data points of a variable into k groups and 
assigns the data points to a cluster to minimize the sum of 
the squared distances between the data points and their corre‐
sponding cluster centroid [48].

The k-means clustering algorithm works iteratively and 
stops when there are no changes [49]. It should be noted 
that the centroid is a representative value of the grouped da‐
ta points. The practical value lies in dealling with the sto‐
chastic nature of the meteorological data and converting 
them into deterministic ones. With the historical data, two 
hourly representative values per day are obtained for each 
meteorological parameter. With the obtained data, a factor 
depending on hourly representative values for PV generation 
is created and included in the proposd optimization model as 
a technical variable for sizing the hybrid microgrid.

The Elbow statistical method is used to determine the opti‐
mal number of clusters, i.e., k, since the number k can be se‐
lected intuitively in the k-means clustering algorithm. The El‐
bow statistical method is based on the sum of the squared 
distances between the data points and their corresponding 

1 10 11 1213 14 15 16 17 18 19 20 21 22 23 24
0

10

20

30

40

50

60
L

o
ad

 (
k

W
)

2 3 4 5 6 7 8 9
Time (hour)

Fig. 2.　Estimated hourly load profile on a typical day in Cerrito de los 
Morreños community.

Input original time series of solar irradiance

 and air temperature

Apply the Elbow statistical method

Determine the number of clusters k

Select k random data points from the dataset

 as the initial cluster centroids

Assign each data point in the dataset to the

 cluster whose centroid is closest to the

 cluster centroid

Grouping based on the minimun distance

Obtain the representative values of

metheorological parameters for each monthTechnical 

parameters 

of PV panels Obtain the total power output of PV panels

Obtain the factor depending on hourly

representative values for PVgeneration

Obtain the proposed optimization model

k-means clustering algorithm

Does the iteration stop?
N

Y

Start

End

Fig. 4.　Steps of k-means clustering algorithm and its integration with opti‐
mization model.
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cluster centroid [50]. The inertia measures the clustering de‐
gree of a dataset using the k-means clustering algorithm. Fig‐
ure 5 plots the innertia versus the number of clusters k for 
hourly solar irradiance and air temperature data in January. 
According to Fig. 5, when k = 2, the slope of the curve has a 
sudden change, so the optimal number of k is chosen as 2. 
In this paper, the Elbow statistical method and k-means clus‐
tering algorithm are implemented using MATLAB [51].

Figure 6 shows the results of the k-means clustering algo‐
rithm using a meteorological dataset in January. This dataset 
has a total of 2232 data points in two clusters for two kinds 
of independent parameters, i. e., hourly air temperature and 
solar irradiance from 2018 to 2020. This procedure is ap‐
plied for each month over a period of three years.

Figures 7 and 8 show hourly representative values of solar 
irradiance and air temperature for each month, respectively. 
Both solar irradiance and air temperature have a hourly rep‐
resentative value during 06:00-08:00 and 16:00-18:00 and an‐
other during 08: 00-16: 00. For example, the representative 
value of solar irradiance at 17:00 in March is 106.84 W/m2. 
With all the representative values, we create the hourly pro‐
file of each meteorological parameter in a year, which will 
be used in the proposed optimization model.
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Fig. 5.　Innertia versus number of clusters k for hourly solar irradiance and 
air temperature data in January.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Air temperature

S
o
la

r 
ir

ra
d
ia

n
ce

Cluster 1
Cluster 2
Centroid0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fig. 6.　Results of k-means clustering algorithm using a meteorological da‐
taset in January.

122.53
105.96 100.01 104.04

123.06 134.38 129.33 126.31 120.48

471.50
452.80 462.78

524.01

418.54
386.34 380.34

474.84 487.96

438.21 449.12 450.52

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sept. Oct. Nov. Dec.
Time

0

100

200

300

400

500

600

S
o

la
r 

ir
ra

d
ia

tn
ce

 (
W

/m
2
)

06:00-08:00 and 16:00-18:00

08:00-16:00

117.28 108.62 106.84

Fig. 7.　Hourly representative values of solar irradiance for each month.

26.31 26.22
25.76

26.43 26.32
25.71

25.10 24.88 24.87 24.81
25.12

25.80

31.53

30.27
29.26

31.03 31.08
31.99 31.91 31.92 31.58

30.96 30.59
30.98

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sept. Oct. Nov. Dec.
Time

20

25

30

35

A
ir

 t
em

p
er

at
u

re
 (

℃
)

06:00-08:00 and 16:00-18:00

08:00-16:00

Fig. 8.　Hourly representative values of air temperature for each month.

492



PESANTES et al.: OPTIMAL DESIGN OF HYBRID MICROGRID IN ISOLATED COMMUNITIES OF ECUADOR

D. Factor Depending on Hourly Representative Values for 
PV Generation

To address the worst meteorological conditions, the pro‐
posed optimization model incorporates a key factor depend‐
ing on hourly representative values for PV generation. This 
factor is derived from analyzing the historical data of meteo‐
rological parameters, including temperature, humidity, pres‐
sure, wind, precipitation, cloud cover, etc., over the past three 
years in the target community. Among these, the temperature 
is prioritized for the sizing of PV systems due to its significant 
impact on the energy production model of the PV source.

In this research, we focus on air temperature and solar ir‐
radiance as critical meteorological parameters because they 
play a vital role in influencing the performance and efficien‐
cy of renewable energy technologies. Moreover, both air tem‐
perature and solar irradiance are integral to the sizing calcu‐
lations of hybrid microgrids. The k-means clustering algo‐
rithm applied to these meteorological parameters is used to 
obtain normalized daily statistical information and is em‐
ployed to formulate the temperature equation on the PV pan‐
els and determine the total power output of PV panels. The 
total power output is calculated as a function of the system 
size on a representative day.

The temperature on the PV panels TPVt is given by (1) 
[7], which considers hourly representative values of the solar 
irradiance and air temperature.

TPVt = THRVt +
NOCT - 20

800
GHRVt    t = 1224 (1)

where t is the index of hours; THRVt is the hourly representa‐
tive value of air temperature at time t; NOCT is the tempera‐
ture of PV panels under standard test conditions (STC); and 
GHRVt is the hourly representative value of solar irradiance at 
time t.

Therefore, the total power output of PV panels consider‐
ing the hourly representative values is given by:

PPVoutput =
PSTCGHRVt

1000
é
ë
êêêê ù

û
úúúú1 +

α
100

(TPVt - 25) (2)

where PSTC is the nominal power of the PV panel under 
STC; and α is the temperature coefficient.

From (1) and (2), the factor depends on hourly representa‐
tive values for PV generation is given by (3). This factor is 
a non-dimensional number and one of the input variables of 
the proposed optimization model.

F GR
t =

PPVoutput

PSTC
(3)

E. Proposed Optimization Model

The hybrid microgrid supplying power to the Cerritos de 
los Morreños community consists of a genset, BESSs, PV 
panels, and a power inverter. In this subsection, we show the 
mathematical formulation of the proposed optimization mod‐
el to minimize the annual total investment cost of a mi‐
crogrid, including the O&M cost of a genset in the commu‐
nity. Given this, the result reveals the optimal sizing of the 
microgrid. The linear optimization method is used to solve 
the proposed optimization model, which is mainly based on 

the fact that the decision variables are continuous and the ob‐
jective function about these decision variables is linear [52]. 
The AMPL tool is used to find the solution of the proposed 
optimization model using the CPLEX solver, which is based 
on primal-dual simplex algorithms [53]. This tool is an alge‐
braic modeling language for linear or non-linear problems 
with continuous and discrete variables [54].

To minimize the annual total investment cost of the mi‐
crogrid, the objective function is defined based on the linear 
cost functions of each component:

min Ct = 365(∑t = 1

24

δCOT P T
t ) + 365(∑t = 1

24

δCCC P D
t Xt ) +F (4)

F =CIGR P̄GR +CIT P̄T +CIPA P̄AE +CIEA ĒAE (5)

where δ is a conversion unit equal to 1 hour; COT is the rate 
for the sale of electricity from genset to microgrid; P T

t  is the 
power delivered from the genset to the microgrid at time t; 
CCC is the unit cost of load shedding; P D

t  is the load demand 
at time t; Xt is the load shedding percentage at time t; CIGR 
is the investment cost of PV panels; P̄GR is the total power 
output of PV panels; CIT is the investment cost in a genset 
whose maximum power output is equal to or less than the 
existing genset in the community; P̄T is the maximum capaci‐
ty of genset; CIPA is the cost of charging or discharging pow‐
er from the BESS to the microgrid; P̄AE is the maximum 
charging or discharging power of the BESS; CIEA is the unit 
cost for energy storage of the BESS; and ĒAE is the maxi‐
mum storage capacity of the BESS.

The first term of (4) describes the operation cost of the 
genset per year; the second term of (4) refers to the penalty 
due to the load shedding of the microgrid per year; and the 
last term F contains the sizing variables of microgrid, which 
is composed of four terms: ① CIGR P̄GR, which represents the 
cost of using power from the PV system; ② CIT P̄T, which 
represents the cost of using power from the genset; ③ 
CIPA P̄AE, which represents the cost of using power from the 
BESS; and ④ CIEA ĒAE, which represents the cost of energy 
storage of the BESS.

The constraints for the objective function are given as fol‐
lows.

1) Active power balance
Equation (6) is the constraint related to active power bal‐

ance, i. e., the power produced by the microgrid is equal to 
the power consumed by the community including the charg‐
ing and discharging power of BESS.

F GR
t P̄GR + P T

t = P D
t (1 -Xt ) + P AEiny

t - P AEext
t (6)

where P AEiny
t  is the discharging power delivered from the 

BESS to the microgrid at time t; and P AEext
t  is the charging 

power from the microgrid to the BESS at time t.
2) Genset capacity
Formula (7) shows that P T

t  must be less than or equal to 
the maximum capacity of genset P̄T and higher than zero.

0 £P T
t £ P̄T (7)

3) Active power injection capacity
Formula (8) shows the range of active power that can be 

delivered from the BESS to the microgrid.
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0 £P AEiny
t £ P̄AE (8)

4) Active power extraction capacity
Formula (9) represents the range of active power that can 

be delivered from the microgrid to the BESS.

0 £P AEext
t £ P̄AE (9)

5) Hourly energy balance
Equation (10) represents the hourly energy balance when 

t > 1, indicating the energy stored in the BESS at time t is 
equal to that at time t - 1 plus the energy transferred at 
time t.

E AE
t =E AE

t - 1 +µ δP
AEext
t -

δP AEiny
t

α
- βE AE

t  t > 1 (10)

where µ is the BESS efficiency; and β is the self-discharg‐
ing rate of BESS.

6) Initial energy balance when t = 1
Equation (11) represents the initial energy balance when 

t = 1, indicating the energy storage in the BESS when t = 1 is 
equal to the initial energy E AE

0  plus the energy transferred 
when t = 1.

E AE
t =E AE

0 +µ δP AEext
t -

δP AEiny
t

α
- βE AE

t  t = 1 (11)

7)　Storage capacity of BESS
Formula (12) limits the storage capacity of BESS in the 

range of [0, ĒAE ].

0 £ E AE
t  £ ĒAE (12)

8) Load shedding percentage
Formula (13) defines the range of load shedding percent‐

age.

0 £ Xt £ 1 (13)

9) Sizing of renewable energy source
Formula (14) establishes the sizing boundaries of the re‐

newable energy source (PV system).

0 £ P̄GR £ 
-
IP

GR (14)

where 
-
IP

GR
 is the maximum power output of PV panels.

10)　Sizing of genset
Formula (15) establishes the boundaries for the sizing of 

genset.

0 £ P̄T £ 
-
IP

T (15)

where 
-
IP

T
 is the maximum power generation of genset.

11) Power transfer capacity
Formula (16) indicates that the charging or discharging 

power of the BESS must be higher or equal to zero.

P̄AE ³ 0 (16)

12) Sizing of BESS
Formula (17) indicates the maximum storage capacity of 

the BESS should be larger than 0.

ĒAE ³ 0 (17)

Figure 9 categorizes and presents the variables involved in 
the proposed optimization model, where the sizing variables 
are the decision variables, which represent the size of each 
unknown subsystem. And we seek to find an optimal value 
for the sizing variables.

F. Input Variables Involved in Proposed Optimization Model

Table III summarizes the values of input variables in‐
volved in the proposed optimization model. The economic 
values are based on the Ecuadorian market price in 2022.

III. RESULTS OF OPTIMAL DESIGN FOR HYBRID MICROGRID

The fundamental structure of the current electrical system 
in Cerritos de los Morreños community is depicted in Fig. 
10, which consists of a genset supplying power to various 
loads in the community.

Initial scenario: the community solely relies on energy 
generated by the genset without the BESS, which makes the 
system operate with power available only when the genera‐
tor is activated, meeting immediate load demands. However, 
this structure poses significant challenges regarding stability 
and power quality. The existing genset struggles to meet the 
load demand, leading to persistent undervoltage issues that 

PV panels: CIGR, IPGR, Ft
GR

Genset: CIT, COT, IPT

BESS: CIPA, CIEA, EAE, α, β

BESS: Et
AE, Pt

AEiny, Pt
AEext

Electrical load: Pt
D, CCC

Electrical load: 1�Xt

Parameters

Proposed 

optimization

 model
State variables

Genset: Pt
T

Sizing variables

Renewable source: PGR

Genset: PT

BESS: PAE, EAE

0

Fig. 9.　Variables involved in proposed optimization model.

TABLE III
INPUT VARIABLES INVOLVED IN PROPOSED OPTIMIZATION MODEL

Variable

P̄GR

CIGR

CCC

CIT

CDT

P̄T

CIPA

CIEA

C AE
0

µ
β

Value

60.00 kW

464.60 $/kW

0.65 $/kW

997.28 $/kW

0.16 $/kWh

185.00 kW

197.92 $/kW

197.92 $/kWh

0 kWh

0.95

0.02

Genset 

220 V/127 V Electrical loadsBus

Fig. 10.　Fundamental structure of current electrical system in Cerrito de 
los Morreños community.
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swiftly damage connected appliances. A comprehensive sur‐
vey reveals that almost every household has at least one ap‐
pliance that is damaged due to the substandard quality of 
power supply. Common household appliances like washing 
machines, refrigerators, and TVs are frequently affected. 
This predicament is compounded by the limited financial re‐
sources of local inhabitants. Using the cost data outlined in 
Table III and the conditions delineated for the genset of the 
case study in Section II-A, the financial situation of the cur‐

rent electrical system is accessed and the total cost of main‐
taining the current system amounts to $92440.80. The situa‐
tion requires urgent attention due to the adverse impact on 
both the stability of the electrical system and the financial 
strain on the local inhabitants.

The hybrid microgrid is designed in six operating scenari‐
os, where certain conditions such as 24-hour continuous 
power supply and load shedding percentage are considered, 
as shown in Table IV.

The description of scenarios 1-6 is as follows.
1) Scenario 1: the microgrid does not supply electricity 

during the day. Given this, a load shedding percentage is in‐
troduced to the proposed optimization model, which speci‐
fies both the time of the day and the optimal percentage of 
the load for implementing electricity shortage measures. In 
addition, the genset can run at any time of the day.

2) Scenario 2: the microgrid does not consider a load 
shedding percentage, i.e., the microgrid and genset must cov‐
er the load demand in the community.

3) Scenario 3: the microgrid has priority in the power sup‐
ply to take full advantage of solar energy. Given this, the 
genset must be turned off from 09:00 to 16:00, considering 
the load shedding percentage.

4) Scenario 4: the community has a 24-hour continuous 
power supply considering the genset curtailment from 09:00 
to 16:00. This scenario does not consider load shedding per‐

centage.
5) Scenario 5: the sizing of microgrid does not consider 

the worst meteorological conditions of the site, i.e., the fac‐
tor depending on hourly representive values for PV genera‐
tion in June, which has the lowest solar inrradiation, is not 
taken into account. This condition guarantees that the out‐
comes remain impartial, preventing any favorable bias intro‐
duced by PV generation to the genset. Given this, we pro‐
cess all the monthly representative values to obtain an opti‐
mal value of the whole set, which is input to the proposed 
optimization model.

6) Scenario 6: the load demand in the community is whol‐
ly covered with renewable energy source during the day, con‐
sidering the factor depending on houly representative values 
for PV generation in June.

Table V presents the total cost of the microgrid and other 
parameters in each scenario.

The load demand in Scenario 1 is almost entirely covered 
by the genset, although there is also a small contribution 
from the BESS. This scenario prioritizes an economic gener‐
ation source to supply power because the genset has no oper‐
ating restrictions. Given this, the optimization solution indi‐
cates that the total power output of PV panels 

-
P

GR
 should be 

0 kW because of its high cost of power generation. In addi‐

tion, the maximum power output of the genset 
-
P

T
 is estimat‐

ed to be 32.4 kW, and the maximum storage capacity of the 
BESS 

-
E

AE
 is estimated to be 4.73 kWh. Between the genset 

and BESS, the proposed optimization model finds an opti‐

TABLE IV
SCENARIOS CONSIDERING DIFFERENT CONDITIONS OF MICROGRID

Scenario 
No.

1

2

3

4

5

6

24-hour continuous 
power supply

N

Y

N

Y

Y

Y

Load shedding
 percentage

Y

N

Y

N

N

N

Genset curtailment

N

N

Y

Y

Y

N

The worst meteorological 
conditions

Y

Y

Y

Y

N

Y

Use of renewable 
energy sources

Y

Y

Y

Y

Y

Y

Use of genset

Y

Y

Y

Y

Y

N

Note: the symbol “Y” represents that the corresponding condition is considered; and the symbol “N” represents that the corresponding condition is not con‐
sidered.

TABLE V
TOTAL COST OF MICROGRID AND OTHER PARAMETERS IN EACH SCENARIO

Scenario 
No.

1

2

3

4

5

6

-
P

GR
 (kW)

0

0

65.16

65.16

65.16

279.20

-
P

T
 (kW)

32.40

31.70

29.79

29.93

27.00

0

-
P

AE
 (kW)

2.56

22.25

12.34

17.59

19.47

92.50

-
E

AE
 (kWh)

4.73

23.42

60.47

74.06

59.75

591.89

Operation cost of genset 
($/year)

36461.2

38686.9

20505.3

21731.2

19560.2

0

Cost of load 
shedding ($/year)

7215.04

0

3897.96

0

0

0

Total cost of microgrid 
($/year)

77426.7

79338.4

98794.2

99992.2

92440.4

265169.0
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mal dispatch of power consumption through load shedding 
so that the grid can continue to supply power to consumers. 
Load shedding indicates scheduled power outages during spe‐
cific hours of the day. Figure 11 shows the percentage of 
loads with power supply in Scenario 1. As can be observed 
from Fig. 11, the load shedding is performed during 07:00-
10:00 and 18:00-19:00. The first interval coincids with the 
peak demand hours, which obtains a load shedding percent‐
age of 16%. The second interval indicates a load shedding 
of 35%, i.e., the microgrid can only supply 65% of the total 
load demand in the community. The cost of load shedding in 
the community is 7215.04 $/year, and the total cost of the 
microgrid (including sizing and O&M costs) is 77426.70 $/
year. Economically, the total cost of microgrid is the the 
most optimal one among all the scenarios; however, the in‐
termittency in the power supply and the CO2 emissions pro‐
duced by the genset can directly affect the quality of life of 
the inhabitants in the community. In addition, this intermit‐
tency can shorten the useful life of household appliances. Giv‐
en this, the total cost of microgrid could not offset the negative 
economic and environmental impacts on the community.

The total cost of microgrid in Scenario 2 increases by 
2.5% compared with that in Scenario 1. This cost difference 
is insignificant considering the scale of economic investment 
in developing a microgrid. This scenario guarantees the 24-
hour continuous power supply. In addition, 

-
E

AE
 has a signifi‐

cant increase of 395% compared with that in Scenario 1. 
The cost of load shedding is 0. Therefore, although the cost 
of BESS is higher, the total cost of the microgrid in Scenar‐
io 2 does not increase significantly compared with that in 
Scenario 1. In terms of the power supply quality, this scenar‐
io is favorable due to the continuous power supply. Howev‐
er, from an environmental perspective, Scenario 2 is still un‐
favorable due to increased use of genset and CO2 emissions.

The result in Scenario 3 changes drastically when the 
genset operating restriction during peak solar irradiance 
hours (09:00-16:00) is introduced. Scenario 3 prioritizes the 
use of solar energy. In this scenario, 

-
P

GR
 is 65.16 kW, which 

corresponds to the sizing boundaries of the PV system sug‐
gested in the mathematical model considering the maximum 
peak demand during the 15 years of the project. The genset 

does not change significantly in 
-
P

T
 compared with Scenarios 

1 and 2. However, the maximum discharging power of the 
BESS to load 

-
P

AE
 has a reduction of almost 10 kW com‐

pared with that in Scenario 2. This is because the PV panels 
provide power supply to the load, thus reducing the discharg‐
ing processes of BESS hour by hour. In addition, the consid‐
erable increasement in 

-
E

AE
 is due to the increased penetra‐

tion of PV panels and BESS. Load shedding has a signifi‐
cant reduction. For example, from 13: 00 to 18: 00, a load 
shedding percentage of 10% is conducted, i.e., the microgrid 
can supply 90% of the total load demand in the community. 
During other hours, the load shedding percentage does not 
exceed 1%. This configuration could supply more than 99% 
of the total load demand in the community. However, de‐
spite the short duration and low intensity of the power outag‐
es, they are still a nuisance to users. Given this, we consider 
Scenarios 4-6 without load ledding, i.e., the 24-hour continu‐
ous power supply is enabled.

The total cost of microgrid in Scenario 4 is $99992.20. In 
terms of power usage and quality, there is a notable differ‐
ence from Scenarios 1-3 without any load shedding. The val‐
ue of  

-
P

T
 does not change considerably compared with that 

in Scenario 3, but the values of 
-
P

AE
 and 

-
E

AE
 increase, which 

are expected because the load demand must be covered dur‐
ing 24 hours of a day even at low solar irradiance and night 
time. In Scenario 5, the proposed optimization model does 
not consider the representative values of the worst meteoro‐
logical conditions with the lowest solar irradiance in June. 
However, other values considered are above the average for 
the community, so this does not bring an impossible result. 
In Scenario 5, the total cost of microgrid has a 8% reduction 
compared with that in Scenario 4. The size of PV panel does 
not change, but the value of  

-
P

T
 changes slightly because 

the microgrid can provide a larger power supply to the load. 
The effect of considering a higher solar energy is reflected 
in the increased parameters of the BESS. Finally, Scenario 6 
is 100% renewable, i.e., the power supply from the genset is 
not considered. In this scenario, the total cost of microgrid is 
$265169.00 due to the considerable increase in the cost of 
BESS. Compared with Scenario 4, the total cost of mi‐
crogrid increases by more than 160% by substituting the 
genset with renewables energy sources. It is demonstrated 
that the BESS may considerably raise the total cost of a mi‐
crogrid in 100% renewable scenarios.

Table VI shows the investment costs of the renewable en‐
ergy sources in each scenario, which are calculated based on 
the maximum supply power of the PV system, genset, and 
BESS. The sizing results of renewable energy sources show 
a similar trend to the results obtained in Table V. The num‐
bers of PV panels and BESSs in Scenarios 1 and 2 are the 
minimal because the load demand is fully covered by the 
genset. Scenarios 3-5 have similar capacities of BESS and 
thus, the investment costs of BESS vary slightly. Likewise, 
the installed capacity of PV system, i.e., the numbers of PV 
panels, in Scenarios 3-5 are the same, so are the investment 
costs. Scenario 6 is the most expensive among all scenarios, 
where the investment cost of the BESS accounts for almost 
48% of the total sizing cost of microgrid, as shown in Table 
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Fig. 11.　Percentage of loads with power supply in Scenario 1.
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VI. In addition, the number of PV panels in this scenario in‐
creases four times compared with those in Scenarios 3-5.

The approach to the proposed optimization model focuses 
on finding the optimal combination of the different genera‐
tion sources; therefore, elements related to the network topol‐
ogy are not considered in the proposed optimization model. 
Figure 12 illustrates the proposed electrical system in Cerrito 
de los Morreños community. Each scenario allows a feasible 
operation in this isolated community, prioritizing different as‐
pects according to the operation needs.

Figure 13 compares the growth percentage for the total cost 
of microgrid in Scenarios 1-6 with initial scenario.

The result in each scenario is optimal under its own oper‐
ating conditions depending on the requirements and prioriti‐
zation of users. For example, the total cost of microgrid in 
Scenario 1 reduces by -16.24% compared with the initial 
scenario. However, other aspects of this scenario must be 

considered. Among the initial scenario and Scenarios 1-6, 
the optimal design of microgrid that could be implemented 
in the community is Scenario 3, where, although there are 
some restrictions during peak demand hours, consumers 
have a 24-hour continuous power supply in a day, with a 
correct dispatch and prioritization of essential sources.

IV. DISCUSSION 

This paper presents the optimal design of a microgrid in 
six scenarios, considering a combination of sources such as 
PV panels, BESS, and genset. To analyze these scenarios, 
we consider the k-means clustering algorithm for the treat‐
ment of meteorological datasets for the sizing and optimiza‐
tion of the microgrid in each scenario. The inadequate selec‐
tion of these values can make the best solution of the optimi‐
zation model with over-sizing components and therefore 
higher life cycle cost of the hybrid microgrid.

The obtained hybrid microgrid is rigorously examined un‐
der six operating scenarios considering: ① continuous power 
supply; ② load shedding percentage; ③ genset curtailment; 
④ the worst meteorological conditions; ⑤ the use of renew‐
able energy sources including BESSs; and ⑥ the use of 
genset. The results obtained in each scenario include the opti‐
mal sizing, the total annual investment cost in renewable 
generation, and other operating costs of the components of a 
microgrid. The analysis of results is the product of estimat‐
ing the electrical load of the site under study, using tech‐
niques for better estimating meteorological parameters, and 
sizing/optimizing a microgrid. The importance of including 
the components of the microgrid according to operating con‐
ditions for cost minimization is demonstrated while satisfy‐
ing the load demand of the community. Scenarios 1 and 3 
consider load shedding but they do not have significant cost 
reductions compared with those that supply electricity 24 
hours per day (except for the 100% renewable scenario). Be‐
sides, Scenario 3 has a higher cost than Scenario 1 due to 
the increase in the storage capacity of BESS and the in‐
stalled capacity of PV system. It should be noted that the 
genset operating restriction means that genset does not oper‐
ate during solar irradiance hours. Scenario 2 does not consid‐
er load shedding, i.e., the community has a 24-hour continu‐
ous power supply. However, the operation of genset without 
restriction reduce the costs of microgrid without considering 
the environmental impact. Given this, the total cost of mi‐
crogrid in Scenario 2 slightly increases compared with that in 
Scenario 1. Among these scenarios, Scenario 1 is the most eco‐
nomically feasible option, but environmentally, this scenario 
would affect the life quality of the inhabitants in this communi‐
ty.

In scenarios that prioritize PV generation (Scenarios 3-5) 
with a genset restriction, the variation in the total cost of the 
microgrid is slight among these scenarios that consider the 
worst meteorological conditions. However, Scenario 5 shows 
a lower cost than Scenarios 3 and 4 because we consider the 
hourly representative values of meteorological parameters. 
However, as mentioned above, Scenario 3 considers load 
shedding, so Scenario 4 is a feasible option for developing a 
hybrid microgrid, considering the worst meteorological con‐

TABLE VI
INVESTMENT COST OF RENEWABLE ENERGY SOURCES IN EACH SCENARIO

Scenario

1

2

3

4

5

6

PV panel

Number

0

0

125

125

125

536

Investment 
cost ($)

0

0

15500.63

15500.63

15500.63

66728.63

BESS

Number

2

10

26

31

25

247

Investment 
cost ($)

473

2400

6240

7440

6000

59280

Total sizing cost 
of microgrid ($)

473.00

2400.00

21740.63

22940.63

21500.63

126008.80

Genset

 220 V/127 V Electrical loadsBus

PV panels BESS

Fig. 12.　Proposed electrical system in Cerrito de los Morreños community.
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Fig. 13.　Growth percentage for total cost of microgrid in Scenarios 1-6 
compared with initial scenario.
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dition. Finally, Scenario 6 has the highest total microgrid 
cost among all the scenarios. This 100% renewable scenario 
satisfies 24-hour continuous power supply without any envi‐
ronmental impact on the inhabitants.

V. CONCLUSION

To address the power supply problems in isolated commu‐
nities in Ecuador, a comprehensive analysis of the optimal 
design for hybrid microgrids is conducted in various scenari‐
os. To analyze these scenarios, the k-means clustering algo‐
rithm is used for the meteorological datasets for the sizing 
and optimization of the microgrid. The integration of renew‐
able energy sources, energy storage systems, and the consid‐
eration of meteorological factors are crucial aspects. The eco‐
nomic feasibility of different scenarios is evaluated, emphasiz‐
ing the need to balance cost minimization and environmental 
sustainability. In summary, this paper provides valuable in‐
sights for the optimization of microgrid to improve the power 
supply quality in isolated communities, with a clear awareness 
of both economic and environmental considerations. For fu‐
ture work, we will incorporate the analysis of excess electrici‐
ty in the daytime into the optimization model. Likewise, CO2 
emissions from the genset will also be determined.
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