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Abstract——To provide guidance for photovoltaic (PV) system 
integration in net-zero distribution systems (DSs), this paper 
proposes an analytical method for delineating the feasible re‐
gion for PV integration capacities (PVICs), where the impact of 
battery energy storage system (BESS) flexibility is considered. 
First, we introduce distributionally robust chance constraints 
on network security and energy/carbon net-zero requirements, 
which form the upper and lower bounds of the feasible region. 
Then, the formulation and solution of the feasible region is pro‐
posed. The resulting analytical expression is a set of linear in‐
equalities, illustrating that the feasible region is a polyhedron in 
a high-dimensional space. A procedure is designed to verify and 
adjust the feasible region, ensuring that it satisfies network loss 
constraints under alternating current (AC) power flow. Case 
studies on the 4-bus system, the IEEE 33-bus system, and the 
IEEE 123-bus system verify the effectiveness of the proposed 
method. It is demonstrated that the proposed method fully cap‐
tures the spatio-temporal coupling relationship among PVs, 
loads, and BESSs, while also quantifying the impact of this rela‐
tionship on the boundaries of the feasible region.

Index Terms——Net-zero distribution system, photovoltaic (PV) 
integration capacity, feasible region, battery energy storage sys‐
tem (BESS).
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I. INTRODUCTION

A net-zero energy system, where the total generation sur‐
passes overall demand, signifies an ecologically sustain‐

able paradigm that supports decarbonization procedure and 
potentially serves as a crucial form for future energy sys‐
tems [1] - [3]. The rapid development of photovoltaic (PV) 

technology in recent years has laid the foundation for the re‐
alization of net-zero distribution systems (DSs) [1]. The in‐
vestigation into PV integration schemes provides invaluable 
guidance for establishing net-zero DSs.

Related to the mentioned topic, there are many outstand‐
ing research works on the PV hosting capability. Based on 
considerations of multiple PV locations, the current research 
works can be divided into two aspects: total PV integration 
capacity (PVIC) of all PV locations, and individual PVICs 
for different PV locations. In the first aspect, optimization 
models for total PVIC are employed to determine the maxi‐
mum total PVIC, which have been explored in many litera‐
tures [4], [5].

In contrast to quantifying the maximum total PVIC, the 
evaluation of individual PVICs places an emphasis on delin‐
eating the interaction relationships between PVICs at differ‐
ent PV locations, which can provide a more comprehensive 
information about PV hosting capability. However, the de‐
scription and solution methods for individual PVICs are the 
main issues. References [6] and [7] used the Monte Carlo 
method and affine arithmetic method, respectively, to find 
feasible PV integration schemes including locations and their 
capacities. Reference [8] extended the security region to the 
total quadrant by treating PVs as negative loads. In our prior 
work [9], the PV hosting capacities were characterized as a 
feasible region within a high-dimensional space, which pro‐
vided explicit boundaries for the interdependent maximized 
PV capacities at different buses. It becomes evident that the 
region-based method is efficient for solving such problems.

In observation of the feasible region for PVICs, simula‐
tion techniques [8] and multi-objective optimization [9] can 
be employed. However, they provide reliable solutions only 
at the Pareto points, and the accuracy of this region heavily 
depends on the accuracy of the high-dimensional fitting algo‐
rithm, which may be difficult to achieve in larger systems. 
Reference [10] defined the feasible operation region of a 
DS, which indicates the allowable power injections at differ‐
ent buses. Quadratic analytical expressions can effectively 
represent its boundaries. But the time-series PV outputs and 
temporal coupling flexible resources such as battery energy 
storage systems (BESSs) cannot be addressed in this meth‐
od. Therefore, it is of significant value to employ analytical 
methods to accurately derive the expression of the feasible 
region for PVICs, which poses significant challenges.

For the constraining factors of PV integration, current PV 
hosting capacity studies primarily revolve around system se‐
curity such as bus voltages [9] and branch power flows [8]. 
However, a certain amount of PV integration is necessary to 
achieve net-zero. Specifically, for a net-zero system, the fea‐
sible PV integration capacity must not only adhere to the up‐
per limits dictated by network security constraints but also 
satisfy a lower threshold. In this way, it is more appropriate 
to conduct the research on “feasibility of PV integration 
schemes” rather than “the maximum PV hosting capability” 
in net-zero systems. Furthermore, net-zero systems may ex‐
hibit varying requirements depending on their definitions of 
“net-zero” such as energy [2], [3] and carbon emission [1]. 
These requirements profoundly affect the configuration of 
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the feasible region.
Furthermore, the importance of “flexibility” in the estab‐

lishment of net-zero systems has been demonstrated [1]. 
Flexibility is the capability of a system in mitigating the in‐
termittency and volatility of renewable energy generation 
(REG) [11], thus ensuring secure and low-carbon system op‐
eration [12]. BESSs facilitate energy temporal transfer, sub‐
stantially enhancing the PV hosting capability in DSs [5], 
and providing flexibility for net-zero DS construction. How‐
ever, the interaction effects between viable PVICs and 
BESSs are complicated. Specifically, loads, PV outputs, and 
regulating power of BESSs are time-varying, but power bal‐
ance constrains their mutual influences across temporal se‐
quences; and the power of loads, PVs, and BESSs during a 
given time period is also limited by their locations and net‐
work security constraints. Consequently, quantifying the in‐
fluence of BESSs on feasible PVICs relies on the formula‐
tion and solution of the spatio-temporal coupling among 
loads, PVs, and BESSs.

To address this issue, it is imperative to analyze the spatio-
temporal coupling flexibility of a DS using a region-based 
method. References [13] and [14] separately obtained the 
temporal coupling regulation power of aggregated flexible re‐
sources at the point of common coupling (PCC) by using ex‐
ternal approximations and analytical methods, respectively. 
However, these methods may not be able to analyze the ef‐
fect of BESSs on multiple PV locations. References [15] and 
[16] examined the capability of accommodating uncertainties 
for each REG buses, presenting the solution to spatial cou‐
pling. Nevertheless, this method may not consider temporal 
coupling constraints of BESSs (state-of-charge (SOC) con‐
straints). Reference [17] analyzed the operation flexibility of 
mitigating uncertainties in a DS using basic feasible solution 
method, which is capable of addressing spatio-temporal cou‐
pling issues. Thus, it may provide an effective tool to formu‐
late the feasible region for PVICs considering spatio-tempo‐
ral coupling among loads, PVs, and BESSs in a DS.

In addition, the uncertainty of PV outputs, which mainly 
influence network security, is essential in the feasibility as‐
sessment of PV integration. Based on the data set of PV out‐
puts, it is feasible to generate empirical probability distribu‐
tions or assume certain parametric distributions to deploy sto‐
chastic programming [18], but these distributions may differ 
from the true distribution when data samples are limited, po‐
tentially leading to an underestimation of the violation level 
and posing security risks to the safe operation of the system 
[19]. Therefore, we adopt the distributionally robust method 
to model the uncertainty. Currently, two main types of distri‐
butionally robust ambiguity sets are adopted: moment- and 
statistical-distance-based sets [20]. However, using two mo‐
ments (the first and second moments) can capture only part 
of the true distribution information, sometimes leading to 
over-conservative decisions [12], [21]. To construct statisti‐
cal-distance-based sets, the Kullback-Leibler (KL) diver‐
gence or the Wasserstein metric can be applied. Neverthe‐
less, the KL divergence also has some limitations, and the 
main shortcoming is that it cannot be used for the models 
with heavy-tailed random functions [21], [22]. The Wasser‐

stein metric has the following statistical guarantee property: 
a Wasserstein ball based on finite samples can contain the 
true probability distribution with a high probability level 
[23]. In this way, the traditional chance constraint can be re‐
formulated as data-driven distributionally robust chance con‐
straint (DRCC), and it is well-performed in the existing liter‐
ature [21], [22].

Based on the above analysis, the contributions of this pa‐
per are presented as follows.

1) This paper introduces a feasible region model for PV‐
ICs under DRCC-based network security constraints, the net‐
work loss constraint, and energy or carbon-emission net-zero 
constraints, which define the upper and lower boundaries, re‐
spectively. This model fully clarifies the requirements for 
multiple PV locations, which are necessary for establishing a 
well-performed net-zero system. Moreover, the proposed 
model also presents the influence of BESS flexibility on en‐
hancing the PV hosting capability and facilitating the con‐
struction of net-zero systems.

2) A novel analytical method for delineating the feasible 
region is presented. Utilizing the basic feasible solution con‐
cept, it deduces an analytical expression of the region from 
the DRCC-based linearized model, which is not reliant on 
existing optimization methods. A procedure is designed to 
verify and adjust the feasible region, ensuring that it satisfies 
network loss constraints under alternating current (AC) pow‐
er flow. The systematic solution method captures the spatio-
temporal coupling among PVs, loads, and BESSs, while also 
quantifying the impact of this relationship on the boundaries 
of the feasible region.

The significant differences between this paper and our pri‐
or work [9] are elaborated as follows.

1) The most crucial difference lies in the distinct methods 
and their outputs. In terms of methodologies, [9] employed a 
multi-objective optimization framework, treating the Pareto 
frontier as the boundary of the feasible region. In contrast, 
this paper proposes a novel analytical method, enabling us 
to derive a mathematical expression for the feasible region. 
The proposed method in this paper is entirely independent of 
optimization methods. In terms of outputs, the method in [9] 
produced the Pareto points. While it can generate boundary 
expressions via polynomial fitting or convex hull techniques, 
achieving higher precision necessitates more densely packed 
Pareto points. This leads to exponentially increased solution 
time and complexity of expressions, rendering them impracti‐
cal. The proposed method in this paper directly yields an ex‐
plicit and relatively simple mathematical expression for the 
boundaries, which is free from these issues.

2) Unlike [9], which only considered system security con‐
straints, this paper takes into account the support of PV in 
building net-zero systems. The feasible region in this paper 
not only includes an upper limit for PV integration but also 
a lower one.

3) For addressing uncertainty, this paper uses a lineariza‐
tion transformation method for Wasserstein-metric-based dis‐
tributionally robust chance constraints (WDRCCs) to derive 
analytical expressions. In contrast, [9] used an iterative meth‐
od to solve distributionally robust chance-constrained pro‐
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gramming.
The rest of this paper is organized as follows. Section II 

describes the specific problem (feasible region for PVICs) 
that we try to address in this paper. Operation constraints 
and net-zero requirements for DSs are presented in Section 
III. Section IV presents the formulation and solution of the 
feasible region for PVICs. Section V presents case studies to 
verify the effectiveness of the proposed method on the 4-bus 
system, the IEEE 33-bus system, and the IEEE 123-bus sys‐
tem. Finally, Section VI concludes this paper.

II. PROBLEM DESCRIPTION

To ensure generality, the research object of this paper is 
the set of feasible PVICs at multiple PV locations. Due to 
the temporal coupling BESSs, scattering PV locations, net‐
work security constraints, and net-zero operation require‐
ments, the feasible PVICs at different locations are coupled. 
To fully represent this relationship, the feasible region of all 
PVICs forms a high-dimensional geometric as follows.

ΩPV = { }( )SPV T
ÎRN PV| F ( )SPV £ 0 (1)

SPV = [S PV
1 S PV

2  S PV
N PV ]

1 ´N PV (2)

where F ( )SPV £ 0 indicates all constraints that only in‐

volve SPV.
A schematic diagram shown in Fig. 1 is used to clarify 

the feasible region for PVICs introduced in this paper, which 
shows the PV hosting capability for the three integrated loca‐
tions, with each dimension indicating the PVIC for the corre‐
sponding location. Figure 1 demonstrates that the feasible re‐
gion for PVICs provides sufficient information on the PV 
hosting capability in a DS.

Note that in this paper, we do not impose any restrictions 
on the potential PV locations. In practice, the PV locations 
are influenced by geographical conditions and investor’s 
preferences. Therefore, an appropriate method should be 
adaptable to various user inputs (i.e., different sets of PV in‐
tegration locations) without preset conditions. The proposed 
method in this paper accommodates any subset of system 
buses, including the set comprising all buses. While users en‐
sure the rationality of chosen PV locations, the proposed 
method guarantees adaptability to these inputs.

III. OPERATION CONSTRAINTS AND NET-ZERO 
REQUIREMENTS FOR DSS

In this section, we introduce the operation constraints and 
net-zero requirements that feasible PVICs need to satisfy in 
DS operation.

A. Linearized Power Flow Model

Given that our study considers the impact of temporal cou‐
pled BESSs, the calculation of the feasible region must be 
based on an accurate measure of flexibility. However, embed‐
ding the nonlinear AC power flow equations and the tempo‐
rally coupled constraints in the flexibility analysis problem 
is computationally intractable [14]. Consequently, existing lit‐
erature considering nonlinear power flow does not take into 
account the temporal coupling in flexibility [24], [25]. Many 
research works in the related field use linear power flow 
models, indicating that linear power flow can achieve high 
accuracy and computational efficacy [26]-[29]. Therefore, re‐
searchers have highlighted that the error of whether to pre‐
cisely consider temporal coupled flexibility or not is more 
significant than that of the choice of linear or nonlinear pow‐
er flow equations [14]. To accurately measure the impact of 
BESSs on PV hosting capability, we opt for linearized flow 
equations in this paper, which allows for obtaining analytical 
expressions for the feasible region with minimal error. The 
linearized AC power flow model [30] is given as:
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where P t, Qt, θt, and Vt indicate the vectors of Pi,t, Qi,t, θi,t, 
and Vi,t, respectively, at all buses. For brevity, the detailed 
expressions are available in [30]. This equation is not limit‐
ed to radial DSs but applicable to meshed DSs as well. Due 
to its assumption, the bus voltages of this equation are more 
optimistic than AC power flow equations. Next, the equa‐
tions of bus power injections are given as:

ì
í
î

ïï

ïï

Pit =-P load
it + ( )1 - μt κ

max
t S PV

i ( )1 + ξ -P BESS
it

Qit =-Qload
it

    "iÎΩPVL"t

(4)

ì
í
î

ïï
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Pit =-P load
it -P BESS

it

Qit =-Qload
it

    "iÎΩbus \ΩPVL"t (5)

The output power of PV panel has losses, including dust 
and dirt, inverter losses, cable losses, etc. [31]. The value 
may vary under actual conditions.

Equation (4) only needs to consider κmax
t  since violations 

of network security constraints are most likely to happen in 
the season corresponding to κmax

t . PV integration leads to an 
increased voltage, presenting a risk of exceeding network se‐
curity constraints. Therefore, for a certain PV integration 
scheme, the season with the maximum PV output κmax

t  is 
most likely to exceed limits, as the voltage will be higher 
and the reverse power flow will be greater compared with 
other seasons. Thus, in the power flow model, it is enough 
to consider the profile κmax

t .
For the above power flow equations, the linearized net‐

work loss calculation formula based on the operating point 

0

400

300

Power of PV2 (kW)

Power of PV3 (kW)

250

Power of PV1 (kW)

Fig. 1.　Schematic diagram for feasible region for PVICs.
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(P *
t Q

*
t ) is expressed as:
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The detailed expressions are available in [30]. In this pa‐
per, the default operating point (P *

t Q
*
t ) is the net load with‐

out PV integration.

B. PV Output Uncertainty Modeling

Fluctuations in PV outputs have an impact on the maxi‐
mum PVIC. In this paper, a normalized random error ξ is 
added in (4) to represent the actual PV output. Assuming 
that the historical sample size for the error ξ is S, the data 
set ξ̂ can be expressed as:

ξ̂ = { }ξ̂1 ξ̂2 ξ̂s ξ̂S (7)

The empirical distribution P̂ from the historical data can 
be defined as:

P̂ = 1
S∑s = 1

S

δ ( )ξ - ξ̂s (8)

Assuming that the true distribution P is not too far away 
from the empirical distribution P̂ [21], an ambiguity set P 
based on the Wasserstein metric can be constructed to ex‐
press the potentials of true distribution. The Wasserstein dis‐
tance d W is used to measure the distance between P̂ and P. 
The details of definition of d W( )P̂P  can be found in [23]. 

Therefore, the ambiguity set P can be defined by the Wasser‐
stein ball of radius r centered at the empirical distribution P̂.

P = { }P:d W( )P̂P £ r (9)

The probability that P is in the Wasserstein ball P is great‐
er than confidence level 1 - εW.

Pr{ }d W( )P̂P £ r ³ 1 - εW (10)

C. Operation Constraints of BESSs

-P dismax
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i     "i"t (11)

E min
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∑
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T

P BESS
it Dt = 0    "i (13)

Constraint (11) limits the charging and discharging power 
of the BESS. Constraint (12) ensures that the residual energy 
of BESS meets the SOC constraints at every period through‐
out the day. Constraint (13) ensures that the initial residual 
energy of BESS for a day is equal to its ending residual en‐
ergy, thereby ensuring the feasibility of BESS utilization in 
the following day. The above constraints delineate the feasi‐
ble operation range of BESSs.

D. DRCC-based Network Security Constraints and Their 
Transformation

In this paper, considering the uncertainty of PV outputs 

based on Wasserstein ambiguity set P , the network security 
constraints are formulated as DRCCs to accommodate the 
worst-case distribution of the normalized random error ξ. 
The security constraints indicate the limitation of bus voltag‐
es and branch flows [14] as follows.

infPÎP
Pr{V min

i £Vit £V max
i } ³ 1 - εC    "i"t (14)

infPÎP
Pr{ -P max

ij £Pijt £P max
ij } ³ 1 - εC    "ij"t (15)

The constraints for Qijt are simplified since the variation 
of PVICs may not affect Qijt. Based on the approximation 
method proposed in [21], the DRCCs are formulated as:

infPÎP
Pr{a ( )x

T
ξ £ b ( )x } ³ 1 - εC (16)

It can be transformed into tractable linear constraints as:
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(17)

In this paper, Wasserstein distance defines on 1-norm.
Thus, bus voltage Vit and branch flow Pijt can be linearly 

expressed by κmax
t S PV

i ( )1 + ξ  and P BESS
it , respectively, and 

power flow equation (3) and DRCCs (14), (15) can be trans‐
formed into tractable linear constraints. The details are pre‐
sented in Appendix A.

E. Operation Requirements

This subsection includes net-zero requirements and the net‐
work loss constraint. For net-zero requirements, given the 
significant variation in PV outputs across seasons, it is im‐
perative to assess the net-zero state of the DS from an annu‐
al perspective, which needs to consider the annual energy 
generation of a PV integration scheme. Based on the exist‐
ing literature on net-zero investigations, this paper models 
net-zero requirements from two distinct dimensions as fol‐
lows.
1) Net-zero Energy

Some research works such as [3] stated that “net-zero en‐
ergy” represents a balance between the energy produced and 
consumed during a single year. The corresponding require‐
ment is expressed as:

∑
se
∑

i
∑

t
( )P load

it - κtseS PV
i £ 0 (18)

2) Net-zero Carbon Emission
Similarly, for net-zero carbon emission DSs [1], the re‐

quirement is expressed as:

∑
se
∑

i
∑

t

π carbon
tse ( )P load

it - κtseS PV
i £ 0 (19)

For the network loss constraint, as PV integration capacity 
increases, the reverse power flow in the DS also increases, 
potentially leading to significant energy losses. To avoid ex‐
cessive network losses that may cause inefficient operation 
of the DS, it is necessary to add network loss constraints is 
expressed as: ∑

t

P loss
t Dt £W lossreq

(20)
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IV. FORMULATION AND SOLUTION OF FEASIBLE 
REGION FOR PVICS

In this section, we summarize the equations and inequali‐
ties based on the DS operation model. Then, we use the con‐
cept of basic feasible solution to obtain the affine relation‐
ships between PVICs and constrained variables, which indi‐
cate that the variables with known boundaries (such as volt‐
ages) can be expressed by the linear combinations of PVICs. 
Therefore, the feasible region can be formulated from these 
linear combinations and their ranges. Finally, the solution 
procedure can be concluded.

A. Obtaining Affine Relations for PVICs Using Basic Fea‐
sible Solution Concept

The affine relations between PVICs S PV and constrained 
variables (such as branch power P t , voltage Vt, and BESS 
power P BESS

t ) play a crucial role in determining the feasible 
region. Using these identity relations, we can derive the con‐
straints that indicate the affine mappings of S PV are con‐
strained by the known boundaries of P t , Vt , and P BESS

t . 
Then, the feasible region of S PV can be determined. There‐
fore, we need to obtain the affine relations.

For a given time period t, the original constraints in Sec‐
tion III can be summarized as follows.

1) For BESSs: (11). However, the bounds of (11) may be 
temporally coupled during different time periods, due to con‐
straints (12) and (13). The treatment of this will be elaborat‐
ed in Section V-B.

2) For network security: (3), (14), and (15). Note that (14) 
and (15) can be further transformed into tractable linear con‐
straints and ξ in (4) can be removed. The details are present‐
ed in Appendix A.

3) For net-zero operation requirements: constraints (18) 
and (19) can be rewritten as (21), (22) and (23), (24), respec‐
tively.

F energy
t =∑

se
∑

i
( )P load

itse - κsetS
PV
i (21)

∑
t

F energy
t £ 0 (22)

F carbon
t =∑

se
∑

i

π carbon
tse ( )P load

itse - κsetS
PV
i (23)

∑
t

F carbon
t £ 0 (24)

Thus, equations for net-zero operation requirements are 
(21) and (23); and inequalities are given in (22) and (24).

4) For network loss: constraint (20) can be rewritten as 
(25) and (26).

F loss
t =∑

t

P loss
t Dt (25)

F loss
t £W lossreq (26)

Thus, equations for network loss constraint are (6) and 
(25); and inequality is (26).

It is assumed that F energy
t , F carbon

t , and F loss
t  during time peri‐

od t have bounds F̄ energy
t , F̄ energy

t , and F̄ loss
t , respectively. Strict‐

ly speaking, these bounds are temporally coupled during dif‐
ferent time periods according to (22), (24), and (26), which 

will be elaborated in Section V-B.

ì

í

î

ïïïï

ïïïï

F energy
t £ F̄ energy

t

F carbon
t £ F̄ carbon

t

F loss
t £ F̄ loss

t

(27)

The aforementioned model can be summarized as:

Ψtψ t =Θt S
PV + τ t (28)

-
ψ

t
£ψ t £ ψ̄ t (29)

where ψ t =[P BESS
t Vt P t F

energy
t F carbon

t   or  F loss
t ]T is the vector 

of variables with known boundaries, and Vt and P t  are actu‐
ally replaced by are auxiliary variables mentioned in Appen‐
dix A.

The number of (28) is usually smaller than the number of 
constrained variables in ψ t. Also, there may be collinear data 
in the calculated matrices Ψt. Thus, the length of ψ t is usual‐
ly greater than the rank of Ψt, causing difficulty in obtaining 
affine relations.

To address these issues, inspired by [17], we employ the 
concept of basic feasible solution (BFS) from linear program‐
ming theory [32] to obtain the affine relations between ψ t 
and S PV. The affine relationship based on a BFS of the lin‐
ear programming problem constrained by (28) and (29) can 
be expressed as:

ψ a*
lt = ( )Ψ a

lt

-1( )Θa
lt S

PV + τ a
lt (30)

where lÎΩb is the index of BFSs that satisfy the condition 
presented in Appendix B. The elements in ψ a*

lt  indicate a 
part of elements in ψ t. D-dimensional matrix Ψ a

lt is a full-
rank submatrix of matrix Ψt. D ´N PV matrix Θa

lt and D ´ 1 
matrix τ a

lt denote submatrices of Θt and τ t, respectively. The 
detailed explanation of (30) can be found in Appendix B.

Based on (30) of a BFS, the affine relations between ψ a*
lt  

and S PV are derived. Therefore, we obtain the whole affine 
relations from all BFSs Ωb.

B. Formulation of Feasible Region for PVICs

Due to the temporal coupling of the variables in ψ t (such 
as P BESS

t  F energy
t  F carbon

t  F loss
t ), the operation constraints for 

each ψct in ψ t = [ ]ψ1t  ψ2t  ...  ψct  ...  ψCt  need to be further 

reformulated as:

é
ë-
ψ coup

c1 -
ψ coup

c2


-
ψ coup

cT
ù
û

T

£L[ψc1 ψc2  ψcT ]T
£

[ ψ̄ coup
c1 ψ̄ coup

c2  ψ̄ coup
cT ]T

(31)

The specific treatments of each kind of variables are dis‐
cussed as follows.

For the temporal decoupling variables ψct in ψ t (corre‐
sponding to Vit and Pijt), the bounds in (31) are shown as 
follows. If there are only lower or upper bounds, virtual 
bounds based on the Big-M method can be useful.

ì

í

î

ïïïï

ïïïï

é
ë

ù
û-

ψ coup

c1 -
ψ coup

c2


-
ψ coup

cT

T

=L é
ë

ù
û-

ψ 1

c1 -
ψ 2

c2


-
ψ T

cT

T

[ ]ψ̄ coup
c1 ψ̄ coup

c2  ψ̄ coup
cT

T
=L[ ]ψ̄ 1

c1 ψ̄
2
c2  ψ̄ T

cT

T
(32)

Due to the temporal coupling characteristics of BESSs in 
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(12) and (13), the bounds of variable ψct (corresponding to 
BESS power P BESS

it ) in (28) are as given by:

ì

í

î

ïïïï

ï
ïï
ï

é
ë

ù
û-

ψ coup

c1 -
ψ coup

c2


-
ψ coup

cT

T

= [ ]e 0
T( )E min

i -E 0
i Dt

[ ]ψ̄ coup
c1 ψ̄ coup

c2  ψ̄ coup
cT

T
= [ ]e 0

T( )E max
i -E 0

i Dt
   (33)

where e = [1 1  1 ]
1 ´ ( )T - 1

.

Considering temporal coupling of (22), (24), and (26), the 
bounds of variable ψct (corresponding to F energy

t , F carbon
t , F loss

t ) 
in (31) are given by:

ì

í

î

ïïïï

ïïïï

é
ë

ù
û-

ψ coup

c1 -
ψ coup

c2


-
ψ coup

cT

T

= [ ]e 1
T

(-M )

[ ]ψ̄ coup
c1 ψ̄ coup

c2  ψ̄ coup
cT

T
= [ ]e 0

T
M

(34)

Thus, for all time periods, the bounds for all ψct during 
all time periods, named ψ, can be summarized as:

[-ψ -
ψ coup ]T

£ZψT £ [ ψ̄ ψ̄coup ]T
(35)

where ψ = [ ]ψ1 ψ2  ψT , Z = [ ]I T LT T
, 
-
ψ = é

ë
ù
û-

ψ
1 -
ψ

2


-
ψ

T
,

ψ̄ = [ ψ̄1 ψ̄2  ψ̄T ], -ψ coup
= é

ë-
ψ coup

1 -
ψ coup

2


-
ψ coup

T
ù
û, and ψ̄coup =

[ ψ̄ coup
1 ψ̄ coup

2  ψ̄ coup
T ].

For a BFS ψ *
lt mentioned in Section V-A, considering all 

time periods, ψ a*
l = [ ]ψ a*

l1  ψ
a*
l2    ψ a*

lT
S ´ T

 corresponds to part 

of ψ and meets the following constraint.

é
ë-
ψ a

l -
ψ coupa

l
ù
û

T

£Z(ψ a*
l )T £ [ ψ̄ a

l ψ̄ coupa
l ]T

(36)

Therefore, the bounds for (Ψ a
lt )

-1 (Θa
lt S

PV + τ a
lt ) during all 

time periods are explicitly settled based on (36). The feasi‐
ble region of PVICs derived from BFS l is described as:

Ωl = {S T
PV
|
|
||||
-
γ

l
£ZY l £ γ̄l} (37)

where 
-
γ

l
= é

ë-
ψ a

l -
ψ coupa

l
ù
û

T

 and γ̄l = [ ψ̄ a
l ψ̄ coupa

l ]T
 are of order 

2T ´D, and Y l = [(Ψ a
l1 )-1 (Θa

l1 S PV + τ a
l1 )    (Ψ a

l2 )-1 (Θa
l2 S PV +

τ a
l2 )      (Ψ a

lT )-1 (Θa
lT S PV + τ a

lT )]T is of order T ´D.
As a result, the obtained Ωl based on affine relation (30) 

is accurate and free from redundancy. Hence, the comprehen‐
sive feasible region for PVICs can be formulated as:

ΩPV = ∪
lÎΩb

Ωl = ∪
lÎΩb

{ }( )SPV T|
|
||||
-
γ

l
£ZY l £ γ̄l (38)

Note that the constraint ensuring the positivity of each 
SPVi should be considered within the feasible region for PV‐
ICs.

ΩPV' =ΩPV { }( )SPV T|
|
|||| ( )SPV T

³ 0 (39)

C. Solution Procedure of Feasible Region for PVICs

The essence of calculating the feasible region for PVICs 
is obtaining all the affine relations (all BFSs). The specific 
solution procedure is as follows.

Step 1: input the DS data set and determine the operation 
requirements. Input the potential PV locations that need to 

be investigated.
Step 2: reformulate the model as (28) and (29).
Step 3: solve all BFSs from (28) and (29), obtaining all af‐

fine relationships between ψ t  and S PV.
Step 4: obtain the upper/lower bounds of ψ t  during all 

time periods based on (35).
Step 5: construct the feasible region Ωl based on affine re‐

lations and bounds of the l th BFS. Unite all Ωl"lÎΩb, and 
obtain the complete feasible region for PVICs.

D. Verification and Adjustment Procedure to Satisfy Network 
Loss Constraint Under AC Power Flow

To ensure that the obtained PVIC feasible region satisfies 
network loss constraints under AC power flow constraints, 
we design the following verification and adjustment proce‐
dure.

Step 1: set iteration number m = 1, and

W lossreq
1 =W lossreq (40)

Step 2: set the net load point as the operating point, then 
obtain the feasible region under the linearized AC power 
flow model, considering the network loss constraint (41) and 
calculation formula (6) (Steps 1-5 in Section IV-C). Obtain a 
convex polyhedron, and determine all its vertices 
"vmÎΩ

vertex
m . ∑

t

P loss
t Dt £W lossreq

m (41)

Step 3: for each vertex vm, with the corresponding PV inte‐
gration scheme as the boundary condition, keep other system 
constraints unchanged, and solve the distributionally robust 
chance-constrained AC optimal power flow [33] with net‐
work loss as the objective function. Obtain the accurate net‐
work loss value for each vertex vm (PV integration scheme).

Step 4: verify whether the network loss value W lossreq( )vm  

of each vertex vm satisfies the network loss constraint (41). 
If all vertices satisfy (41), the procedure ends. If there are 
vertices vex

m ÎΩvertexex
m  with network loss exceeding the limit 

and m £mmax, calculate the adjustment amount of network 
loss constraint DW lossreq

m  as:

DW lossreq( )vm =W lossreq( )vm -W lossreq
m     "vex

m ÎΩvertexex
m (42)

DW lossreq
m =max{ }DW lossreq( )vm "vex

m (43)

Then, update the network loss constraint (41) as:

W lossreq
m + 1 =W lossreq

m -DW lossreq
m (44)

Increase the iteration number m = m + 1, and return to 
Step 2.

The verification and adjustment procedure described 
above is further shown in Fig. 2. This procedure may make 
the obtained feasible region slightly conservative, but it en‐
sures that the feasible region satisfies all constraints under 
AC power flow.

V. CASE STUDY

In this section, the 4-bus system, the IEEE 33-bus system, 
and the IEEE 123-bus system are used to test the formula‐
tion and solution method of the feasible region for PVICs.
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A. 4-bus System

The 4-bus system in Fig. 3, which is part of the IEEE 33-
bus system, is used to validate the effectiveness of the pro‐
posed method for the feasible region for PVICs. There is no 
particular demand for integration locations and PV integrat‐
ed at all locations in this system. Two BESSs (500 kW/1000 
kWh for each BESS) are integrated at Bus 2 and Bus 3, re‐
spectively. The seasonal characteristics of PV outputs are 
from [34]. The intraday carbon emission intensity profile is 
from [12], assuming that it does not change in different sea‐
sons.

The energy net-zero constraint is considered in the case 
study. We do not consider the network loss constraint at ba‐
sic analysis section. For uncertainty consideration, to guaran‐
tee the reproducibility, we assume that the prediction error ξ 
follows a normal distribution [21], and the mean value is 0 
and the standard deviation is set to be 10%. A data set with 
100 samples is generated. The confidence level for the Was‐
serstein metric constraints 1 - εW is set to be 90%, and the 
confidence level for the DRCCs 1 - εC is set to be 95%. The 
PV panel loss percentage is set to be 6.5% based on [31].

All experiments are conducted on an Intel-i5 computer 
with 16 GB RAM and a basic frequency of 4.1 GHz using 
the MATLAB platform.
1) Basic Analysis

Figure 4 shows the analytical feasible region for PVICs 
proposed in this paper. It can be observed that, for the three 

PV integration locations, the analytical feasible region for 
PVICs forms a polyhedron in three-dimensional space, delin‐
eated by the red boundaries representing security constraints 
and the blue boundaries representing net-zero requirements. 
Specifically, the maximum feasible PVICs for the location 
PV1, PV2, and PV3 are 2360 kW, 1760 kW, and 957 kW, re‐
spectively. The net-zero constraint is satisfied when the total 
PV capacity of the three locations exceeds 827 kW.

2) Comparison with Existing Method
Note that few existing methods can obtain the lower 

boundary of feasible region for PVICs due to the net-zero 
operation requirements.

For security constraints, the existing method [9] is capable 
of determining the feasible region for PVICs, as depicted by 
the blue grid lines in Fig. 5. This method employs multi-ob‐
jective optimization to obtain feasible region (the Pareto 
frontier). In the case study, the existing method yields 56 Pa‐
reto points. The resulting boundaries in Fig. 5 are obtained 
by a three-dimensional fitting algorithm. This method pro‐
vides reliable solutions only at the Pareto points, and the ac‐
curacy of the region heavily depends on the accuracy of the 
fitting algorithm, which may be difficult to achieve in larger 
systems.

In this paper, we propose a novel method based on the lin‐
ear power flow to derive analytical PVIC boundaries under 
network security constraints, as depicted by the red lines in 
Fig. 5. The basic contours of the boundaries of the two feasi‐
ble regions closely resemble each other, thus verifying the ef‐

Feasible region for PVICs

Boundary for net-zeroBoundary for security;

200

400

0

600

800

1000

1200

1000
20002000 150010005003000 0

P
o
w

er
 o

f 
P

V
3
 (

k
W

)

Power of PV1 (kW) Power of PV2 (kW)

Fig. 4.　Analytical feasible region for PVICs in 4-bus system.

0

PV1

2 31

PV2 PV3

BESS1 BESS2

Fig. 3.　Configuration of 4-bus system.

P
o

w
er

 o
f 

P
V

3
 (

k
W

)

Power of PV2 (kW) Power of PV1 (kW)
1000

0

0

200

400

600

800

500

1000

2000

1200

1000 1500 30002000

Proposed method; Existing method

Fig. 5.　Comparison with existing method.

Start

m= 1

Do all

loss values of

vertices satisfy the loss

constraint?

Calculate the adjustment amount

of network loss constraint as (43)

m=m+1

Y

End

N

Update the limitation value in

network loss constraint as (44) 

Y

N

Obtain the feasible region under

the linearized power flow model

considering loss constraint (41)

Determine all vertices of the

feasible region ���v
m
�Ω

m

vertex

Solve the DRCC AC optimal

power flow and obtain the

accurate loss for each vertex v
m

m ≤ mmax?

Fig. 2.　Verification and adjustment procedure to satisfy network loss con‐
straints.

482



ZHANG et al.: AN ANALYTICAL METHOD FOR DELINEATING FEASIBLE REGION FOR PV INTEGRATION CAPACITIES IN NET-ZERO...

fectiveness of the proposed method.
In contrast to the existing method, the proposed method 

provides a relatively simple mathematical expression for the 
boundary and does not require the multi-objective optimiza‐
tion and high-dimensional fitting algorithm. It can be ob‐
served that the feasible region based on the proposed meth‐
od is smaller than that based on multi-objective optimiza‐
tion. It may be due to the conservative strategy for network 
loss constraint addressing.
3) Sensitivity Analysis: BESS Allocation

Figure 6 provides a sensitivity analysis for BESS alloca‐
tion by comparing between the scenario without BESSs and 
that with double BESSs. The BESS has a significant effect 
on the shape of the feasible region. However, the effect of 
BESSs on the maximum PVIC is non-linear due to the loca‐
tion of these resources and network constraints. In the case 
without BESSs, the security boundary intersects with the net-
zero boundary, resulting in a substantial reduction in the size 
of the feasible region.

It is worth noting that the proposed method is capable of 
capturing the boundary (blue line in Fig. 6) at the intersec‐
tion of security boundary and net-zero boundary. The extend‐
ed orange facet in Fig. 6, corresponding to the scenario with‐
out BESSs, is used to enhance the clarity of explanation.
4) Sensitivity Analysis: Confidence Level of DRCCs

Figure 7 provides a sensitivity analysis for the confidence 
level of DRCCs by comparing the feasible region at differ‐
ent confidence levels, corresponding to network security. A 
lower confidence level implies a relaxation of the security 
constraint requirements, resulting in an expanded range of 
the feasible region.
5) Sensitivity Analysis: Net-zero Requirement

Considering energy net-zero and carbon net-zero, Fig. 8 
provides a sensitivity analysis for net-zero requirement by 
comparing the feasible region boundaries corresponding to 
different net-zero constraints.

For the net-zero requirement in energy, the presence or ab‐
sence of BESSs does not alter the respective boundaries, 
since BESSs do not modify the energy balance of a year. 

If the net-zero energy constraint is imposed during each 
time period, it still does not change the boundaries, but the 
demand for BESSs significantly increases. By testing, net-ze‐

ro energy is achieved for each time period when each BESS 
is configured at 680 kW/1360 kWh.

For the net-zero requirement in carbon emissions, the in‐
fluence of the presence or absence of BESS on the boundary 
is significant due to the intraday variability in the carbon 
emission intensity. During the periods of high PV generation 
around midday, the carbon intensity is lower. BESS can facil‐
itate the temporal transfer of energy, thereby reducing the re‐
quired PV integration capacity for achieving net-zero carbon 
emissions.
6) Validation of Network Loss Constraint

This part examines the impact of the network loss con‐
straint (20). In fact, as shown in Fig. 4, the vertex with the 
maximum network loss under AC power flow is Point A in 
Fig. 9, with a network loss of 27.7 kWh.
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We set the network loss constraint for a typical day to be 
25 kWh (about 90% of 27.7 kWh) to test the effectiveness 
of the network loss constraint (20). After two iterations, the 
results are depicted in Fig. 9. Since the network loss con‐
straint value only affects the upper boundary of the feasible 
region, the upper boundary is illustrated in Fig. 9.

It can be observed that the network loss constraint (20) re‐
sults in a plane within the feasible region. The proposed 
method guarantees that for any PV integration scheme with‐
in the derived feasible region, the network losses under AC 
power flow conditions remain within the prescribed limits.

B. IEEE 33-bus System

To validate the scalability of the proposed method, testing 
is conducted on the IEEE 33-bus system, as shown in Fig. 
10. To enhance the significance of the results, the loads at 
each bus are reduced by half. Four candidate PV integration 
locations are considered, along with the five BESSs rated at 
2000 kW/4000 kWh. The network loss constraint for the typ‐
ical day is 500 kWh. Specifically, two sets of candidate loca‐
tions are selected: ① Set 1: Buses 10, 24, and 32; and ② 
Set 2: Buses 17, 24, and 32. The feasible regions for these 
two cases are plotted in Fig. 11(a) and (b), respectively.

According to Fig. 11, with the increase in the number of 
buses and constraints, the configuration of the feasible re‐
gion becomes more complex. Comparing the two cases, it 
can be observed that the PV integration potential at Bus 17 
is lower than that at Bus 10. Consequently, for Set 2, this re‐
sults in the intersection of the security boundary and the net-
zero boundary, leading to a significant reduction in the size 
of the feasible region compared with that of Set 1.

C. IEEE 123-bus System

For a more comprehensive validation, we use the IEEE 
123-bus system [35], as shown in Fig. 12, which operates at 
a nominal voltage of 4.16 kV. Buses 83, 96, 250, and 450 
are chosen for PV integration and three BESSs rated at 1000 
kW/2000 kWh are installed at Buses 13, 25, and 67, respec‐
tively. The network loss constraint for the typical day is set 
to be 1000 kWh.

Given that the feasible region for the four PV integration 
locations cannot be depicted in a three-dimensional space, 
we perform dimensionality reduction for ease of presenta‐
tion. When 4000 kW PV is integrated at Bus 250, the feasi‐
ble region for Buses 83, 96, and 450 is shown in Fig. 13.

It takes 4945 s to complete the entire process including solu‐
tion, verification, and iteration on an Intel-i5 computer with 16 
GB RAM. This time cost is acceptable for planning purposes.
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VI. CONCLUSION

This paper proposes an analytical method to delineate the 
feasible region for PVICs in net-zero DSs. First, operation 
constraints and net-zero requirements that feasible PVICs 
need to satisfy are introduced. Then, the formulation and so‐
lution of the feasible region using BFS concept are proposed.

The case study validates the effectiveness of the proposed 
method. The DRCC-based network security constraints set 
the upper boundaries of the feasible region, while the energy 
and carbon-emission net-zero constraints establish the lower 
boundaries. These boundaries may intersect under certain pa‐
rameters, and the configuration of the feasible region may 
become more complicated when the system is larger.

Sensitivity analysis for BESS allocation, confidence levels 
of DRCCs, and net-zero requirements are conducted, and the 
network loss constraint is validated. It illustrates that the pro‐
posed method fully captures the spatio-temporal coupling re‐
lationship among PVs, loads, and BESSs, while also quanti‐
fying the impact of this relationship on the boundaries of the 
feasible region for PVICs.

APPENDIX A 

Appendix A shows the transformation of DRCCs. For a 
time period t, power flow equation (3) can be reformulated 
as matrix forms.
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It can be further formulated as:
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For a bus,

Vit =D21( )i [ ]P load
t + ( )1 - μt κ

max
t S PV( )1 + ξ +P BESS

t +

D22( )i Qload
t -C2( )i (A3)

For a branch [29],
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where A1( )ij , A2( )ij , and E1( )ij  are row vectors； and E2( )ij  

is the element of vector.
Then, for bus i, the corresponding DRCC (14) can be re‐

formulated as (A5). Following the formulation of (16), (A5) 
can be concluded as (A6). Then, for branch ij, the corre‐

sponding DRCC (15) can be reformulated as (A7).
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where D21( )i  and D22( )i  are row vectors from D21 and D22, 
respectively.
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Following the formulation of (16), (A7) can be concluded:
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Based on the conclusion (17) in [21], the reformulated 
DRCCs (A5) and (A7) can be transformed as:
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Note that  a ( )x
*
 in (17) denotes max

i (| a ( )x
i | ) for the 

1-norm DRCC, and the following equations hold in this pa‐
per.

For (A5),

 a ( )x
*
=D21( )i ( )1 - μt κ
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t S PV (A10)

For (A7),

 a ( )x
*
=E1( )ij ( )1 - μt κ
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t S PV (A11)

In conclusion, the original DRCC formulation is trans‐
formed into a set of linear constraints. Specifically, the bus 
voltage, injection power, and branch power variables are re‐
placed by auxiliary variables. The original DRCCs (14), (15) 
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and power flow equation (3) are transformed into linear 
equations and inequalities (A9) involving the auxiliary vari‐
ables.

APPENDIX B 

Appendix B shows the application of basic feasible solu‐
tion concept. Firstly, introduce auxiliary variables as:
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Then, (28) and (29) can be reformulated as:
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A BFS l of the linear programming problem, constrained 
by (B2), can be expressed as:
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The elements in z a*
lt  and z b*

lt  comprise all elements in z t, in‐
dicating a BFS z *

lt. If z a*
lt  is all from z 1

t , the first equation in 
(B4) can be further expressed as:
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If z a*
lt  is not entirely from z 1

t , no significant conclusions 
can be derived.

Thus, a group of affine relationships (B5) for BFS l is ob‐
tained. While the affine relationships combine the ranges in 
(29) under the other equations in (B4), the feasible region 
for BFS l can be constructed.
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