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Abstract——The push for renewable energy emphasizes the 
need for energy storage systems (ESSs) to mitigate the unpre‐
dictability and variability of these sources, yet challenges such 
as high investment costs, sporadic utilization, and demand mis‐
match hinder their broader adoption. In response, shared ener‐
gy storage systems (SESSs) offer a more cohesive and efficient 
use of ESS, providing more accessible and cost-effective energy 
storage solutions to overcome these obstacles. To enhance the 
profitability of SESSs, this paper designs a multi-time-scale re‐
source allocation strategy based on long-term contracts and re‐
al-time rental business models. We initially construct a life cycle 
cost model for SESS and introduce a method to estimate the 
degradation costs of multiple battery groups by cycling num‐
bers and depth of discharge within the SESS. Subsequently, we 
design various long-term contracts from both capacity and ener‐
gy perspectives, establishing associated models and real-time 
rental models. Lastly, multi-time-scale resource allocation based 
on the decomposition of user demand is proposed. Numerical 
analysis validates that the business model based on long-term 
contracts excels over models operating solely in the real-time 
market in economic viability and user satisfaction, effectively re‐
ducing battery degradation, and leveraging the aggregation ef‐
fect for SESS can generate an additional increase of 10.7% in 
net revenue.

Index Terms——Capacity allocation, long-term contracts, 
shared energy storage system, stochastic programming.
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Index for discharge events

Index for scenario

Index for user

Index for dispatch time

Conversion coefficient for the maximum state 
of charge for real-time energy storage

Conversion coefficient for power constraint of 
shared energy storage system (SESS) for real-
time energy rental

Conversion parameter from variable to cost, in‐
dicating a relation to operation and maintenance

Conversion parameters from variable to cost, in‐
dicating a relation to investment costs

Other costs related to operation and maintenance

Total number of battery units

Uncertainty parameter

Conversion coefficient between energy and ca‐
pacity

Prices at which SESS and power grid sell ener‐
gy to power grid and SESS

Regularization parameter that controls smooth‐
ness of modes

Discount percentage of grid selling price

Rated charge life of battery

Effective charge life of battery

Ampere-hour capacity of a battery at given dis‐
charge current

Investment cost for every battery unit bn

Lower and upper bounds of total capacity 
leased by SESS in the first stage at long-term 
contract price

Total capacity of SESS
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C. Variables

ηcha, ηdis
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Ebn,max

Lower and upper bounds on capacity that user n 
can lease for a long-term contract

Ampere-hour capacity of a battery at rated dis‐
charge current

Actual ampere-hour discharge

Actual depth of discharge (DoD) level

Effective ampere-hour discharge as adjusted for 
DoD and cycling number

Actual discharge as a percentage of rated power 
capacity

Percent DoD at which rated cycle life is deter‐
mined

Expected profit level

Contract price per unit of capacity

Contract price per unit of energy DoD

Price of real-time rental, assumed to be consis‐
tent with price at which SESS sells to power 
grid

Total number of discharge events

Total number of scenarios

Actual lifetime of battery

Cycle life at rated DoD and rated discharge cur‐
rent

Contract duration for a long-term contract

System operation time

Fitting parameters of life cycle curve

Rated lifetime of SESS

Number of modes after decomposition

Number of modes with low frequencies

Charging and discharging efficiencies

Base load curve

Degradation cost for every battery unit bn

Operation and maintenance cost for every bat‐
tery unit bn

Total amount of capacity allocated to long-term 
contracts

Initial investment cost for every battery unit bn

Long-term contract capacity allocated by SESS 
to user n

Life cycle cost at level of SESS

Capacity allocated to real-time rental

Mathematical expectation of revenue in the sec‐
ond stage

The maximum energy that battery unit bn can 
store and output

En

fl(t)

f{123}(x)
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Pbn,max

r(t)

r kt
buyn, 

r kt
selln

SOC kt
RT
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n

uz(t)

wymax

wkt
chan, 

wkt
disn

x

ykt
buy, y

kt
sell

Cumulative energy value signed by user n

Fluctuation load curve

Revenue collected by SESS from long-term leas‐
ing capacity or energy rentals in the first stage, 
and 1 represents capacity contract, 2 represents 
energy contract, and 3 represents multiple con‐
tracts

Fluctuation demand for user n

Boolean variables representing the operation sta‐
tus of energy storage leased to users through 
long-tem contracts in the second phase (opkt

chan =
1 represents charging at time t)

Boolean variables representing the operation sta‐
tus of energy storage leased to users through re‐
al-time rental in the second phase (owkt

chan = 1   
represents charging at time t)

Power of charging and discharging of SESS for 
long-term contract

The maximum power that battery unit bn can 
output

Residual component

Slack variables indicating that user n buys or 
sells electricity to power grid through SESS

State of charge of the portion of energy storage 
allocated to real-time rental

Load reduction size for user n

The zth mode component after variational mode 
decomposition (VMD)

Power constraint for real-time energy storage

Power of charging and discharging of SESS for 
real-time rental

All decision variables in two-stage model

Power for buying or selling electricity to power 
grid from portion of energy storage allocated to 
real-time rental

I. INTRODUCTION

THERE is a global consensus that the advancement and 
application of renewable energy, exemplified by wind 

and solar power, are pivotal in steering the current energy in‐
dustry toward a clean and low-carbon type [1]. The increas‐
ing threat to power system security from the inherent unpre‐
dictability of renewable energy, marked by its intermittency 
and volatility, places a growing emphasis on the indispens‐
able role of energy storage systems (ESSs) as key flexible 
regulation resources [2]. However, multiple factors currently 
impede the widespread adoption and development of ESS. 
For instance, the cost of storage devices remains prohibitive‐
ly high, leading to prolonged investment recovery time, thus 
discouraging individual investment [3]. Additionally, user be‐
havior in charging and discharging, often influenced by fluc‐
tuating electricity prices, results in sporadic utilization and 
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idle storage capacity [4]. Furthermore, the limited variety of 
storage products and the variable and uncertain nature of us‐
er demand present challenges in aligning storage capacities 
effectively with needs [5].

In response to these challenges of traditional ESS, the 
shared energy storage system (SESS) emerges as a potential 
solution, proposing a more unified and efficient method to 
ESS utilization, while also offering more accessible and cost-
effective energy storage services [6]. The SESS concept 
merges traditional energy storage technology with the shar‐
ing economy model [7]. In this system, SESS provides ser‐
vices to multiple entities, enabling users to utilize central‐
ized energy storage facilities according to their needs, with‐
out the necessity to construct their own ESS, paying only 
for the energy storage services utilized [7]. In terms of ad‐
vantages, the SESS enhances the efficiency of the energy 
storage value chain through the complementary alignment of 
user demand profiles and unified coordination within the 
storage system [8]. This method not only improves the utili‐
zation efficiency of ESS but also, by leveraging centralized 
investment and economies of scale, reduces the per-unit in‐
vestment cost of storage facilities [9]. Globally, several pilot 
projects in SESS have been initiated. For instance, in 2019, 
China launched demonstration projects in Qinghai [10] and 
Changsha, while Tesla in the United States embarked on the 
Connected Solutions project. Consequently, SESS offers an 
economically viable new solution for the large-scale applica‐
tion of energy storage, further diminishing the operation 
costs of energy storage services.

In the realm of business models, SESS managed by opera‐
tors typically offers two types of services to users: ① pro‐
viding energy storage capacity, and ② offering charging/dis‐
charging services [7]. The former allows users to freely man‐
age the energy storage capacity they lease over a specified 
time [11]. To some extent, it can represent a long-term con‐
tract service. For the provision of the latter, SESS operators 
cater to the power demands of users, with charges based on 
actual usage patterns [12]. This arrangement can either fol‐
low predefined demand curves or adapt to real-time power 
demands submitted via a digital platform. Hence, these ser‐
vices can be structured through various contractual frame‐
works: they might be encompassed within long-term con‐
tracts for larger projects such as SESS at new energy genera‐
tion sites, or operate under real-time leasing models, espe‐
cially suitable for community-based SESS scenarios. Refer‐
ence [13] presents a two-stage, price-based method for 
SESS: initially, operators set investment capacities and user 
prices for cost minimization, followed by users adjusting 
their purchased capacities in response to these prices. Refer‐
ence [14] proposes an auction-based ES sharing model to al‐
locate ES resources by assigning the rights of using stored 
energy and ES capacity to the users. In summary, the current 
business models for SESS exhibit several limitations: ① a 
lack of flexibility in leasing methods and uniformity in long-
term contract types; ② a predominant focus on single-time 
dimension leasing strategies with limited research on balanc‐
ing resources between long-term and short-term leases; ③ 
both the provision of capacity and power for SESS long-

term services are based on the assumption of fixed contract 
time, without considering the impact of contract time on the 
economic aspects of SESS. As energy storage technology 
and the electricity market evolve, electricity is increasingly 
treated as a commodity. For SESS, on the one hand, leasing 
through long-term contracts ensures stable income. On the 
other hand, although real-time leasing may face unstable de‐
mand, it often generates higher income and efficiently utiliz‐
es idle storage resources within the platform. The combina‐
tion of these two models not only guarantees stable revenue 
but also improves the resource utilization of SESS, making 
the integration of long-term and short-term leasing a poten‐
tial future business trend.

Despite the scarcity of research specifically targeting 
multi-time-scale scheduling strategies for the allocation of 
long-term and short-term contract resources within SESS, 
the broader field of multi-time-scale resource allocation has 
been thoroughly investigated. Established methods such as 
two-stage stochastic optimization [15], [16], model predic‐
tive control, dynamic programming [17], and alternating di‐
rection method of multipliers [18] offer valuable insights 
and tools for complex resource allocation challenges. For in‐
stance, [19] models a multi-stage stochastic program de‐
signed to optimize the energy purchase cost for a communi‐
ty with distributed solar generation and an SESS. Among 
these methods, two-stage stochastic optimization is particu‐
larly well-aligned with the decision-making processes inher‐
ent in long-term and short-term SESS contracts. It divides 
decision-making into two distinct stages: the first stage in‐
volves making immediate, “here-and-now” decisions based 
on expected demands, while the second stage adapts to the 
actual outcomes of random events. This method mirrors the 
typical contractual decision-making in SESS, where con‐
tracts are signed based on forecasted demand, followed by 
real-time adjustments according to actual events. Consequent‐
ly, we have adopted two-stage stochastic optimization to ad‐
dress the multi-time-scale scheduling problem in SESS.

Additionally, when considering operation strategies for 
SESS, it is crucial to recognize the extra economic costs 
compared with traditional storage systems [20]. SESS facili‐
ties, catering to a wide range of users with diverse service 
functions, often face more frequent and unpredictable dis‐
patching, potentially leading to rapid battery degradation and 
increased battery replacement costs [21]. Thus, SESS opera‐
tion must carefully weigh the additional operation costs of 
battery usage against dispatch strategies. Reference [22] pro‐
poses a novel cooperative framework for an equitable clear‐
ing mechanism in SESS, which includes ESS degradation 
costs in the pursuit of optimal social energy costs. However, 
in [22], the degradation costs are calculated by multiplying a 
subjectively set conversion coefficient with power, which 
may not accurately reflect the true degradation process dur‐
ing actual charging and discharging operations in SESS.

To this end, this paper designs a multi-time-scale resource 
allocation strategy based on long-term contracts and real-
time rental business models for SESS. The main contribu‐
tions are summarized as follows.

1) Various long-term contract models for centralized SESS 
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are provided from both capacity and energy perspectives, 
and corresponding mathematical models are constructed. 
Business models and operation processes have been devel‐
oped that bridge long-term contracts with real-time rental. 
An economic comparison analysis of different contract mod‐
els is conducted, and recommendations for contract types are 
proposed for different types of users.

2) A two-stage resource allocation algorithm based on the 
decomposition of user demands for SESS has been intro‐
duced. This algorithm exhibits significant robustness and is 
adept at proficiently managing the uncertainty of user de‐
mands in SESS, harmonizing the coordination between long-
term contracts and real-time rental.

3) Recognizing the more frequent charging-discharging cy‐
cles of SESS versus traditional systems, battery degradation 
costs have been integrated into the optimization scheduling 
algorithm. This integration acts as a constraint on the charg‐
ing-discharging behavior of SESS, promoting enhanced eco‐
nomic efficiency.

The remainder of this paper is organized as follows. Sec‐
tion II illustrate life cycle cost of SESS. Section III presents 
various business models for SESS. Section IV outlines the 
two-stage resource allocation for SESS. Experimental results 
are presented in Section V. Section VI concludes this paper 
and discusses potential directions for future studies.

II. LIFE CYCLE COST OF SESS

SESSs serve a broad spectrum of users and provide a mul‐
titude of service functionalities, necessitating more frequent 
dispatches with irregular depths each time compared with tra‐
ditional ESS. This irregularity and frequency can potentially 
accelerate battery degradation and elevate the associated 
costs of battery replacements, which is a phenomenon we 
term “degradation cost”. Therefore, compared with tradition‐
al ESS, SESS necessitates a more considerable emphasis on 
the additional degradation costs of batteries incurred due to 
dispatch strategies. In this section, we initially propose a 
method for calculating the degradation costs of battery in 
SESS, considering both the frequency of cycling and depth 
of discharge (DoD). Subsequently, we present a comprehen‐
sive cost calculation model for SESSs, along with the pric‐
ing assumptions applied when delivering services to users. 
This model is then integrated within the optimization frame‐
work of the long-term and short-term contractual business 
models outlined in Section III, guiding the optimized opera‐
tion of SESS.

A. Degradation Cost

The battery life cycle is key in assessing the state of 
health of SESS. Degradation, mainly due to charging and 
discharging, is influenced by two-factor categories: non-oper‐
ational (ambient conditions and calendar aging) and opera‐
tional (cycle depth, overcharging/discharging, and average 
state of charge). Our study focuses on operation elements for 
capacity allocation and dispatching in SESS. This is due to 
the known nature of these factors in the dispatch strategy, 
making analysis more feasible, and the non-operational fac‐
tors, which are typically uncertain and unrelated to dispatch 

strategies, are beyond the scope of this study. Hence, we pro‐
pose a method for approximating lifetime estimation, based 
on cycling numbers and DoD. The findings of research im‐
ply that each battery possesses a finite number of life cycles, 
quantified by the aggregate of effective ampere-hours 
throughput at the rated DoD and rated discharging rate 
throughout its operation life. Any specific discharging event 
can be translated to an equivalently effective ampere-hour 
discharging, contingent on the actual DoD in comparison to 
the rated DoD. When the cumulative ampere-hour aligns 
with the rated charging life of BESS, the system ceases to 
function. The rated charging life BR is represented as:

BR = LR DRCR (1)

The functional relationship between the number of BESS 
life cycle LB and the battery DoD dB can be expressed as:

LB(dB ) = LR( DR

DA ) u0

e
u1( )1-

DA

DR (2)

The actual life cycle can be calculated as a function of the 
DoD at which it is cycled as:

deff = ( DA

DR ) u0

e
u1( )DA

DR

- 1 CR

CA

dact (3)

Combining (2) and (3), the actual lifetime of the battery 
Ltime under a specific usage pattern containing j discharging 
events in system operation time Tlife can be calculated as:

Ltime =
BR

Beff /Tlife

=
LR DRCR

∑
i = 1

j

deff (i)

Tlife
(4)

Battery degradation cost Cbage is calculated as:

Cbage =
Cbinv

BR
∑
Tlife

Beff (t) (5)

B. Life Cycle Cost

In alignment with conventional ESS, the comprehensive 
life cycle cost model for SESS encapsulates initial invest‐
ment cost, auxiliary facility cost, operation and maintenance 
cost, replacement cost, disposal cost, and residual value. We 
condense the aforementioned diverse cost categories into a 
cost model based on investment costs, operation and mainte‐
nance costs, and degradation costs, which are most pertinent 
to the dispatch model articulated as:

Clife =∑
bn

Cbinv +∑
bn

Cbom +∑
bn

Cbage (6)

The initial investment cost refers to the fixed capital in‐
vestment made during the initial stage of equipment con‐
struction. It is simplified to consist of the rated power capac‐
ity cost and energy capacity cost, considering the discount 
rate, as shown in (7). The operation and maintenance costs 
are mainly influenced by the rated power of  SESS and the 
number of charging/discharging cycles, as stated in (8).

Cbinv = υpinv Pbnmax + υcinv Ebnmax (7)

Cbom = υop Pbnmax + τ (8)
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C. Cost-based Pricing Scheme

Two business models are considered: long-term contracts 
and real-time rental, where the long-term contracts further 
contemplate two forms, namely capacity contracts and ener‐
gy contracts. Therefore, it is necessary to provide SESS rent‐
al prices separately for capacity contracts, energy contracts, 
and real-time rental. The SESS can represent the state of 
charge at each moment during its actual operation as an 
equivalent average state of charge for the entire day. Based 
on this average state of charge, the rated operation lifetime, 
and the profitability factor, the service unit price for the ener‐
gy contract can be computed as:

hc = (1 +G)
∑

bn

Cbinv +∑
bn

Cbom

Tlifeδ∑
bn

Ebnmax y
(9)

For varying users and different scales of leased capacities, 
SESS can theoretically establish diverse pricing standards 
for capacity contracts. However, since the pricing strategy is 
not the focal point of this paper, we will simplify and as‐
sume that the price of the capacity contract is directly pro‐
portional to the capacity and is unrelated to the types of us‐
ers. The service unit price for the capacity contract can be 
expressed as:

he = (1 +G)Φ
∑

bn

Cbinv +∑
bn

Cbom

Tlifeδ∑
bn

Ebnmax y
(10)

Considering that the discharging duration of most ESSs is 
currently 4 hours, this paper assumes the value of the con‐
version coefficient Φ to be 8.

For real-time rental, we assume that the service price is a 
discount on the forecasted electricity price. Note that this 
price fluctuates within a day, distinguishing it from the fixed 
price of long-term contracts. The price of real-time rental is 
assumed to be consistent with the price at which SESS sells 
to the power grid.

ht
real = π

t
E2G = κπ

t
G2E (11)

III. BUSINESS MODELS OF SESS

The business model of SESS significantly impacts the op‐
eration strategies, operation profits, and mechanisms of inter‐
action between users and the SESS, which are key factors 
constraining the profitability of SESS. With the continuous 
development of energy storage technology, the business mod‐
els of SESS will become more diversified and mature. In the 
future, we anticipate the emergence of an SESS business 
model that combines long-term contracts with real-time rent‐
al. SESS offers users long-term contracts to ensure their 
foundational needs over a certain period, while also provid‐
ing a short-term method of real-time leasing to meet occa‐
sional and stochastic demands of users for power.

The effective implementation of the economics of SESS 
operation is inseparable from the design of the business pro‐
cess. SESS operators need standardized business processes 
to help the platform operate efficiently when providing ser‐
vices. Figure 1 illustrates the business process of business 

model that bridges long-term contracts and real-time rental, 
which is divided into five phases ① - ⑤ . The processes 
marked in yellow are related to long-term contracts, and 
those in purple are related to real-time rental. In this section, 
a business model for SESS is designed that integrates both 
long-term contracts and real-time rental.

We propose two long-term service methods for SESSs, 
namely contracting by capacity and by energy. Among them, 
the energy contract is further subdivided into two types: dai‐
ly accumulation and total contract duration accumulation of 
energy. Additionally, the SESS can also dispatch energy to 
the real-time market, selling it in a fragmented, instanta‐
neous manner to users to meet their immediate needs, there‐
by earning revenue from real-time rental. The specific defini‐
tions are shown in Table I.

A. Capacity Contract Model

The decision variables in the first phase are the allocated 
long-term capacity for user n, and the objective function is:

f1 (x)=∑
n

hccn (12)

In order to plan the allocation of long-term leasing capaci‐
ty and signing contracts, it is necessary to ensure that the to‐
tal contract capacity is less than the storage capacity. At the 

Timeline

Demand data
 

?�Clarification 

    

?�Operation

 ?�End
Settling fees

Preparation period of long-term contracts

Designing business

 models

Releasing

contractual terms

Proposing resource

allocation algorithm

Signing long-term

 contracts

?�Contractual 

agreement 

?�Data 

collection

Simulation dispatch

 strategy

1. Meet contractual

 load demand

2. Operate 

real-time rental

Operation period of long-term contracts

Fig. 1.　Business process of business model.

TABLE I
DEFINITION OF VARIOUS LEASING METHODS

Type

Capacity 
contract

Full contract duration 
cumulative energy contract 

(FCDC-energy contract)

Daily cummulative 
energy contract 

(DC-energy contract)

Real-time rental

Definition

During the contract term, SESS provides 
energy services based on power demand of 

users within leased capacity boundary

The contract specifies a flexible energy 
accumulation and consumption model over 

the entire contract period

Users have a daily energy limit, measured 
daily with no carry-over of unused energy 

to the next day

Users can purchase capacity and energy as 
per actual needs at any time, billed at a 

fixed unit cost
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same time, to leave sufficient flexibility support for intra-day 
operation, we set boundaries for the contract capacity:

cmin
cto £ ccontr £ cmax

cto (13)

ccontr =∑
n

cn (14)

The SESS reserves a portion of the capacity for intra-day 
flexible power support. Therefore, it is ensured that 
cmax

cto £ cm. For practical purposes and to simplify the model, 
we set the default value of cmin

cto  to be 0 and cmax
cto = 0.5cm.

Furthermore, to restrict users from engaging in speculative 
behaviors such as leasing excessive SESS for energy arbi‐
trage, and to ensure the reasonable utilization of SESS by 
each user, limitations are imposed on the long-term contract 
capacity that each user can sign.

cmin
n £ cn £ cmax

n (15)

In this paper, cmin
n  is set to be 0, and the default value of 

cmax
n  is set to be cmax

cto /N. In more complex scenarios, cmax
n  

could be linked to factors such as the scale of the user opera‐
tion and the equity relationship with the SESS, e.g., whether 
the user n is an investor or operator of the SESS. However, 
in this paper, we do not focus on these complex scenarios.

The charging and discharging behaviors of battery mod‐
ules in SESS are subject to two kinds of constraints. Firstly, 
the charging and discharging rates are limited and cannot ex‐
ceed the rated values of the modules, which ensure safe and 
efficient charging and discharging processes. Secondly, there 
is a relationship between the charging/discharging power and 
the energy storage capacity. The charging/discharging power 
is limited by the available energy storage capacity.

opkt
chan × opkt

disn = 0

opkt
chan + opkt

disn = 1
(16)

0 £ r kt
buyn + pkt

chan £ pmax
n     "n"t"k (17)

0 £ r kt
selln + pkt

disn £ pmax
n     "n"t"k (18)

r kt
buynp

kt
chanr

kt
sellnp

kt
disn ³ 0    "n"t"k (19)

r kt
buyn and r kt

selln indicate that the base load demand of users 
(see Section IV for details) can be met by buying (r kt

buyn) or 
selling (r kt

selln) electricity to the power grid through SESS.

B. Energy Contract Model

For users with high demand uncertainty and users with 
low demand uncertainty, we divide the energy contracts into 
two types: FCDC-energy contract and DC-energy contract.

For the energy contract, the contract revenue in the first 
phase can be calculated as:

f2 (x)=∑
n

he En (20)

ccontr =
∑

n

En

Φ
(21)

1) FCDC-energy contract. This type of energy contract al‐
lows users to accumulate and consume a certain amount of 
energy over a fixed duration. The energy consumption is not 
limited to a specific daily amount but is summed up over 
the entire contract period. Users with high demand uncertain‐
ty can benefit from this type of contract as it provides flexi‐

bility in energy consumption and allows them to adjust their 
usage based on their varying needs throughout the contract 
duration.

∑
k
∑

t
( )|| pkt

chan + || pkt
disn £En (22)

2) DC-energy contract. In this type of energy contract, us‐
ers have a daily cumulative energy limit. The energy con‐
sumed by the user is measured daily, and any unused energy 
from a specific day does not carry over to the next day. This 
contract type is suitable for users with low demand uncer‐
tainty who have a relatively stable energy consumption pat‐
tern. It provides a predictable daily energy allocation and al‐
lows users to plan their energy usage accordingly.

∑
t
( )|| pkt

chan + || pkt
disn £En (23)

By offering these two types of energy contracts, SESS can 
cater to different needs and demand patterns of users with 
varying levels of demand uncertainty. It allows for more cus‐
tomized and flexible energy services, enhancing the overall 
user experience and optimizing the utilization of SESS re‐
sources. In addition, constraints (13) and (16)-(19) are used 
to ensure the normal operation of SESS.

C. Coexistence Model of Multiple Contracts

Furthermore, we allow users to sign different contracts. In 
this case, the objective function for the first phase can be ex‐
pressed as:

f3 (x)=∑
n

(hccn + he En ) (24)

Apart from that, the remaining constraint conditions re‐
main unchanged.

D. Real-time Rental Model

For real-time leased energy storage, its capacity is related 
to the total contracted capacity as:

cmax
RT = cm -∑

n

cn (25)

The charging and discharging rates of real-time leased en‐
ergy storage need to adhere to the rated limits of the energy 
storage module. This is done to ensure the safety and perfor‐
mance of the ESS and prevent exceeding the rated charging 
and discharging rates of the module.

ì
í
î

ïï
ïï

owkt
chan × owkt

disn = 0

owkt
chan + owkt

disn = 1
(26)

Real-time leased energy storage needs to satisfy the state 
of charge constraints, which ensure that the ESS can handle 
the required energy exchange during the leasing period with‐
out exceeding its storage limitations, as shown in (27) and 
(28). By managing the energy storage capacity effectively, it 
can provide sufficient energy to meet the user demand while 
maintaining the integrity and operation stability of the sys‐
tem.

SOC kt
RT = SOC kt - 1

RT + ηcha( )ykt
buy +∑

n

owkt
chan ×w

kt
chan -

ηdis( )ykt
sell +∑

n

owkt
chan ×w

kt
disn (27)
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0 £ SOC kt
RT £ αcmax

RT (28)

The energy storage engaged in real-time rental operates 
under specific power constraints during both the charging 
and discharging processes. These constraints are pivotal in 
ensuring that the ESS neither receives nor releases power be‐
yond established thresholds, maintaining the safety and effi‐
ciency of the system. Adherence to these constraints allows 
the system to control the pace of its energy intake and re‐
lease, operating within its designated power limits and avert‐
ing potential complications or risks stemming from exces‐
sive power transitions. This adherence is crucial for sustain‐
ing the stability and reliability of the system while meeting 
the demands of real-time energy rental.

0 £ ykt
buy +∑

n

owkt
chan ×w

kt
chan £wymax

(29)

0 £ ykt
sell +∑

n

owkt
chan ×w

kt
disn £wymax

(30)

ykt
buyy

kt
sellw

kt
disnw

kt
chan ³ 0    "n"t"k (31)

wymax = βcmax
RT (32)

Real-time leased energy storage needs to meet the fluctuat‐
ing load demands of users. This means that the ESS should 
be capable of providing the necessary power output to ac‐
commodate the varying electricity consumption patterns of 
the users. By effectively managing the charging and dis‐
charging of the energy storage, it can help stabilize the pow‐
er grid and ensure a reliable and continuous power supply to 
meet the load requirements of the users.

owkt
chan ×w

kt
n - owkt

chanwkt
n + ukt

n = f kt
n     "n"t"k (33)

IV. TWO-STAGE RESOURCE ALLOCATION FOR SESS

This section primarily addresses the two-stage resource al‐
location issues in the third and fourth phases of the business 
process of business model for the SESS that bridges long-
term contracts and real-time rental, as shown in Fig. 1. Giv‐
en that the proposed business model encompasses transac‐
tions across two time scales, the scale of long-term contracts 
allocated to users by the SESS in the third phase directly im‐
pacts the operation strategies in the fourth phase. Therefore, 
it is crucial to simulate the operation strategies of the fourth 
phase during the contracting process in the third phase to at‐
tain optimal resource allocation. This ensures a harmonious 
capacity and energy allocation within the SESS. Figure 2 
presents the schematic diagram of topology and power flow 
between shared energy storage, power grid, and various us‐
ers. The interaction between SESS and users is orchestrated 
by the two-stage resource allocation algorithm. In the first 
stage, SESS allocates capacity and signs long-term contracts 
with users. In the second stage, SESS provides energy servic‐
es to users according to the contents of the contracts, and 
any user demands that surpass the long-term contract are ful‐
filled through a real-time rental model.

A. Decomposition Method of Demand

During the process of contractual agreement in the third 
phase, resource allocation is based on the historical demand 
data submitted by the users. We utilize the variational mode 

decomposition (VMD) to decompose user demand into de‐
mand components at different time scales, namely the base 
load component and the fluctuating load component. The 
base load represents a more stable and consistent demand, 
and we formulate long-term contracts based on the base 
load, ensuring that the resource allocated to long-term con‐
tracts is not wasted. The fluctuating load signifies demands 
that are transient and characterized by high randomness and 
volatility. The fluctuating load is accommodated through the 
transaction model of real-time rental.

Given a demand curve x(t), the VMD algorithm decompos‐
es it into z modes uz (t) and a residual component r(t):

x(t)=∑
z = 1

Z

uz (t)+ r(t) (34)

uz (t) is obtained by minimizing the following constrained 
optimization problem as:

min
uz

é

ë

ê
êê
ê
ê
ê ù

û

ú
úú
ú
ú
ú∑

t = 1

T ( )x(t)-∑
z = 1

Z

uz (t)

2

+ λ∑
z = 1

Z

( )|uz|
2 - 1 (35)

The optimization problem is solved using an iterative algo‐
rithm that alternates between updating the modes and updat‐
ing the weights.

The base load curve b(t) is obtained by summing the 
modes with low frequencies:

b(t)=∑
z = 1

Zb

uz (t) (36)

The fluctuation load curve fl(t) is obtained by summing 
the modes with high frequencies:

fl(t)= ∑
k = Zb + 1

Z

uk (t) (37)

The noise component n(t) is obtained as the residual after 
the decomposition:

n(t)= r(t) (38)

The decomposition results in the demand curve being ex‐
pressed as the sum of the base load curve, the fluctuation 

Communication bus

Distribution line

Utility grid

Shared energy

 storage

User 1

Stage 2: real-time

 rental

Stage 1: long-term

 contracts

Two-stage resource allocation algorithm

User 2 User 3 User N

Energy flow; Information flow

Information and energy flow from real-time rental

Information and energy flow from long-term contracts

�

Fig. 2.　Schematic diagram of topology and power flow between shared en‐
ergy storage, power grid, and various users.
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load curve, and the noise component:
x(t)= b(t)+ fl(t)+ n(t) (39)

B. Two-stage Resource Allocation Algorithm Based on Sce‐
nario Sets

We employ a two-stage resource allocation algorithm to 
elucidate and address the issue of coordinating SESS capaci‐
ty allocation between long-term contracts and real-time rent‐
al markets in the presence of demand uncertainty. Figure 3 
illustrates the objectives, constraints, and decision for each 
stage. The sample average approximation method is em‐
ployed to formulate scenarios and their corresponding proba‐
bilities. Our primary goal is to optimize the revenue for the 
operators of SESS, which hinges on the revenue derived 
from long-term contracts in the first stage and the income 
and operation costs associated with real-time rental during in‐
traday operations.

max{ }f{123}(x)+E[Q(xξ)] (40)

Then, the sample mean approximation method is em‐
ployed to handle uncertain demands by generating a large 
number of typical daily user demand scenarios K through 
Monte Carlo sampling. Each scenario is treated as an inde‐
pendent sub-problem, enabling the discretization of uncer‐
tainty and ensuring solvability without significant loss of in‐
formation fidelity.

max
ì
í
î

ü
ý
þ

f{123}(x)+M
1
K∑k

Qk (xξ) (41)

The objective function of SESS in the second stage is to 
maximize the profit-making capability of SESS. This in‐
cludes the charging and discharging costs related to contract 
fulfillment, real-time rental income, and costs as well as op‐
eration and maintenance costs.

Qk (xξ)=max∑
t

é

ë

ê
êê
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n (owkt

chan ×w
kt
chan + owkt

chan ×w
kt
disn ) (42)

Figure 4 illustrates the specific process of the two-stage re‐
source allocation algorithm, guiding how different con‐
straints and objectives are incorporated into this algorithm 
based on the transaction mode.

V. CASE STUDIES

In this section, the two-stage resource allocation algorithm 
for SESS is tested and validated in Python3.7 on a personal 
computer with Intel Core i5-11400F (2.60 GHz) processors 
and 8 GB RAM. The optimization problems are solved by 
Gurobi 9.0.3, with a convergence threshold set at 0.001%. 
The data for the renewable energy systems are derived from 
the Belgian grid data, where we select one year of data as 
the training set for the scenario collection, with time inter‐
vals of 15 min, resulting in 96 dispatch points each day. The 
parameter settings for SESS operation modes can be found 
in Table II.

Stage 1

Stage 2

Objective: maximize contract revenue  

Constraints: ? capacity limits; ? price model 

Decisions: ? types of long-term contracts signed by each user; 

    ? capacity reserved for the real-time market

Objective: maximize operation revenue

Constraints: ? capacity limits; ? price model; ? operation limits;

      ? contract formulation ? cost model

Decisions: ? strategies for long-term contract portion of SESS;

     ? shared energy storage response strategy for real-time leasing

Fig. 3.　Operation framework of shared energy storage plant.

Start

End

+

Input the set of historical demand data scenarios

 submitted by the user

Achieve resource allocation

Apply (25)-(33)

Input demand set and fluctuating demand set

Obtain total revenue

+

+

+

Stage 1: capacity allocation 

Decompose demand according to (34)-(39)

Specify Mode 1 with (12)-(19)

Specify Mode 2 with (13), (16)-(22)

Specify Mode 3 with (13), (16)-(21), and (24)

Business model

Specify Mode 4 with (24) and constraints spanning from (13)-(24)

Exclude the establishment of long-term contract models for Mode 5

Stage 2: operation simulation

Define objective function as in (42)

Iterate and calculate (41) for all uncertain scenario sets

Apply Gurobi as solver

Operation model

Fig. 4.　Two-stage resource allocation algorithm.
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We employ five modes to represent the diverse leasing 
strategies provided by the SESS operator to the users. As 
shown in Table III, the five modes essentially encompass the 
combinations of long-term contracts and real-time rental dis‐
cussed in this paper. Modes 1, 2, and 3 represent that all us‐
ers sign one of the three types of long-term contracts and uti‐
lize the real-time rental service of SESS. Mode 4 represents 
that different users can opt to sign different long-term con‐
tracts while also using the real-time rental service of SESS. 

Mode 5 represents that users solely rely on real-time rental 
to meet their individual needs.

A. Analysis of Different Rental Modes

This subsection presents an in-depth economic analysis of 
the five modes for SESS operation, the relative results are 
displayed in Table IV. In Table IV, the four numbers en‐
closed in brackets correspond sequentially to the results for 
contract durations of one week, one month, three months, 
and one year. After conducting a comprehensive analysis of 
the SESS operating in five different modes with four con‐
tract durations, several trends and correlations emerge.

Firstly, regarding profitability, Mode 2 consistently 
achieves higher average daily net revenue across all contract 
lengths, reflecting its advantage in balancing the revenues 
and costs between long-term contracts and real-time rental. 
In contrast, Mode 5, which operates without the support of 
long-term contracts, tends to incur higher overall costs in the 
long run, especially during periods of significant energy mar‐
ket price volatility, despite generating high income through 
real-time rental.

Delving into cost analysis reveals that as contract lengths 
increase, particularly for the one-year long-term contract, all 
modes experience an uptrend in total costs. However, Mode 
2 exhibits more effective overall cost control. Despite the in‐
crease in costs, its net revenue growth remains significant, 
which is an essential factor in long-term operation planning 
since the stability offered by long-term contracts in revenue 
and cost forecasting is crucial for operators.

When selecting an operation mode, operators must careful‐
ly weigh the implications of contract duration, cost control, 
and sensitivity to market price fluctuations. While real-time 
rental offers substantial flexibility in the short term, hybrid 

modes such as Mode 2 and Mode 4 may better suit opera‐
tors seeking stable long-term revenue, providing the neces‐
sary flexibility to respond to market changes.

B. Impact of Battery Degradation Costs

Upon examining the data from the Table V and Table VI, 
the optimization algorithm that considers DoD and discharge 
frequency demonstrates its effectiveness across all five 
modes for varying contract durations. This algorithm tends 
to increase the average DoD, which suggests that the battery 
is utilized more effectively, accessing a larger portion of its 
capacity within each cycle.

Concurrently, there is a noticeable reduction in the aver‐
age daily discharge number when using the algorithm that 
accounts for DoD and discharge frequency. Fewer discharge 
cycles can lead to a slower rate of battery degradation, 
which in turn, may diminish the extra costs associated with 
battery wear and tear. Specifically, the equivalent degraded 
battery cost is lower when employing the optimization algo‐
rithm that includes DoD and discharging frequency, under‐
scoring the potential for cost savings in long-term battery 
maintenance and replacement.

TABLE III
SESS OPERATION MODES FOR USERS

Mode

1

2

3

4

5

Long-term contract

Capacity contract

FCDC-energy contract

DC-energy contract

Coexistence model of multiple contracts

None

Short-term contract

Real-time rental

Real-time rental

Real-time rental

Real-time rental

Real-time rental

TABLE II
PARAMETER SETTINGS FOR SESS OPERATION MODES

Parameter

cm

ηcha

ηdis

t

M

DR

LR

Value

100 MWh

0.95

0.95

96

One week, one month, three months, one year

95%

10000

TABLE IV
ECONOMIC ANALYSIS OF SESS OPERATION MODES

Mode

1

2

3

4

5

Long-term contract 
capacity (MWh)

[67, 64, 59, 58]

[54, 52, 48, 50]

[53, 49, 45, 45]

[61, 60, 61, 62]

[0, 0, 0, 0]

Real-time rental 
capacity (MWh)

[33, 36, 41, 42]

[46, 48, 52, 50]

[47, 51, 55, 55]

[39, 40, 39, 38]

[100, 100, 100, 
100]

Contract revenue 
(104 CNY)

[12.3, 50.2, 
139.9, 556.2]

[13.4, 55.8, 
152.4, 642.9]

[14.2, 56.7, 
156.4, 628.1]

[13.1, 55.1, 
168.7, 691.0]

[0, 0, 0, 0]

Real-time rental 
revenue (104 CNY)

[5.3, 25.2, 84.9, 
354.3]

[6.1, 27.2, 89.8, 
351.0]

[4.2, 19.6, 63.2, 
258.6]

[6.0, 26.4, 76.8, 
306.4]

[19.6, 84.1, 252.4, 
1023.6]

Total revenue 
(104 CNY)

[17.7, 75.4, 
224.8, 910.5]

[19.6, 83.1, 
242.2, 993.8]

[18.5, 76.2, 
219.7, 886.7]

[19.1, 81.5, 
245.4, 997.4]

[19.6, 84.1, 
252.4, 1023.6]

Grid electricity 
cost (104 CNY)

[5.8, 25.7, 
85.5, 346.6]

[5.4, 24.6, 
70.4, 322.2]

[5.3, 22.9, 
69.4, 314.5]

[5.7, 24.8, 
77.3, 337.0]

[8.8, 42.9, 
134.5, 522.5]

Daily SESS 
cost (104 CNY)

[0.117, 0.110, 
0.122, 0.115]

[0.108, 0.105, 
0.112, 0.108]

[0.106, 0.097, 
0.107, 0.098]

[0.110, 0.114, 
0.114, 0.117]

[0.176, 0.176, 
0.178, 0.179]

Average daily 
net revenue 
(104 CNY)

[1.57, 1.54, 
1.43, 1.43]

[1.91, 1.84, 
1.80, 1.73]

[1.77, 1.68, 
1.56, 1.47]

[1.81, 1.78, 
1.76, 1.69]

[1.37, 1.20, 
1.13, 1.19]
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For instance, in the one-week contract duration in Mode 
2, when the DoD and discharging frequency is considered, 
the equivalent degraded battery cost is significantly lower 
compared with the condition when these factors are not con‐
sidered. This pattern holds true across the various modes and 
contract durations, suggesting a consistent advantage in 
terms of reducing the cost implications of battery degrada‐
tion. Thus, the implementation of an optimization algorithm 
that accounts for DoD and discharging frequency can be a 
strategic method to enhance the economic viability of SESS 
operation modes.

C. Analysis of Different Rental Modes for Users

When evaluating the leasing modes offered by SESS, nota‐
ble financial considerations for both solar photovoltaic (SP) 
and wind power (WP) users have been identified, with com‐
prehensive details outlined in Table VII. Considering the sea‐
sonal variations inherent to both SP and WP energy produc‐
tion, and given that the three-month contract duration yield‐
ed favorable outcomes in Section V-A and V-B, the analysis 
here is predicated on a three-month contractual setting. Cal‐
culations for other contract durations have also been execut‐
ed, and the conclusions drawn remain consistent across these 
different timeframes.

Upon analyzing the data from Table VII for the economic 
implications of different SESS rental modes, it becomes evi‐
dent that Mode 5, which exclusively relies on real-time rent‐
al, incurs the highest costs for both SP and WP users. This 
is substantiated by the highest real-time rental costs and total 
expenditures displayed for both user types in this mode.

For SP users, whose energy demands are relatively stable, 
a mode that combines reasonable contract costs with lower 
total expenditure is preferable. Mode 1 emerges as the opti‐
mal choice for SP users, offering the lowest total expendi‐
ture among the available options.

Conversely, WP users often experience significant variabil‐
ity and irregularity in their energy demands. Therefore, a 
mode that balances stability with moderate reliance on real-
time rental costs would be more beneficial. Modes 2 and 3 
present a middle ground with moderate total expenditures, 
making them suitable for WP users who need to navigate 
fluctuating energy requirements. These modes offer a cost-ef‐
fective compromise between the predictability of a long-term 
contract and the flexibility of real-time rental expenses.

D. Analysis of Aggregation Effect and Incremental Revenue

In Modes 2 and 3, which involve the SESS entering into 
long-term contracts with users, we observe a significant user 
utilization rate. However, the utilization of energy storage 
modules dedicated to these long-term contracts is not as 
high as expected, as illustrated in Figs. 5 and 6, and detailed 
in Table VIII. Figures 5 and 6 specifically depict the utiliza‐
tion rates of two distinct types of contracts: the DC-energy 
contract and the FCDC-energy contract. The one-week con‐
tract duration is used as a representative example for clarity 
and simplicity, given the voluminous data from other con‐
tract lengths. It should be noted that this trend of moderate 
utilization rates for both contract types persists across all 
contract durations based on our comprehensive analysis, 
with the one-week duration serving as an illustrative case.

TABLE VII
ECONOMIC ANALYSIS OF DIFFERENT RENTAL MODES FOR USERS

Mode

1

2

3

5

Contract cost
(104 CNY)

SP

1616

1773

1889

0

WP

2536

2395

2461

0

Real-time rental 
cost (104 CNY)

SP

577

677

468

2536

WP

879

677

735

4047

Total expenditure 
cost (104 CNY)

SP

2194

2450

2356

2536

WP

3415

3072

3195

4047

TABLE VI
RESULTS OF OPTIMIZATION ALGORITHM WITHOUT CONSIDERING DOD OR 

DISCHARGING FREQUENCY

Mode

1

2

3

4

5

Average DoD 
(%)

[31, 29, 34, 32]

[44, 42, 41, 42]

[40, 42, 45, 48]

[30, 32, 45, 39]

[30, 30, 30, 35]

Average daily discharge 
number

[1562, 1556, 1502, 1530]

[952, 920, 938, 1005]

[1085, 1021, 1003, 1024]

[1264, 1352, 1398, 1284]

[1588, 1459, 1432, 1354]

Equivalent 
degraded battery 

cost (CNY)

[857, 912, 751, 813]

[368, 372, 389, 407]

[461, 413, 379, 363]

[716, 718, 528, 560]

[900, 827, 811, 658]

TABLE V
RESULTS OF OPTIMIZATION ALGORITHM CONSIDERING DOD AND 

DISCHARGE FREQUENCY

Mode

1

2

3

4

5

Average DoD 
(%)

[34, 32, 36, 35]

[56, 53, 60, 59]

[48, 45, 50, 54]

[39, 40, 48, 40]

[32, 32, 30, 38]

Average daily discharge 
number

[1225, 1234, 1125, 1265]

[752, 858, 854, 958]

[977, 1002, 1126, 1024]

[1035, 1025, 1325, 1136]

[1337, 1348, 1420, 1251]

Equivalent degraded 
battery cost (CNY)

[613, 656, 531, 614]

[228, 274, 242, 276]

[346, 378, 383, 322]

[451, 434, 469, 483]

[710, 716, 805, 560]

1 2 3 4 5 6 7
60

65

70

75

80

85

90

95

100

Day

U
ti

li
za

ti
o
n
 r

at
e 

(%
)

User 1; User 2; User 3; User 4; User 5

User 6; User 7; User 8; User 9; User 10

Fig. 5.　Contract utilization rate for users with DC-energy contract.
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Similar to the smoothing effect in wind farms, when 
SESS serves multiple users, there is indeed a similar effect, 
often referred to as the “aggregation effect”. In the context 
of SESS, the aggregation effect refers to the potential reduc‐
tion in overall demand volatility when the demands of multi‐
ple users are aggregated together. This is because the energy 
demands of different users might peak at different times, or 
have different fluctuation patterns. When these demands are 
combined, periods of high and low demand may offset each 
other, resulting in a more stable overall demand.

In the context of SESS contracts, a pivotal observation 
emerges regarding the utilization rates. Initially, when con‐
tracts are signed on a one-to-one basis, the aggregation ef‐
fect of users is overlooked. This oversight leads to a scenar‐
io where individual contract utilization rates are commend‐
ably high, yet the overall utilization rate of SESS remains 
suboptimal, hovering around 60%.

Upon integrating the aggregation effect, a transformative 
shift is observed. The SESS that capacitates to serve an ex‐
panded user base exhibits a marked enhancement in its con‐
tract utilization rates.

For the FCDC-energy contract, the contract utilization 
rates, which originally fluctuated between 64.9% and 71.6%, 
surge to span between 80.4% and 89.1% after aggregation. 
This transition signifies an approximate elevation of 20% in 
contract utilization rate. Concurrently, the revenue trajectory 
also ascends, registering an increment of 29900 CNY, which 
translates to a 15.2% growth.

In the case of the DC-energy contract, the initial contract 

utilization rate stands at 67.4%. However, after aggregation, 
a leap to 89.5% is observed, marking a similar uptrend of 
around 20%. Financially, this metamorphosis yields an addi‐
tional revenue of 19800 CNY, amounting to a 10.7% in‐
crease.

In conclusion, the integration of the aggregation effect un‐
deniably amplifies both the contract utilization rates and the 
revenues of SESS. This underscores the imperative of consid‐
ering the aggregation effect of multiple users during contract 
formulation to harness the maximum efficiency and profit‐
ability of SESS.

E. Calculation Time Over Extended Contract Durations

We assess the robustness of the proposed algorithm by an‐
alyzing its performance over a spectrum of scenario set siz‐
es, spanning from 10 days to 760 days, specifically at inter‐
vals of 10, 30, 60, 120, 360, and 720 days. It is observed 
that the calculation time for all five rental modes exhibit con‐
vergence, as depicted in Fig. 7.

For all modes, there is a sharp increase in calculation time 
as the contract duration extends from 0 to approximately 
100 days. This suggests that the complexity of the calcula‐
tions for determining the optimal leasing strategy increases 
with the length of the contract. Beyond 100 days, the calcu‐
lation time for all modes begins to converge and plateau, in‐
dicating that the complexity of the algorithm stabilizes de‐
spite increasing contract duration. Throughout the range of 
contract durations, Modes 1, 2, 3, and 4 show very similar 
calculation time with slight variations. Mode 5, while initial‐
ly having a higher calculation time, converges with the other 
modes as the contract duration increases. Figure 7 implies 
that the efficiency of the algorithm, in terms of computation 
time, does not significantly deteriorate as the contract dura‐
tion becomes longer, especially after reaching the plateau 
phase. This demonstrates the scalability of the algorithm in 
handling long-term contracts.

VI. CONCLUSION

This paper designs various long-term contracts for transac‐
tion modes between centralized SESS and users, and con‐
structs a two-stage resource allocation algorithm for opera‐
tors, guiding the sale of long-term contracts and real-time 
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Fig. 7.　Relations between contract duration and calculation time.

TABLE VIII
CONTRACT UTILIZATION RATE ALLOCATED TO LONG-TERM CONTRACTS

Contract 
type

FCDC-ener‐
gy contract

DC-energy 
contract

Utilization rate

[64.9, 69.4, 
71.6, 62.3, 66.4, 

65.2, 69.3]

67.4

Utilization rate 
after adding 

users

[80.4, 85.5, 
89.1, 78.4, 

82.2, 78.9, 87.6]

89.5

Incremental 
revenue 

(104 CNY)

2.99

1.98

Proportion
(%)

15.2

10.7

78%

91%
85%

73%

88% 92%

77% 78%
85%

91%

22%

9%
15%

27%

12% 8%
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Fig. 6.　Contract utilization rate for users with FCDC-energy contract.
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rental. Through numerical analysis, it is substantiated that 
the business model predicated on long-term contracts sur‐
passes the model that solely engages in the real-time market, 
both in terms of economic viability and user satisfaction. 
Crucially, it can efficaciously mitigate battery degradation. 
Moreover, the numerical experiment also scrutinizes the ag‐
gregation effect for SESS and illustrates that leveraging this 
aggregation effect can yield an additional 10.7% of net reve‐
nue. Potential directions for future research might include in‐
vestigating overselling models in SESS through user aggrega‐
tion and addressing privacy problems in information ex‐
changes by developing secure interaction algorithms and con‐
tract methods.
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