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Abstract—The vehicle-to-grid (V2G) technology enables the
bidirectional power flow between electric vehicle (EV) batteries
and the power grid, making EV-based mobile energy storage an
appealing supplement to stationary energy storage systems.
However, the stochastic and volatile charging behaviors pose a
challenge for EV fleets to engage directly in multi-agent cooper-
ation. To unlock the scheduling potential of EVs, this paper pro-
poses a source—load-storage cooperative low-carbon scheduling
strategy considering V2G aggregators. The uncertainty of EV
charging patterns is managed through a rolling-horizon control
framework, where the scheduling and control horizons are
adaptively adjusted according to the availability periods of
EVs. Moreover, a Minkowski-sum based aggregation method is
employed to evaluate the scheduling potential of aggregated EV
fleets within a given scheduling horizon. This method effectively
reduces the variable dimension while preserving the charging
and discharging constraints of individual EVs. Subsequently, a
Nash bargaining based cooperative scheduling model involving
a distribution system operator (DSO), an EV aggregator (EVA),
and a load aggregator (LA) is established to maximize the so-
cial welfare and improve the low-carbon performance of the
system. This model is solved by the alternating direction meth-
od of multipliers (ADMM) algorithm in a distributed manner,
with privacy of participants fully preserved. The proposed strat-
egy is proven to achieve the objective of low-carbon economic
operation.

Index Terms—Electric vehicle (EV), low-carbon scheduling,
mobile storage system, Nash bargaining, power flexibility, alter-
nating direction method of multipliers (ADMM).

1. INTRODUCTION

LECTRIFICATION of mobility provides a promising
solution to decarbonizing the transportation sector by
enabling zero-emission transportation. With the mass adop-
tion of electric vehicles (EVs), the worldwide deployment of
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EVs doubled in 2021 compared with 2020, reaching a new
record of 6.6 million [1]. As EVs are powered by onboard
battery packs that get charged at dedicated charging stations
(CSs), the stochastic travelling patterns and the consequent
uncertain charging behaviors of widely deployed EVs can re-
sult in grid congestion, increased energy losses, and aggra-
vated peak-to-valley difference [2]. Meanwhile, owing to the
vehicle-to-grid (V2G) technology, the standby EVs can oper-
ate as schedulable storage systems, making them ideal com-
plementary resources to stationary energy storage systems.
By coordinating with stationary energy storages and renew-
ables, improved peak shaving, enhanced renewable hosting,
and cooperative carbon reduction can be expected [3].

Although the coordinated scheduling of EVs and distribut-
ed generations (DGs) is beneficial to the modern power sys-
tems, their uncertainty issue, aggregation method, and coop-
erative strategy pose challenges in decision-making. As a re-
sult, existing research can be divided into three main catego-
ries.

The first category is on the uncertainty associated with
EVs. The uncertainty in the operation states of DGs like so-
lar photovoltaics (PVs) and wind turbines can be addressed
by adequately modelling their environmental dependence [4]-
[6]. In contrast, EV charging behavior exhibits significant
randomness and is influenced by factors such as battery state
of charge (SoC), charging price, traffic condition, travel pat-
terns of users, and charging mode selection [7]. While nu-
merous forecasting methods have been proposed in the exist-
ing literature on EV charging behavior simulation, the major-
ity are grounded in statistic modelling [8] or the Markov de-
cision-making process [9], with only partial consideration
given to the aforementioned factors. Furthermore, these fore-
casting methods are typically used to investigate the grid im-
pacts of large-scale EV charging, with little insight into the
charging scheduling of an EV fleet under uncertainty. In-
stead of relying on forecasting methods, some studies [10],
[11] inquire users about their charging plans before arrival.
However, this kind of method raises concerns about poten-
tial privacy violations and questions about whether users can
provide accurate travel and charging plans.

The second category is on the aggregation method of
EVs. An effective aggregation method enables geographical-
ly dispersed EVs to enter the electricity market as a unified
entity, namely, an EV aggregator (EVA) [12]. As the interme-
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diary between the distribution system operator (DSO) and
EVs, EVA pursues the most profitable charging and discharg-
ing schemes while minimizing disruption to charging needs
of users. To achieve this, it is critical for EVA to precisely
evaluate the scheduling potential of EV fleets over time. The
existing literature [13]-[15] predominantly employs the indi-
vidual modelling approach in the EV aggregation, represent-
ing EVA by the sum of all individual EV models. However,
incorporating all of those individual EV models into the
scheduling model could introduce an excessive number of
new variables and constraints, potentially leading to scalabili-
ty issues with large-scale EV fleets. For example, the day-
ahead power regulation capability of EVA is evaluated in
[13] and [14] based on forecasting the charging patterns of
individual EVs. The scheduling potential of EVA is estimat-
ed based on the preferred charging strategies inquired from
EV users in [15].

The third category is on the cooperation and energy trad-
ing strategies between EVA and other agents, which is com-
monly based on game theory. The game theory enables
agents with inconsistent decision-making strategies to coordi-
nate benefits, thereby facilitating the cooperation and energy
trading among multiple agents [16]. A Nash bargaining
based cooperative approach is proposed in [17] for the coor-
dinated scheduling of EVs and integrated energy systems
(IESs), aiming at minimizing the operating costs for both
agents. However, it assumes that the charging plans of EVs
can be precisely forecasted one day in advance. A day-ahead
and intraday charging scheduling model is proposed in [18]
for multiple EVAs, where the cooperative charging schedul-
ing is established based on the generalized Nash bargaining.
Similarly, a Nash bargaining based price bidding strategy is
proposed in [19] for the competition among EVAs, aiming at
compensating the supply and demand imbalance. However,
the charging scheduling models in [18] and [19] are solved
in a centralized manner without considering the privacy con-
cerns. To preserve the privacy of EV users, [20] proposes a
neurodynamic-based approach to solve the charging schedul-
ing model of EVAs in a distributed manner. Other related
works [21], [22] employ leader-follower games (e.g., Stackel-
berg game) to simulate the energy trading process between
EVA and other agents. All the studies above aim at achiev-
ing either joint profit maximization or cost minimization,
with minimal consideration given to potential for coordinat-
ed carbon reduction. Additionally, the power flexibility of
EVA is computed under the assumption that the charging pat-
terns of EV users can be anticipated through forecasting or
inquiry.

To summarize, previous research has offered ample mod-
els and theoretical background for the cooperative schedul-
ing problem of EVA and other agents. Nonetheless, there are
still some research gaps in this field.

1) The uncertainty issue associated with EV charging pat-
terns is not fully addressed on EV charging scheduling.
While methods such as random sampling and Markov deci-
sion-making process have been employed to forecast EV sta-
tus, they are typically dependent on predefined probability
distributions of charging parameters that are only suitable
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for large-scale EV fleets with consistent charging patterns.

2) The aggregation method of EVs is dominant with the
individual modelling approach, where each EV has its own
schedulable power region modelled individually. Then, all in-
dividual EV models are summed to compute the power flexi-
bility of EVA. Nevertheless, the associated constrained aggre-
gation process can be computationally intensive and may
confront scalability issues, particularly when dealing with a
large number of EVs.

3) Current research on the coordination strategies between
EVA and other agents has primarily concentrated on profit
maximization or cost minimization while dedicating less ef-
fort to exploring the potential for coordinated carbon reduc-
tion. Additionally, the influence of uncertain EV charging be-
haviors and the aggregation method on the practicability of
the coordination strategies have not been thoroughly exam-
ined.

Given the aforementioned research gaps, this paper pro-
poses a distributed source—load—storage cooperative low-car-
bon scheduling strategy considering V2G aggregators. First-
ly, a rolling-horizon control framework is presented to ad-
dress the uncertainty related to EV charging behaviors. Sec-
ondly, a Minkowski-sum based aggregation method is pro-
posed to evaluate the scheduling potential of EVA within the
scheduling horizon. Finally, a cooperative game model is de-
veloped for the coordinated operation of DSO, EVA, and
load aggregator (LA), along with a distributed solving algo-
rithm. Correspondingly, the main contributions of this paper
are summarized as follows.

1) Using a rolling-horizon control framework enables the
update of input parameters in the scheduling model to react
to any deviations from the previous state. The uncertainty as-
sociated with EV charging behaviors can be managed by
adapting the scheduling and control horizons according to
the availability periods of EVs.

2) The Minkowski-sum based aggregation method aims to
reduce the number of variables and constraints fed to the
scheduling model while preserving the scheduling con-
straints of individual EVs. When incorporated into the roll-
ing-horizon control framework, this method allows for a dy-
namic assessment on the scheduling potential of EVA.

3) The cooperative low-carbon scheduling strategy can be
implemented in real time with the rolling-horizon control
framework and flexible aggregation method. The cooperative
scheduling model, with integrated electricity and carbon trad-
ing, maximizes the profits of all involved agents while im-
proving the low-carbon performance of the entire system.
Furthermore, this model is solved in a distributed manner us-
ing the alternating direction method of multipliers (ADMM)
algorithm to preserve privacy during the interactions among
DSO, LA, and EVA.

The rest of this paper is organized as follows. Section II
introduces the cooperative scheduling with rolling-horizon
control framework. Section III provides the evaluation on
scheduling potential for EVA. Section IV presents the deci-
sion-making models for each agent. Section V introduces the
source—load—storage cooperative low-carbon scheduling mod-
el and its distributed solving algorithm. Sections VI and VII
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give the case study and conclusions, respectively.

II. COOPERATIVE SCHEDULING WITH ROLLING-HORIZON
CONTROL FRAMEWORK

This section introduces a rolling-horizon control frame-
work to manage the uncertainty in EV charging patterns. Fol-
lowing this, a cooperative scheduling strategy of DSO, EVA,
and LA is proposed to achieve optimal real-time scheduling
solutions.

A. Rolling-horizon Control Framework

The proposed cooperative scheduling aims to maximize
the profits of DSO, EVA, and LA jointly while pursuing col-
laborative carbon reduction via electricity and carbon trad-
ing. To achieve this, the three agents actively regulate their
schedulable devices from both the source and load sides.
The source-side schedulable devices for the system under
test encompass the gas turbine generators (GTGs) and renew-
able systems, while the load-side schedulable devices incor-
porate transferable flexible loads. The V2G-supported EVs
act as distributed battery storage systems, and their appropri-
ate charging and discharging scheduling assist in managing
fluctuations in both supply and demand. The interaction
framework of multi-agent system under test is shown in Fig.
1. In particular, DSO seeks to minimize its operating costs
by actively scheduling the power exchange with LAs and
EVAs under the constraint of the supply-demand balance.
LAs aim to maximize their revenues via the price-based de-
mand response, while EVAs aim to increase their revenues
from V2G service and price incentives driven by reduced
carbon emissions.

EVAT——1——1

= = =@
-

Carbon market

©—

= . . L
=i Cooperative scheduling; <-> Communication; <> Power exchange

Fig. 1. Interaction framework of multi-agent system.

To address the impact of uncertain EV charging patterns
on the feasibility of charging scheduling, the cooperative
scheduling of DSO, EVA, and LA is implemented using a
rolling-horizon control framework, as illustrated in Fig. 2.
The basic idea of the rolling-horizon control is to evaluate
the scheduling potential of agents in the scheduling horizon
on the basis of the current states of the schedulable devices,
solve the cooperative scheduling model, and implement the
optimal decision-making results in the control horizon. For a
given scheduling horizon, it is divided into several equal-
size intervals. The optimal decision-making solution can be
determined for the entire scheduling horizon. In each rolling
scheduling horizon, the first interval allocated for implement-
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ing control actions is referred to as the control horizon,
while the remaining time intervals are utilized for initializing
the next scheduling horizon.

Determine the scheduling horizon for time instance #,
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L horizon = 4,
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— Time
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Fig. 2. Rolling-horizon control framework for cooperative scheduling of
DSO, EVA, and LA.

B. Rolling-horizon Scheduling of EVA

Rolling-horizon control is a well-established technique for
tackling real-time/online control challenges in the presence
of uncertainty. It has been extensively applied in the schedul-
ing of DGs [23] and flexible loads [24]. As depicted in Fig.
2, the rolling-horizon control involves a scheduling horizon
and a control horizon. The scheduling horizon is the time
frame within which all related uncertain parameters are as-
sumed to be known with some degree of certainty. The con-
trol horizon refers to the time frame within which the opti-
mal decision variables for the scheduling horizon are imple-
mented. By moving the two horizons forward and solving
the decision-making model through rolling-horizon optimiza-
tion (RHO), the uncertainty parameters can be incorporated
into the scheduling process. The length of the scheduling ho-
rizon for DGs or flexible loads is typically fixed and deter-
mined by either the time frame capable of reliably predicting
power output or the contracted flexible period. In contrast,
EVs are characterized by heterogenous charging behaviors,
and the resulting stochastic availability periods suggest that
the length of scheduling horizon must be adaptively adjusted.

Considering uncertain parameters like the external variabil-
ity in EV charging requests and the wholesale electricity
price, the rolling-horizon control framework for the charging
scheduling of EV fleets can be defined by the following
steps, as shown in Fig. 3.
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Fig. 3. Determination of scheduling and control horizons for EVA in a roll-
ing approach.

1) The time axis is partitioned into a sequence of equal-
size intervals, with the length of each interval equaling At.

2) At a real-time instance ¢, each CS transmits the charg-
ing information of the EV connected to EVA via established
communication interfaces. The charging information includes
the expected departure time, the current battery SoC, the ex-
pected departure SoC, and the rated battery capacity. Utiliz-
ing this data, the charging scheduling feasibility of each EV
can be evaluated using (1). If (1) is satisfied, the availability
period of the EV connected to CS can be determined as (2).
Otherwise, the EV has to be charged or discharged at the
full power of the CS during the remaining charging periods
without any scheduling flexibility. Afterwards, the schedul-
ing horizon of EVA can be computed as the union of all indi-
vidual availability periods, as in (3).

14(S; e S,")E,e?nax TP s <liex Siex>Siw
(S S B P <l SiaSS )
T .=l 1] 2
=T, ieNy (3)
where ¢, and S, are the expected departure time and bat-

tery SoC of the i" EV that is currently being charged, respec-
tively; S, is the battery SoC of the i" EV at time ¢, with
the rated battery capacity represented by E).; T, is the
availability period of the /" EV; T, and N are the schedul-
ing horizon and the number of EVs avallable for chargmg
scheduling at time 7, respectively; and Pfyc, and Py ar
the maximum charging and discharging power of the CS
connected by the i" EV , respectively.

3) Based on the collected charging information and the
availability periods of EVs being charged within the schedul-
ing horizon T, EVA conducts RHO in accordance with its
decision-making model. The first time slot of 7, is consid-

ered as the control horizon 7, within which its optimal deci-

cn®

sion variables will be executed in the CS for charging sched-
uling.

4) Move forward to the next time instance (z,+ Af) and up-
date the uncertain parameters.

5) Repeat the steps above until the last scheduling period
is reached, as illustrated in Fig. 3.

C. Cooperative Scheduling of DSO, EVA, and LA

With the uncertainty of EV charging incorporated, the gen-
eralized implementation procedure of the cooperative sched-
uling of DSO, EVA, and LA is summarized as follows.

1) First, at real-time instance ¢, the scheduling horizon for
each agent can be determined based on the availability peri-
ods of the online schedulable devices for an agent. The
scheduling horizon of all three agents can be determined by
finding the intersection of their individual scheduling hori-
zons to ensure a consistent scheduling time frame, as in (4).

TDSO m TsﬁVA m TSI};A (4)
where TP, TEVA and T:* are the individual scheduling ho-
rizons of DSO, EVA, and LA, respectively.

2) Next, evaluate the scheduling potential of agents within
the designated scheduling horizon using the aggregation
method. To avoid exorbitant numbers of new variables and
constraints generated during the aggregation process of indi-
vidual models, a Minkowski-sum based aggregation method
is applied to assess the scheduling potential of EVA (i.e.,
power flexibility of EVA).

The main idea is that the power flexibility model of each
EV can be represented by a convex polytope with its corre-
sponding Euclidean space representing the feasible power
scheduling region, as shown in Fig. 4. The Minkowski-sum
of multiple polytopes can be obtained by summing their ver-
tex pairs and eliminating redundant points from the result
[25]. The aggregated scheduling region obtained in this man-
ner can maintain the power scheduling constraints of individ-
ual EVs while reducing variable dimensions. As an individu-
al EV takes its charging power in each time interval as a de-
cision variable, the Minkowski-sum of individual power flex-
ibility models requires a consistent aggregation time window
across all EVs. The time definition domain of individual
power flexibility models is extended from their active state
to the designated scheduling horizon to account for the dif-
ferences in availability of EVs. With the rolling scheduling and
control horizons, the scheduling potential of EVA is also dy-
namically evaluated. It should be noted that the Minkowski-
sum based aggregation method is also applicable to other types
of schedulable devices, e.g., flexible loads in [25] and [26].

3) Then, the scheduling potentials of agents are fed to the
cooperative scheduling models of DSO, EVA, and LA. The
carbon cost is incorporated into the decision-making models
to pursue the maximum energy savings and carbon reduc-
tions while maximizing the economic benefits of all in-
volved agents. Here, the carbon reduction is attained through
load transferring and V2G services. The electricity and car-
bon trading among agents is achieved via Nash bargaining,
and the optimal scheduling strategies are determined based
on the Nash equilibrium (NE) [17]. To ensure the privacy of
agents during trading, the cooperative scheduling model is
solved using the ADMM algorithm in a distributed manner.
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Fig. 4. Illustration of Minkowski-sum for two power scheduling regions.

4) Implement the optimal decision-making solution for the
first interval of the scheduling horizon. Update the status of
schedulable devices and then proceed to the next time in-
stance (z,+ Ar) with the process above repeated, as shown in
Fig. 2.

III. EVALUATION ON SCEDULING POTENTIAL OF EVA

Depending on the selected charging method, the charging
power of an EV typically falls within the range of 2-120
kW, which does not qualify for entering the wholesale mar-
ket [27]. To participate in a joint scheduling with DSO,
EVAs act as the intermediary between EVs and DSO, capa-
ble of simultaneously managing multiple CSs while maintain-
ing the communication with DSO. To maximize the reve-
nues from V2G participation while fulfilling the charging re-
quirements of EV users, it is essential to precisely evaluate
the power flexibility of aggregated EVs.

A. Power Flexibility of Individual EV

For an EV connected to a V2G-supported CS, its power
flexibility is mainly determined by the arrival battery SoC,
the maximum allowed charging and discharging power, the
expected departure time, and the minimum and maximum al-
lowed battery SoCs. To simplify the analysis, the charging
and discharging power losses are ignored. Thereby, the
scheduling potential of an individual EV can be represented
by:

O SPf;’C SP::{];X te Ti‘a
0<Pi<pPe teT,,

0= S (P =PI OMIET,,
smh<S, <S™ teT,,
PEEPEE=0 1T,

Py=0 teT,

Pii=0 teT,,

where P;}¢ and P;)¢ are the charging and discharging power
for the i" EV at time ¢, respectively, with its battery SoC rep-
resented by S, ; and S™" and S are the minimum and max-

imum allowed battery SoCs, respectively.

)

B. Power Flexibility of Aggregated EVs

To align with the cooperative scheduling based on rolling-
horizon control framework, as introduced in Section II, the
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power flexibility of aggregated EVs should be consecutively
evaluated as time progresses. The scheduling horizon of
EVA for a given time instance is determined by the number
of EVs being charged and their remaining charging periods,
as mentioned in (1)-(3). Subsequently, the individual power
flexibility models of available EVs can be established by
(5). Given that directly incorporating individual power flexi-
bility models into the scheduling model introduces excessive
variables and constraints, the Minkowski-sum based aggrega-
tion method is applied to evaluate the power flexibility of ag-
gregated EVs.

As clarified in Section II, the Minkowski-sum based ag-
gregation method requires that all available EVs have their
individual power flexibility models featured by the same def-
inition domain (i.e., the same aggregation time window). The
availability periods of EVs (i.e., T, in (2)) have to be ex-
panded to the scheduling horizon 7. To achieve this, a bina-
ry variable u,, is introduced, which indicates the charging
state of the /" EV at time ¢, as in (6). Afterwards, the origi-
nal individual power flexibility model can be reformatted as
(7), with its time horizon expanded from 7, to T, (7;,€Ty).
With the expanded time horizon of individual power flexibili-
ty models, the power flexibility of aggregated EVs can be
computed using the Minkowski-sum based aggregation meth-
od, as in (8). This method not only preserves privacy of EV
owners but also reduces the variable dimensions in the subse-
quent collaborative optimization stages.

1 teT.
u;,= (6)
0 teT,,
0<Pe<u, Poc teTy
0<Py<u, Pivs teT,

Ei,t:Ei,t—l+Eiarui,t(ui,t_ui,t—1)_Eiexui,t—l(ui,t—l_ui,t)+ @)
(P5re=PiyHAL teT,,

it

min max
u, EM<E, <u E™ tely

Lt —
0P <P™ teTy
0<PI<PE™ teT,,
E,=E, +P°At—PYAt+AE,, teTy

vt

2 2
AE, = z[(ui,t_ui.tui.t—l VET —(ui, _ui,r—lui.z)Eiex]

iel,

teTy

EM<E, <E™ teT,

vt —

®)
where E,, is the battery capacity of the i" EV at time ¢, and
it is subjected to E, =S, E.c EM™ and EM™ are the al-
lowed minimum and maximum values of E;, respectively;
E and E™ are the arrival and departure battery capacities of
the i EV, respectively; P{%° and P{;¢ are the aggregated
charging and discharging power of the v" EV cluster at time
t, respectively, and Po™ and P:™ are their corresponding
maximum values; and £, is the aggregated battery capacity
while its step change is represented by AE ..

IV. MULTI-AGENT DECISION-MAKING MODELS CONSIDERING
COOPERATIVE CARBON REDUCTION POTENTIAL

In this section, the decision-making models of tripartite
agents, namely, DSO, LA, and EVA, are introduced, aiming
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at obtaining cooperative low-carbon economic scheduling.

A. Decision-making Model of DSO

DSO adopts a carbon trading mechanism to regulate the
output of carbon-emission power generation units, aiming to
maximize its profit, which is the difference between the reve-
nue from electricity sales and the operating costs. The reve-
nue of DSO C”° comes from selling electricity to LA and
EVA at high market prices, with the corresponding revenues
represented by C'* and CFV%, respectively. The operating
costs of DSO include the cost of power purchased from
transmission systems, the operating cost of GTGs, and the
carbon cost, denoted by C¢, C™, and C™, respectively. The
objective function for decision-making model of DSO is rep-
resented by (9) and detailed in (10). This paper applies free
carbon quota allocation to GTGs, with their carbon emis-
sions and allocated carbon quota represented by (11).

max C”0=CH 4 CEY - CO— ™ - " ©)
CEVA 220 peve P:,V{d
t velV
CLA_ z 1Pj;i
zchg (10)
U= Day (Pl ) +b, P+,
t heH
Cal'=>> M(ES,,~ED, +ES,)
t heH
E}, = 51¢1,
E},. P/”‘,” (11)
/ht 5gpjt

where v and /4 are the indices of the EV cluster and GTG
whose sets are represented by /" and H, respectively; ci, 4 and
c! are the electricity selling prices to EVA and LA, respec-
tively; c¢¥ is the time-of-use (TOU) electricity price; Pla and
P, are the basic power demand of LA and purchased power
of DSO at time ¢, respectlvely, a, b,, and c, are the operat-
ing cost coefficients; ¢™ is the unit carbon price; P/”‘h o Bl
and E7,, are the power output, carbon emission, and carbon
emission quota, respectively; Ef,, is the carbon emission
quota purchased from transmission systems; J, and ¢, are
the carbon emission coefficient and the coefficient of carbon
quota allocation, respectively; d, is the coefficient of indirect
carbon emissions from power purchase; and ¢ € T,

Apart from maximizing profit, DSO is responsible for en-
suring the integrity of the distribution network [28]. Any
scheduling scheme that leads to network congestion or pow-
er imbalance is considered as an infeasible one. Therefore,
the decision-making solutions of DSO must satisfy the net-
work security constraints, which are further divided into the
nodal power balance constraint, the system power constraint,
and the branch flow constraint, as indicated by (12)-(14), re-

spectively
z P101+ zP/ﬂLt

0:j—>0

Pcvc Pcv.,d

vt gt

Prc Pla

(12)

z PO[,l:P(il

c0—i

0<P, <PM™

it =

(13)
(14)

where P, is the branch power flow between node j and its
adjacent upstream node i; P, is the branch power flow be-
tween node ;j and its adjacent downstream node o; P;™ is
the security limit of P;,; P is the total power output of
DGs at node j; P§, and POU are the power purchased from
transmission systems and the power supplied to the adjacent
downstream nodes of the slack bus, respectively; o:j— o
represents the adjacent downstream node sets of node j;
0—i represents the adjacent downstream node sets of the
slack bus; and t € 7.

In addition, the operating constraints of DSO and its flexi-
ble devices should also be considered during electricity and
carbon trading. Specifically, the power purchased from trans-
mission systems by DSO must be kept below its upper limit,
as in (15). The power scheduling of GTGs and renewable
generation systems has to obey their operating constraints,
as in (16) and (17), respectively.

0<PE<PE, (15)
P PLLSRE (16)
Pt m1n<P]I1 ’SPt max

0<PE<P! (17)

where P?, is the power purchased from transmission sys-
tems, with its upper limit represented by P£_; R and R}
are the maximum allowed ramp-up and ramp-down rates of
the 4" GTG, respectively, and P;,™" and P}";™ are the corre-
sponding minimum and maximum allowed power outputs;
P is the total power output of DGs at node j with its pre-

dlcted maximum value represented by P;; and t € T,.

B. Decision-making Model of LA

As an intermediary linking consumers and DSO, LA de-
fines the optimal scheduling schemes based on the TOU
electricity price [29]. All flexible loads are motivated to opti-
mize their consumption profiles to receive proper remunera-
tion. LA aims to maximize the user surplus C**, which is
the difference between the utility function and electricity
cost of consumers. The utility of consumers in this context
refers to the satisfaction derived from electricity consump-
tion and is represented by the commonly used quadratic utili-
ty function introduced in [30]. The operating constraint of
LA is given in (20).

max C'"*=F - CH* (18)
F 2|: Pld (Pld) :' (19)
Eptran,t :0
t
‘Ptran‘t £w})tla, (20)
Pi=P¥ 4P

tran, ¢

where F, is the utility function of consumers, which mea-
sures the satisfaction degree of consumers; CL* is the elec-
tricity cost of LA, which equals the electricity selling reve-
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nue of DSO, i.e., C*=CM; a, and B, are the preference co-
efficients of consumers; P,,,, and P} are the transferable
and baseline load power of LA, respectively; P is the total
power demand of LA; w is the transferable power ratio;
and te T,

C. Decision-making Model of EVA

To motivate EVs to provide V2G service and engage in
the carbon trading market, EVA is assumed to get revenues
by selling its equivalent carbon quota in the carbon trading
market. Meanwhile, EVA tends to minimize its electricity
cost while meeting the charging demands of EVs. Therefore,
the control objective of EVA is to maximize the difference
between carbon quota trading revenue and electricity cost, as
in (21). As the EV charging scheduling must prioritize meet-
ing the charging demands of EVs, the power flexibility of
aggregated EVs defined in (8) is applied as the operating
constraint of EVA.

max CEVA: CnliVA_ CIEVA

CnF;VA — zzcth (LevEgas _Enet )(P‘ivt,c _sz;d )
t v

@n
(22)

where C™V* is the benefit of EVA; C;¥* and CL¥* are the
electricity cost and carbon quota trading revenue of EVA, re-
spectively, and in a cooperative game, the electricity cost of
EVA equals the electricity sales revenue of DSO, i.e., C/V*=
CFY™, E® is the carbon emission of gasoline vehicles per
km; L is the equivalent travelling distance of gasoline vehi-
cles per kWh; and E™ is the carbon emission from EV
charging.

V. SOURCE-LOAD—-STORAGE COOPERATIVE LOW-CARBON
SCHEDULING MODEL AND ITS DISTRIBUTED SOLVING
ALGORITHM

Based on the decision-making models of DSO, LA, and
EVA, their cooperative scheduling model can be established
and described as a Nash game in this section, with the opti-
mal solution determined by NE. Meanwhile, the ADMM al-
gorithm in the distributed manner is applied to preserve data
privacy of the three agents.

A. Nash Bargaining Based Cooperative Scheduling Model

The Nash bargaining theory in cooperative games can en-
hance the interests of all agents without sacrificing their in-
terests [17]. Hence, both competition and cooperation exist
among the involved agents. A fair and reasonable equilibri-
um solution can be achieved through negotiation, represent-
ing the optimal Pareto solution for all cooperative agents. To
ensure the existence of the NE point during the multi-agent
coordination, it is assumed that each agent acts independent-
ly and rationally in pursuit of the maximum profits. Once all
the three agents reach a consensus through negotiation, they
can engage in the electricity and carbon trading, benefiting
all agents involved. The Nash product is applied to ensure
fair benefit distribution among all self-interested agents, and
the complete Nash bargaining based cooperative scheduling
model is formulated as:
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max (CPS0 = CP30 (CH — CLA YCPYA - Y
s.t. CPS0>Pso

>

covvs Chun

@. (12)-17). 20)
where C(]ffo, Cy%, and C&YA are the benefits of DSO, LA,
and EVA before bargaining (i.e., the disagreement points), re-
spectively; and C—C, . (with the subscript omitted for sim-
plicity) is the increased benefit of each agent after Nash bar-
gaining.

(23)

B. Equivalent Transformation of Nash Bargaining Based Co-
operative Scheduling Model

The Nash bargaining based cooperative scheduling model
in (23) is a nonconvex and nonlinear optimization problem,
which poses challenges for direct problem-solving. Also, this
model has a centralized structure and necessitates agents to
share their individual information, raising privacy concerns.
The Nash bargaining based cooperative scheduling model
will be decomposed and decoupled in this subsection to ad-
dress the issues above. Based on the mean value theorem,
the essential conditions for an optimal solution in a mean-
value inequality are “positive, definite, and equal”. As for
the model in (23), the justification for the existence of a Pa-
reto optimal equilibrium is as follows.

1) Positive: as the Nash bargaining based cooperative
scheduling model is intended to promote the interests of all
participants, it is reasonable to expect the existence of sched-
uling strategies that lead to a positive value of (23).

2) Definite: the sum of increased benefits of three agents
is expressed as C”°+ C"+ C™VA—(CR0+ Cyt + Cpi™).
Since the disagreement points Cp:°, Cy%, and CyY* are defi-
nite values, the maximization of the objective function in
(23) is equivalent to the maximization of C”5°+C"*+ CFVA,
as illustrated in (24).

max(C™° = CRO)CH = Cpi \CP A - CiiM )=
max(C*°+ C** + C*"" ) &
max(C*+CPA-CoO-C™M-CIM+ F - CH +

CEVA - CE™ Yo max(Zyg, + F,+ CEV™) (24)

where Z,,=—C%—C™-CM.

3) Equal: the arithmetic-geometric mean (AM-GM) in-
equality states that the geometric mean of any list of nonneg-
ative real values is less than or equal to its arithmetic mean,
as in (25).

X, +X,+...+X
1 X X,...x < jat B R SR S =
12 n n
n
X X+ X
xlxz...xnﬁ(—n B (25)

where x,,x,,...,x, are the nonnegative real values, and »n is
their total number. The equal sign in (25) holds when x,=
X,=...=X,.

According to the AM-GM inequality, the model in (23)
satisfies (26), and the inequality takes the equal sign if and
only if (27) holds. By substituting the definitions of CPS°,
C™*, and C** as provided in (9), (18), and (21), respective-
ly, (28) can be derived and considered the prerequisite for at-
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taining the maximum value of the objective function in (23).
It is worth noting that when the objective function of the
Nash bargaining based cooperative scheduling model is max-
imized, the resulting solution ensures that all participating
agents achieve Pareto optimal benefits, thereby entering into
a Pareto optimal equilibrium, the proof of which can be
found in [31].
(CPO—CPONC™ = Ca (CFY A = C M <

[(CPP=CPP+ CH=Ce+ CVA=C¥™ 3T (26)

CDSO _ CDSO _ CLA _ CLA _ CEVA _ CEVA (27)
0% = 0,% — 0,*
Z +CLA+CEVA_CDSO_F _CLA_CLA_CEVA_CEVA_
DSO s s 0,* T+ u b 0,* 7 ~m b
CEVA = (Zogo + Fy b CEA—CDO_CHA - CEM Y3 (28)
After applying the above equivalent transformation, the
model in (23) can be divided into sub-problems 1 and 2.
The Pareto solution of the model in (23) can be achieved by
solving these two sub-problems in sequence.
1) Sub-problem 1: Maximizing Benefit of Cooperative Agents
max (Zpgo+ F,+ CEV™)
st Zpgo=—Co-Cc™M-CcM
CLA — CLA
CSEVA _ vaEVA
s ~—%b
). (12)-(17), (20)

It is noticed that (29) is a typical planning problem and
can be solved directly using commercial optimization solv-
ers. However, the centralized problem-solving of (29) may
raise privacy concerns for the agents.

2) Sub-problem 2: Profit Distribution for Electricity and
Carbon Trading
max (CI*+ CEVY* 4+ Zpso = CoiP WF, — Cet = Co)-
(CEVA* _ CEVA _ CEVA )
m b 0,*
s.t. CoM CEVA 4+ Z 5602 Ci°
Fi-Ci*=Cit
CM ==t

Utilizing the mean value theorem, (30) can be converted
into a readily solvable equation, eliminating the need for a
solver with the derivation process provided in (31). Formula
(32) indicates that the cooperative alliance negotiations have
reached a consensus on electricity and carbon trading, and
the increased benefits are equally shared among the agents.
The optimal solution of sub-problem 2 can be computed di-
rectly, as in (33).

(CHA+CIVM+ Zpgo— CoONFy = Cit = Ci)-

(CEVA — CIVA — CEVAY<[(Z oo + CHA 4+ CFVA - PO 4 F! -
CLA_ CLA+ CEVA* _ CEVA _ CEVA )]3 _
b 0,* m b 0,* -
[(Zpso— Coil+F —Cit=CoVY = Cyi™ )3T
=Gl = A= OB - O CEYN =25+ CA
CEYA _ COSO = (Zyo 4 F + CEYA - CDSO _ CLA = CEYA )73
(32)

(29)

(30)

€2))

CyY =—~Zpso—2F, + CoN = CR0+2C 2 = Cyi™ /3
* * * * 3 3
PN = (Zg + Fo —2CE — ch0 — et acpinys Y

where Z.,, F., and CEY*" are the optimal solutions of sub-
problem 1; and the equality in (31) is satisfied only when
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(32) exits.
C. ADMM Algorithm in Distributed Manner

To maintain the operational autonomy and information pri-
vacy of agents, sub-problem 1 is solved by the ADMM algo-
rithm in a distributed manner. As the ADMM algorithm re-
quires the optimization model to be decomposable, the auxil-
iary variables are used to facilitate the model decoupling
(ie., PL=P2, PS =Py, where P\ =P~ P%). By incor-
porating these auxiliary variables and taking the negative
form of (29), the augmented Lagrangian function of sub-
problem 1 can be formulated, as in (34).

min L=—(Zpgo+F,+ CE* )+

Sl t-phy+
t

2
+
2

la la
Ps,t_Pb(t

2
z[zf“(P::.,—Psn.tH B e -pi, “ (34)

where A" and A% are the Lagrangian multipliers of LA and
EVA at time ¢, respectively; and p,, and p,, are the penalty
factors of LA and EVA, respectively.

Formula (34) can be deconstructed into the corresponding
distributed optimization models for LA, EVA, and DSO, as
in (35)-(37), respectively.

1) Distributed optimization model for LA
P :‘t—P ll;,lt i

J 35)

minL, , =—F,+ Z[w (P2 —PP)+ %
t

s.t. (20)
2) Distributed optimization model for EVA

min L= S35 5P+ B P - pe -
Cfiv:;
s.t. (8)
(36)
3) Distributed optimization model for DSO
min Lygy=—Zpgo + S|4 (P¥~ P2 )+ % P& Pl z+
7

P(,:v _Pcv

st b,v,t

2 3
S| s -rao G ]
s.t. (12)-(17)

Due to the existence of discrete and bilinear terms, (35)-
(37) are further linearized to mixed-integer linear program-
ming (MILP) problems before being fed to the ADMM solv-
ing procedure. This step enables the commercial integer opti-
mization solvers to solve the MILP problems. The lineariza-
tion technique has been extensively explored in the existing
literature [32], [33] and will not be repeated here. In addi-
tion to using the linearization technique, various machine
learning techniques have been applied in the existing litera-
ture to enhance the traditional ADMM (e.g., O-learning in
[34] and deep neural networks in [35]). The incorporation of
either linearization or machine learning techniques into AD-
MM will not affect the effectiveness of the proposed source—
load-storage low-carbon cooperative scheduling strategy.
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The linearized sub-problem 1 can be solved using the AD-
MM algorithm, with its implementation steps summarized
below.

Step I: apply the basic settings for the ADMM algorithm
(the maximum iteration number £k, =50; the convergence
tolerance d=107; and the penalty factor p=107").

Step 2: initialize the iteration number k& and the Lagrang-
ian multipliers 1, to be 0; and initialize the power purchase
of LA and EVA to be 0 (i.e., P/**=P*=0).

Step 3: based on the power supply from DSO to LA and
EVA at the k" iteration, i.e., P and P, respectively, the
expected power purchase of LA and EVA from DSO at the
(k+1)" iteration, i.e., P%/*" and P{%}"!, respectively, can be
computed, as in (38) and (39).

Pl =argmin L, (A, P (38)
Pk =argmin Ly, (A5, PSS (39)

Step 4: after DSO receives P'"' and Pgu%"', they can be
calculated by (40).
[P Pt |=argmin Lgh (4,2 PESLPEET) - 40)
Step 5: update Lagrangian multipliers for LA and EVA, as
shown in (41).
{lla,lwl lea’k-i-pl (Pla,k+l _Ptl)z;kﬂ
t t a St ), ¢

ev,k+1 _ qevk ev,k+1 ev,k+1
/1! _j‘t +pev (P -P )

bt

(41)
s, vt
Step 6: send the updated parameters to the relevant distrib-
uted optimization models for LA and EVA.
Step 7: change the iteration number from & to k+ 1.
Step 8: repeat Steps 3-7 until (42) is achieved or the maxi-
mum iteration number k___is reached.

‘max

la,k la, k
Z| Ps,z _Pb.t
t

2
ev, k ev, k
2” Ps,v,t_Pb,v.t )
t

2
2

|35

(42)
<J

Step 9: end the iteration and output the power transactions
among the three agents.

VI. CASE STUDY

A. Basic Information on System Under Test

The case study is performed on a modified Roy Billinton
Test System (RBTS), with its single-line diagram depicted in
Fig. 5 [36].

26 29
o—lﬂ@ o—

CS2|WF2

27 30

o288 3]

Fig. 5. Single-line diagram of modified RBTS.
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The peak demand of the test network is 20 MW, and the
power consumption profile of each node is provided in [37].
Additionally, two wind farms (WFs), each with a rated pow-
er of 6 MW, are integrated into the test network. The typical
demand profile of baseline loads and the generation profiles
of WFs are shown in Fig. 6.

20, 60§
z18 =
= 1432
— 16+ 5]
2 2
é 14} 3.0 ;‘_)“
£ 12t 8
S 15 %
210 £

8 - s ' 0 £

07:00 13:00 19:00 01:00 07:00 &

Time

Baseline load; —*— WF1; —— WF2

Fig. 6.
WFs.

Typical demand profile of baseline loads and generation profile of

Moreover, the response of agents to time-varying electrici-
ty prices is investigated using a TOU pricing method [38],
which sets differentiated electricity prices for peak, off-peak,
and valley periods, as tabulated in Table I. The transferrable
power ratio @ is assumed to be 10%, while the preference
coefficients of customers a, and f, are set to be 2.2 and
0.0009, respectively. For GTGs, the unit carbon price ¢™ and
the carbon quota allocation coefficient ¢, are set to be 0.25
CNY/kg and 0.798 kg/kWh, respectively, with the other op-
erating parameters specified in Table II. For decision-making
model of EVA in (21) and (22), the equivalent carbon emis-
sion during the EV charging process E™ is set to be 0.5 kg/
kWh, while the carbon emission of gasoline vehicles £ is
set to be 0.197 kg/km. According to [39], a commercial EV
with a battery capacity of 56.4 kWh can cover a driving
range of 420 km. Hence, the equivalent travelling distance
of gasoline vehicles per kWh, L, is assumed to be 7 km.
The upper and lower limits of electricity transaction price
are 100% and 80% of the TOU electricity price, respectively.

TABLE I
TOU ELECTRICITY PRICE AND TIME PERIOD PARTITION

Time period Time period division c? (CNY/kWh)
Peak period 10:00-13:00, 18:00-22:00 1.25
Oft-peak period 08:00-10:00, 13:00-18:00, 22:00-24:00 0.80
Valley period 00:00-08:00 0.40
TABLE 11
OPERATING PARAMETERS OF GTGS
h PR (kW) R (kW) R} (kW) (a):b;,¢,) 9,
1 3000 3000 3000 (0.00018, 0.015,0) 0915
2 4000 3500 3500 (0.00015, 0.018, 0)  0.812
3 5000 4000 4000 (0.00022, 0.022, 0)  0.572

Two centralized CSs (CS1 and CS2) are accessible on the
test network, catering to two types of EV charging: night-



XU et al.: DISTRIBUTED SOURCE-LOAD-STORAGE COOPERATIVE LOW-CARBON SCHEDULING STRATEGY CONSIDERING VEHICLE-TO-GRID...

time charging and daytime charging. To account for the vari-
ability and uncertainty of charging behaviors, the charging
profiles of EV fleets are produced through Monte Carlo sim-
ulations, utilizing the presumed distribution characteristics of
EV charging patterns given in Table III.

TABLE III
PROBABILITY DISTRIBUTIONS OF EV CHARGING PATTERNS

Probability distribution
Number of EVs on a

EV charging  Arrival

. daily basis
pattern time of to S, o
EV to CS Served by  Served by
CSl1 CS2
Nightti‘me N(20,1) N(8,0.25) U(0.3,0.5) U(460,540) U(280,320)
charging
Daytime - nig 1) n(19,1) U(0.2.04) U180.220) U(160,240)
charging

Note: N(x,y) stands for normal distribution; and U(x,y) refers to uniform
distribution.

The minimum and maximum allowable battery SoCs are
set to be 0.1 and 0.95, respectively, assuming a battery ca-
pacity of 35 kWh. The maximum permissible charging pow-
er and discharging power are set to be 6.6 kW without con-
sidering the power conversion losses.

B. Results Analysis

1) Power Flexibility of Aggregated EVs

By applying the Minkowski-sum based aggregation meth-
od in a rolling-horizon control framework, the power flexibil-
ity of aggregated EVs for CS1 and CS2 on a typical day can
be obtained, as shown in Fig. 7. It can be observed that CS1
and CS2 exhibit similar power flexibility of aggregated EVs.
As the number of EVs being charged during 07: 00-10: 00
and 17:00-21:00 increases, the power and energy flexibilities
of aggregated EVs are also enhanced. Due to more EVs get-
ting charged during nighttime than daytime, the schedulable
power of EV fleets is higher during nighttime.

5.0

e
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Power (MW)
=
Energy (MWh)
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07:00
Time
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—#— Lower boundary of power; —o— Upper boundary of power
— - - Lower boundary of energy; Upper boundary of energy

Fig. 7. Power and energy flexibility of aggregated EVs for CS1 and CS2.
(a) CSI. (b) CS2.
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2) Convergence Analysis of ADMM Algorithm for Sub-prob-
lem 1

As elucidated in Section V, the solution quality of sub-
problem 1 is crucial for defining the cooperative scheduling
schemes in sub-problem 2. To validate the convergence of
sub-problem 1 using the ADMM algorithm, the iterative
curves of the objective function values obtained from the dis-
tributed optimization models of DSO, LA, and EVA are
shown in Fig. 8. It is clear that the distributed optimization
models stabilize and converge after about 20 iterations. The
objective function for each agent converges to NE in the AD-
MM algorithm. Throughout the entire process, only the infor-
mation on buying and selling electricity is exchanged among
agents. Once NE is reached, the scheduling strategies of all
agents no longer change. This indicates that no agent can in-
crease payoff by altering their scheduling strategies.

—x— Objective value of social walfare
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S ®
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(b)
Fig. 8. Iterative curves of objective function values obtained from distribut-

ed optimization models. (a) LA and social welfare. (b) DSO and EVA.

3) Analysis of Optimization Results for Each Agent

The following three scheduling strategies are employed
and compared to assess the effectiveness of the proposed
one. All three strategies are implemented using the rolling-
horizon control framework.

1) Strategy 1: the proposed low-carbon cooperative sched-
uling strategy.

2) Strategy 2: a centralized low-carbon scheduling strategy.

3) Strategy 3: a low-carbon scheduling strategy based on
Stackelberg bargaining.

The implementation approaches of strategy 2 and strategy
3 can be found in [40] and [41], respectively. The optimized
costs and revenues of the three agents are tabulated in Ta-
bles IV-VIL. It turns out that DSO achieves the highest reve-
nue under strategy 2, which focuses solely on maximizing
the revenue of DSO without considering the revenues of oth-
er agents. Consequently, the electricity costs of LA and EVA
increase while the costs of DSO decrease. Moreover, the us-
er surplus of LA and net profit of EVA are the highest under
strategy 1, as it reduces their energy costs and increases
their revenues for both LA and EVA.
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TABLE IV
OPTIMIZED COSTS AND REVENUES OF DSO

Sty Pl R e poeure, 10

No. sales4revenue GTGs (104 cost (104 ment cost cost (10

(10°CNY) CNY) CNY)  (10' CNY) CNY)

1 18.3421 6.8917 0.3693 2.0617 9.3227

2 18.5592 6.9252 0.3642 2.0305 9.3199

3 18.2981 6.6986 0.4025 2.2673 9.3684
TABLE V

OPTIMIZED COSTS AND REVENUES OF LA

User surplus Utility function of Electricity cost

Strategy No.

(10* CNY)  customers (10* CNY) (10* CNY)
1 14.6285 42.1279 27.4994
2 14.4562 42.1265 27.6704
3 14.5882 42.0529 27.4647
TABLE VI

OPTIMIZED COSTS AND REVENUES OF EVA

simegy Yo, NI Carbon gl o
1 0.4465 0.6081 0.1616
2 0.3993 0.6081 0.2088
3 0.4063 0.6081 0.2018

When comparing strategy 1 with strategy 3, the revenues
of all agents increase, and the increments are equal, imply-
ing a balanced distribution of social benefits. Although the
operating costs of GTGs are higher under strategy 1 than
those under strategy 3, strategy 1 has lower carbon emission
and electricity procurement costs.

It is due to the prioritization of low-carbon-emission
GTGs and carbon-free EV discharging in strategy 1, despite
the downside of higher operating costs for GTGs. It also
demonstrates that strategy 1 is more considerate of the eco-
nomic and low-carbon aspects than strategy 3.

The optimization results for DSO, LA, and EVA are dis-
cussed below.

1) Optimization results for DSO

The optimization results in Fig. 9 illustrate the complete
accommodation of wind power generation by the test net-
work under all three scheduling strategies. To address the un-
certainty of wind power output, V2G service of EV fleets is
utilized during periods of low wind power from 23:00 to 24:
00 and during periods of peak load from 11:00 to 13:00 and
19:00 to 22:00. The scheduled EV discharging aids in com-
pensating for the insufficient wind power, achieving a sup-
ply-demand balance and reducing the power demand for pur-
chasing from transmission systems, thereby lowering overall
carbon emissions. The charging behavior of EVA concen-
trates during the early morning periods from 01:00 to 07:00,
reducing peak-to-valley differences and promoting low-car-
bon emission characteristics of EVs. This collaborative oper-
ation improves the low-carbon performance of all involved
agents.

2) Optimization results for LA

The load-shifting results of LA under scheduling strategies
1-3 are shown in Fig. 10. It is observed that LA, driven by
TOU electricity prices, exhibits a “peak-shaving and valley-
filling” phenomenon in its load behavior. As -electricity
prices are higher during peak periods, i.e., 10:00-15:00
and 19:00-22:00, flexible consumers are incentivized to
shift their power demand from peak hours to off-peak
hours, i.e., 07:00-09:00, 16:00-18:00, and 23:00-06:00 on
the next day, when electricity prices are lower. This leads to
a modified load demand profile with a reduced difference be-
tween peak and valley loads, thereby decreasing in the re-
quired peak generation capacity. The load-shifting capability
of LA is directly linked to the aggregated load power. Fur-
thermore, consumers also reduce their electricity costs
through participating in demand response.
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Fig. 9. Optimization results for DSO. (a) Strategy 1. (b) Strategy 2. (c)
Strategy 3.

3) Optimization results for EVA

The optimization results for EVA under strategy 1 are
shown in Fig. 11. It is observed that the charging power of
aggregated EVs converges after 6 iterations. Initially, it fluc-
tuates in the first few iterations before reaching stability,
which is attributed to EVA pursuing the lowest cost in the
initial iteration. With relatively low electricity prices during
the specified period, EVs tend to charge centrally, rapidly in-
creasing the charging power. The intermediate power fluctua-
tions arise from the multi-agent bargaining, with a dynamic
balance achieved.
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Fig. 10. Load-shifting results of LA under strategies 1-3. (a) Load power
after demand response. (b) Transferrable load power.
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Fig. 11. Optimization results for EVA under scheduling strategy 1. (a)

Charging power of aggregated EVs connected with CS1 and CS2 under dif-
ferent iterations. (b) Aggregated power and energy of CS1 and CS2 varying
with time.

As shown in Fig. 11, after implementing strategy 1, the
aggregated power and energy profiles exhibit fluctuating
characteristics. This is because EV fleets dynamically switch
between charging and V2G operation modes, according to
the charging scheduling of EVA. For instance, during 07:00-
10:00, the aggregated power gradually increases with the in-
creasing aggregated energy, indicating an increase in the
number of EVs being charged.

However, during 19:00-21:00, an opposite trend is ob-
served between the aggregated power and energy curves.
This is because EVs of nighttime charging start to charge
during that period, leading to an increase in the aggregated
energy. However, due to the peak power demand and high
electricity prices, flexible EVs enter into V2G mode, decreas-
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ing the aggregated power.

4) Carbon emissions under strategy 1

From the perspective of DSO, its carbon emissions primar-
ily stem from the equivalent carbon emission due to power
procurement from transmission systems and the carbon emis-
sion from GTGs, as shown in Fig. 12. It is observed that
strategy 1 exhibits a total carbon emission level similar to
that of strategy 2. Compared with strategy 3, strategy 1 re-
quires less power procurement and reduced power demand
from GTGs, enhancing carbon reduction performance. The
negative value in Fig. 12(b) indicates that the carbon emis-
sions from GTGs are lower than the initially allocated car-
bon quota. In such a scenario, there is an excess of freely al-
located carbon quota, which can be sold in the carbon trad-
ing market to generate profit. Consequently, the low-carbon
units in the system are expected to have a higher power out-
put, leading to increased revenue and enhanced low-carbon
system performance.
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Fig. 12. Optimization results of carbon emissions. (a) Carbon emission
due to power procurement. (b) Carbon emission from GTGs.

VII. CONCLUSION

The advancement of V2G technologies enables EVs to op-
erate as battery storage units for grid interaction, represent-
ing an inevitable trend of the future smart grid. This paper
establishes a source — load — storage cooperative low-carbon
scheduling strategy considering V2G aggregators. It utilizes
a Minkowski-sum based aggregation method to evaluate the
scheduling potential of EV fleets while preserving their
charging requirements. Subsequently, a Nash bargaining
based cooperative scheduling model is proposed for DSO,
EVA, and LA with integrated electricity and carbon trading.
The model is then solved using an ADMM algorithm in a
distributed manner. To accommodate uncertain EV charging
patterns, the aggregation and co-scheduling strategies are im-
plemented using a rolling-horizon control framework, where
the control objectives and their scheduling horizon are dy-
namically updated. The proposed source—load—storage coop-
erative low-carbon scheduling strategy promotes coordinated
low-carbon development in the power and transportation sec-
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tors while preserving the information privacy of multiple
agents.

Theoretical and arithmetic analyses illustrate the advantag-
es of the proposed source-load—storage cooperative low-car-
bon scheduling strategy.

1) A rolling-horizon control framework is proposed to ad-
dress uncertainty. Incorporating the rolling-horizon control
framework allows the cooperative scheduling strategy to be
executed in real time.

2) A Minkowski-sum based aggregation method is imple-
mented to avoid the excessive variables and constraints be-
ing added during the direct sum of individual power flexibili-
ty models. It effectively reduces variable dimension and com-
putational complexity while adhering to the charging/dis-
charging constraints of individual EVs.

3) A Nash bargaining based cooperative scheduling model
for DSO, EVA, and LA is proposed to pursue low-carbon
economic co-scheduling. The model is solved using the AD-
MM algorithm in a distributed manner to preserve the priva-
cy between agents.
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