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Abstract——The vehicle-to-grid (V2G) technology enables the 
bidirectional power flow between electric vehicle (EV) batteries 
and the power grid, making EV-based mobile energy storage an 
appealing supplement to stationary energy storage systems. 
However, the stochastic and volatile charging behaviors pose a 
challenge for EV fleets to engage directly in multi-agent cooper‐
ation. To unlock the scheduling potential of EVs, this paper pro‐
poses a source−load−storage cooperative low-carbon scheduling 
strategy considering V2G aggregators. The uncertainty of EV 
charging patterns is managed through a rolling-horizon control 
framework, where the scheduling and control horizons are 
adaptively adjusted according to the availability periods of 
EVs. Moreover, a Minkowski-sum based aggregation method is 
employed to evaluate the scheduling potential of aggregated EV 
fleets within a given scheduling horizon. This method effectively 
reduces the variable dimension while preserving the charging 
and discharging constraints of individual EVs. Subsequently, a 
Nash bargaining based cooperative scheduling model involving 
a distribution system operator (DSO), an EV aggregator (EVA), 
and a load aggregator (LA) is established to maximize the so‐
cial welfare and improve the low-carbon performance of the 
system. This model is solved by the alternating direction meth‐
od of multipliers (ADMM) algorithm in a distributed manner, 
with privacy of participants fully preserved. The proposed strat‐
egy is proven to achieve the objective of low-carbon economic 
operation.

Index Terms——Electric vehicle (EV), low-carbon scheduling, 
mobile storage system, Nash bargaining, power flexibility, alter‐
nating direction method of multipliers (ADMM).

I. INTRODUCTION 

ELECTRIFICATION of mobility provides a promising 
solution to decarbonizing the transportation sector by 

enabling zero-emission transportation. With the mass adop‐
tion of electric vehicles (EVs), the worldwide deployment of 

EVs doubled in 2021 compared with 2020, reaching a new 
record of 6.6 million [1]. As EVs are powered by onboard 
battery packs that get charged at dedicated charging stations 
(CSs), the stochastic travelling patterns and the consequent 
uncertain charging behaviors of widely deployed EVs can re‐
sult in grid congestion, increased energy losses, and aggra‐
vated peak-to-valley difference [2]. Meanwhile, owing to the 
vehicle-to-grid (V2G) technology, the standby EVs can oper‐
ate as schedulable storage systems, making them ideal com‐
plementary resources to stationary energy storage systems. 
By coordinating with stationary energy storages and renew‐
ables, improved peak shaving, enhanced renewable hosting, 
and cooperative carbon reduction can be expected [3].

Although the coordinated scheduling of EVs and distribut‐
ed generations (DGs) is beneficial to the modern power sys‐
tems, their uncertainty issue, aggregation method, and coop‐
erative strategy pose challenges in decision-making. As a re‐
sult, existing research can be divided into three main catego‐
ries.

The first category is on the uncertainty associated with 
EVs. The uncertainty in the operation states of DGs like so‐
lar photovoltaics (PVs) and wind turbines can be addressed 
by adequately modelling their environmental dependence [4]-
[6]. In contrast, EV charging behavior exhibits significant 
randomness and is influenced by factors such as battery state 
of charge (SoC), charging price, traffic condition, travel pat‐
terns of users, and charging mode selection [7]. While nu‐
merous forecasting methods have been proposed in the exist‐
ing literature on EV charging behavior simulation, the major‐
ity are grounded in statistic modelling [8] or the Markov de‐
cision-making process [9], with only partial consideration 
given to the aforementioned factors. Furthermore, these fore‐
casting methods are typically used to investigate the grid im‐
pacts of large-scale EV charging, with little insight into the 
charging scheduling of an EV fleet under uncertainty. In‐
stead of relying on forecasting methods, some studies [10], 
[11] inquire users about their charging plans before arrival. 
However, this kind of method raises concerns about poten‐
tial privacy violations and questions about whether users can 
provide accurate travel and charging plans.

The second category is on the aggregation method of 
EVs. An effective aggregation method enables geographical‐
ly dispersed EVs to enter the electricity market as a unified 
entity, namely, an EV aggregator (EVA) [12]. As the interme‐
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diary between the distribution system operator (DSO) and 
EVs, EVA pursues the most profitable charging and discharg‐
ing schemes while minimizing disruption to charging needs 
of users. To achieve this, it is critical for EVA to precisely 
evaluate the scheduling potential of EV fleets over time. The 
existing literature [13]-[15] predominantly employs the indi‐
vidual modelling approach in the EV aggregation, represent‐
ing EVA by the sum of all individual EV models. However, 
incorporating all of those individual EV models into the 
scheduling model could introduce an excessive number of 
new variables and constraints, potentially leading to scalabili‐
ty issues with large-scale EV fleets. For example, the day-
ahead power regulation capability of EVA is evaluated in 
[13] and [14] based on forecasting the charging patterns of 
individual EVs. The scheduling potential of EVA is estimat‐
ed based on the preferred charging strategies inquired from 
EV users in [15].

The third category is on the cooperation and energy trad‐
ing strategies between EVA and other agents, which is com‐
monly based on game theory. The game theory enables 
agents with inconsistent decision-making strategies to coordi‐
nate benefits, thereby facilitating the cooperation and energy 
trading among multiple agents [16]. A Nash bargaining 
based cooperative approach is proposed in [17] for the coor‐
dinated scheduling of EVs and integrated energy systems 
(IESs), aiming at minimizing the operating costs for both 
agents. However, it assumes that the charging plans of EVs 
can be precisely forecasted one day in advance. A day-ahead 
and intraday charging scheduling model is proposed in [18] 
for multiple EVAs, where the cooperative charging schedul‐
ing is established based on the generalized Nash bargaining. 
Similarly, a Nash bargaining based price bidding strategy is 
proposed in [19] for the competition among EVAs, aiming at 
compensating the supply and demand imbalance. However, 
the charging scheduling models in [18] and [19] are solved 
in a centralized manner without considering the privacy con‐
cerns. To preserve the privacy of EV users, [20] proposes a 
neurodynamic-based approach to solve the charging schedul‐
ing model of EVAs in a distributed manner. Other related 
works [21], [22] employ leader-follower games (e.g., Stackel‐
berg game) to simulate the energy trading process between 
EVA and other agents. All the studies above aim at achiev‐
ing either joint profit maximization or cost minimization, 
with minimal consideration given to potential for coordinat‐
ed carbon reduction. Additionally, the power flexibility of 
EVA is computed under the assumption that the charging pat‐
terns of EV users can be anticipated through forecasting or 
inquiry.

To summarize, previous research has offered ample mod‐
els and theoretical background for the cooperative schedul‐
ing problem of EVA and other agents. Nonetheless, there are 
still some research gaps in this field.

1) The uncertainty issue associated with EV charging pat‐
terns is not fully addressed on EV charging scheduling. 
While methods such as random sampling and Markov deci‐
sion-making process have been employed to forecast EV sta‐
tus, they are typically dependent on predefined probability 
distributions of charging parameters that are only suitable 

for large-scale EV fleets with consistent charging patterns.
2) The aggregation method of EVs is dominant with the 

individual modelling approach, where each EV has its own 
schedulable power region modelled individually. Then, all in‐
dividual EV models are summed to compute the power flexi‐
bility of EVA. Nevertheless, the associated constrained aggre‐
gation process can be computationally intensive and may 
confront scalability issues, particularly when dealing with a 
large number of EVs.

3) Current research on the coordination strategies between 
EVA and other agents has primarily concentrated on profit 
maximization or cost minimization while dedicating less ef‐
fort to exploring the potential for coordinated carbon reduc‐
tion. Additionally, the influence of uncertain EV charging be‐
haviors and the aggregation method on the practicability of 
the coordination strategies have not been thoroughly exam‐
ined.

Given the aforementioned research gaps, this paper pro‐
poses a distributed source−load−storage cooperative low-car‐
bon scheduling strategy considering V2G aggregators. First‐
ly, a rolling-horizon control framework is presented to ad‐
dress the uncertainty related to EV charging behaviors. Sec‐
ondly, a Minkowski-sum based aggregation method is pro‐
posed to evaluate the scheduling potential of EVA within the 
scheduling horizon. Finally, a cooperative game model is de‐
veloped for the coordinated operation of DSO, EVA, and 
load aggregator (LA), along with a distributed solving algo‐
rithm. Correspondingly, the main contributions of this paper 
are summarized as follows.

1) Using a rolling-horizon control framework enables the 
update of input parameters in the scheduling model to react 
to any deviations from the previous state. The uncertainty as‐
sociated with EV charging behaviors can be managed by 
adapting the scheduling and control horizons according to 
the availability periods of EVs.

2) The Minkowski-sum based aggregation method aims to 
reduce the number of variables and constraints fed to the 
scheduling model while preserving the scheduling con‐
straints of individual EVs. When incorporated into the roll‐
ing-horizon control framework, this method allows for a dy‐
namic assessment on the scheduling potential of EVA.

3) The cooperative low-carbon scheduling strategy can be 
implemented in real time with the rolling-horizon control 
framework and flexible aggregation method. The cooperative 
scheduling model, with integrated electricity and carbon trad‐
ing, maximizes the profits of all involved agents while im‐
proving the low-carbon performance of the entire system. 
Furthermore, this model is solved in a distributed manner us‐
ing the alternating direction method of multipliers (ADMM) 
algorithm to preserve privacy during the interactions among 
DSO, LA, and EVA.

The rest of this paper is organized as follows. Section II 
introduces the cooperative scheduling with rolling-horizon 
control framework. Section III provides the evaluation on 
scheduling potential for EVA. Section IV presents the deci‐
sion-making models for each agent. Section V introduces the 
source−load−storage cooperative low-carbon scheduling mod‐
el and its distributed solving algorithm. Sections VI and VII 
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give the case study and conclusions, respectively.

II. COOPERATIVE SCHEDULING WITH ROLLING-HORIZON 
CONTROL FRAMEWORK 

This section introduces a rolling-horizon control frame‐
work to manage the uncertainty in EV charging patterns. Fol‐
lowing this, a cooperative scheduling strategy of DSO, EVA, 
and LA is proposed to achieve optimal real-time scheduling 
solutions.

A. Rolling-horizon Control Framework

The proposed cooperative scheduling aims to maximize 
the profits of DSO, EVA, and LA jointly while pursuing col‐
laborative carbon reduction via electricity and carbon trad‐
ing. To achieve this, the three agents actively regulate their 
schedulable devices from both the source and load sides. 
The source-side schedulable devices for the system under 
test encompass the gas turbine generators (GTGs) and renew‐
able systems, while the load-side schedulable devices incor‐
porate transferable flexible loads. The V2G-supported EVs 
act as distributed battery storage systems, and their appropri‐
ate charging and discharging scheduling assist in managing 
fluctuations in both supply and demand. The interaction 
framework of multi-agent system under test is shown in Fig. 
1. In particular, DSO seeks to minimize its operating costs 
by actively scheduling the power exchange with LAs and 
EVAs under the constraint of the supply-demand balance. 
LAs aim to maximize their revenues via the price-based de‐
mand response, while EVAs aim to increase their revenues 
from V2G service and price incentives driven by reduced 
carbon emissions.

To address the impact of uncertain EV charging patterns 
on the feasibility of charging scheduling, the cooperative 
scheduling of DSO, EVA, and LA is implemented using a 
rolling-horizon control framework, as illustrated in Fig. 2. 
The basic idea of the rolling-horizon control is to evaluate 
the scheduling potential of agents in the scheduling horizon 
on the basis of the current states of the schedulable devices, 
solve the cooperative scheduling model, and implement the 
optimal decision-making results in the control horizon. For a 
given scheduling horizon, it is divided into several equal-
size intervals. The optimal decision-making solution can be 
determined for the entire scheduling horizon. In each rolling 
scheduling horizon, the first interval allocated for implement‐

ing control actions is referred to as the control horizon, 
while the remaining time intervals are utilized for initializing 
the next scheduling horizon.

B. Rolling-horizon Scheduling of EVA

Rolling-horizon control is a well-established technique for 
tackling real-time/online control challenges in the presence 
of uncertainty. It has been extensively applied in the schedul‐
ing of DGs [23] and flexible loads [24]. As depicted in Fig. 
2, the rolling-horizon control involves a scheduling horizon 
and a control horizon. The scheduling horizon is the time 
frame within which all related uncertain parameters are as‐
sumed to be known with some degree of certainty. The con‐
trol horizon refers to the time frame within which the opti‐
mal decision variables for the scheduling horizon are imple‐
mented. By moving the two horizons forward and solving 
the decision-making model through rolling-horizon optimiza‐
tion (RHO), the uncertainty parameters can be incorporated 
into the scheduling process. The length of the scheduling ho‐
rizon for DGs or flexible loads is typically fixed and deter‐
mined by either the time frame capable of reliably predicting 
power output or the contracted flexible period. In contrast, 
EVs are characterized by heterogenous charging behaviors, 
and the resulting stochastic availability periods suggest that 
the length of scheduling horizon must be adaptively adjusted.

Considering uncertain parameters like the external variabil‐
ity in EV charging requests and the wholesale electricity 
price, the rolling-horizon control framework for the charging 
scheduling of EV fleets can be defined by the following 
steps, as shown in Fig. 3.

Cooperative scheduling; Communication; Power exchange

DSO

GTG DG

Electricity market

Carbon market

Main grid

LA EVA

Fig. 1.　Interaction framework of multi-agent system.
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Fig. 2.　Rolling-horizon control framework for cooperative scheduling of 
DSO, EVA, and LA.
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1) The time axis is partitioned into a sequence of equal-
size intervals, with the length of each interval equaling Dt.

2) At a real-time instance tr, each CS transmits the charg‐
ing information of the EV connected to EVA via established 
communication interfaces. The charging information includes 
the expected departure time, the current battery SoC, the ex‐
pected departure SoC, and the rated battery capacity. Utiliz‐
ing this data, the charging scheduling feasibility of each EV 
can be evaluated using (1). If (1) is satisfied, the availability 
period of the EV connected to CS can be determined as (2). 
Otherwise, the EV has to be charged or discharged at the 
full power of the CS during the remaining charging periods 
without any scheduling flexibility. Afterwards, the schedul‐
ing horizon of EVA can be computed as the union of all indi‐
vidual availability periods, as in (3).

ì
í
î

tr + (Siex - Sitr )E ev
imax /P evc

imax < tiex    Siex > Sitr

tr + (Sitr - Siex )E ev
imax /P evd

imax < tiex    Siex £ Sitr
(1)

Tia =[trtiex ] (2)

Tsh = ∪Tia     iÎN ev
tr (3)

where ti,ex and Siex are the expected departure time and bat‐
tery SoC of the ith EV that is currently being charged, respec‐
tively; Sitr is the battery SoC of the ith EV at time tr, with 
the rated battery capacity represented by E ev

imax; Tia is the 
availability period of the ith EV; Tsh and N ev

tr  are the schedul‐
ing horizon and the number of EVs available for charging 
scheduling at time tr, respectively; and P evc

imax and P evd
imax are 

the maximum charging and discharging power of the CS 
connected by the ith EV , respectively.

3) Based on the collected charging information and the 
availability periods of EVs being charged within the schedul‐
ing horizon Tsh, EVA conducts RHO in accordance with its 
decision-making model. The first time slot of Tsh is consid‐
ered as the control horizon Tcn, within which its optimal deci‐

sion variables will be executed in the CS for charging sched‐
uling.

4) Move forward to the next time instance (tr + Δt) and up‐
date the uncertain parameters.

5) Repeat the steps above until the last scheduling period 
is reached, as illustrated in Fig. 3.

C. Cooperative Scheduling of DSO, EVA, and LA

With the uncertainty of EV charging incorporated, the gen‐
eralized implementation procedure of the cooperative sched‐
uling of DSO, EVA, and LA is summarized as follows.

1) First, at real-time instance tr, the scheduling horizon for 
each agent can be determined based on the availability peri‐
ods of the online schedulable devices for an agent. The 
scheduling horizon of all three agents can be determined by 
finding the intersection of their individual scheduling hori‐
zons to ensure a consistent scheduling time frame, as in (4).

Tsh = T DSO
sh  T EVA

sh  T LA
sh (4)

where T DSO
sh , T EVA

sh , and T LA
sh  are the individual scheduling ho‐

rizons of DSO, EVA, and LA, respectively.
2) Next, evaluate the scheduling potential of agents within 

the designated scheduling horizon using the aggregation 
method. To avoid exorbitant numbers of new variables and 
constraints generated during the aggregation process of indi‐
vidual models, a Minkowski-sum based aggregation method 
is applied to assess the scheduling potential of EVA (i. e., 
power flexibility of EVA). 

The main idea is that the power flexibility model of each 
EV can be represented by a convex polytope with its corre‐
sponding Euclidean space representing the feasible power 
scheduling region, as shown in Fig. 4. The Minkowski-sum 
of multiple polytopes can be obtained by summing their ver‐
tex pairs and eliminating redundant points from the result 
[25]. The aggregated scheduling region obtained in this man‐
ner can maintain the power scheduling constraints of individ‐
ual EVs while reducing variable dimensions. As an individu‐
al EV takes its charging power in each time interval as a de‐
cision variable, the Minkowski-sum of individual power flex‐
ibility models requires a consistent aggregation time window 
across all EVs. The time definition domain of individual 
power flexibility models is extended from their active state 
to the designated scheduling horizon to account for the dif‐
ferences in availability of EVs. With the rolling scheduling and 
control horizons, the scheduling potential of EVA is also dy‐
namically evaluated. It should be noted that the Minkowski-
sum based aggregation method is also applicable to other types 
of schedulable devices, e.g., flexible loads in [25] and [26].

3) Then, the scheduling potentials of agents are fed to the 
cooperative scheduling models of DSO, EVA, and LA. The 
carbon cost is incorporated into the decision-making models 
to pursue the maximum energy savings and carbon reduc‐
tions while maximizing the economic benefits of all in‐
volved agents. Here, the carbon reduction is attained through 
load transferring and V2G services. The electricity and car‐
bon trading among agents is achieved via Nash bargaining, 
and the optimal scheduling strategies are determined based 
on the Nash equilibrium (NE) [17]. To ensure the privacy of 
agents during trading, the cooperative scheduling model is 
solved using the ADMM algorithm in a distributed manner.
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Fig. 3.　Determination of scheduling and control horizons for EVA in a roll‐
ing approach.
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4) Implement the optimal decision-making solution for the 
first interval of the scheduling horizon. Update the status of 
schedulable devices and then proceed to the next time in‐
stance (tr + Δt) with the process above repeated, as shown in 
Fig. 2.

III. EVALUATION ON SCEDULING POTENTIAL OF EVA

Depending on the selected charging method, the charging 
power of an EV typically falls within the range of 2-120 
kW, which does not qualify for entering the wholesale mar‐
ket [27]. To participate in a joint scheduling with DSO, 
EVAs act as the intermediary between EVs and DSO, capa‐
ble of simultaneously managing multiple CSs while maintain‐
ing the communication with DSO. To maximize the reve‐
nues from V2G participation while fulfilling the charging re‐
quirements of EV users, it is essential to precisely evaluate 
the power flexibility of aggregated EVs.

A. Power Flexibility of Individual EV

For an EV connected to a V2G-supported CS, its power 
flexibility is mainly determined by the arrival battery SoC, 
the maximum allowed charging and discharging power, the 
expected departure time, and the minimum and maximum al‐
lowed battery SoCs. To simplify the analysis, the charging 
and discharging power losses are ignored. Thereby, the 
scheduling potential of an individual EV can be represented 
by:

ì

í

î

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

0 £P evc
it £P evc

imax    tÎ Tia

0 £P evd
it £P evd

imax    tÎ Tia

Sit = Sit - 1 + (P evc
it -P evd

it )Dt/E ev
imax

S min
i £ Sit £ S max

i     tÎ Tia

P evc
it P evd

it = 0    tÎ Tia

P evc
it = 0    tÏ Tia

P evd
it = 0    tÏ Tia

  (5)

where P evc
it  and P evd

it  are the charging and discharging power 
for the ith EV at time t, respectively, with its battery SoC rep‐
resented by Sit; and S min

i  and S max
i  are the minimum and max‐

imum allowed battery SoCs, respectively.

B. Power Flexibility of Aggregated EVs

To align with the cooperative scheduling based on rolling-
horizon control framework, as introduced in Section II, the 

power flexibility of aggregated EVs should be consecutively 
evaluated as time progresses. The scheduling horizon of 
EVA for a given time instance is determined by the number 
of EVs being charged and their remaining charging periods, 
as mentioned in (1) - (3). Subsequently, the individual power 
flexibility models of available EVs can be established by 
(5). Given that directly incorporating individual power flexi‐
bility models into the scheduling model introduces excessive 
variables and constraints, the Minkowski-sum based aggrega‐
tion method is applied to evaluate the power flexibility of ag‐
gregated EVs.

As clarified in Section II, the Minkowski-sum based ag‐
gregation method requires that all available EVs have their 
individual power flexibility models featured by the same def‐
inition domain (i.e., the same aggregation time window). The 
availability periods of EVs (i. e., Ti,a in (2)) have to be ex‐
panded to the scheduling horizon Tsh. To achieve this, a bina‐
ry variable uit is introduced, which indicates the charging 
state of the ith EV at time t, as in (6). Afterwards, the origi‐
nal individual power flexibility model can be reformatted as 
(7), with its time horizon expanded from Ti,a to Tsh (Ti,a ∈ Tsh). 
With the expanded time horizon of individual power flexibili‐
ty models, the power flexibility of aggregated EVs can be 
computed using the Minkowski-sum based aggregation meth‐
od, as in (8). This method not only preserves privacy of EV 
owners but also reduces the variable dimensions in the subse‐
quent collaborative optimization stages.

uit = {1 tÎ Tia

0 tÏ Tia
(6)

ì

í

î

ï
ïï
ï
ï
ï

ï

ï
ïï
ï

ï

0 £P evc
it £ uit P

evc
imax    tÎ Tsh

0 £P evd
it £ uit P

evd
imax    tÎ Tsh

Eit =Eit - 1 +E ar
i uit (uit - uit - 1 )-E ex

i uit - 1 (uit - 1 - uit )+
(P evc

it -P evd
it )Dt    tÎ Tsh

uit E
min
i £Eit £ uit E

max
i     tÎ Tsh

   (7)

ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïï
ï

ï

ï

ï

0 £P evc
vt £P cmax

vt     tÎ Tsh

0 £P evd
vt £P dmax

vt     tÎ Tsh

Evt =Evt - 1 +P evc
vt Dt -P evd

vt Dt +DEvt    tÎ Tsh

DEvt =∑
iÎ Iv

[(u2
it - uituit - 1 )E ar

i - (u2
it - 1 - uit - 1uit )E

ex
i ]     tÎ Tsh

E min
vt £Evt £E max

vt     tÎ Tsh

(8)

where Eit is the battery capacity of the ith EV at time t, and 
it is subjected to Eit = Sit E

ev
imax; E min

i  and E max
i  are the al‐

lowed minimum and maximum values of Eit, respectively; 
E ar

i  and E ex
i  are the arrival and departure battery capacities of 

the ith EV, respectively; P evc
vt  and P evd

vt  are the aggregated 
charging and discharging power of the vth EV cluster at time 
t, respectively, and P cmax

vt  and P dmax
vt  are their corresponding 

maximum values; and Evt is the aggregated battery capacity 
while its step change is represented by DEvt.

IV. MULTI-AGENT DECISION-MAKING MODELS CONSIDERING 
COOPERATIVE CARBON REDUCTION POTENTIAL 

In this section, the decision-making models of tripartite 
agents, namely, DSO, LA, and EVA, are introduced, aiming 

Dimension 1

Dimension 2

Minkowski-sum A�B

Sheduling region BSheduling region A;

Fig. 4.　Illustration of Minkowski-sum for two power scheduling regions.
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at obtaining cooperative low-carbon economic scheduling.

A. Decision-making Model of DSO

DSO adopts a carbon trading mechanism to regulate the 
output of carbon-emission power generation units, aiming to 
maximize its profit, which is the difference between the reve‐
nue from electricity sales and the operating costs. The reve‐
nue of DSO CDSO comes from selling electricity to LA and 
EVA at high market prices, with the corresponding revenues 
represented by C LA

s  and C EVA
s , respectively. The operating 

costs of DSO include the cost of power purchased from 
transmission systems, the operating cost of GTGs, and the 
carbon cost, denoted by CG, CTH, and C TH

m , respectively. The 
objective function for decision-making model of DSO is rep‐
resented by (9) and detailed in (10). This paper applies free 
carbon quota allocation to GTGs, with their carbon emis‐
sions and allocated carbon quota represented by (11).

max CDSO =C LA
s +C EVA

s -CG -CTH -C TH
m (9)
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C EVA
s =∑

t
∑
vÎV

ccd
vt (P

evc
vt -P evd

vt )

C LA
s =∑

t

cl
t P

la
jt

CG =∑
t

cg
t P g

jt

CTH =∑
t
∑
hÎH

[ah (P th
jht )

2 + bh P th
jht + ch ]

C TH
m =∑

t
∑
hÎH

cth (E q
jht -E p

jht +E g
jht )

(10)
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E q
jht = δh P th

jht

E p
jht = ςh P th

jht

E g
jht = δg P g

jt

(11)

where v and h are the indices of the EV cluster and GTG, 
whose sets are represented by V and H, respectively; ccd

vt and 
cl

t are the electricity selling prices to EVA and LA, respec‐
tively; cg

t  is the time-of-use (TOU) electricity price; P la
jt and 

P g
jt are the basic power demand of LA and purchased power 

of DSO at time t, respectively; ah, bh, and ch are the operat‐
ing cost coefficients; cth is the unit carbon price; P th

jht, E q
jht 

and E p
jht are the power output, carbon emission, and carbon 

emission quota, respectively; E g
jht is the carbon emission 

quota purchased from transmission systems; δh and ςh are 
the carbon emission coefficient and the coefficient of carbon 
quota allocation, respectively; δg is the coefficient of indirect 
carbon emissions from power purchase; and tÎ Tsh.

Apart from maximizing profit, DSO is responsible for en‐
suring the integrity of the distribution network [28]. Any 
scheduling scheme that leads to network congestion or pow‐
er imbalance is considered as an infeasible one. Therefore, 
the decision-making solutions of DSO must satisfy the net‐
work security constraints, which are further divided into the 
nodal power balance constraint, the system power constraint, 
and the branch flow constraint, as indicated by (12)-(14), re‐
spectively.

Pijt - ∑
o: j® o

Pjot +∑
h

P th
jht +P re

jt =P la
jt +P evc

jvt -P evd
jt (12)

∑
ς:0® i

P0it =P g
0t (13)

0 £Pijt £P max
ij (14)

where Pijt is the branch power flow between node j and its 
adjacent upstream node i; Pjot is the branch power flow be‐
tween node j and its adjacent downstream node o; P max

ij  is 
the security limit of Pijt; P re

jt is the total power output of 
DGs at node j; P g

0t and P0it are the power purchased from 
transmission systems and the power supplied to the adjacent 
downstream nodes of the slack bus, respectively; σ: j® o 
represents the adjacent downstream node sets of node j; ζ:
0® i represents the adjacent downstream node sets of the 
slack bus; and tÎ Tsh.

In addition, the operating constraints of DSO and its flexi‐
ble devices should also be considered during electricity and 
carbon trading. Specifically, the power purchased from trans‐
mission systems by DSO must be kept below its upper limit, 
as in (15). The power scheduling of GTGs and renewable 
generation systems has to obey their operating constraints, 
as in (16) and (17), respectively.

0 £P g
jt £P g

max (15)

{-Rdw
h £P th

ht -P th
ht - 1 £Rup

h

P thmin
ht £P th

ht £P thmax
ht

(16)

0 £P re
jt £P r

t (17)

where P g
jt is the power purchased from transmission sys‐

tems, with its upper limit represented by P g
max; Rup

h  and Rdw
h  

are the maximum allowed ramp-up and ramp-down rates of 
the hth GTG, respectively, and P thmin

ht  and P thmax
ht  are the corre‐

sponding minimum and maximum allowed power outputs; 
P re

jt is the total power output of DGs at node j with its pre‐
dicted maximum value represented by P r

t ; and tÎ Tsh.

B. Decision-making Model of LA

As an intermediary linking consumers and DSO, LA de‐
fines the optimal scheduling schemes based on the TOU 
electricity price [29]. All flexible loads are motivated to opti‐
mize their consumption profiles to receive proper remunera‐
tion. LA aims to maximize the user surplus CLA, which is 
the difference between the utility function and electricity 
cost of consumers. The utility of consumers in this context 
refers to the satisfaction derived from electricity consump‐
tion and is represented by the commonly used quadratic utili‐
ty function introduced in [30]. The operating constraint of 
LA is given in (20).

max CLA =Fu -C LA
b (18)

Fu =∑
t

é
ë
êêêê ù

û
úúúúαe P la

t -
βe

2
(P la

t )2 (19)
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∑
t

P trant = 0

|| P trant £ϖP la'
t

P la
t =P la'

t +P trant

(20)

where Fu is the utility function of consumers, which mea‐
sures the satisfaction degree of consumers; C LA

b  is the elec‐
tricity cost of LA, which equals the electricity selling reve‐
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nue of DSO, i.e., C LA
b =C LA

s ; αe and βe are the preference co‐
efficients of consumers; P trant and P la'

t  are the transferable 
and baseline load power of LA, respectively; P la

t  is the total 
power demand of LA; ϖ is the transferable power ratio; 
and tÎ Tsh.

C. Decision-making Model of EVA

To motivate EVs to provide V2G service and engage in 
the carbon trading market, EVA is assumed to get revenues 
by selling its equivalent carbon quota in the carbon trading 
market. Meanwhile, EVA tends to minimize its electricity 
cost while meeting the charging demands of EVs. Therefore, 
the control objective of EVA is to maximize the difference 
between carbon quota trading revenue and electricity cost, as 
in (21). As the EV charging scheduling must prioritize meet‐
ing the charging demands of EVs, the power flexibility of 
aggregated EVs defined in (8) is applied as the operating 
constraint of EVA.

max CEVA =C EVA
m -C EVA

b (21)

C EVA
m =∑

t
∑

v

cth (Lev Egas -Enet )(P evc
vt -P evd

vt ) (22)

where CEVA is the benefit of EVA; C EVA
b  and C EVA

m  are the 
electricity cost and carbon quota trading revenue of EVA, re‐
spectively, and in a cooperative game, the electricity cost of 
EVA equals the electricity sales revenue of DSO, i.e., C EVA

b =
C EVA

s ; Egas is the carbon emission of gasoline vehicles per 
km; Lev is the equivalent travelling distance of gasoline vehi‐
cles per kWh; and Enet is the carbon emission from EV 
charging.

V. SOURCE−LOAD−STORAGE COOPERATIVE LOW-CARBON 
SCHEDULING MODEL AND ITS DISTRIBUTED SOLVING 

ALGORITHM 

Based on the decision-making models of DSO, LA, and 
EVA, their cooperative scheduling model can be established 
and described as a Nash game in this section, with the opti‐
mal solution determined by NE. Meanwhile, the ADMM al‐
gorithm in the distributed manner is applied to preserve data 
privacy of the three agents.

A. Nash Bargaining Based Cooperative Scheduling Model

The Nash bargaining theory in cooperative games can en‐
hance the interests of all agents without sacrificing their in‐
terests [17]. Hence, both competition and cooperation exist 
among the involved agents. A fair and reasonable equilibri‐
um solution can be achieved through negotiation, represent‐
ing the optimal Pareto solution for all cooperative agents. To 
ensure the existence of the NE point during the multi-agent 
coordination, it is assumed that each agent acts independent‐
ly and rationally in pursuit of the maximum profits. Once all 
the three agents reach a consensus through negotiation, they 
can engage in the electricity and carbon trading, benefiting 
all agents involved. The Nash product is applied to ensure 
fair benefit distribution among all self-interested agents, and 
the complete Nash bargaining based cooperative scheduling 
model is formulated as:
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max(CDSO -C DSO
0* )(CLA -C LA

0* )(CEVA -C EVA
0* )

s.t.  CDSO ³C DSO
0*

        CLA ³C LA
0*

        CEVA ³C EVA
0*

        (8) (12)-(17) (20)

(23)

where C DSO
0* , C LA

0*, and C EVA
0*  are the benefits of DSO, LA, 

and EVA before bargaining (i.e., the disagreement points), re‐
spectively; and C -C0* (with the subscript omitted for sim‐
plicity) is the increased benefit of each agent after Nash bar‐
gaining.

B. Equivalent Transformation of Nash Bargaining Based Co‐
operative Scheduling Model

The Nash bargaining based cooperative scheduling model 
in (23) is a nonconvex and nonlinear optimization problem, 
which poses challenges for direct problem-solving. Also, this 
model has a centralized structure and necessitates agents to 
share their individual information, raising privacy concerns. 
The Nash bargaining based cooperative scheduling model 
will be decomposed and decoupled in this subsection to ad‐
dress the issues above. Based on the mean value theorem, 
the essential conditions for an optimal solution in a mean-
value inequality are “positive, definite, and equal”. As for 
the model in (23), the justification for the existence of a Pa‐
reto optimal equilibrium is as follows.

1) Positive: as the Nash bargaining based cooperative 
scheduling model is intended to promote the interests of all 
participants, it is reasonable to expect the existence of sched‐
uling strategies that lead to a positive value of (23).

2) Definite: the sum of increased benefits of three agents 
is expressed as CDSO + CLA + CEVA - (C DSO

0* + C LA
0* + C EVA

0* ). 
Since the disagreement points C DSO

0* , C LA
0*, and C EVA

0*  are defi‐
nite values, the maximization of the objective function in 
(23) is equivalent to the maximization of CDSO +CLA +CEVA, 
as illustrated in (24).

max(CDSO -C DSO
0* )(CLA -C LA

0* )(CEVA -C EVA
0* )Û

max(CDSO +CLA +CEVA )Û
max(C LA

s +C EVA
s -CG -CTH -C TH

m +Fu -C LA
b +

C EVA
m -C EVA

b )Ûmax(ΖDSO +Fu +C EVA
m ) (24)

where ΖDSO =-CG -CTH -C TH
m .

3) Equal: the arithmetic-geometric mean (AM-GM) in‐
equality states that the geometric mean of any list of nonneg‐
ative real values is less than or equal to its arithmetic mean, 
as in (25).

x1 x2xn
n £

x1 + x2 + + xn

n
Û

x1 x2xn £ ( x1 + x2 + + xn

n ) n

(25)

where x1x2xn are the nonnegative real values, and n is 
their total number. The equal sign in (25) holds when x1 =
x2 = = xn.

According to the AM-GM inequality, the model in (23) 
satisfies (26), and the inequality takes the equal sign if and 
only if (27) holds. By substituting the definitions of CDSO, 
CLA, and CEVA as provided in (9), (18), and (21), respective‐
ly, (28) can be derived and considered the prerequisite for at‐
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taining the maximum value of the objective function in (23). 
It is worth noting that when the objective function of the 
Nash bargaining based cooperative scheduling model is max‐
imized, the resulting solution ensures that all participating 
agents achieve Pareto optimal benefits, thereby entering into 
a Pareto optimal equilibrium, the proof of which can be 
found in [31].

(CDSO -C DSO
0* )(CLA -C LA

0* )(CEVA -C EVA
0* )£

[(CDSO -C DSO
0* +CLA -C LA

0* +CEVA -C EVA
0* )/3]3 (26)

CDSO -C DSO
0* =CLA -C LA

0* =CEVA -C EVA
0* (27)

ΖDSO +C LA
s +C EVA

s -C DSO
0* =Fu -C LA

b -C LA
0* =C EVA

m -C EVA
b -

C EVA
0* = (ΖDSO +Fu +C EVA

m -C DSO
0* -C LA

0* -C EVA
0* )/3 (28)

After applying the above equivalent transformation, the 
model in (23) can be divided into sub-problems 1 and 2. 
The Pareto solution of the model in (23) can be achieved by 
solving these two sub-problems in sequence.
1)　Sub-problem 1: Maximizing Benefit of Cooperative Agents
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max(ΖDSO +Fu +C EVA
m )

s.t.  ΖDSO =-CG -CTH -C TH
m

       C LA
s =C LA

b

       C EVA
s =C EVA

b

       (8) (12)-(17) (20)

(29)

It is noticed that (29) is a typical planning problem and 
can be solved directly using commercial optimization solv‐
ers. However, the centralized problem-solving of (29) may 
raise privacy concerns for the agents.
2)　Sub-problem 2: Profit Distribution for Electricity and 
Carbon Trading
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max (C LA
s +C EVA

s + Ζ *
DSO -C DSO

0* )(F *
u -C LA

b -C LA
0* )×

         (C EVA*
m -C EVA

b -C EVA
0* )

s.t.  C LA
s +C EVA

s + Ζ *
DSO ³C DSO

0*

        F *
u -C LA

b ³C LA
0*

        C EVA*
m -C EVA

b ³C EVA
0*

(30)

Utilizing the mean value theorem, (30) can be converted 
into a readily solvable equation, eliminating the need for a 
solver with the derivation process provided in (31). Formula 
(32) indicates that the cooperative alliance negotiations have 
reached a consensus on electricity and carbon trading, and 
the increased benefits are equally shared among the agents. 
The optimal solution of sub-problem 2 can be computed di‐
rectly, as in (33).

(C LA
s +C EVA

s + Ζ *
DSO -C DSO

0* )(F *
u -C LA

b -C LA
0* )×

(C EVA*
m -C EVA

b -C EVA
0* )£[(Ζ *

DSO +C LA
s +C EVA

s -C DSO
0* +F *

u -
C LA

b -C LA
0* +C EVA*

m -C EVA
b -C EVA

0* )]3 =
[(Ζ *

DSO -C DSO
0* +F *

u -C LA
0* -C EVA*

m -C EVA
0* )/3]3 (31)

F *
u -C LA

b -C LA
0* =C EVA*

m -C EVA
b -C EVA

0* = Ζ *
DSO +C LA

s +
C EVA

s -C DSO
0* = (Ζ *

DSO +F *
u +C EVA*

m -C DSO
0* -C LA

0* -C EVA
0* )/3

(32)
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C LA*
b =-(Ζ *

DSO - 2F *
u +C EVA*

m -C DSO
0* + 2C LA

0* -C EVA
0* )/3

C EVA*
b =-(Ζ *

DSO +F *
u - 2C EVA*

m -C DSO
0* -C LA

0* + 2C EVA
0* )/3

   (33)

where Z *
DSO, F *

u , and C EVA*
m  are the optimal solutions of sub-

problem 1; and the equality in (31) is satisfied only when 

(32) exits.

C. ADMM Algorithm in Distributed Manner

To maintain the operational autonomy and information pri‐
vacy of agents, sub-problem 1 is solved by the ADMM algo‐
rithm in a distributed manner. As the ADMM algorithm re‐
quires the optimization model to be decomposable, the auxil‐
iary variables are used to facilitate the model decoupling 
(i.e., P la

st =P la
bt, P

ev
svt =P ev

bvt, where P ev
vt =P evc

vt -P evd
vt ). By incor‐

porating these auxiliary variables and taking the negative 
form of (29), the augmented Lagrangian function of sub-
problem 1 can be formulated, as in (34).
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m )+
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2

2
(34)

where λla
t  and λev

t  are the Lagrangian multipliers of LA and 
EVA at time t, respectively; and ρ la and ρev are the penalty 
factors of LA and EVA, respectively.

Formula (34) can be deconstructed into the corresponding 
distributed optimization models for LA, EVA, and DSO, as 
in (35)-(37), respectively.

1)　Distributed optimization model for LA
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s.t.  (20)
   (35)

2)　Distributed optimization model for EVA
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3)　Distributed optimization model for DSO
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s.t.  (12)-(17)

 (37)

Due to the existence of discrete and bilinear terms, (35) -
(37) are further linearized to mixed-integer linear program‐
ming (MILP) problems before being fed to the ADMM solv‐
ing procedure. This step enables the commercial integer opti‐
mization solvers to solve the MILP problems. The lineariza‐
tion technique has been extensively explored in the existing 
literature [32], [33] and will not be repeated here. In addi‐
tion to using the linearization technique, various machine 
learning techniques have been applied in the existing litera‐
ture to enhance the traditional ADMM (e. g., Q-learning in 
[34] and deep neural networks in [35]). The incorporation of 
either linearization or machine learning techniques into AD‐
MM will not affect the effectiveness of the proposed source−
load−storage low-carbon cooperative scheduling strategy.
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The linearized sub-problem 1 can be solved using the AD‐
MM algorithm, with its implementation steps summarized 
below.

Step 1: apply the basic settings for the ADMM algorithm 
(the maximum iteration number kmax = 50; the convergence 
tolerance δ = 10-5; and the penalty factor ρ = 10-4).

Step 2: initialize the iteration number k and the Lagrang‐
ian multipliers λk to be 0; and initialize the power purchase 
of LA and EVA to be 0 (i.e., P lak

t =P evk
vt = 0).

Step 3: based on the power supply from DSO to LA and 
EVA at the kth iteration, i.e., P lak

st  and P evk
svt, respectively, the 

expected power purchase of LA and EVA from DSO at the 
(k + 1)th iteration, i.e., P lak + 1

bt  and P evk + 1
bvt , respectively, can be 

computed, as in (38) and (39).
P lak + 1

bt = arg min Lk
DSO (λlak

t P lak
st ) (38)

P evk + 1
bvt = arg min Lk

EVA (λevk
t P evk

svt ) (39)

Step 4: after DSO receives P lak + 1
bt  and P evk + 1

bvt , they can be 
calculated by (40).
[P lak + 1

bt P evk + 1
bvt ]= arg min Lk + 1

DSO (λlak
t λevk

t P lak + 1
bt P evk + 1

bvt )   (40)

Step 5: update Lagrangian multipliers for LA and EVA, as 
shown in (41).

ì
í
î

λlak + 1
t = λlak

t + ρ la (P lak + 1
st -P lak + 1

bt )

λevk + 1
t = λevk

t + ρev (P evk + 1
svt -P evk + 1

bvt )
(41)

Step 6: send the updated parameters to the relevant distrib‐
uted optimization models for LA and EVA.

Step 7: change the iteration number from k to k + 1.
Step 8: repeat Steps 3-7 until (42) is achieved or the maxi‐

mum iteration number kmax is reached.

ì

í

î

ï
ïï
ï

ï
ïï
ï

∑
t
 P lak

st -P lak
bt

2

2
£ δ

∑
t
 P evk

svt -P evk
bvt

2

2
£ δ

(42)

Step 9: end the iteration and output the power transactions 
among the three agents.

VI. CASE STUDY 

A. Basic Information on System Under Test

The case study is performed on a modified Roy Billinton 
Test System (RBTS), with its single-line diagram depicted in 
Fig. 5 [36].
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Fig. 5.　Single-line diagram of modified RBTS.

The peak demand of the test network is 20 MW, and the 
power consumption profile of each node is provided in [37]. 
Additionally, two wind farms (WFs), each with a rated pow‐
er of 6 MW, are integrated into the test network. The typical 
demand profile of baseline loads and the generation profiles 
of WFs are shown in Fig. 6.

Moreover, the response of agents to time-varying electrici‐
ty prices is investigated using a TOU pricing method [38], 
which sets differentiated electricity prices for peak, off-peak, 
and valley periods, as tabulated in Table I. The transferrable 
power ratio ϖ is assumed to be 10%, while the preference 
coefficients of customers αe and βe are set to be 2.2 and 
0.0009, respectively. For GTGs, the unit carbon price cth and 
the carbon quota allocation coefficient ςh are set to be 0.25 
CNY/kg and 0.798 kg/kWh, respectively, with the other op‐
erating parameters specified in Table II. For decision-making 
model of EVA in (21) and (22), the equivalent carbon emis‐
sion during the EV charging process Enet is set to be 0.5 kg/
kWh, while the carbon emission of gasoline vehicles Egas is 
set to be 0.197 kg/km. According to [39], a commercial EV 
with a battery capacity of 56.4 kWh can cover a driving 
range of 420 km. Hence, the equivalent travelling distance 
of gasoline vehicles per kWh, Lev, is assumed to be 7 km. 
The upper and lower limits of electricity transaction price 
are 100% and 80% of the TOU electricity price, respectively.

Two centralized CSs (CS1 and CS2) are accessible on the 
test network, catering to two types of EV charging: night‐
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Fig. 6.　Typical demand profile of baseline loads and generation profile of 
WFs.

TABLE I
TOU ELECTRICITY PRICE AND TIME PERIOD PARTITION

Time period

Peak period

Off-peak period

Valley period

Time period division

10:00-13:00, 18:00-22:00

08:00-10:00, 13:00-18:00, 22:00-24:00

00:00-08:00

cg
t  (CNY/kWh)

1.25

0.80

0.40

TABLE II
OPERATING PARAMETERS OF GTGS

h

1

2

3

P thmax
ht  (kW)

3000

4000

5000

Rup
h  (kW)

3000

3500

4000

Rdw
h  (kW)

3000

3500

4000

(ahbhch )

(0.00018, 0.015, 0)

(0.00015, 0.018, 0)

(0.00022, 0.022, 0)

δh

0.915

0.812

0.572
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time charging and daytime charging. To account for the vari‐
ability and uncertainty of charging behaviors, the charging 
profiles of EV fleets are produced through Monte Carlo sim‐
ulations, utilizing the presumed distribution characteristics of 
EV charging patterns given in Table III. 

The minimum and maximum allowable battery SoCs are 
set to be 0.1 and 0.95, respectively, assuming a battery ca‐
pacity of 35 kWh. The maximum permissible charging pow‐
er and discharging power are set to be 6.6 kW without con‐
sidering the power conversion losses.

B. Results Analysis

1)　Power Flexibility of Aggregated EVs
By applying the Minkowski-sum based aggregation meth‐

od in a rolling-horizon control framework, the power flexibil‐
ity of aggregated EVs for CS1 and CS2 on a typical day can 
be obtained, as shown in Fig. 7. It can be observed that CS1 
and CS2 exhibit similar power flexibility of aggregated EVs. 
As the number of EVs being charged during 07: 00-10: 00 
and 17:00-21:00 increases, the power and energy flexibilities 
of aggregated EVs are also enhanced. Due to more EVs get‐
ting charged during nighttime than daytime, the schedulable 
power of EV fleets is higher during nighttime.

2)　Convergence Analysis of ADMM Algorithm for Sub-prob‐
lem 1

As elucidated in Section V, the solution quality of sub-
problem 1 is crucial for defining the cooperative scheduling 
schemes in sub-problem 2. To validate the convergence of 
sub-problem 1 using the ADMM algorithm, the iterative 
curves of the objective function values obtained from the dis‐
tributed optimization models of DSO, LA, and EVA are 
shown in Fig. 8. It is clear that the distributed optimization 
models stabilize and converge after about 20 iterations. The 
objective function for each agent converges to NE in the AD‐
MM algorithm. Throughout the entire process, only the infor‐
mation on buying and selling electricity is exchanged among 
agents. Once NE is reached, the scheduling strategies of all 
agents no longer change. This indicates that no agent can in‐
crease payoff by altering their scheduling strategies.

3)　Analysis of Optimization Results for Each Agent
The following three scheduling strategies are employed 

and compared to assess the effectiveness of the proposed 
one. All three strategies are implemented using the rolling-
horizon control framework.

1)　Strategy 1: the proposed low-carbon cooperative sched‐
uling strategy.

2) Strategy 2: a centralized low-carbon scheduling strategy.
3) Strategy 3: a low-carbon scheduling strategy based on 

Stackelberg bargaining.
The implementation approaches of strategy 2 and strategy 

3 can be found in [40] and [41], respectively. The optimized 
costs and revenues of the three agents are tabulated in Ta‐
bles IV-VI. It turns out that DSO achieves the highest reve‐
nue under strategy 2, which focuses solely on maximizing 
the revenue of DSO without considering the revenues of oth‐
er agents. Consequently, the electricity costs of LA and EVA 
increase while the costs of DSO decrease. Moreover, the us‐
er surplus of LA and net profit of EVA are the highest under 
strategy 1, as it reduces their energy costs and increases 
their revenues for both LA and EVA.

TABLE III
PROBABILITY DISTRIBUTIONS OF EV CHARGING PATTERNS

EV charging 
pattern

Nighttime 
charging

Daytime 
charging

Probability distribution

Arrival 
time of 

EV to CS

N(201)

N(91)

ti,ex

N(80.25)

N(191)

Si,ex

U(0.30.5)

U(0.20.4)

Number of EVs on a 
daily basis

Served by 
CS1

U(460540)

U(180220)

Served by 
CS2

U(280320)

U(160240)

Note: N(xy) stands for normal distribution; and U(xy) refers to uniform 
distribution.
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Fig. 7.　Power and energy flexibility of aggregated EVs for CS1 and CS2. 
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When comparing strategy 1 with strategy 3, the revenues 
of all agents increase, and the increments are equal, imply‐
ing a balanced distribution of social benefits. Although the 
operating costs of GTGs are higher under strategy 1 than 
those under strategy 3, strategy 1 has lower carbon emission 
and electricity procurement costs. 

It is due to the prioritization of low-carbon-emission 
GTGs and carbon-free EV discharging in strategy 1, despite 
the downside of higher operating costs for GTGs. It also 
demonstrates that strategy 1 is more considerate of the eco‐
nomic and low-carbon aspects than strategy 3.

The optimization results for DSO, LA, and EVA are dis‐
cussed below.

1)　Optimization results for DSO
The optimization results in Fig. 9 illustrate the complete 

accommodation of wind power generation by the test net‐
work under all three scheduling strategies. To address the un‐
certainty of wind power output, V2G service of EV fleets is 
utilized during periods of low wind power from 23:00 to 24:
00 and during periods of peak load from 11:00 to 13:00 and 
19:00 to 22:00. The scheduled EV discharging aids in com‐
pensating for the insufficient wind power, achieving a sup‐
ply-demand balance and reducing the power demand for pur‐
chasing from transmission systems, thereby lowering overall 
carbon emissions. The charging behavior of EVA concen‐
trates during the early morning periods from 01:00 to 07:00, 
reducing peak-to-valley differences and promoting low-car‐
bon emission characteristics of EVs. This collaborative oper‐
ation improves the low-carbon performance of all involved 
agents.

2)　Optimization results for LA
The load-shifting results of LA under scheduling strategies 

1-3 are shown in Fig. 10. It is observed that LA, driven by 
TOU electricity prices, exhibits a “peak-shaving and valley-
filling” phenomenon in its load behavior. As electricity 
prices are higher during peak periods, i. e., 10:00 - 15:00 
and 19:00 - 22:00, flexible consumers are incentivized to 
shift their power demand from peak hours to off-peak 
hours, i.e., 07:00 - 09:00, 16:00 - 18:00, and 23:00 - 06:00 on 
the next day, when electricity prices are lower. This leads to 
a modified load demand profile with a reduced difference be‐
tween peak and valley loads, thereby decreasing in the re‐
quired peak generation capacity. The load-shifting capability 
of LA is directly linked to the aggregated load power. Fur‐
thermore, consumers also reduce their electricity costs 
through participating in demand response.

3)　Optimization results for EVA
The optimization results for EVA under strategy 1 are 

shown in Fig. 11. It is observed that the charging power of 
aggregated EVs converges after 6 iterations. Initially, it fluc‐
tuates in the first few iterations before reaching stability, 
which is attributed to EVA pursuing the lowest cost in the 
initial iteration. With relatively low electricity prices during 
the specified period, EVs tend to charge centrally, rapidly in‐
creasing the charging power. The intermediate power fluctua‐
tions arise from the multi-agent bargaining, with a dynamic 
balance achieved.

TABLE VI
OPTIMIZED COSTS AND REVENUES OF EVA

Strategy No.

1

2

3

Net profit 
(104 CNY)

0.4465

0.3993

0.4063

Carbon quota trading 
revenue (104 CNY)

0.6081

0.6081

0.6081

Electricity cost 
(104 CNY)

0.1616

0.2088

0.2018

 GTG1;  GTG2;  GTG3;  Wind power;  Electricity procurement

 Aggregated discharging power;  Aggregated charging power

 Aggregated load power
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Fig. 9.　Optimization results for DSO. (a) Strategy 1. (b) Strategy 2. (c) 
Strategy 3.

TABLE IV
OPTIMIZED COSTS AND REVENUES OF DSO

Strategy 
No.

1

2

3

Electricity 
sales revenue 

(104 CNY)

18.3421

18.5592

18.2981

Operating 
cost of 

GTGs (104 
CNY)

6.8917

6.9252

6.6986

Carbon 
emission 
cost (104 

CNY)

0.3693

0.3642

0.4025

Electricity 
procure‐

ment cost 
(104 CNY)

2.0617

2.0305

2.2673

Total 
cost (104 

CNY)

9.3227

9.3199

9.3684

TABLE V
OPTIMIZED COSTS AND REVENUES OF LA

Strategy No.

1

2

3

User surplus 
(104 CNY)

14.6285

14.4562

14.5882

Utility function of 
customers (104 CNY)

42.1279

42.1265

42.0529

Electricity cost 
(104 CNY)

27.4994

27.6704

27.4647

450



XU et al.: DISTRIBUTED SOURCE−LOAD−STORAGE COOPERATIVE LOW-CARBON SCHEDULING STRATEGY CONSIDERING VEHICLE-TO-GRID...

As shown in Fig. 11, after implementing strategy 1, the 
aggregated power and energy profiles exhibit fluctuating 
characteristics. This is because EV fleets dynamically switch 
between charging and V2G operation modes, according to 
the charging scheduling of EVA. For instance, during 07:00-
10:00, the aggregated power gradually increases with the in‐
creasing aggregated energy, indicating an increase in the 
number of EVs being charged. 

However, during 19:00 - 21:00, an opposite trend is ob‐
served between the aggregated power and energy curves. 
This is because EVs of nighttime charging start to charge 
during that period, leading to an increase in the aggregated 
energy. However, due to the peak power demand and high 
electricity prices, flexible EVs enter into V2G mode, decreas‐

ing the aggregated power.
4)　Carbon emissions under strategy 1
From the perspective of DSO, its carbon emissions primar‐

ily stem from the equivalent carbon emission due to power 
procurement from transmission systems and the carbon emis‐
sion from GTGs, as shown in Fig. 12. It is observed that 
strategy 1 exhibits a total carbon emission level similar to 
that of strategy 2. Compared with strategy 3, strategy 1 re‐
quires less power procurement and reduced power demand 
from GTGs, enhancing carbon reduction performance. The 
negative value in Fig. 12(b) indicates that the carbon emis‐
sions from GTGs are lower than the initially allocated car‐
bon quota. In such a scenario, there is an excess of freely al‐
located carbon quota, which can be sold in the carbon trad‐
ing market to generate profit. Consequently, the low-carbon 
units in the system are expected to have a higher power out‐
put, leading to increased revenue and enhanced low-carbon 
system performance.

VII. CONCLUSION 

The advancement of V2G technologies enables EVs to op‐
erate as battery storage units for grid interaction, represent‐
ing an inevitable trend of the future smart grid. This paper 
establishes a source − load − storage cooperative low-carbon 
scheduling strategy considering V2G aggregators. It utilizes 
a Minkowski-sum based aggregation method to evaluate the 
scheduling potential of EV fleets while preserving their 
charging requirements. Subsequently, a Nash bargaining 
based cooperative scheduling model is proposed for DSO, 
EVA, and LA with integrated electricity and carbon trading. 
The model is then solved using an ADMM algorithm in a 
distributed manner. To accommodate uncertain EV charging 
patterns, the aggregation and co-scheduling strategies are im‐
plemented using a rolling-horizon control framework, where 
the control objectives and their scheduling horizon are dy‐
namically updated. The proposed source−load−storage coop‐
erative low-carbon scheduling strategy promotes coordinated 
low-carbon development in the power and transportation sec‐
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tors while preserving the information privacy of multiple 
agents.

Theoretical and arithmetic analyses illustrate the advantag‐
es of the proposed source−load−storage cooperative low-car‐
bon scheduling strategy.

1) A rolling-horizon control framework is proposed to ad‐
dress uncertainty. Incorporating the rolling-horizon control 
framework allows the cooperative scheduling strategy to be 
executed in real time.

2) A Minkowski-sum based aggregation method is imple‐
mented to avoid the excessive variables and constraints be‐
ing added during the direct sum of individual power flexibili‐
ty models. It effectively reduces variable dimension and com‐
putational complexity while adhering to the charging/dis‐
charging constraints of individual EVs.

3) A Nash bargaining based cooperative scheduling model 
for DSO, EVA, and LA is proposed to pursue low-carbon 
economic co-scheduling. The model is solved using the AD‐
MM algorithm in a distributed manner to preserve the priva‐
cy between agents.
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