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Abstract——The offering strategy of energy storage in energy 
and frequency response (FR) markets needs to account for 
country-specific market regulations around FR products as well 
as FR utilization factors, which are highly uncertain. To this 
end, a novel optimal offering model is proposed for stand-alone 
price-taking storage participants, which accounts for recent FR 
market design developments in the UK, namely the trade of FR 
products in time blocks, and the mutual exclusivity among the 
multiple FR products. The model consists of a day-ahead stage, 
devising optimal offers under uncertainty, and a real-time 
stage, representing the storage operation after uncertainty is 
materialized. Furthermore, a concrete methodological frame‐
work is developed for comparing different approaches around 
the anticipation of uncertain FR utilization factors (determinis‐
tic one based on expected values, deterministic one based on 
worst-case values, stochastic one, and robust one), by providing 
four alternative formulations for the real-time stage of the pro‐
posed offering model, and carrying out an out-of-sample valida‐
tion of the four model instances. Finally, case studies employing 
real data from UK energy and FR markets compare these four 
instances against achieved profits, FR delivery violations, and 
computational scalability.

Index Terms——Energy markets, energy storage, frequency re‐
sponse, optimal offering, robust optimization, stochastic pro‐
gramming.
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I. INTRODUCTION 

THE unprecedented penetration of renewable energy 
sources (RESs) in modern power systems, as the major 

avenue towards the decarbonization of the energy industry, 
introduces novel challenges, mainly associated with the sto‐
chasticity of RESs. These challenges urgently call for a sig‐
nificant increase of the flexibility of power systems [1]. En‐
ergy storage constitutes a fundamental component of this 
new paradigm, due to its intrinsic ability to act as both gen‐
eration and demand, and balance accordingly the mismatches 
emerging from the stochasticity of RESs [2].

Considering the deregulation of electricity markets across 
the world, the realization of the flexibility value of energy 
storage needs to be realized through its appropriate participa‐
tion in electricity markets. Specifically, energy storage own‐
ers constitute self-interested participants, which explore vari‐
ous market opportunities with the aim of maximizing their 
profit. Such opportunities may refer to both national trans‐
mission and local distribution levels [3]. Focusing on the for‐
mer, there are two crucial opportunities for energy storage in 
wholesale electricity markets. The first one is associated 
with arbitrage in energy markets, while the second one re‐
fers to the provision of frequency response (FR), the value 
of which is constantly increasing due to the increasing pene‐
tration of RESs. Nevertheless, these two opportunities can‐
not be explored in silos, since the upward/downward flexibil‐
ity provided by energy storage for FR is specified with re‐
spect to its baseline energy levels.

Focusing on the UK market, some rapid developments are 
observed with respect to the market design for the provision 
of various FR products [4], [5]. The first of these is the trad‐
ing of such products on a day-ahead basis, allowing for par‐
ticipants to co-optimize their offers across energy and FR 
markets that are cleared with a common time horizon. Anoth‐
er development refers to the move from trading FR in daily 
(24-hour) blocks towards trading in 4-hour blocks (the so-
called Electricity Forward Agreement (EFA) time blocks), 
for each of which the market participants submit a single FR 
offer, applying along the whole duration of the block [6]. 
This move has been driven by scientific evidence that a fin‐
er trading resolution can better capture the differentiated FR 
requirements along the day (according to the temporal pro‐

files of demand and RES output) and thus reduce the total 
operating costs of the power system [7], [8]. The most prom‐
inent development is the introduction of multiple FR prod‐
ucts [9], traded in parallel, which usually are mutually-exclu‐
sive, i. e., it is not permitted to stack them along the same 
time block. This exclusivity is driven by the need for mea‐
suring the delivered FR power as the difference between a 
baseline and the actual metered power output [10]-[12]. The 
fundamental distinction across these products lies in their ac‐
tivation source. Some of them refer to very fast response 
(< 1 s) and low utilization factors, while others allow slower 
response (~10 s) but are usually associated with high utiliza‐
tion factors. It is noted that we use the term utilization fac‐
tor to denote the ratio ([01]) of the capacity committed for 
FR, which is actually deployed by the system operator in re‐
al time and thus amounts to delivered (absorbed from or in‐
jected to the grid) energy. Therefore, the optimal selection 
among them is driven by a trade-off between their market 
prices and their energy intensity, expressed via their utiliza‐
tion factors. Although stacking among these products is pro‐
hibited, the participants may combine their offering with that 
in the energy markets.

Given the very fast response capabilities of various energy 
storage technologies, especially of batteries, such technolo‐
gies may provide a multitude of market products, some of 
which are merely interacting (i. e., energy products against 
FR products) and some of which are mutually-exclusive (i.e., 
FR products against each other over the same time block). 
The investigation of the optimal participation of storage in 
such a market environment corresponds to a research area 
that is commonly referred to, in the scientific literature, as 
the multi-market participation or revenue stacking of storage.

A crucial challenge of this research area lies in effectively 
capturing various relevant sources of uncertainty. Depending 
on whether the participant acts as a price-maker or a price-
taker, the first source of uncertainty is related to either the ri‐
val offers, which drive the formation of prices, or the market 
prices themselves [13]. The second source of uncertainty is 
related to the utilization factors of the FR products, i. e., 
whether and to which extent the capacity committed for FR 
at the day-ahead stage will be deployed by the system opera‐
tor in real time. The latter depends on the system frequency, 
which is a highly uncertain parameter.

In [14], the offering of multiple services is optimized by 
stand-alone price-taking storage, namely distribution network 
congestion management, energy arbitrage, reserve, and FR. 
The storage participant anticipates the energy and FR prices 
in a deterministic manner. The deliverability of FR in real 
time is guaranteed for each time step independently, while 
the time-coupling energy impact of FR utilization is not ad‐
dressed. A similar approach towards the utilization factors is 
adopted by [15]. In [16], the optimal offering of energy and 
FR for a price-taking battery storage is examined, where 
market prices are considered through probabilistic scenarios, 
while the utilization factor of FR is only considered in a de‐
terministic manner, through its expected value. A similar ap‐
proach towards the utilization factors is adopted by [17] and 
[18]. In [19], the profit-maximization problem of stand-alone 
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price-making storage in joint energy-reserve markets is ex‐
amined. The uncertain rival (supply and demand) offers are 
anticipated in a deterministic manner. The deliverability of 
reserve is guaranteed for the worst-case scenario, i. e., for a 
utilization factor equal to 1 at all times.

Moving to approaches which address the uncertainty over 
involved parameters in a probabilistic manner [20], [21], sto‐
chastic programming is employed in [22] for optimizing the 
offering of a price-making virtual power plant (VPP), includ‐
ing energy storage, in energy and reserve markets. Both un‐
certain rival offers and the uncertain utilization factor of re‐
serve are considered through probabilistic scenarios. There‐
fore, the deliverability of reserve is guaranteed only in case 
any of the anticipated scenarios is realized. A similar stochas‐
tic programming approach is used in [23], where the price-
making participation of stand-alone storage in energy and re‐
serve markets is investigated. In [24], the scheduling of 
price-making storage in energy and reserve markets is stud‐
ied, providing probabilistic guarantees for the deliverability 
of reserves in real time, based on chance-constrained optimi‐
zation. Relevant work in this field includes [25]-[29].

A different approach towards addressing the involved un‐
certainties is to employ a risk-averse, yet not necessarily 
over-conservative strategy via the utilization of robust opti‐
mization [30]-[32]. In [33], the optimal offering of price-tak‐
ing storage in joint energy and ancillary service markets is 
modeled as an instance of robust optimization without re‐
course. The profit is maximized for the worst-case realiza‐
tion, within participant-defined uncertainty budgets associat‐
ed with the uncertain prices and utilization factors. Relevant 
work in this field includes [27], [34], [35].

Finally, hybrid approaches have been used by some stud‐
ies towards addressing the involved uncertainties, i.e., adopt‐
ing a stochastic and risk-neutral approach with respect to 
some parameters, and a robust and risk-averse approach with 
respect to others. In particular, [36] and [37] focus on the op‐
timal offering problem of price-taking VPPs, and provide 
valuable insights in the effects of the two sources of uncer‐
tainty (prices and utilization factors of FR) and subsequently 

in the approach best suited to each of them. Specifically, 
they conclude that a stochastic approach is best suited to ad‐
dress uncertain prices, since the uncertain prices only impact 
optimality of the offering problem, while a robust approach 
is best suited to address uncertain utilization factors, since 
the uncertain utilization factors impact the feasibility of the 
problem as well. Towards validating the argument associated 
with uncertain utilization factors, [37] compares a stochastic 
approach against a robust approach, demonstrating that the 
latter outperforms the former in guaranteeing deliverability 
of reserve commitments. Similar conclusions are drawn in 
[27], which focuses on the optimal offering problem of a 
fleet of electric vehicles in day-ahead energy and FR mar‐
kets, and specifically for the market setting of France. While 
considering perfect information on prices, three approaches 
for addressing uncertain utilization factors are compared, 
namely a deterministic approach based on their expected val‐
ue, a stochastic approach, and a robust approach. It con‐
cludes that the last two approaches significantly outperform 
the first one in guaranteeing deliverability of FR commitments.

Although the above review indicates a rich literature in 
the area of multi-market participation of storage, we identify 
two research gaps. First of all, there is no existing paper that 
addresses this problem within the recent market design devel‐
opments for the provision of FR products in the UK, namely 
trading FR products in time blocks, and trading of multiple, 
mutually-exclusive FR products. Secondly, although [27] and 
[37] compare different approaches for addressing uncertain 
utilization factors, they do not focus on stand-alone storage, 
and their comparison frameworks do not involve all ap‐
proaches in the literature, namely deterministic one based on 
expected values, deterministic one based on worst-case val‐
ues, stochastic one, and robust one. In the context of mani‐
festing these research gaps and where our work stands with‐
in the existing literature, Table I presents the main character‐
istics of existing literature on participation of energy storage 
in energy and balancing markets.

This paper aims at addressing these two research gaps, by 
achieving the following contributions.

TABLE I
SUMMARY OF EXISTING LITERATURE ON PARTICIPATION OF ENERGY STORAGE IN ENERGY AND BALANCING MARKETS

Reference

[14]

[15]

[16]

[17], [18]

[19]

[22]-[24], [26], [28], [29]

[25]

[27]

[33]

[34]-[36]

[37]

This paper

Trading balancing products in 
blocks

×

×

×

×

×

×

×

×

×

×

×

√

Balancing products

Multiple

Single

Multiple

Single

Multiple

Single

Multiple

Multiple

Multiple

Single

Single

Multiple

Mutual exclusivity among 
balancing products

×

-

×

-

×

-

×

×

×

-

-

√

Anticipation of utilization 
factors

Worst-case (time-decoupled)

Worst-case (time-decoupled)

Expected

Expected

Worst-case

Stochastic

Stochastic

Expected, stochastic, robust

Robust

Robust

Stochastic, robust

Expected, worst-case, 
stochastic, robust

Note: √, ×, and - represent that the aspect is not included in, included in, and not relevant to the reference, respectively.
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1) A novel optimal offering model for stand-alone price-
taking energy storage participants in day-ahead energy and 
FR markets is proposed, accounting for the time blocks and 
mutual exclusivity of FR products in the UK. This model 
consists of two stages. The first (day-ahead) stage devises 
optimal offers under uncertainty and the second (real-time) 
stage represents the operation of storage after uncertainty is 
materialized. The model is presented in a generic manner 
with respect to the real-time stage representation, and is then 
specified according to 4 alternative formulations for the real-
time stage, overall yielding 4 different model instances. 
These instances, denoted as EV, WC, SP, and RO, corre‐
spond to the different approaches in the existing literature 
for addressing uncertain FR utilization factors, i.e., ① deter‐
ministic approach based on their expected values, ② deter‐
ministic approach based on their worst-case values, ③ sto‐
chastic approach, through a set of scenarios, and ④ robust 
approach.

2) We develop a concrete methodological framework for 
comparing the above instances, where each instance is em‐
ployed given a common training set of historical data, and 
the optimal offers devised by each instance are then applied 
to a common test set, comprising of out-of-sample realiza‐
tions of the uncertain FR utilization factors. This framework 
enables a consistent and pragmatic comparison of the 4 in‐
stances, which is performed against 3 performance indica‐
tors: ① achieved profit, ② violation rate with respect to FR 
delivery, and ③ computational scalability.

3) Case studies employing real data from UK energy and 
FR markets demonstrate that the EV and WC instances es‐
sentially constitute the naive over-optimistic benchmark and 
the over-pessimistic benchmark, respectively, yielding the 
highest and lowest profits, and the highest and lowest FR de‐
livery violations. On the other hand, the SP and RO instanc‐
es are shown to exhibit a better trade-off between profitabili‐
ty and FR delivery violations, with the RO instance leaning 
more towards lower profits and lower violations. Further‐
more, the RO instance exhibits two relative advantages with 
respect to the SP instance: ① better computational scalabili‐
ty, and ② flexibility for storage participants to adjust the 
trade-off between profitability and FR delivery violations, by 
factoring their risk appetite into their offering strategy.

The rest of this paper is organized as follows. Section II 
details the assumptions made in this paper. Section III pres‐
ents the mathematical formulation of the proposed model. 
Section IV includes the implemented case studies. Finally, 
Section V draws the conclusions.

II. ASSUMPTIONS 

This paper focuses on the optimal offering problem of a 
stand-alone storage market participant, making the following 
key assumptions.

Assumption 1: the proposed model is generally applicable 
to any storage technology, assuming though that the exam‐
ined technology has the technical capability to provide the 
three FR products detailed in Assumption 4 below.

Assumption 2: the storage participant behaves as a price-
taker [13], [20], considering the prices of both energy and 
FR markets as exogenous parameters that are not impacted 

by its offers. Given this, the proposed model focuses on the 
derivation of optimal offer quantities, although the offers 
submitted to actual markets consist of both offer quantities 
and prices. For simplicity, and in order to avoid divergence 
from the key focus of the paper, we assume that all offers in‐
volve an offer price that guarantees acceptance; specifically: 
① energy buying offers are offered at the price cap of the 
market, ② energy selling offers are offered at a zero price, 
and ③ capacity offers for FR are offered at zero price.

Assumption 3: the examined energy market is a generic 
pool and day-ahead market with an hourly resolution.

Assumption 4: we focus on the following 3 FR products 
currently traded in the UK, which are automatically activat‐
ed based on system frequency deviations, rather than being 
activated by the system operator based on the outcomes of 
the imbalance market clearing.

1) Dynamic containment (DC): deployed after significant 
frequency deviations (±0.2 Hz) to meet the most urgent 
needs for fast (< 1 s) FR. It is generally characterized by the 
lowest utilization factors.

2) Dynamic modulation (DM): deployed during sudden 
and large power imbalances, where frequency moves to‐
wards the edge of the operational range (±0.1 Hz) in a fast 
fashion (< 1 s). It is characterized by intermediate utilization 
factors.

3) Dynamic regulation (DR): deployed pre-fault to correct 
continuous but small frequency deviations (±0.015 Hz) in a 
relatively slow fashion (< 10 s). It is characterized by the 
highest utilization factors.

Assumption 5: considering current UK market rules, these 
3 FR products are traded with a day-ahead horizon and in 
EFA time blocks (each corresponding to 4 hours of the deliv‐
ery horizon). Furthermore, each participant is allowed to sub‐
mit an offer only for one of these products per each time 
block, i. e., mutual exclusivity is imposed or equivalently 
stacking is not permitted. Finally, the compensation for all 3 
FR products is only capacity-based and there is no payment 
for actual utilization.

III. MATHEMATICAL FORMULATION OF PROPOSED MODEL 

A. Objective Function and Set of First-stage Constraints

As introduced in Section I, all 4 instances of the proposed 
model share a common objective function as well as a com‐
mon representation of the first stage of the problem. The 
first-stage decisions, V ={pDAS

t pDAB
t pxU

e pxD
e ux

e }, include 
all offering decisions taken in a second-stage-independent 
fashion, i. e., these decisions are fixed for all plausible real‐
izations of the uncertainty at the second stage of the problem, 
where pDAS

t pDAB
t pxU

e pxD
e ÎR³ 0, and ux

eÎ{01}. The proposed 
model constitutes a mixed-integer linear program (MILP).
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∑

t

é

ë
ê
êê
ê ù

û
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úú
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s
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s
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es De (1)

s.t.
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{VV 2ST }Îϒ 2ST (7)

where V 2ST is a generic representation of the second-stage 
decisions, to be specified in Section III-B; and ϒ 2ST is the 
set of the second-stage constraints. The objective function 
(1) maximizes the expected profit from energy and FR offers 
over the whole day. Constraints (2)-(6) only involve the first-
stage decisions and represent the rule-set of the examined 
markets for the submitted offers. Constraints (2) and (3) im‐
pose the maximum limits to the combination of energy of‐
fers and offers for upward and downward provisions of FR 
products, respectively. In case an energy selling offer is 
made to the energy market during time period t, (2) limits 
the available capacity to be offered for upward provision to 
the difference between the maximum discharging power and 
the energy selling offer. In case an energy buying offer (or 
no offer) is made during time period t, (2) limits the avail‐
able capacity to be offered for upward provision to the maxi‐
mum discharging power. That is, a real-time change of direc‐
tion from absorbing to injecting power is allowed to happen 
as long as pxU

e £ -
P holds. For example, in a case where the 

energy baseline is to buy energy from the market (pDAB
t > 0 

and pDAS
t = 0), the real-time direction may refer to injecting 

power to the grid if pxU
e > pDAB

t . Constraint (3) acts in an 
equivalent manner with (2) for the case of downward provi‐
sion. The combination of constraints (4) - (6) ensures that 
stacking of multiple FR products in the same time block is 
prohibited, by employing binary variables ux

e, which express 
whether the storage participant makes an offer for a particu‐
lar FR product in a particular time block. Constraint (7) ex‐
presses, in a generic form, that all decisions must be feasible 
with respect to the generic set of the second-stage con‐
straints, which is to be specified according to the alternative 
model instances detailed in Section III-B.

B. Set of the Second-stage Constraints

As introduced in Section III-A, 4 alternative formulations 
of the second stage are examined according to the approach 
adopted to address uncertain FR utilization factors, yielding 
4 different instances of the proposed model.
1)　Anticipation of FR Utilization Factors Through Their Ex‐
pected Values (EV Instance)

In this instance, the storage participant anticipates the un‐
certain FR utilization factors in a deterministic manner 
through their expected values. In practice, these expected val‐
ues should be determined by the storage participant based on 
the average values of the utilization factors across a number 
of preceding days. The set of the second-stage constraints 
ϒ 2ST can be expressed as:

ì
í
î

ïï
ïï
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where V 2ST =V EV ={pch
t p

dch
t SOCt } includes all operational 

decisions of storage taken after the realization of uncertainty, 
and pch

t p
dch
t SOCtÎR³ 0. However, since the uncertain utili‐

zation factors are considered through their expected values, 
the second-stage operational decisions essentially remain de‐
terministic. Constraint (8) imposes upper limits to the charg‐
ing and discharging power. Constraint (9) imposes the ener‐
gy balance among the energy sold/bought in the energy mar‐
ket, the energy absorbed/injected as a result of FR utiliza‐
tion, and the discharging/charging energy. Parameters ∑

w

πwα
xU
tw  and ∑

w

πwα
xD
tw  express the expected value of the uti‐

lization factors of the upward and downward provision com‐
ponents of FR product x during time period t, respectively. 
Constraint (10) expresses the relation between charging/dis‐
charging power and state of charge. Constraint (11) enforces 
that the state of charge remains within the feasible lower 
and upper limits. Constraint (12) ensures that the final state 
of charge is higher or equal to the initial one.
2)　Anticipation of FR Utilization Factors Through Their 
Worst-case Values (WC Instance)

In this instance, the storage participant still anticipates the 
uncertain FR utilization factors in a deterministic manner, 
but now through their worst-case values (equal to 1). This 
implies that, in contrast to the EV instance, historical FR uti‐
lization data are irrelevant. The set of second-stage con‐
straints ϒ 2ST can be expressed as:
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iÎ To| i£ t( )-

pDAS
i

ndch
Dt + nch pDAB

i Dt -

Dt
ndch∑

o = 1

e ∑
iÎ To| i£ t

∑
x

pxU
o ³ - -- -----SOC     "eÎ Te"tÎ Te (14)

SOC min
||T ³ SOC0 (15)

where V 2ST =V WC ={SOC max
t SOC min

t } includes all operational 
decisions of storage taken after the realization of uncertainty, 
and SOC max

t SOC min
t ÎR³ 0. Due to the worst-case anticipa‐

tion of uncertainty, these (deterministic) decisions may now 
be expressed merely as a function of the first-stage deci‐
sions. Constraint (13) expresses that during each time period 
t, the maximum possible value of the state of charge SOC max

t  
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is calculated by aggregating the energy buying/selling com‐
mitments, as well as the downward provision commitments 
(implying their full utilization), of all time periods i preced‐
ing t (i £ t). Moreover, it enforces that the value of SOC max

t  
must be lower or equal to the maximum feasible state of 
charge at all time. Constraint (14) expresses that during each 
time period t, the minimum possible value of the state of 
charge SOC min

t  is calculated by aggregating the energy buy‐
ing/selling commitments, as well as the upward provision 
commitments (implying their full utilization), of all time pe‐
riods i preceding t (i £ t). Moreover, it enforces that the val‐
ue of SOC min

t  must be higher or equal to the minimum feasi‐
ble state of charge at all time. Constraint (15) ensures that 
the final state of charge is higher or equal to the initial one.
3)　Anticipation of FR Utilization Factors Through a Set of 
Scenarios (SP Instance)

In this instance, the storage participant anticipates the un‐
certain FR utilization factors in a stochastic manner through 
a set of scenarios. In practice, each of these scenarios should 
be determined based on a number of preceding days. The set 
of second-stage constraints ϒ 2ST can be expressed as:

pch
tw £ z ch

tw
-
P      "t"w (16)

pdch
tw £(1 - z ch

tw )
-
P     "t"w (17)

(pDAS
t - pDAB

t )Dt +∑
x

αxU
tw pxU

e -∑
x

αxD
tw pxD

e = (pdch
tw - pch

tw )Dt

"eÎ Te"tÎ Te"w (18)

SOCtw = SOCt - 1w + nch pch
twDt -

pdch
tw

ndch
Dt    "t"w (19)

- -- -----SOC £ SOCtw £
- -- -----
SOC     "t"w (20)

SOC ||T w ³ SOC0    "w (21)

where V 2ST =V SP ={pch
twp

dch
tw SOCtwz

ch
tw } includes all opera‐

tional decisions of energy storage taken after the realization 
of uncertainty, i.e., these decisions are now taken per scenar‐
io and are thus indexed by w, and pch

twp
dch
tw SOCtwÎR³ 0, 

z ch
twÎ{01}. Constraints (16) and (17) impose upper limits to 

the charging and discharging power, respectively, and also 
ensure that simultaneous charging and discharging is prevent‐
ed by employing a relevant binary variable z ch

tw; the latter is 
required since the consideration of uncertainty may yield 
such simultaneous charging and discharging if the original 
convex operating model of energy storage is employed [38]. 
Constraints (18)-(21) are similar to (9)-(12), respectively, but 
are defined per scenario.

Given the above formulation, the devised offers are feasi‐
ble for any realization of the uncertain FR utilization factors 
that is included in the considered scenario set W; however, 
this does not generally hold for any other scenario not in‐
cluded in W. Such potential infeasibility effects naturally 
raise concerns by the storage participants, associated with fis‐
cal implications (i.e., FR non-delivery penalties) or even pro‐
hibition of their future participation in FR markets by the 
system operator. Moreover, the extent to which real-time fea‐
sibility is achieved depends on the number of considered sce‐
narios within W, implying a trade-off between real-time fea‐

sibility and computational requirements.
4)　Anticipation of FR Utilization Factors Through a Risk-
averse Approach (RO Instance)

To address the concerns arising from the SP instance, we 
examine an instance which guarantees the real-time deliver‐
ability of FR commitments for any plausible realization of 
the uncertain FR utilization factors, yet within certain uncer‐
tainty sets that reflect confidence bounds of the storage par‐
ticipant. In practice, these uncertainty sets should be deter‐
mined by the storage participant based on observations of ex‐
treme utilization contingencies in preceding days, combined 
with its risk appetite. The set of the second-stage constraints 
ϒ 2ST can be expressed as (22), (23), and (15).

-SOC max
t =-SOC0 -∑

o = 1

e ∑
iÎ To| i£ t( )-

pDAS
i

ndch
Dt + nch pDAB

i Dt + nch ×

min
αxD

it ÎCLL

ì
í
î

ïï
ïï
∑
o = 1

e ∑
iÎ To| i£ t

∑
x

(-αxD
it pxD

o )
ü
ý
þ

ïï
ïï
³- - -- -----

SOC     "eÎ Te"tÎ Te

(22)

SOC min
t = SOC0 +∑

o = 1

e ∑
iÎ To| i£ t( )-

pDAS
i

ndch
Dt + nch pDAB

i Dt +
1

ndch
×

min
αxU

it ÎCLL

ì
í
î

ïï
ïï
∑
o = 1

e ∑
iÎ To| i£ t

∑
x

(-αxU
it pxU

o )
ü
ý
þ

ïï
ïï
³ - -- -----SOC     "eÎ Te"tÎ Te

(23)

where V 2ST =V RO ={SOC max
t SOC min

t }. Constraints (22) and 
(23) are similar to (13) and (14), respectively, but enforce 
that the values of SOC max

t  and SOC min
t  respect the maximum 

and minimum feasible states of charge for any plausible real‐
ization of the uncertain variables αxD

it  and αxU
it , respectively, 

constrained by the uncertainty set CLL (instead of an uncon‐
strained worst case considered in the WC instance of Sec‐
tion III-B-2)). For constraint (22), during each time period t, 
we devise αxD

it  through an inner problem, which defines the 
maximum value of SOC max

t , constrained by CLL. For con‐
straint (23), during each time period, we devise αxU

tw  through 
an inner problem, which defines the minimum value of 
SOC min

t , constrained by CLL. In essence, the inner variables 
αxD

it  and αxU
tw  introduced in this instance express the worst-

case (constrained by CLL) values of the upward and down‐
ward utilization factors during time period i, respectively, re‐
trieved by the solution of the inner problems associated with 
target period t.

The uncertainty set CLL is defined as:

CLL ={αxU
it α

xD
it : (25)-(28)} (24)

αxU
it £ 1:ρxU

it     "t"i £ t"x (25)

αxD
it £ 1:ρxD

it     "t"i £ t"x (26)

∑
iÎ To| i£ t

αxU
it £UT xU

o :ξ xU
o     "eÎ Te"tÎ Te"o £ e"x (27)

∑
iÎ To| i£ t

αxD
it £UT xD

o :ξ xD
o     "eÎ Te"tÎ Te"o £ e"x (28)

where ξ xU
ts ξ xD

ts ρxU
itsρ

xD
itsÎR£ 0 constitute the dual variables 

of the above constraints. Constraints (25) and (26) express 
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physical limits, as the maximum utilization factor of any FR 
product naturally equals 1. The key element of the proposed 
model is the introduction of participant-defined uncertainty 
budgets, UT xU

e  and UT xD
e , which express the maximum sum 

of utilization factors across an entire time block for upward 
and downward provisions, respectively, for which the de‐
vised decisions must be feasible. Hence, this instance guaran‐
tees the real-time deliverability for any combination of of‐
fered FR products and across all time blocks, as long as the 
time-block-wide sum of utilization factors of each of these 
products is bounded by UT xU

e  and UT xD
e . This instance be‐

comes equivalent to the WC instance by setting UT xU
e =

UT xD
e = |Te | = 4 for all FR products and all time blocks. In 

the RO instance, the storage participant defines the values 
within the range (0,4) where a lower/higher value indicates a 
more optimistic/pessimistic participant with respect to the an‐
ticipated FR utilization. Furthermore, the participant may de‐
fine different values for different products and for upward 
and downward provisions of a particular product according 
to the available data/expectations.

Given the above formulation, the devised offers are feasi‐
ble for any realization of the uncertain FR utilization factors 
within the uncertainty set CLL. In contrast with the SP in‐
stance, this instance: ① provides guarantees of real-time de‐
liverability without assuming knowledge of the probability 
density functions of the utilization factors; ② constitutes an 
intuitive and pragmatic method for storage participants, as 
they merely need to express their risk appetite by setting ac‐
cordingly the values of UT xU

e  and UT xD
e ; and ③ does not en‐

tail a trade-off between conservativeness and computational 
requirements.

C. Out-of-sample Validation

This subsection details the approach we adopt for validat‐
ing the offering decisions devised by each of the 4 model in‐
stances against out-of-sample scenarios of the uncertain FR 
utilization factors. The term out-of-sample implies that the 
values of the FR utilization factors in these scenarios have 
not been necessarily included in the dataset input to the opti‐
mal offering instances of Section III-B. For each out-of-sam‐
ple scenario rÎR, denoting the given realized market prices 
and FR utilization factors with a subscript r, the operation of 
the storage participant is optimized according to the problem 
(29)-(34). It is noted that the offers devised by the model in‐
stances of Section III-B constitute fixed parameters for this 
problem, and are thus denoted in bold font.

min
pch

trp
dch
tr SOCtr z

ch
tr l

+
trl

-
tr

∑
tÎ T

(l +tr + l -tr )Dt (29)

s.t.

pch
tr £ z ch

tr
-
P     "t (30)

pdch
tr £(1 - z ch

tr )
-
P     "t (31)

(pDAS
t - pDAB

t )Dt +∑
x

αxU
tr pxU

e -∑
x

αxD
tr pxD

e =

(pdch
tr - pch

tr + l +tr - l -tr )Dt    "eÎ Te"tÎ Te (32)

SOCtr = SOCt - 1r + nch pch
trDt -

pdch
tr

ndch
Dt    "t (33)

- -- -----SOC £ SOCtr £
- -- -----
SOC     "t (34)

where pch
trp

dch
tr SOCtrl

+
trl

-
trÎR³ 0 and z ch

tr Î{01}. The objec‐
tive function (29) expresses the aim of the storage partici‐
pant to minimize the sum of over-delivery and under-deliv‐
ery violations with respect to the delivery of FR products 
over the examined day. Constraints (30)-(34) express the op‐
erating constraints of storage that have been previously dis‐
cussed.

Given the operating decisions of storage {pch
trp

dch
tr SOCtr 

l +trl
-
tr } determined by the above problem, the total profit 

achieved in scenario r can be calculated as:

Profitr =∑
t

[(pDAS
t - pDAB

t )λDA
tr ]Dt +∑

e
∑

x

(pxU
e λxU

er + pxD
e λxD

er )De

(35)

The total energy violation with respect to the delivery of 
FR products can be calculated as:

Violationr =∑
t

(l +tr + l -tr )Dt (36)

The violation rate as the ratio between the energy viola‐
tion and the energy that should have been delivered can be 
calculated as:

VRr =
Violationr∑

e
∑
tÎ Te

∑
x

||αxU
tr pxU

e - αxD
tr pxD

e

´ 100%
(37)

The energy throughput can be calculated as:

Throughputr =∑
t

pdch
tr

ndch
Dt (38)

And the energy throughput expressed in terms of cycles 
[39] can be expressed as:

Cyclesr =
Throughputr
- -- -----
SOC - - -- -----SOC

(39)

IV. CASE STUDIES 

A. Description

The case studies aim at applying the proposed model for 
an examined storage participant and comparing its 4 instanc‐
es based on real historical data from UK energy and FR mar‐
kets. Specifically, we focus on the period 07/05/2022-31/01/
2023, with the test set (employed for the out-of-sample vali‐
dation of the 4 instances) including the period 24/10/2022-
31/01/2023 (i. e., 100 days in total). For each day d in this 
test set, we devise the offering decisions by each instance 
based on an associated training set (in-sample scenarios), 
which includes the N days preceding day d, and our analysis 
includes a sensitivity analysis on N. For example, for d =
01/01/2023 and N = 31, the training set includes the period 
01/12/2022-31/12/2022. In all 4 instances, the expected val‐
ues of energy and FR prices are determined by their average 
value across the last | S | = 10 days of the trainning set. The 
uncertain FR utilization factors are addressed by each in‐
stance as follows.
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1) EV: the expected values of FR utilization factors are de‐
termined by their average values across the N days of the 
training set.

2) WC: since we anticipate the FR utilization factors 
through their worst-case values (equal to 1), their historical 
values are irrelevant.

3) SP: each of the considered scenarios corresponds to 
one day of the training set, i.e., |W | =N.

4) RO: the uncertainty budgets UT xU
e  and UT xD

e  are deter‐
mined based on the maximum observed time-block-wide 
sum of utilization factors for upward and downward provi‐
sions, respectively, of product x during time block e, over 
the training set.

The assumed operating parameters of the examined stor‐
age participant are: 

-
P = 50 MW, - -- -----SOC = 5 MWh, 

- -- -----
SOC = 100 

MWh, SOC0 = 5 MWh, nch = ndch = 0.9. The historical energy 
prices and FR prices for our focused period have been de‐
rived from [39] and [40], respectively. Concerning historical 
FR utilization factors, the system frequency data in [41] are 
used and converted to utilization factors, as per the relevant 
functions found in [10] - [12]. Table II presents the average 
prices, the average utilization factors, and the maximum utili‐
zation factors of each FR product and each direction of pro‐
vision (upward and downward) over the test set. All studies 
are executed using Gurobi [42], on a computer with a 4-core 
3.4 GHz Intel(R) Core(TM) i7-6700 processor and 16 GB of 
RAM.

B. Results

Tables III-VI present the performance of each of the 4 in‐
stances, including 5 performance indicators: ① total profit 
achieved by the storage participant, as determined by (35) 
(also broken down to its energy and FR components); ② 
volume of FR offers, broken down to each FR product and 
each direction of provision; ③ violation rate with respect to 

the delivery of FR products, as determined by (37); ④ stor‐
age cycles, as determined by (39); and ⑤ computational 
time required for solving the offering problem. These perfor‐
mance indicators are averaged over the number of days in‐
cluded in the test set. Furthermore, we carry out a sensitivity 
analysis on the number N of preceding days included in the 
training set.

TABLE II
PRICES AND UTILIZATION FACTORS OF FR PRODUCTS OVER TEST SET

FR product

DC upward

DM upward

DR upward

DC downward

DM downward

DR downward

Average price (£/MW/h)

6.14

1.73

12.60

3.26

5.61

5.66

Average utilization factor (MWh/MW)

0.0058

0.0159

0.1150

0.0056

0.0148

0.1112

Maximum utilization factor (MWh/MW)

0.0269

0.1118

0.5389

0.0274

0.1215

0.5414

TABLE III
PERFORMANCE OF EV INSTANCE

N

10

30

50

100

170

Average profit (£)

Energy

24623

24723

24642

24326

24000

FR

12505

12494

12516

12829

13037

Total

37128

37217

37158

37155

37037

Average volume of FR offers (MW/day)

DC 
upward

60

64

64

70

76

DM 
upward

6

12

18

18

18

DR 
upward

356

349

351

362

371

DC 
downward

16

14

14

15

18

DM 
downward

5

8

13

12

13

DR 
downward

1063

1057

1050

1047

1040

Average 
violation rate 

(%)

28.13

29.63

30.09

30.44

31.40

Average 
storage cycles 

per day

1.16

1.18

1.19

1.18

1.19

Average 
computational 

time (s)

0.1

0.1

0.1

0.1

0.1

TABLE IV
PERFORMANCE OF WC INSTANCE

N

10

30

50

100

170

Average profit (£)

Energy

9552

9552

9552

9552

9552

FR

0

0

0

0

0

Total

9552

9552

9552

9552

9552

Average volume of FR offers (MW/day)

DC 
upward

0

0

0

0

0

DM 
upward

0

0

0

0

0

DR 
upward

0

0

0

0

0

DC 
downward

0

0

0

0

0

DM 
downward

0

0

0

0

0

DR 
downward

0

0

0

0

0

Average 
violation rate 

(%)

0

0

0

0

0

Average 
storage cycles 

per day

1.12

1.12

1.12

1.12

1.12

Average 
computational 

time (s)

0.1

0.1

0.1

0.1

0.1
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Starting from the EV instance, we observe that its 
achieved total profits are the highest among the 4 instances 
for any value of N. However, it also exhibits extreme (and 
much higher than any other instance) violation rates of FR 
delivery. Therefore, it is inapplicable in real applications, 
since such extreme violation rates will eventually yield ex‐
treme FR non-delivery penalties for the storage participant, 
or even prohibition of its participation in FR markets by the 
system operator. In other words, this instance merely pro‐
vides a naive over-optimistic (with respect to profitability) 
benchmark, since it makes the unrealistic assumption that 
FR utilization factors are known at the offering stage. We al‐
so observe that the largest volume of the FR offers corre‐
sponds to the DR product and particularly at the downward 
direction. This is driven by two effects: ① since this naive 
instance assumes that the FR utilization factors are known at 
the offering stage, it implicitly sets a largest weight on the 
prices rather than the utilization factors of the FR products 
(and DR generally exhibits the highest prices, as indicated in 
Table II); and ② the utilization of downward FR (mainly 
DR as explained above) leads to an increase of the state of 
charge, which can be exploited as additional energy sales 
and profits in the energy market. However, the DR product 
is also characterized by the highest utilization factors (as in‐
dicated in Table II), which drives the extreme violation rates 
of this instance. The overoptimistic nature of this instance is 
also reflected in the higher number of storage cycles com‐
pared with the other three instances, since its offering strate‐
gy is less restrained by the uncertain utilization factors.

Moving to the WC instance, we observe that not only its 
achieved total profits are the lowest among the 4 instances, 
but also its devised offers involve participation only in the 
energy market and no participation in the FR market. This is 
driven by the purely pessimistic perspective of this instance 

with respect to the FR utilization factors, in combination 
with the fact that the energy prices are generally higher than 
the FR prices (at least for the focused period of the case 
studies). On the other hand, it exhibits (by definition) zero 
(and lower than any other instance) violation rates of FR de‐
livery. In other words, it merely provides a naive over-pessi‐
mistic benchmark, since it makes the unrealistic assumption 
that any FR commitment will be delivered in real time. Al‐
though no FR offers are made, this instance exhibits a high‐
er number of storage cycles compared with the SP and RO 
instances. This is because sole participation in the energy 
market implies that all contracted offers will be delivered at 
their entirety in real time, and no part of them gets negated 
by the utilization of FR at the opposite direction.

Moving to the SP instance, we firstly observe that it exhib‐
its a better trade-off between the achieved total profits and 
violation rates of FR delivery, compared with the two previ‐
ous naive instances. The achieved total profits are significant‐
ly higher compared with the pessimistic WC instance, while 
the violation rates are significantly lower compared with the 
optimistic EV instance. Secondly, we observe that as N in‐
creases, both the total profit and the violation rate are re‐
duced, since real-time feasibility is imposed for a larger num‐
ber of scenarios, naturally leading to the reduction of the 
achieved profits. Concerning downward FR, similar to the 
EV instance, this instance favours offering of the DR prod‐
uct which exhibits the highest prices (as indicated in Table 
II), given that the utilization of downward FR leads to an in‐
crease of the state of charge and additional profits in the en‐
ergy market. Concerning upward FR though, and in contrast 
to the EV instance which still favours DR, the composition 
of FR offers under the SP instance moves towards the DC 
product, especially as N increases. This is because the SP in‐
stance sets a larger weight on real-time feasibility and thus 

TABLE VI
PERFORMANCE OF RO INSTANCE

N

10

30

50

100

170

Average profit (£)

Energy

4343

4712

4946

5108

5114

FR

13298

12161

11530

11303

11098

Total

17641

16873

16476

16411

16212

Average volume of FR offers (MW/day)

DC 
upward

474

492

498

493

501

DM 
upward

167

159

137

128

118

DR 
upward

201

132

108

100

93

DC 
downward

345

355

370

366

367

DM 
downward

351

368

374

385

387

DR 
downward

312

296

276

270

265

Average 
violation rate 

(%)

1.00

1.00

0.86

0.67

0.40

Average 
storage cycles 

per day

0.80

0.79

0.81

0.81

0.80

Average 
computational 

time (s)

0.1

0.1

0.1

0.1

0.1

TABLE V
PERFORMANCE OF SP INSTANCE

N

10

30

50

100

170

Average profit (£)

Energy

15585

14563

13497

12799

12790

FR

12081

10985

11094

10549

9919

Total

27666

25548

24591

23348

22709

Average volume of FR offers (MW/day)

DC 
upward

149

175

211

172

202

DM 
upward

44

60

46

54

123

DR 
upward

255

155

154

147

86

DC 
downward

79

107

126

96

125

DM 
downward

106

164

139

122

170

DR 
downward

890

802

805

847

759

Average 
violation rate 

(%)

4.75

1.63

1.39

0.83

0.77

Average 
storage cycles 

per day

0.95

0.86

0.81

0.71

0.66

Average 
computational 

time (s)

1

20

62

575

1192
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the FR utilization factors (DC generally exhibits the lowest 
utilization factors, as indicated in Table II). Furthermore, 
since its offering strategy is more restrained by the uncertain 
utilization factors, the number of storage cycles is signifi‐
cantly lower compared with the EV instance. Finally, com‐
pared with the other 3 instances, this instance exhibits a 
worse computational scalability; as N increases, the computa‐
tional time increases disproportionately. As mentioned in 
Section III-B-3), this implies that the application of this in‐
stance requires the storage participant to balance a trade-off 
between real-time feasibility and computational cost.

Moving to the RO instance, we firstly observe that it ex‐
hibits a better trade-off between total profits and violation 
rates (similarly to the SP instance), compared with the two 
naive instances. However, compared with the SP instance, 
this trade-off leans more towards lower profits and lower vi‐
olation rates. Secondly, similar to the SP instance, we ob‐
serve that as N is increased, both the total profit and the vio‐
lation rate are reduced, since we effectively seek further into 
the past for the maximum FR utilization factors. Since the 
RO instance sets a larger weight on real-time feasibility and 
the (maximum) FR utilization factors compared with the EV 
and SP instances, it favours much more FR products with 
low utilization factors. This is clearly evident in the upward 
FR offers (where DC is favoured under every N) and to a 
certain extent in the downward FR offers (where there is a 
balance among the 3 FR products, while the EV and SP in‐
stances clearly favour the DR product). Finally, in contrast 
with the SP instance, this instance exhibits negligible compu‐
tational requirements, irrespective of the value of N. There‐
fore, its application does not entail a trade-off between real-
time feasibility and computational cost.

Moreover, as discussed in Section III-B-4), this instance 
provides an intuitive and pragmatic approach for storage par‐
ticipants to factor their risk appetite into their offering strate‐
gy by determining accordingly their uncertainty budgets. In 
other words, even for a fixed size of the training set N, the 
examined storage participant can flexibly adjust the trade-off 
between the total profit and violation rate by setting accord‐
ingly the value of these uncertainty budgets. In order to 
quantitatively demonstrate this flexibility of the RO instance, 
we perform a sensitivity analysis on these uncertainty bud‐
gets, considering a specific training set with N = 170. Specifi‐
cally, we explore different cases for a parameter ϕ which ex‐
presses the relative percentage of the employed uncertainty 
budgets with respect to their nominal values (specified in 
Section IV-A and employed in the cases presented in Table 
VI). The results of this analysis are presented in Table VII. 
We can observe that as ϕ is increased (i.e., as the uncertainty 
budgets are increased), both the total profit and the violation 
rate are reduced, as the storage participant adopts a more 
pessimistic perspective with respect to FR utilization.

V. CONCLUSION 

This paper focuses on the research area of co-optimizing 
the offers of stand-alone price-taking energy storage in ener‐
gy and FR markets, and achieves two relevant contributions.

Firstly, it proposes a novel optimal offering model which 
accounts for recent FR market design developments in the 
UK, namely the trade of FR products in time blocks, and the 
mutual exclusivity among the multiple FR products. The 
model consists of two stages, with the first (day-ahead) one 
devising optimal offers under uncertainty, and the second (re‐
al-time) one representing the operation of storage after uncer‐
tainty is materialized. Secondly, this paper develops a con‐
crete methodological framework for comparing all the differ‐
ent approaches existing in the literature for addressing uncer‐
tain FR utilization factors. This is achieved by providing 4 
alternative formulations for the real-time stage of the pro‐
posed offering model, yielding 4 different model instances. 
Following that, we carry out an out-of-sample comparison of 
the 4 instances, which is performed against 3 performance 
indicators: ① achieved profit; ② violation rate with respect 
to FR delivery; and ③ computational scalability.

The presented case studies compare these 4 instances for 
an examined storage participant based on real data from UK 
energy and FR markets, considering the 3 FR products cur‐
rently traded in the UK, namely DC, DM, and DR. The re‐
sults demonstrate that the EV instance constitutes a naive 
over-optimistic benchmark, yielding the highest profits but 
also extreme violation rates of FR delivery, rendering it inap‐
plicable in real applications where such extreme violations 
yield significant non-delivery penalties or even prohibition 
of participation in FR markets by the system operator. On 
the other hand, the WC instance constitutes a naive over-pes‐
simistic benchmark, completely avoiding FR delivery viola‐
tions, but yielding the lowest profits.

The SP and RO instances are shown to exhibit a better 
trade-off between profitability and FR delivery violations, 
compared with the two previous naive instances. However, 
the trade-off achieved by the RO instance leans more to‐
wards lower profits and lower violations. Furthermore, the 
RO instance exhibits two relative advantages with respect to 
the SP instance. Firstly, the RO instance exhibits negligible 
computational requirements, while the computational require‐
ments of the SP instance increase disproportionately with the 
number of considered scenarios. Secondly, the RO instance 
provides an intuitive and pragmatic approach for storage par‐
ticipants to flexibly adjust the trade-off between profitability 
and FR delivery violations, by factoring their risk appetite in‐
to their offering strategy.

TABLE VII
PERFORMANCE OF RO INSTANCE FOR N = 170 AND DIFFERENT VALUES OF ϕ

ϕ (%)

120

110

100

90

80

70

60

50

Average profit (£)

Energy

5957

5662

5114

4497

4418

3734

3347

3197

FR

9717

10250

11098

12199

12613

13798

14896

16003

Total

15674

15912

16212

16696

17031

17532

18243

19200

Average viola‐
tion rate (%)

0.10

0.28

0.40

0.55

1.17

1.17

1.39

3.76

Average computa‐
tional time (s)

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1
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