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Abstract——Base station (BS) backup batteries (BSBBs), with 
their dispatchable capacity, are potential demand-side resources 
for future power systems. To enhance the power supply reliabili‐
ty and post-contingency frequency security of power systems, 
we propose a two-stage stochastic unit commitment (UC) model 
incorporating operational reserve and post-contingency frequen‐
cy support provisions from massive BSBBs in cellular networks, 
in which the minimum backup energy demand is considered to 
ensure BS power supply reliability. The energy, operational re‐
serve, and frequency support ancillary services are co-opti‐
mized to handle the power balance and post-contingency fre‐
quency security in both forecasted and stochastic variable re‐
newable energy (VRE) scenarios. Furthermore, we propose a 
dedicated and scalable distributed optimization framework to 
enable autonomous optimizations for both dispatching center 
(DC) and BSBBs. The BS model parameters are stored and pro‐
cessed locally, while only the values of BS decision variables are 
required to upload to DC under the proposed distributed opti‐
mization framework, which safeguards BS privacy effectively. 
Case studies on a modified IEEE 14-bus system demonstrate 
the effectiveness of the proposed method in promoting VRE ac‐
commodation, ensuring post-contingency frequency security, en‐
hancing operational economics, and fully utilizing BSBBs’ ener‐
gy and power capacity. Besides, the proposed distributed optimi‐
zation framework has been validated to converge to a feasible 
solution with near-optimal performance within limited itera‐
tions. Additionally, numerical results on the Guangdong 500 kV 
provincial power system in China verify the scalability and 
practicality of the proposed distributed optimization framework.

Index Terms——Base station, backup battery, operational re‐
serve, frequency security, distributed optimization, privacy.

NOMENCLATURE

 A. Indices

ijklm Synchronous generator (SG), variable renew‐
able energy (VRE), base station (BS) or BS 
backup battery (BSBB), load, and SG segment 
indices

n Iteration index

s Stochastic scenario index

t Period index

 B. Parameters

αBS
k βBS

k Coefficients of power consumption model of 
BS k

DP0 Power disturbance

Dt Duration of a single period (1 hour)

λBSBB
kn Dual variables corresponding to auxiliary con‐

straints of BS k

ε1ε2 Given parameters for convergence criteria

πs Probability of stochastic scenario s

cGre
i cBSBBre

k Operational reserve capacity cost coefficients 
of SG i and BSBB k

cGPFR
i cBSBBPFR

k Primary frequency response (PFR) reserve ca‐
pacity cost coefficients of SG i and BSBB k

cBSBBIR
k Inertia response (IR) reserve capacity cost co‐

efficient of BSBB k

cGde
i cBSBBde

k Reserve deployment cost coefficients of SG i 
and BSBB k

cBSBB
k Charging and discharging cost coefficient of 

BSBB k

- -- -----
E BSBB

k 
- -- -----
E BSBB

k The minimum and maximum backup energy 
demands of BSBB k

H G
i SG i inertia

H sys System inertia

-H
sys Lower bound of system inertia

- -- ----- --
K BSBB

k The maximum droop factor of BSBB k
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K D Load damping coefficient
K G

i Droop factor of SG i
LBS

k T BS
k Power and traffic loads of BS k

M A sufficiently large positive real number
- -- -----
P BSS

k Power source capacity of BS k
- -- -- ----- --
P BSBBch

k  The maximum charging and discharging      
- -- -- ----- --
P BSBBdis

k power of BSBB k
- -----
P G

im The maximum generation of power segment 
m of SG

-
P G

i 
------
P G

i The minimum and maximum generation of 
SG i

- -- -----
P Gru

i 
- -- -----
P Grd

i Upward and downward ramping capacities of 
SG i

- -- ----- --
f RoCoF -Df 

- -----
Df ss Rate of change of frequency (RoCoF), fre‐

quency nadir, and quasi-steady-state (QSS) 
frequency threshold

------
P V

j The maximum generation of VRE j

T Number of periods during the entire schedule 
horizon

TbBS
k The minimum backup duration of BS k

T G
i Response constant of SG i

 C. Variables

δV
j Curtailment rate of VRE j

DP BSBBIR
k IR reserve deployment of BSBB k

DPBSBBnad
k  PFR reserve deployment of BSBB k for 

 DPBSBBss
k frequency nadir and QSS frequency support

DP Gnad
i DP Gss

i PFR reserve deployment of SG i for frequen‐
cy nadir and QSS frequency support

ABSBBcoup
k Auxiliary variables for DC for decoupling di‐

rect coupling relationships among BSBBs
C DC C BS

k Cost coefficient vectors

C Gp
i C Gsu

i  Fuel, startup, and shutdown costs of SG i
 C Gsd

i

E BSBB
k State of charge (SOC) of BSBB k

H BSBB
k Virtual inertia of BSBB k

K BSBB
k Droop factor of BSBB k

M A sufficiently large positive real number
P BSBB

k Power of BSBB k

P BSBBL
kt Absolute value of P BSBB

k

P G
i Generation of SG i

P G
im Generation of power segment m of SG i

- -- ----- --
RBSBBu

k 
- -- ----- --
RBSBBd

k Upward and downward operational reserve ca‐
pacities of BSBB k

- -- -- ----- --
RBSBBIR

k  IR and primary frequency response (PFR)  
 
- -- -- ----- -- --
RBSBBPFR

k reserve capacities of BSBB k

RBSBBu
k RBSBBd

k Upward and downward reserve deployments 
of BSBB k

- -- ----- --
RGPFR

i PFR reserve capacity of SG i
- -------
RGu

i 
- -------
RGd

i Upward and downward operational reserve ca‐
pacities of SG i

RGu
i RGd

i Upward and downward reserve deployments 
of SG i

rn + 1 Primal residual in ADMM algorithm
sn + 1 Dual residual in ADMM algorithm
S sys Feasible region of variables (X DC X BSBBcoup

k )
S BSBB

k Vector of decision variables (X BSBBonly
k  

X BSBBcoup
k )

X BSBBonly
k  Vectors of all variables for BSBB k

 X BSBBcoup
k

I. INTRODUCTION 

THE transition towards net-zero carbon emission has cre‐
ated a shortage of flexibility resources for maintaining 

power balance in power systems [1], [2]. Simultaneously, the 
large-scale replacement of synchronous generators (SGs) 
with inverter-based variable renewable energy (VRE) will re‐
sult in an increasingly prominent frequency security issue 
[3], [4]. The scarcity of operational reserve and post-contin‐
gency frequency response (including inertial response (IR) 
and primary frequency response (PFR)) resources will pose 
a threat to the power system reliability and security [5]. To 
address these problems, demand-side resources have 
emerged as potential participants in the provision of ancil‐
lary services for the power system, driven by the develop‐
ment of end-user electrification [6]. Among them, the de‐
mand response (DR) potential of base station (BS) backup 
batteries (BSBBs) is increasingly gaining attention.

The fast development of information and communication 
technology (ICT) has led to a significant increase in the 
number of constructed 5G BSs. According to the Guangdong 
Provincial Department of Industry and Information Technolo‐
gy in China, the cumulative number of 5G macro BSs in the 
province is expected to reach 160000 by 2025 [7], with a to‐
tal BSBB capacity of 1600 MW, accounting for approximate‐
ly 1% of the forecasted peak load in Guangdong, China, in 
2025 [8]. These massive BSBBs represent a potential re‐
source to provide operational reserve [9] and frequency sup‐
port services [10] to power systems. However, the primary 
function of BSBBs currently is to ensure BS power supply 
reliability, and they have not yet been involved in power sys‐
tem operations. Considering the tidal effect of BS traffic 
load and the traffic sensitivity of BS power load [8], the de‐
mand for BSBB backup energy varies at different times of 
the day. This renders BSBBs with dispatchable capacity, en‐
abling them to provide operational reserve services to the 
power system while ensuring the BS power supply reliabili‐
ty. Additionally, the inverter-based BSBBs exhibit fast re‐
sponse capabilities [11], allowing them to provide IR and 
PFR services to the power system with their spare power ca‐
pacity, thereby ensuring post-contingency frequency security 
[12]. Under the current operation mode of cellular networks, 
the dispatchable energy capacity of BSBBs for power sys‐
tem operations is not utilized, resulting in prolonged periods 
of idleness and wastage of resources.

Some studies have explored the involvement of BSBBs in 
power system operation. The dispatchable capacity of 
BSBBs has been evaluated and utilized for energy services 
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in [8], [13]. Reference [14] further investigates the potential 
of the spare capacity of BSBB in stabilizing the photovoltaic 
(PV) output in 5G BS microgrids. Besides, a rule-based 
mechanism is constructed to coordinate the spare capacity of 
massive distributed BSBB to provide secondary frequency 
regulation service [15]. Reference [16] considers 5G BSBBs 
as a new flexible resource and uses them to optimize the 
voltage profile of active distribution networks. Yet few stud‐
ies have explored the utilization of dispatchable capacity of 
BSBB for providing operational reserve and frequency sup‐
port ancillary services, which are of significant value for 
maintaining the power supply reliability and security in fu‐
ture power systems. And the corresponding model for utiliz‐
ing BSBBs to provide these ancillary services has not been 
well-developed, representing a research gap in this field.

Another important aspect to consider is the excessive com‐
putational burden brought by centralized optimization when 
a large number of BSBBs are involved in power system op‐
erations. BSBBs are characterized by small individual capaci‐
ties and a large quantity, and it is impractical to model and 
optimize the scheduling of such a great number of BSBBs 
and sizable generation units together in a centralized manner. 
The aggregation and scheduling of a massive amount of de‐
mand-side resources have been extensively studied. The ag‐
gregation control of smart buildings for primary frequency 
support is studied in [17]. The aggregated heating, ventila‐
tion, and air conditioning (HVAC) systems are used for ancil‐
lary services such as secondary frequency regulation [18], 
peak shaving [19], and operational reserve [20]. Similarly, 
electric vehicles are aggregated to smooth the load profile 
[21], provide frequency control services [22], accommodate 
VRE generation [23] and handle the VRE uncertainty [24]. 
Nevertheless, dispatching center (DC) and mobile operators 
are separate entities, and uploading BSBB model parameters 
to DC or aggregators poses an inherent risk of privacy breach‐
es, particularly in relation to the BS traffic load profiles [25].

Distributed optimization offers a solution to address both 
the computational burden brought by massive BSBBs and 
the need to protect the privacy information of BS. Existing 
research works have applied distributed optimization to the 
scheduling of various entities, including microgrids [26], en‐
ergy communities [27], [28], and electric vehicles [29], aim‐
ing to address the computational burden associated with cen‐
tralized solutions. Besides, some studies have employed dis‐
tributed optimization to address privacy concerns. The peer-
to-peer energy sharing among energy buildings through dis‐
tributed transactions is studied [30]. Reference [31] proposes 
a finite-time consensus-based distributed optimization algo‐
rithm to solve the economic dispatch problem. A distributed 
deep reinforcement learning method is proposed for intelli‐
gent load scheduling in residential smart grids in [32]. Simi‐
lar to the above studies, the computational burden and priva‐
cy concerns associated with large-scale BSBB scheduling 
are expected to be addressed through distributed optimiza‐
tion. Nevertheless, the detailed design of the distributed opti‐
mization framework dedicated to the scheduling of massive 
BSBBs has not been well-studied.

Based on the review of the existing research works, two 

main issues arise when incorporating BSBBs into power sys‐
tem operation: ① developing a model for operational re‐
serve and frequency support provisions for BSBBs, and ② 
designing a dedicated and scalable distributed optimization 
framework suitable for the participation of large-scale 
BSBBs in the cellular networks to address the computational 
burden and privacy concerns related to the centralized opti‐
mization. To fill in the above-mentioned research gaps, this 
paper proposes a two-stage stochastic unit commitment (UC) 
model with operational reserve and frequency support provi‐
sions from massive BSBBs, in which the dispatchable capac‐
ity of each BSBB is evaluated according to the BS traffic 
load profile. We reformulate the proposed two-stage stochas‐
tic UC model to enable distributed optimization, thereby en‐
suring scalability and protecting the  privacy information of 
BS. Specifically, our main contributions are summarized as 
follows.

1) To cope with the uncertainty of VRE generation and 
complement the frequency support resources, we incorporate 
BSBBs into the operational reserve, IR, and PFR ancillary 
services, thereby enhancing the reliability and security of fu‐
ture power systems. The corresponding ancillary service pro‐
vision model for BSBBs is developed considering their mini‐
mum backup energy demand to ensure BS power supply reli‐
ability.

2) We propose a two-stage stochastic UC model incorpo‐
rating operational reserve and frequency support provisions 
from massive BSBBs, in which the energy, operational re‐
serve, IR, and PFR reserve are co-optimized to ensure the 
power balance and post-contingency frequency security in 
both forecasted and all stochastic VRE scenarios.

3) A dedicated distributed optimization framework suitable 
for massive BSBBs is designed and realized through a spe‐
cific problem reformulation method and the application of 
the alternating direction method of multiplier (ADMM) algo‐
rithm. Notably, our proposed framework enables autonomous 
optimizations for both DC and individual BS, and all of the 
BSBB model parameters are stored and processed locally, 
thereby ensuring its scalability and protecting the privacy se‐
curity of BS effectively.

The remainder of the paper is organized as follows. Sec‐
tion II develops the two-stage stochastic UC model incorpo‐
rating operational reserve and frequency support provisions 
from massive BSBBs. The distributed optimization frame‐
work is proposed in Section III. Case studies are conducted 
in Section IV, and Section V draws the conclusions.

II. TWO-STAGE STOCHASTIC UC MODEL INCORPORATING 
OPERATIONAL RESERVE AND FREQUENCY SUPPORT 

PROVISIONS FROM MASSIVE BSBBS 

In this section, we first evaluate the dispatchable capacity 
of each BSBB according to its traffic load profile and back‐
up duration demand. Then, the operational reserve and fre‐
quency support provision model for BSBBs is proposed, fol‐
lowed by the two-stage stochastic UC model incorporating 
ancillary services from BSBBs. Finally, the proposed model 
is linearized.
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A. Evaluating Dispatchable Capacity of BSBBs

Due to the uneven temporal distribution of cellular net‐
work businesses, the traffic load T BS

kt  of BSs exhibits signifi‐
cant tidal effects [33]. Besides, the power consumption of 
5G BSs is traffic-sensitive, which can be modeled as [8]:

LBS
kt = α

BS
k T BS

kt + β
BS
k (1)

Due to the variation in power consumption of 5G BSs 
throughout the day, the backup energy demand of BSBBs 
varies during different time periods, as shown in Fig. 1. This 
indicates that the backup energy of BSBBs does not need to 
be constantly at its maximum level, providing potential for 
their participation in ancillary services for power systems.

Typically, most of 5G BSs are constructed with BSBBs 
for a backup duration of 3 hours to meet the reliability re‐
quirements for power supply [15]. Thus, the minimum back‐
up energy demand of BSBB k at time instant t can be calcu‐
lated:

- -- -----
E BSBB

kt = ∫
t

t + TbBS
k

LBS
kτdτ (2)

B. Operational Reserve and Frequency Support Ancillary 
Service Provision Model for BSBBs

The upward and downward operational reserve capacities 
and PFR and IR reserve capacities provided by BSBB k 
should satisfy the following constraints. Without loss of gen‐
erality, this paper only considers the frequency drop event 
caused by sudden power shortage.

-
- -- -- ----- --
P BSBBdis

k £P BSBB
kt £

- -- -- ----- --
P BSBBch

k (3)

E BSBB
kt =E BSBB

kt - 1 +P BSBB
kt Dt    "t ³ 1 (4)

E BSBB
kT =E BSBB

k0 (5)

- -- -----
E BSBB

kt £E BSBB
kt £

- -- -----
E BSBB

k (6)

ì

í

î

ï

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï

ï

ï
ïïï
ï

ï

ï

- -- ----- --
RBSBBu

kt ³ 0
- -- ----- --
RBSBBd

kt ³ 0
- -- -- ----- -- --
RBSBBPFR

kt ³ 0
- -- -- ----- --
RBSBBIR

kt ³ 0

P BSBB
kt +

- -- ----- --
RBSBBd

kt £
- -- -- ----- --
P BSBBch

k

P BSBB
kt -

- -- ----- --
RBSBBu

kt -
- -- -- ----- -- --
RBSBBPFR

kt -
- -- -- ----- --
RBSBBIR

kt ³-
- -- -- ----- --
P BSBBdis

k

(7)

P BSBB
kt +

- -- ----- --
RBSBBd

kt + LBS
kt £

- -- ----- --
P BSBBS

k (8)

Formula (3) limits the charging and discharging power of 
BSBB k. Formulas (4)-(6) limit the SoC of BSBB k. Formu‐
la (7) ensures the sum of operational reserve and PFR/IR re‐
serve capacities is within the power capacity of BSBB. For‐
mula (8) corresponds to the limit of power source capacity 
of BS.

Utilizing the dispatchable capacity of BSBBs, the upward 
and downward reserve deployments of BSBB k in stochastic 
VRE scenario s are expressed as:

ì

í

î

ï
ïï
ï

ï
ïï
ï

RBSBBu
skt ³ 0

RBSBBd
skt ³ 0

RBSBBu
skt -RBSBBd

skt =P BSBB
kt -P BSBB

skt

(9)

The upward and downward reserve deployments of BSBB 
k should not exceed their corresponding reserve capacities.

ì
í
î

ïï

ïï

0 £RBSBBu
skt £

- -- ----- --
RBSBBu

kt

0 £RBSBBd
skt £

- -- ----- --
RBSBBd

kt

(10)

Besides, the energy storage of BSBB k in each stochastic 
scenario s should be subjected to the following constraints.

ì

í

î

ï
ïï
ï

ï
ïï
ï

E BSBB
skt =E BSBB

skt - 1 +P BSBB
skt Dt    "t ³ 1

E BSBB
skT =E BSBB

sk0

- -- -----
E BSBB

kt £E BSBB
skt £

- -- -----
E BSBB

k

(11)

In addition, the IR/PFR reserve deployment of BSBB k in 
both the forecasted scenario and stochastic scenario s should 
not exceed its corresponding operational reserve capacity, re‐
spectively.

ì

í

î

ï
ïï
ï

ï
ïï
ï

0 £DP BSBBIR
kt £

- -- -- ----- --
RBSBBIR

kt

0 £DP BSBBnad
kt £

- -- -- ----- -- --
RBSBBPFR

kt

0 £DP BSBBss
kt £

- -- -- ----- -- --
RBSBBPFR

kt

(12)

ì

í

î

ï
ïï
ï

ï
ïï
ï

0 £DP BSBBIR
skt £

- -- -- ----- --
RBSBBIR

kt

0 £DP BSBBnad
skt £

- -- -- ----- -- --
RBSBBPFR

kt

0 £DP BSBBss
skt £

- -- -- ----- -- --
RBSBBPFR

kt

(13)

C. Two-stage Stochastic UC Incorporating Operational Re‐
serve and Frequency Support Ancillary Services for BSBBs

A two-stage optimization problem is proposed to cope 
with the VRE uncertainties. The first-stage decisions are 
made in the day-ahead scheduling when the forecasted VRE 
scenario has been given, including UC, power generation, 
operational reserve capacity, and frequency support reserve 
capacity of both SGs and BSBBs. The real-time regulations 
are made in the second stage to deal with the VRE uncertain‐
ties during the intra-day operation process, including the de‐
ployment of operational reserve and PFR/IR reserve.

The objective function of the two-stage stochastic UC 
model is shown as follows:

00:00 04:00 08:00 12:00 16:00 20:00 24:00

The minimum backup energy demand

    of BSBB at 03:00,12:00, and 19:00

Time

3 hours 3 hours

BS load

3 hours

Load profiles of an individual BS

Fig. 1.　Evaluation of backup energy demand of BSBBs.
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min
é

ë
ê
êê
ê∑

t
∑

i
( )C Gp

it +C Gsu
it +C Gsd

it +∑
t
∑

k

cBSBB
k || P BSBB

kt +

∑
t
∑

i
( )cGre

i

- -------
RGu

it + cGre
i

- -------
RGd

it +

∑
t
∑

k
( )cBSBBre

k

- -- ----- --
RBSBBu

kt + cBSBBre
k

- -- ----- --
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kt +∑
t
∑

i

cGPFR
i
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∑
t
∑

k
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∑
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∑

s

πs∑
j
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P V
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∑

s

πs∑
i
( )cGde

i RGu
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k RBSBBd
skt (14)

where the first six terms represent the first-stage operational 
costs, including the energy costs of SGs, i. e., fuel, startup, 
and shutdown costs (the first term), energy costs of BSBBs 
(the second term), the operational reserve capacity costs of 
SGs (the third term) and BSBBs (the fourth term), the PFR 
reserve capacity costs of SGs (the fifth term), and the PFR/
IR reserve capacity costs of BSBBs (the sixth term), respec‐
tively. The second-stage operational costs consist of the pen‐
alty for VRE curtailment (the seventh term), operational re‐
serve deployment costs of SGs (the eighth term) and BSBBs 
(the last term) in the stochastic scenarios.

The first-stage constraints include:∑
i

P G
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- -- ----- --
K BSBB

k ³K BSBB
kt ³ 0

DP BSBBIR
kt = 2H BSBB

kt

- -- ----- --
f RoCoF

DP BSBBnad
kt £K BSBB

kt
-Df

DP BSBBss
kt £K BSBB

kt

- -----
Df ss

(21)

where the lower bound of system inertia 
-
H sys

t  in (19) can be 

estimated by the rate of change of frequency (RoCoF) thresh‐

old, i. e., 
-
H sys

t = DP 0
t ( )2

- -- ----- --
f RoCoF . Formula (15) ensures the 

power balance in the forecasted VRE scenario. Formula (16) 
describes the power limits of SG i. Formulas (17) and (18) 

limit the operational reserve capacity and PFR reserve capac‐
ity of SG i. Formulas (19) and (20) limit the PFR reserve de‐
ployment of SG i for frequency nadir and QSS frequency 
support in the forecasted scenario. Similarly, the limits for 
PFR/IR reserve deployment of BSBB k in the forecasted sce‐
nario are shown in (21).

Moreover, we introduce the RoCoF constraints, frequency 
nadir constraints [34], and QSS frequency constraints to en‐
sure post-contingency frequency security in the forecasted 
VRE scenario as:

DP 0
t £ 2

- -- ----- --
f RoCoF∑

i

U G
it H

G
i +DP BSBBIR

kt (22)

DP 0
t £∑

i

DP Gnad
it +∑

k

DP BSBBnad
kt +K D

t
-Df (23)

DP 0
t £∑

i

DP Gss
it +∑

k

DP BSBBss
kt +K D

t

- -----
Df ss

(24)

The other first-stage constraints include (3)-(8), (12), ener‐
gy cost constraints, ramping limit constraints and minimum 
online/offline time constraints for SGs, and power flow con‐
straints for transmission lines in the forecasted VRE scenar‐
io [35].

The second-stage constraints are shown as follows:

∑
i
( )RGu

sit -RGd
sit + é

ë(1 - δV
sjt ) - -------

P V
sjt -

------
P V

jt
ù
û +∑

k
( )RBSBBu

skt -RBSBBd
skt = 0 (25)

ì
í
î

ïï

ïï

0 £RGu
sit £

- -------
RGu

it

0 £RGd
sit £

- -------
RGd

it

(26)

0 £ δV
sjt £ 1 (27)

Formula (25) ensures the power balance in each stochastic 
scenario s. Formula (26) limits the reserve deployment of 
SG i, while (27) limits the curtailment rate of VRE j.

Moreover, the constraints related to post-contingency fre‐
quency security in stochastic scenarios, i.e., (19)-(24), are al‐
so included, with an index s added to them. The detailed 
models are not presented for brevity.

The other second-stage constraints also include (9) - (11), 
(13), ramping limit constraints for SGs, and power flow con‐
straints for transmission lines in each stochastic VRE scenar‐
io s [35].

Without loss of generality, the model proposed in this pa‐
per does not incorporate the distribution network models. In 
specific cases such as distribution line congestions, the solu‐
tions obtained may lead to physically infeasible outcomes. 
Nevertheless, the proposed model can be extended to encom‐
pass the consideration for distribution networks, thus mitigat‐
ing the aforementioned issues.

D. Model Linearization

The nonlinear absolute value term | P BSBB
kt | in the objective 

function (14) is recast into a linear one by introducing auxil‐
iary variables {P BSBBL

kt }. The auxiliary variables are subjected 

to:

{P BSBBL
kt ³P BSBB

kt

P BSBBL
kt ³-P BSBB

kt
(28)
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III. PROBLEM REFORMULATION FOR DISTRIBUTED 
IMPLEMENTATIONS 

The existence of massive BSs makes it challenging for 
DC to collect detailed BS model parameters and conduct 
centralized solving. Worse still, BSs are also reluctant to 
share their information with DC due to privacy and security 
concerns. In this section, we first equivalently reformulate 
the original model into a decomposable form. Then, a distrib‐
uted optimization framework is proposed using the ADMM 
algorithm to enable autonomous optimization for both DC 
and BSs. Finally, we highlight the potential for scalable ap‐
plication and privacy protection of the proposed distributed 
optimization framework.

A. Problem Reformulation

We categorize the entities involved in the proposed two-
stage stochastic UC model into two main components: DC 
and BSBBs, where DC is responsible for optimizing the 
scheduling of SGs, VRE stations, and transmission lines, 
while BSs optimize their own decision variables. Then, the 
proposed two-stage stochastic UC model can be abstracted 
into the following form.

ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïï
ï

ï

min
ì
í
î

ü
ý
þ

(C DC ) T
X DC +∑

k
(C BSBB

k ) Té
ë

ù
û( )X BSBBonly

k

T( )X BSBBcoup
k

T T

s.t.  ( )X DCX BSBBcoup
k Î S sys

       ( )X BSBBonly
k X BSBBcoup

k Î S BSBB
k

(29)

Specifically, X DC includes all variables for SGs, VRE sta‐
tions, transmission lines, and power system, including but 

not limited to {C Gp
i C Gsu

i C Gsd
i }, {U G

i }, {P G
i P

G
im}, {- -------

RGu
i  

}- -------
RGd

i , {- -- -----
RGFR

i }, {RGu
i RGd

i }, {DP Gnad
i DP Gss

i }, {δV
j }. X BSBBonly

k  

and X BSBBcoup
k  include all variables for BS k, where X BSBBonly

k  
includes variables that only directly related to BS k itself, 

i. e., {E BSBB
k }, {- -- ----- --

RBSBBu
k 

- -- ----- --
RBSBBd

k }, {- -- -- ----- --
RBSBBIR

k 
- -- -- ----- -- --
RBSBBPFR

k }, {K BSBB
k }, 

and {H BSBB
k }, and the variables in X BSBBcoup

k  are directly cou‐

pled with the variables in X DC, including {P BSBB
k P BSBBL

k }, 
{P BSBBIR

k DP BSBBnad
k DP BSBBss

k }, and {RBSBBu
k RBSBBd

k }.
The original model (29) is an approximate N-block struc‐

ture optimization problem, as shown in Fig. 2(a), where X 
denotes all decision variables in the two-stage stochastic UC 
problem and b denotes the constant terms in the constraints 
of the two-stage stochastic UC problem. However, some con‐
straints in S sys such as power balance and frequency security 
constraints directly couple the decision variables of all SGs, 
hindering the decomposition of (29). Applying a distributed 
algorithm such as ADMM directly to (29) would result in 
the inability to decompose the optimizations for massive 
BSs. Consequently, achieving autonomous optimization of in‐
dividual BSs would be unattainable, thus failing to effective‐
ly address the challenges arising from limited computational 
resources and privacy concerns associated with the extensive 
involvement of BSs. To address this, we introduce a set of 
auxiliary variables ABSBBcoup

k  for DC to decouple the direct 

coupling relationships among BSBBs, as shown in Fig. 2(b) 
and (30).
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k ( )X BSBBonly
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where the indicator functions are given:

δsys( X DCX BSBBcoup
k ) =

ì
í
î

ïï

ïï

0 ( )X DCX BSBBcoup
k Î S sys
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(31)
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B. Distributed Implementations Using ADMM Algorithm

The augmented Lagrangian function of problem (30) is 
given as:

L = (C DC ) T
X DC + (C BSBB

k ) T( )( )X BSBBonly
k

T( )X BSBBcoup
k

T T

+

δsys( X DCABSBBcoup
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k

δBSBB
k ( )X BSBBonly

k X BSBBcoup
k +

∑
k
( λBSBB
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k -X BSBBcoup

k +

ρ
2∑k

 ABSBBcoup
k -X BSBBcoup

k

2

2
(33)

where ρ is a well-defined given positive parameter. Then, we 
apply the ADMM algorithm to realize distributed optimiza‐
tion, which is presented in Fig. 3.
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Fig. 2.　Problem reformulation of original model. (a) Approximate N-block 
structure optimization. (b) Decoupling direct coupling relationships among 
BSBBs.
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Step 1: distributed parallel optimization of BSs. Each BS 
k parallelly decides its own decision variables ( X BSBBonly

kn + 1  

)X BSBBcoup
kn + 1  by solving (33) with the current auxiliary vari‐

ables ABSBBcoup
kn  and dual variables λBSBB

kn :

min
ì
í
î
(C BSBB
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k

T T
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Formula (34) is equivalent to the following problem (P BSBB
k ).
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(35)

Then each BS k will submit its decisions X BSBBcoup
kn + 1  to DC.

Step 2: centralized optimization of DC. DC optimizes the 
decision variables X DC

n + 1 and auxiliary variables ABSBBcoup
kn + 1  ac‐

cording to the current decision variables X BSBBcoup
kn + 1  of each 

BS k and dual variables λBSBB
kn :

min
é
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Formula (36) is equivalent to the following problem (PDC ).
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Then, DC will distribute the auxiliary variable ABSBBcoup
kn + 1  to 

each BS k.
Step 3: update of convergence criteria and dual variables. 

DC first verifies whether the convergence criteria in (38) are 
met.
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 rn + 1

2

2
=∑

k
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The first criterion is used to determine whether the solu‐
tion X BSBBcoup

kn + 1 , X BSBBonly
kn + 1  and X BSBBcoup

kn + 1  is a feasible one of the 
original problem, while the second criterion verifies whether 
the optimal solution has been reached.

If convergence criteria in (38) are satisfied, the iteration 
stops, and the system will be scheduled accordingly. Other‐
wise, DC will update the dual variables λBSBB

kn + 1, as shown in 
(39), and then send them to the corresponding BS k. Subse‐
quently, the process returns to Step 1.

λBSBB
kn + 1 = λ

BSBB
kn + ρ (ABSBBcoup

kn + 1 -X BSBBcoup
kn + 1 ) (39)

C. Scalable Applications and Privacy Protection

The proposed distributed optimization framework holds 
great potential for scalable applications where massive BSs 
participate in power system operations. In Step 1, each BS k 
solves its own optimization problem (P BSBB

k ) in an autono‐
mous, distributed, and parallel manner. As for Step 2, the 
number of auxiliary variables ABSBBcoup

k  in (PDC ) increases lin‐
early with the number of BSs involved. Nevertheless, all 
auxiliary variables are continuous, and the increase in the 
number of BSs will not lead to an increase in the number of 
constraints in (PDC ). Accordingly, the increase of BSs does 

not significantly amplify the complexity of solving (PDC ). In 
conclusion, under the proposed distributed optimization 
framework, the computational burden caused by massive 
BSs can be shared through distributed computing. Conse‐
quently, it is suitable for scalable applications.

Besides, under the proposed distributed optimization 
framework, the only information that BSs need to submit to 
DC is the values of their decision variables X BSBBcoup

k . In ad‐
dition, the model parameters of BSBBs, i. e., those in (3) -
(13), as well as their traffic load profiles are stored and pro‐
cessed locally, which effectively protect the privacy of cellu‐
lar networks.

IV. CASE STUDIES 

The effectiveness and scalability of the proposed model 
are validated on a modified IEEE 14-bus system and Guang‐
dong 500 kV provincial power system in Southern China, re‐
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Fig. 3.　Distributed optimization framework.
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spectively. All optimization problems are handled on the 
MATLAB platform and solved by the commercial solver 
GUROBI, while all dynamic response process simulations 
are conducted on MATLAB/Simulink. The simulations are 
carried out on a computer with an Intel Core i5-10400F@
2.90 GHz CPU and 24 GB RAM. The optimization gap is 
set to be 1×10-4.

A. Basic Data of Modified IEEE 14-bus System

The illustrative example is conducted on a modified IEEE 
14-bus system, as shown in Fig. 4. There are 5 SGs in the 
system, whose parameters are shown in Table I. The maxi‐
mum total load is 362.6 MW. The cost of operational re‐
serve capacity, reserve deployment, and PFR reserve capaci‐
ty for SGs are set to be 0.4, 1.3, and 1.3 times their highest 
incremental prices, respectively [20]. The total forecasted 
wind and load power curves are shown in Fig. 5, and the 
green shaded area denotes the forecasted error range of wind 
power. The penalty of wind power curtailment is set to be 
200 $/MWh. Five hundred stochastic wind scenarios are gen‐
erated within 10% forecasted error, and then reduced to 20 
representative scenarios by the method in [35].

Besides, BSs are supposed to be installed at each load 

bus, and the total BS capacity is set to be approximately 1% 
of the peak load at that bus. Thus, 360 BSs are deployed in 
the system. For each BS, the power source capacity is 12 
kW, and the charging/discharging power capacity and energy 
capacity of each BSBB are set to be 10 kW and 30 kWh, re‐
spectively [36]. The BSBB prices for operational reserve ca‐
pacity, reserve deployment, and PFR/IR reserve capacity are 
set to be 12 $/MWh, 30 $/MWh, and 30 $/MW, respectively, 
and the maximum droop factor is set to be 50 [37], [38].

The disturbance DP 0
t  is assumed to be 5% of the total 

load during period t. The nominal frequency is set to be 50 
Hz, and the threshold of RoCoF, frequency nadir, and QSS 
frequency are set to be 0.5 Hz/s, 0.5 Hz, and 0.3 Hz, respec‐
tively [3].

Three cases are set and compared to verify the effective‐
ness of the proposed two-stage stochastic UC model.

Case 1: BSBBs with dispatchable capacity are only al‐
lowed to provide energy services.

Case 2: BSBBs with dispatchable capacity are allowed to 
provide energy and operational reserve services.

Case 3: BSBBs with dispatchable capacity are allowed to 
provide energy, operational reserve, and post-contingency fre‐
quency support ancillary services.

B. Effectiveness Validations of Operational Reserve Capaci‐
ty and Deployment Demand, and Post-contingency Frequen‐
cy Security

The operational reserve capacity and deployment demand 
in all stochastic wind scenarios and post-contingency fre‐
quency security metrics in cases 1-3 are shown in Fig. 6 and 
Fig. 7, respectively.
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Fig. 5.　Forecasted wind and load power curves.

TABLE I
TECHNICAL PARAMETERS OF SGS IN IEEE 14-BUS SYSTEM

Unit

G1

G2

G3

Capacity 
(MW)

332

140

100

The minimum 
generation 

(MW)

116

49

35

Ramping 
capacity 
(MW/h)

133

56

40

Inertia 
constant 

(s)

4.0

4.0

3.5

Droop
 factor

35

35

35
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constant 
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Fig. 6.　Operational reserve capacity and deployment demand. (a) Case 1.     
(b) Case 2. (c) Case 3.
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From Fig. 6, it can be observed that the reserve deploy‐
ment demand in all stochastic wind scenarios can be satis‐
fied by the day-ahead operational reserve capacity, which 
verifies the effectiveness in maintaining power balance.

Similarly, the simulation results in Fig. 7 show that the 
RoCoF, frequency nadir, and QSS frequency of cases 1-3 are 
kept within the corresponding secure thresholds. These veri‐
fy the effectiveness of the used frequency security con‐
straints.

Moreover, the frequency nadir metric in case 3 is more se‐
cure than those in cases 1 and 2, which is attributed to the 
fast response feature of BSBBs.

It should be mentioned that, as this paper does not ac‐
count for the uncertainty of disturbances and the IR/PFR re‐
serve capacity is determined in the day-ahead scheduling 
stage, the post-contingency frequency security metrics in the 
dynamic simulation results remain the same for both fore‐
casted and stochastic scenarios in the same case.

C. Benefits for BSBB Utilizations and Operational Econom‐
ics

The detailed operational costs of cases 1-3 are compared 
in Table II. Besides, the scheduling results of massive 
BSBBs are shown in Fig. 8, where SoC stands for state of 
charge.

In case 1, massive BSBBs are only allowed to provide en‐
ergy service, and the dispatch result of BSBBs is shown in 

Fig. 8(a) and (d). The limited utilization of BSBB energy ca‐
pacity is evident. This can be attributed to the fact that dur‐
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TABLE II
COMPARISON OF OPERATIONAL COSTS

Case

1

2

3

Total 
cost ($)

184854

183304

181715

First-stage 
start up/

shut down 
cost ($)

14310

14310

14310

First-stage energy
 cost ($)

SG

136770

136872

136608

BSBB

198

136

131

Total

136968

137008

136739

First-stage 
reserve of 

SG

7911

6263

7021

Capacity cost ($)

BSBB

0

1273

760

Total

7911

7536

7781

First-stage 
PFR/IR of 

SG

17301

17171

13264

Reserve 
cost ($)

BSBB

0

0

1950

Total

17301

17171

15214

Second-stage reserve 
deployment cost ($)

SG

7478

5705

6399

BSBB

0

992

630

Total
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7029
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wind curtail‐
ment penalty 

($)
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ing the peak load period (16-20 hours) of the power system, 
the load demand of BSs also reaches its highest level of the 
day. Consequently, there is a high demand for backup energy 
of BSBB, and their dispatchable capacity is small. As a re‐
sult, the capability of BSBBs in peak shaving is constrained.

Compared with case 1, BSBBs are further allowed to pro‐
vide operational reserve services in case 2, which reduces 
the pressure on SGs to ensure power balance. Additionally, 
it enhances the overall reserve capability of the power sys‐
tem and reduces wind curtailment. The above results have 
led to a 0.84% improvement in the total operational cost of 
the power system. From Fig. 8(b) and (e), we can observe 
that during leisure hours of BS such as 0-6 and 23-24 hours, 
the power capacity of BSBB can be fully utilized to provide 
operational reserve services. However, during busy periods 
of BS, i.e., 8-20 hours, the operational reserve capacity pro‐
vided by BSBBs is at a relatively low level throughout the 
day. This is because the dispatchable capacity of BSBBs is 
limited during those periods, and accordingly, their power ca‐
pacity is underutilized. Otherwise, it may compromise the se‐
curity of BSBB operations or impact the reliability of the 
BS power supply. Therefore, the power capacity utilization 
of BSBBs is not sufficient during busy periods of BS.

Furthermore, BSBBs are allowed to participate in the fre‐
quency support ancillary services in case 3. Due to the short 
duration of the PFR/IR dynamic process, typically around 30 
s, the provision of these frequency support services does not 
have a significant impact on its storage energy. Consequent‐
ly, the underutilized power capacity of BSBBs in case 2 can 
be fully utilized in case 3, releasing more flexibility of 
BSBBs. This reduces the burden on SGs for providing fre‐
quency support ancillary services and improves the econom‐
ic performance of the power system, specifically, with opera‐
tional cost reductions of 1.70% and 0.87% compared with 
those of cases 1 and 2, respectively.

D. Frequency Security Sensitivity Analysis

A sensitivity analysis is conducted on disturbance ratio, as 
shown in Fig. 9. It can be observed that the total operational 
cost of case 3 is always the lowest. This is because both the 
energy and power capacity of massive BSBBs have been ful‐
ly utilized.

Furthermore, compared with cases 1 and 2, case 3 allows 
BSBBs to provide PFR/IR services, enhancing the system 
ability to handle sudden power disturbance. Specifically, in 
cases 1 and 2, the power system can handle a maximum dis‐
turbance of approximately 21.8 MW, while in case 3, the 
ability to handle the maximum power disturbance increases 
to 25.4 MW.

E. Convergence Performance of Proposed Distributed Opti‐
mization Framework

The iteration process of the proposed distributed optimiza‐
tion framework is presented in Fig. 10. The parameters for 
the convergence criteria are set as ε1 = 1 ´ 10-4 and ε2 = 1 ´
10-4, respectively.

Since the proposed two-stage stochastic UC model is a 
non-convex optimization problem with integer variables, it is 
challenging to ensure the convergence to the global optimal 
solutions when applying the proposed distributed optimiza‐
tion framework. Specifically, the optimization gap converges 
to 0.08% after 2000 iterations, but does not reach the opti‐
mal solution. However, it can also be observed from Fig. 10 
that the proposed distributed optimization framework exhib‐
its great convergence performance to a feasible solution. A 
feasible solution is found after 11 iterations with an accept‐
able optimization gap of only 0.13%.

The above analysis shows that although the proposed dis‐
tributed optimization framework cannot guarantee fast con‐
vergence to the optimal solution, it is capable of finding a 
near-optimal feasible solution in a few iterations. In practical 
applications, DC can balance the trade-off between optimali‐
ty and computation time to determine when to terminate the 
iteration process.

F. Scalability Tests on Guangdong 500 kV Provincial Power 
System in Southern China

The topology of the Guangdong 500 kV provincial power 
system in Southern China is shown in Fig. 11, consisting of 
280 thermal units (132 coal-fired units and 148 gas-fired 
units), 20 hydro units, 32 pumped storage stations, 14 nucle‐
ar units, 19 PV stations and 32 wind farms with total capaci‐
ties of 71414 MW, 35431 MW, 1046.5 MW, 9680 MW, 
16402 MW, 950 MW, and 12510 MW, respectively. Besides, 
the system has been interconnected with 14 tie lines, provid‐
ing a total capacity of 44000 MW to import electric power 
from other provinces. The maximum total load is set to be 
122273 MW, according to the historical data. Moreover, the 
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planned number of 5G macro BSs to be constructed in 
Guangdong Province in 2025 is 160000. With such a great 
number of BSBBs, it is intractable to conduct centralized op‐
timization.

A sensitivity analysis is conducted on the number of 
BSBBs involved in the ancillary services. We document the 
number of iterations and corresponding total operational cost 
when a feasible solution is first found under different num‐
bers of BSs involved, as shown in Fig. 12, where the opera‐
tional cost without BSBBs is also presented for comparison. 
We observe that the operational cost decreases as the num‐
ber of BSBBs involved increases and is always lower than 
that of the case without BSBB participation. This verifies 
the effectiveness in enhancing the economics of power sys‐
tem operations.

Besides, the number of iterations required to find a feasi‐
ble solution does not increase with the number of BSBBs in‐
volved. Moreover, the number of iterations (shown as the 
red dots) is always less than 20. This demonstrates the scal‐
ability and practicality of the proposed distributed optimiza‐
tion framework.

V. CONCLUSION 

This paper proposes a two-stage stochastic UC model in‐
corporating operational reserve and post-contingency frequen‐

cy support ancillary service provisions from massive BSBBs 
in cellular networks, considering the minimum backup ener‐
gy demand to ensure the BS power supply reliability. The en‐
ergy, operational reserve, and frequency support reserve are 
co-optimized to ensure power balance and frequency securi‐
ty in both forecasted and stochastic VRE scenarios. Further‐
more, a distributed optimization framework is proposed to 
decompose the original problem into two main entities, i.e., 
DC optimization and BS optimization. The optimization of 
each BS is autonomous, distributed, and parallel, which en‐
sures great scalability. In addition, both the storage and pro‐
cessing of the BS model parameters are performed locally, 
and only the values of decision variables are transmitted be‐
tween the two entities. This effectively protects the privacy 
of BS data.

Case studies on a modified IEEE 14-bus system demon‐
strate the effectiveness of the proposed model in promoting 
VRE accommodation, ensuring post-contingency frequency 
security, enhancing operational economics, and fully utiliz‐
ing the dispatchable energy and power capacity of BSBBs. 
Besides, the proposed distributed optimization framework is 
validated to converge to a near-optimal feasible solution 
within a few iterations. Moreover, numerical results on 
Guangdong 500 kV provincial power system verify the scal‐
ability and practicality of the proposed distributed optimiza‐
tion framework.
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