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Abstract—Base station (BS) backup batteries (BSBBs), with
their dispatchable capacity, are potential demand-side resources
for future power systems. To enhance the power supply reliabili-
ty and post-contingency frequency security of power systems,
we propose a two-stage stochastic unit commitment (UC) model
incorporating operational reserve and post-contingency frequen-
cy support provisions from massive BSBBs in cellular networks,
in which the minimum backup energy demand is considered to
ensure BS power supply reliability. The energy, operational re-
serve, and frequency support ancillary services are co-opti-
mized to handle the power balance and post-contingency fre-
quency security in both forecasted and stochastic variable re-
newable energy (VRE) scenarios. Furthermore, we propose a
dedicated and scalable distributed optimization framework to
enable autonomous optimizations for both dispatching center
(DC) and BSBBs. The BS model parameters are stored and pro-
cessed locally, while only the values of BS decision variables are
required to upload to DC under the proposed distributed opti-
mization framework, which safeguards BS privacy effectively.
Case studies on a modified IEEE 14-bus system demonstrate
the effectiveness of the proposed method in promoting VRE ac-
commodation, ensuring post-contingency frequency security, en-
hancing operational economics, and fully utilizing BSBBs’ ener-
gy and power capacity. Besides, the proposed distributed optimi-
zation framework has been validated to converge to a feasible
solution with near-optimal performance within limited itera-
tions. Additionally, numerical results on the Guangdong 500 kV
provincial power system in China verify the scalability and
practicality of the proposed distributed optimization framework.

Index Terms—Base station, backup battery, operational re-
serve, frequency security, distributed optimization, privacy.
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1. INTRODUCTION

THE transition towards net-zero carbon emission has cre-
ated a shortage of flexibility resources for maintaining
power balance in power systems [1], [2]. Simultaneously, the
large-scale replacement of synchronous generators (SGs)
with inverter-based variable renewable energy (VRE) will re-
sult in an increasingly prominent frequency security issue
[3], [4]. The scarcity of operational reserve and post-contin-
gency frequency response (including inertial response (IR)
and primary frequency response (PFR)) resources will pose
a threat to the power system reliability and security [5]. To
address these problems, demand-side resources have
emerged as potential participants in the provision of ancil-
lary services for the power system, driven by the develop-
ment of end-user electrification [6]. Among them, the de-
mand response (DR) potential of base station (BS) backup
batteries (BSBBs) is increasingly gaining attention.

The fast development of information and communication
technology (ICT) has led to a significant increase in the
number of constructed 5G BSs. According to the Guangdong
Provincial Department of Industry and Information Technolo-
gy in China, the cumulative number of 5G macro BSs in the
province is expected to reach 160000 by 2025 [7], with a to-
tal BSBB capacity of 1600 MW, accounting for approximate-
ly 1% of the forecasted peak load in Guangdong, China, in
2025 [8]. These massive BSBBs represent a potential re-
source to provide operational reserve [9] and frequency sup-
port services [10] to power systems. However, the primary
function of BSBBs currently is to ensure BS power supply
reliability, and they have not yet been involved in power sys-
tem operations. Considering the tidal effect of BS traffic
load and the traffic sensitivity of BS power load [8], the de-
mand for BSBB backup energy varies at different times of
the day. This renders BSBBs with dispatchable capacity, en-
abling them to provide operational reserve services to the
power system while ensuring the BS power supply reliabili-
ty. Additionally, the inverter-based BSBBs exhibit fast re-
sponse capabilities [11], allowing them to provide IR and
PFR services to the power system with their spare power ca-
pacity, thereby ensuring post-contingency frequency security
[12]. Under the current operation mode of cellular networks,
the dispatchable energy capacity of BSBBs for power sys-
tem operations is not utilized, resulting in prolonged periods
of idleness and wastage of resources.

Some studies have explored the involvement of BSBBs in
power system operation. The dispatchable capacity of
BSBBs has been evaluated and utilized for energy services
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in [8], [13]. Reference [14] further investigates the potential
of the spare capacity of BSBB in stabilizing the photovoltaic
(PV) output in 5G BS microgrids. Besides, a rule-based
mechanism is constructed to coordinate the spare capacity of
massive distributed BSBB to provide secondary frequency
regulation service [15]. Reference [16] considers 5G BSBBs
as a new flexible resource and uses them to optimize the
voltage profile of active distribution networks. Yet few stud-
ies have explored the utilization of dispatchable capacity of
BSBB for providing operational reserve and frequency sup-
port ancillary services, which are of significant value for
maintaining the power supply reliability and security in fu-
ture power systems. And the corresponding model for utiliz-
ing BSBBs to provide these ancillary services has not been
well-developed, representing a research gap in this field.

Another important aspect to consider is the excessive com-
putational burden brought by centralized optimization when
a large number of BSBBs are involved in power system op-
erations. BSBBs are characterized by small individual capaci-
ties and a large quantity, and it is impractical to model and
optimize the scheduling of such a great number of BSBBs
and sizable generation units together in a centralized manner.
The aggregation and scheduling of a massive amount of de-
mand-side resources have been extensively studied. The ag-
gregation control of smart buildings for primary frequency
support is studied in [17]. The aggregated heating, ventila-
tion, and air conditioning (HVAC) systems are used for ancil-
lary services such as secondary frequency regulation [18],
peak shaving [19], and operational reserve [20]. Similarly,
electric vehicles are aggregated to smooth the load profile
[21], provide frequency control services [22], accommodate
VRE generation [23] and handle the VRE uncertainty [24].
Nevertheless, dispatching center (DC) and mobile operators
are separate entities, and uploading BSBB model parameters
to DC or aggregators poses an inherent risk of privacy breach-
es, particularly in relation to the BS traffic load profiles [25].

Distributed optimization offers a solution to address both
the computational burden brought by massive BSBBs and
the need to protect the privacy information of BS. Existing
research works have applied distributed optimization to the
scheduling of various entities, including microgrids [26], en-
ergy communities [27], [28], and electric vehicles [29], aim-
ing to address the computational burden associated with cen-
tralized solutions. Besides, some studies have employed dis-
tributed optimization to address privacy concerns. The peer-
to-peer energy sharing among energy buildings through dis-
tributed transactions is studied [30]. Reference [31] proposes
a finite-time consensus-based distributed optimization algo-
rithm to solve the economic dispatch problem. A distributed
deep reinforcement learning method is proposed for intelli-
gent load scheduling in residential smart grids in [32]. Simi-
lar to the above studies, the computational burden and priva-
cy concerns associated with large-scale BSBB scheduling
are expected to be addressed through distributed optimiza-
tion. Nevertheless, the detailed design of the distributed opti-
mization framework dedicated to the scheduling of massive
BSBBs has not been well-studied.

Based on the review of the existing research works, two
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main issues arise when incorporating BSBBs into power sys-
tem operation: (1) developing a model for operational re-
serve and frequency support provisions for BSBBs, and
designing a dedicated and scalable distributed optimization
framework suitable for the participation of large-scale
BSBBs in the cellular networks to address the computational
burden and privacy concerns related to the centralized opti-
mization. To fill in the above-mentioned research gaps, this
paper proposes a two-stage stochastic unit commitment (UC)
model with operational reserve and frequency support provi-
sions from massive BSBBs, in which the dispatchable capac-
ity of each BSBB is evaluated according to the BS traffic
load profile. We reformulate the proposed two-stage stochas-
tic UC model to enable distributed optimization, thereby en-
suring scalability and protecting the privacy information of
BS. Specifically, our main contributions are summarized as
follows.

1) To cope with the uncertainty of VRE generation and
complement the frequency support resources, we incorporate
BSBBs into the operational reserve, IR, and PFR ancillary
services, thereby enhancing the reliability and security of fu-
ture power systems. The corresponding ancillary service pro-
vision model for BSBBs is developed considering their mini-
mum backup energy demand to ensure BS power supply reli-
ability.

2) We propose a two-stage stochastic UC model incorpo-
rating operational reserve and frequency support provisions
from massive BSBBs, in which the energy, operational re-
serve, IR, and PFR reserve are co-optimized to ensure the
power balance and post-contingency frequency security in
both forecasted and all stochastic VRE scenarios.

3) A dedicated distributed optimization framework suitable
for massive BSBBs is designed and realized through a spe-
cific problem reformulation method and the application of
the alternating direction method of multiplier (ADMM) algo-
rithm. Notably, our proposed framework enables autonomous
optimizations for both DC and individual BS, and all of the
BSBB model parameters are stored and processed locally,
thereby ensuring its scalability and protecting the privacy se-
curity of BS effectively.

The remainder of the paper is organized as follows. Sec-
tion II develops the two-stage stochastic UC model incorpo-
rating operational reserve and frequency support provisions
from massive BSBBs. The distributed optimization frame-
work is proposed in Section III. Case studies are conducted
in Section IV, and Section V draws the conclusions.

II. TWO-STAGE STOCHASTIC UC MODEL INCORPORATING
OPERATIONAL RESERVE AND FREQUENCY SUPPORT
PROVISIONS FROM MASSIVE BSBBS

In this section, we first evaluate the dispatchable capacity
of each BSBB according to its traffic load profile and back-
up duration demand. Then, the operational reserve and fre-
quency support provision model for BSBBs is proposed, fol-
lowed by the two-stage stochastic UC model incorporating
ancillary services from BSBBs. Finally, the proposed model
is linearized.
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A. Evaluating Dispatchable Capacity of BSBBs

Due to the uneven temporal distribution of cellular net-
work businesses, the traffic load 7% of BSs exhibits signifi-
cant tidal effects [33]. Besides, the power consumption of
5G BSs is traffic-sensitive, which can be modeled as [8]:

Lol TE 4B m

Due to the variation in power consumption of 5G BSs
throughout the day, the backup energy demand of BSBBs
varies during different time periods, as shown in Fig. 1. This
indicates that the backup energy of BSBBs does not need to
be constantly at its maximum level, providing potential for

their participation in ancillary services for power systems.

The minimum backup energy demand
of BSBB at 03:00,12:00, and 19:00
— Load profiles of an individual BS

BS load

3 hours

3 hours

00:00 04:00 08:00 12:00 16:00 20:00 24:00
Time

Fig. 1. Evaluation of backup energy demand of BSBBs.

Typically, most of 5G BSs are constructed with BSBBs
for a backup duration of 3 hours to meet the reliability re-
quirements for power supply [15]. Thus, the minimum back-
up energy demand of BSBB £ at time instant ¢ can be calcu-
lated:

t+ThS
BB = [ LB )
— t

kt

B. Operational Reserve and Frequency Support Ancillary
Service Provision Model for BSBBs

The upward and downward operational reserve capacities
and PFR and IR reserve capacities provided by BSBB &
should satisfy the following constraints. Without loss of gen-
erality, this paper only considers the frequency drop event
caused by sudden power shortage.
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PEP+ REP 4 LE< PR ®)

Formula (3) limits the charging and discharging power of
BSBB k. Formulas (4)-(6) limit the SoC of BSBB k. Formu-
la (7) ensures the sum of operational reserve and PFR/IR re-
serve capacities is within the power capacity of BSBB. For-
mula (8) corresponds to the limit of power source capacity
of BS.

Utilizing the dispatchable capacity of BSBBs, the upward
and downward reserve deployments of BSBB £ in stochastic
VRE scenario s are expressed as:

BSBB,u
RS20

BSBB,d
R.v, k.t 2 O

)

BSBB.u BSBB.d __ pBSBB _ BSBB
Rs.k,t _Rs,k,t _Pk,t Ps.k,t

The upward and downward reserve deployments of BSBB
k should not exceed their corresponding reserve capacities.

BSBB.u BSBB.u
O < Rs. kt < Rk.t

BSBB.d BSBB.d ( 1 O)
O<Ry <R

Besides, the energy storage of BSBB £ in each stochastic
scenario s should be subjected to the following constraints.

BSBB _ p7BSBB BSBB
E T =EC +POA Vi

ERT=ERY (11)

BSBB BSBB BSBB
Ek,t gE‘s,k.t < Ek

In addition, the IR/PFR reserve deployment of BSBB £ in
both the forecasted scenario and stochastic scenario s should
not exceed its corresponding operational reserve capacity, re-
spectively.

SBB, D BSBB.IR
0 SAPftBB'IR < R;fztb’B IR
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C. Two-stage Stochastic UC Incorporating Operational Re-
serve and Frequency Support Ancillary Services for BSBBs

A two-stage optimization problem is proposed to cope
with the VRE uncertainties. The first-stage decisions are
made in the day-ahead scheduling when the forecasted VRE
scenario has been given, including UC, power generation,
operational reserve capacity, and frequency support reserve
capacity of both SGs and BSBBs. The real-time regulations
are made in the second stage to deal with the VRE uncertain-
ties during the intra-day operation process, including the de-
ployment of operational reserve and PFR/IR reserve.

The objective function of the two-stage stochastic UC
model is shown as follows:
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where the first six terms represent the first-stage operational
costs, including the energy costs of SGs, i.e., fuel, startup,
and shutdown costs (the first term), energy costs of BSBBs
(the second term), the operational reserve capacity costs of
SGs (the third term) and BSBBs (the fourth term), the PFR
reserve capacity costs of SGs (the fifth term), and the PFR/
IR reserve capacity costs of BSBBs (the sixth term), respec-
tively. The second-stage operational costs consist of the pen-
alty for VRE curtailment (the seventh term), operational re-
serve deployment costs of SGs (the eighth term) and BSBBs
(the last term) in the stochastic scenarios.
The first-stage constraints include:

2P+ Z = 2L+ 2P

GdeRGu_,’_cheRGd) +

s.i.t S, It

(14)

15)
PO U(J + EPI m,t
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R Smm{PG "USPLUS-PS)
. 17)
< R <min{PEUS, PG~ PGUS)
0< RE™™ < PLUS- P~ RE! (18)
O SAPgﬂadS RS;PFR
. _ A
AP-C;;"adS AP?KiG _T>G+ nAfH.YyS + T-067 T‘“AP?; (19)
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it — i
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APffBB’ S8 £ KlffBB Afss

where the lower bound of system inertia H,** in (19) can be
estimated by the rate of change of frequency (RoCoF) thresh-
old, i.e, H™ = AP,O/( 2fR"C"F). Formula (15) ensures the

t

power balance in the forecasted VRE scenario. Formula (16)
describes the power limits of SG i. Formulas (17) and (18)
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limit the operational reserve capacity and PFR reserve capac-
ity of SG i. Formulas (19) and (20) limit the PFR reserve de-
ployment of SG i for frequency nadir and QSS frequency
support in the forecasted scenario. Similarly, the limits for
PFR/IR reserve deployment of BSBB £ in the forecasted sce-
nario are shown in (21).

Moreover, we introduce the RoCoF constraints, frequency
nadir constraints [34], and QSS frequency constraints to en-
sure post-contingency frequency security in the forecasted
VRE scenario as:

AP <2f TN USHS + AP @)
APrOS zAPl%nad_‘_ EAP;S?‘BB,nad_{_KtDA_J( (23)
AP0< ZAPGH_{' EAPBSBB W"FKDAf“ (24)

The other first-stage constraints include (3)-(8), (12), ener-
gy cost constraints, ramping limit constraints and minimum
online/offline time constraints for SGs, and power flow con-
straints for transmission lines in the forecasted VRE scenar-
io [35].

The second-stage constraints are shown as follows:

S(RO:-RE:) +[(1-00, )P, - P | +

E(Rfi’i“ REZP) =0 25)
0<R%!< RO"
G,d Gd (26)
0<R% < K
0<4;,,<1 27)

Formula (25) ensures the power balance in each stochastic
scenario s. Formula (26) limits the reserve deployment of
SG i, while (27) limits the curtailment rate of VRE ;.

Moreover, the constraints related to post-contingency fre-
quency security in stochastic scenarios, i.e., (19)-(24), are al-
so included, with an index s added to them. The detailed
models are not presented for brevity.

The other second-stage constraints also include (9)-(11),
(13), ramping limit constraints for SGs, and power flow con-
straints for transmission lines in each stochastic VRE scenar-
io s [35].

Without loss of generality, the model proposed in this pa-
per does not incorporate the distribution network models. In
specific cases such as distribution line congestions, the solu-
tions obtained may lead to physically infeasible outcomes.
Nevertheless, the proposed model can be extended to encom-
pass the consideration for distribution networks, thus mitigat-
ing the aforementioned issues.

D. Model Linearization
The nonlinear absolute value term ‘P,f’_‘fBB ‘ in the objective
function (14) is recast into a linear one by introducing auxil-
iary variables {P,ffBB’L}. The auxiliary variables are subjected
to:
SBB, S
{PEIBB LZP/ftBB
BSBB,L BSBB
P k.t 2-P kit

(28)
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III. PROBLEM REFORMULATION FOR DISTRIBUTED
IMPLEMENTATIONS

The existence of massive BSs makes it challenging for
DC to collect detailed BS model parameters and conduct
centralized solving. Worse still, BSs are also reluctant to
share their information with DC due to privacy and security
concerns. In this section, we first equivalently reformulate
the original model into a decomposable form. Then, a distrib-
uted optimization framework is proposed using the ADMM
algorithm to enable autonomous optimization for both DC
and BSs. Finally, we highlight the potential for scalable ap-
plication and privacy protection of the proposed distributed
optimization framework.

A. Problem Reformulation

We categorize the entities involved in the proposed two-
stage stochastic UC model into two main components: DC
and BSBBs, where DC is responsible for optimizing the
scheduling of SGs, VRE stations, and transmission lines,
while BSs optimize their own decision variables. Then, the
proposed two-stage stochastic UC model can be abstracted
into the following form.

min (CDc)TXDC+ E(CBSBB)T[( XBSBB,only)T( XBSBB,Coup)T}T}
i k k

s.t. (XDC’X;?SBB,coup) c 5

( XkBSBB., only’ X]f?SBB,coup) c S:SBB
(29)

Specifically, X" includes all variables for SGs, VRE sta-
tions, transmission lines, and power system, including but

not limited to {CO7.Co. cf), {UC}, {PC.PS, | (R,
W}, {W }’ {RiGlu,RiG,d}’ {APiG.nad’APiGss}’ {5]V} XkBSBBA,only
and X[%%< include all variables for BS k, where X/ %o
includes variables that only directly related to BS £ itself,

ie, {ElfiSBB}’ {RfSBB.u’RfSBB,d }, {RfSBBJR’RfSBB,PFR }’ {KfSBB}’
and {H/"}, and the variables in X" are directly cou-
pled with the variables in X, including {P/**, pISioty
{ P;‘BSBB,IR’ APfSBB,nad’ APfSBB,xs }’ and { RfSBB.,u, R/I:’SBB,d}.

The original model (29) is an approximate N-block struc-
ture optimization problem, as shown in Fig. 2(a), where X
denotes all decision variables in the two-stage stochastic UC
problem and b denotes the constant terms in the constraints
of the two-stage stochastic UC problem. However, some con-
straints in $*° such as power balance and frequency security
constraints directly couple the decision variables of all SGs,
hindering the decomposition of (29). Applying a distributed
algorithm such as ADMM directly to (29) would result in
the inability to decompose the optimizations for massive
BSs. Consequently, achieving autonomous optimization of in-
dividual BSs would be unattainable, thus failing to effective-
ly address the challenges arising from limited computational
resources and privacy concerns associated with the extensive
involvement of BSs. To address this, we introduce a set of
auxiliary variables A7*#<? for DC to decouple the direct
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coupling relationships among BSBBs, as shown in Fig. 2(b)
and (30).

Variables
i i i
| | |
A
| |
,,,,,,,,,,, T
| S |
T R £ B S R SR
Constraints " GisHE
)
|
|

DC BSBB,only YBSBB,only BSBB,only
X XBsBBonly X XBseBonly
BSBB,coup yBSBB,coup BSBB,coup
Xl XZ XK
(a)
Variables
i i i
e : : :
| i i
,,,,,,,,,,,,,, PR e |
. ' ¢BSBB ! !
Constraints | ______________ }ig,l _____ o
| | §BsBE |
,,,,,,,,,,,,,, P2
l 1 A
i i |
| | |
DC BSBB,only yBSBB.only BSBB.only
X X! Xt X2

BSBB,coup yBSBB,coup ...
X] XZ

XBSBBJm«p
K

Auxiliary constraints: 4ZS88:.cour=xESBB.coup
(b)

Fig. 2. Problem reformulation of original model. (a) Approximate N-block
structure optimization. (b) Decoupling direct coupling relationships among
BSBBs.

T

min{ (CDC)TXDC+ E(CfSBB)T[( XkBSBB.,only)T( XkBSBB,(,'oup)Tj| n
k

SYS DC BSBB, coup BSBB BSBB, only BSBB, coup
(X0, ) 5 g gy )}
k
BSBB. coup __ v BSBB. coup
s.t. A; =X,
(30)
where the indicator functions are given:
O (XDC XBSBB,cuup) essyx
s ) 2Rk
55)/3(XDC’ XkBSBB.,wup) — e — . (31)
M (X 9Xk ,wup) z SV
BSBB BSBB, only BSBB,coup \ _
OB X X/ )=

0 ( X}:S’SBB,only’ XkBSBB,coup) c SkBSBB

BSBB, only BSBB, coup BSBB (32)
M (X{ D¢ ) & S;

B. Distributed Implementations Using ADMM Algorithm

The augmented Lagrangian function of problem (30) is
given as:

L= (CDC)TXDC+ (C]fSBB )T( (X]fzsz?B,only)T(XkBSBB,coup )T )T n
53}’5( XDC, AfSBB, coup ) + 261{35'38( XkBSBB, unly’ X/(BSBB, coup ) +
k

T
BSBB BSBB, coup _ BSBB. coup )
> (a757) (A7 X +
k

P BSBB. coup BSBB, coup 2
3 2| arrnen x|
2 k

2

(33)

where p is a well-defined given positive parameter. Then, we
apply the ADMM algorithm to realize distributed optimiza-
tion, which is presented in Fig. 3.
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\Step 1: distributed parallel optimizations,

| i Value‘of BS scheduling variables
: : {XBSBB,wup }
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DC Lo |

- Eg 0!

il I 0.7 |
I 2

kot

Step 3: convergence criteria and
dual variable update

Dc@
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Solve Solve Solve | Convergence criteria:
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Fig. 3. Distributed optimization framework.
Step 1. distributed parallel optimization of BSs. Each BS

k parallelly decides its own decision variables (X,ffﬁﬁ’“"'f",

X o ) by solving (33) with the current auxiliary vari-

ables A% and dual variables 4;":
. BsBB\ " BSBB.only \ \ ( v BSBB.coup \ | !
min (Ck ) (Xk : ) (Xk : ) +

T
BSBB BSBB, only BSBB, coup ) BSBB BSBB, coup _
IBSEE( X | X + (A5SEE) (A

BSBB, coup P BSBB, coup BSBB, coup 2
X, + (A4 -X
k 2 k

(34

k.n ‘2

Formula (34) is equivalent to the following problem ( P/5*#).

(35)

Then each BS & will submit its decisions X %5<% to DC.

Step 2: centralized optimization of DC. DC optimizes the
decision variables X9 and auxiliary variables A/%%<% ac-

cording to the current decision variables X/ 2<% of each
BS k and dual variables 45"

(PBSBB). min{(CBSBB)T[(XBSBB,only)T(XBSBB,mu}?)T]T+
k . k k k

.
BSBB BSBB.coup _ 7 BSBB,coup | | P_|| 4BSBB.coup _ yr BSBB, coup
(}’k.n ) (Ak,n Xk )+ 2 Ak,il Xk

S.t. (leiSBB,only,XkBSBchoup) c SfSBB

min |:( CDC ) TXDC_’_&S}'S(XDC’ AfSBBA, coup ) +

T
BSBB BSBB, coup __y BSBB, coup B BSBB, coup _ 3 BSBB, coup
E(lk‘n ) (Ak Xk,n+] )+ 2 Ak X
k

2
- k,n+1 ‘zi'
(36)
Formula (36) is equivalent to the following problem ( P°C).

(PDC) : |:mln (CDC)TXDC + 2( iif,BB )T( AfSBB. coup _XBSBB, mup) +
k

(37

Then, DC will distribute the auxiliary variable 47" to
each BS %.

Step 3: update of convergence criteria and dual variables.
DC first verifies whether the convergence criteria in (38) are
met.

P BSBB, coup BSBB, coup
o3 x
2 k

kn+1

s.t. (XDCv’AfSBB,coup) essys

2 2
_ BSBB,coup __ 7 BSBB, coup
‘ | ‘2— z||Ak,n+1 X ”2 <&
3
2_ 2 BSBE, BSBB, 2 (38)
— ,Coup_ , Coup
‘ Sy |2—,D 2" > Gigu Xin |2 sé
3

The first criterion is used to determine whether the solu-
tion X250, XA and X250 is a feasible one of the
original problem, while the second criterion verifies whether
the optimal solution has been reached.

If convergence criteria in (38) are satisfied, the iteration
stops, and the system will be scheduled accordingly. Other-
wise, DC will update the dual variables A°”", as shown in

(39), and then send them to the corresponding BS k. Subse-
quently, the process returns to Step 1.

kn+1 k.n kn+1 kn+1 (39)

)BSBB _ ;BSBB | p( A BSBB.coup _ XBSBB,coup)

C. Scalable Applications and Privacy Protection

The proposed distributed optimization framework holds
great potential for scalable applications where massive BSs
participate in power system operations. In Step 1, each BS k
solves its own optimization problem (P/***) in an autono-
mous, distributed, and parallel manner. As for Step 2, the
number of auxiliary variables A7« in ( P") increases lin-
early with the number of BSs involved. Nevertheless, all
auxiliary variables are continuous, and the increase in the
number of BSs will not lead to an increase in the number of
constraints in (PDC). Accordingly, the increase of BSs does
not significantly amplify the complexity of solving (PDC). In
conclusion, under the proposed distributed optimization
framework, the computational burden caused by massive
BSs can be shared through distributed computing. Conse-
quently, it is suitable for scalable applications.

Besides, under the proposed distributed optimization
framework, the only information that BSs need to submit to
DC is the values of their decision variables X/**#<%. In ad-
dition, the model parameters of BSBBs, i.e., those in (3)-
(13), as well as their traffic load profiles are stored and pro-
cessed locally, which effectively protect the privacy of cellu-
lar networks.

IV. CASE STUDIES

The effectiveness and scalability of the proposed model
are validated on a modified IEEE 14-bus system and Guang-
dong 500 kV provincial power system in Southern China, re-
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spectively. All optimization problems are handled on the
MATLAB platform and solved by the commercial solver
GUROBI, while all dynamic response process simulations
are conducted on MATLAB/Simulink. The simulations are
carried out on a computer with an Intel Core i5-10400F@
2.90 GHz CPU and 24 GB RAM. The optimization gap is
set to be 1x107™,

A. Basic Data of Modified IEEE 14-bus System

The illustrative example is conducted on a modified IEEE
14-bus system, as shown in Fig. 4. There are 5 SGs in the
system, whose parameters are shown in Table I. The maxi-
mum total load is 362.6 MW. The cost of operational re-
serve capacity, reserve deployment, and PFR reserve capaci-
ty for SGs are set to be 0.4, 1.3, and 1.3 times their highest
incremental prices, respectively [20]. The total forecasted
wind and load power curves are shown in Fig. 5, and the
green shaded area denotes the forecasted error range of wind
power. The penalty of wind power curtailment is set to be
200 $/MWh. Five hundred stochastic wind scenarios are gen-
erated within 10% forecasted error, and then reduced to 20
representative scenarios by the method in [35].

G3wi

BS cluster

Fig. 4. Modified IEEE 14-bus system.

TABLE I
TECHNICAL PARAMETERS OF SGS IN IEEE 14-BUS SYSTEM

. The minimum Ramping Inertia Response
.. Capacity . . 00p
Unit (MW) generation capacity  constant . " constant
MW) (MW/h) (s) (s)
Gl 332 116 133 4.0 35 3
G2 140 49 56 4.0 35 3
G3 100 35 40 3.5 35 3
é 140 Wind power Load power
é 120 /'/. o« '\.\
2 100 Paa
2 20 Teege . , .
B 0 4 8 12 16 20
Time (hour)
Fig. 5. Forecasted wind and load power curves.

Besides, BSs are supposed to be installed at each load
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bus, and the total BS capacity is set to be approximately 1%
of the peak load at that bus. Thus, 360 BSs are deployed in
the system. For each BS, the power source capacity is 12
kW, and the charging/discharging power capacity and energy
capacity of each BSBB are set to be 10 kW and 30 kWh, re-
spectively [36]. The BSBB prices for operational reserve ca-
pacity, reserve deployment, and PFR/IR reserve capacity are
set to be 12 $/MWh, 30 $/MWh, and 30 $/MW, respectively,
and the maximum droop factor is set to be 50 [37], [38].

The disturbance AP? is assumed to be 5% of the total
load during period ¢. The nominal frequency is set to be 50
Hz, and the threshold of RoCoF, frequency nadir, and QSS
frequency are set to be 0.5 Hz/s, 0.5 Hz, and 0.3 Hz, respec-
tively [3].

Three cases are set and compared to verify the effective-
ness of the proposed two-stage stochastic UC model.

Case 1: BSBBs with dispatchable capacity are only al-
lowed to provide energy services.

Case 2: BSBBs with dispatchable capacity are allowed to
provide energy and operational reserve services.

Case 3: BSBBs with dispatchable capacity are allowed to
provide energy, operational reserve, and post-contingency fre-
quency support ancillary services.

B. Effectiveness Validations of Operational Reserve Capaci-
ty and Deployment Demand, and Post-contingency Frequen-
cy Security

The operational reserve capacity and deployment demand
in all stochastic wind scenarios and post-contingency fre-
quency security metrics in cases 1-3 are shown in Fig. 6 and
Fig. 7, respectively.

g
=
S
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>
2
é - 1 6 L L L L L ]
0 4 8 12 16 20 24
Time (hour)
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:E 16
= 8
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35S 0 F <O SR A ARIBEAL ARSI YRS N A -
g8
2
S -16 : : : .
~ 0 4 8 12 16 20 24
Time (hour)
(b)
|5
=
S
S
&
<
[
Z
2
g 16 . . . . . .
0 4 8 12 16 20 24
Time (hour)
(©)
Reserve deployment; — Downward operational reserve capacity

—— Upward operational reserve capacity

Fig. 6. Operational reserve capacity and deployment demand. (a) Case 1.
(b) Case 2. (c) Case 3.
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From Fig. 6, it can be observed that the reserve deploy-
ment demand in all stochastic wind scenarios can be satis-
fied by the day-ahead operational reserve capacity, which
verifies the effectiveness in maintaining power balance.

Similarly, the simulation results in Fig. 7 show that the
RoCoF, frequency nadir, and QSS frequency of cases 1-3 are
kept within the corresponding secure thresholds. These veri-
fy the effectiveness of the used frequency security con-

Moreover, the frequency nadir metric in case 3 is more se-
cure than those in cases 1 and 2, which is attributed to the
fast response feature of BSBBs.

It should be mentioned that, as this paper does not ac-
count for the uncertainty of disturbances and the IR/PFR re-
serve capacity is determined in the day-ahead scheduling
stage, the post-contingency frequency security metrics in the
dynamic simulation results remain the same for both fore-
casted and stochastic scenarios in the same case.

C. Benefits for BSBB Utilizations and Operational Econom-
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=% . \ L . . )
0 4 8 12 16 20 24
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50.6—
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S04rsnppnge®ellsy,
s ©®o00 oo Sassssssaas
&4\02 L 1 1 1 1 J
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Time (hour)
(b)
504
P
2
qé0.3 R R A R e S e S e
&
Z
02 L 1 I 1 L .
<% 4 8 12 16 20 o4
Time (hour)
© ics

m Case 1 (forecasted); » Case 2 (forecasted); ® Case 3 (forecasted)
m Case 1 (stochastic); a Case 2 (stochastic); e Case 3 (stochastic)
----RoCoF threshold

Fig. 7. Post-contingency frequency security metrics. (a) RoCoF. (b) Af at
nadir. (¢) QSS frequency.

The detailed operational costs of cases 1-3 are compared
in Table II. Besides, the scheduling results of massive
BSBBs are shown in Fig. 8, where SoC stands for state of
charge.

TABLE 11
COMPARISON OF OPERATIONAL COSTS

First-stage First-stage energy . . . Reserve Second-stage reserve  Second-stage
Total start up/ cost ($) First-stage  Capacity cost (§) ~ First-stage cost ($) deployment cost (§)  wind curtail-
Case reserveof —— PFR/IR of
cost ($) shut down ment penalty
cost ($) SG  BSBB  Total SG BSBB  Total SG BSBB Total SG BSBB Total )
1 184854 14310 136770 198 136968 7911 0 7911 17301 0 17301 7478 0 7478 885
2 183304 14310 136872 136 137008 6263 1273 7536 17171 0 17171 5705 992 6697 583
3 181715 14310 136608 131 136739 7021 760 7781 13264 1950 15214 6399 630 7029 641
_ 6 _ 6 6
2 4L ... 2 AL ________ 2 4L ________
=0 $am Sl g
50 5 0 50
z. L L za LA  :-f ||
o e el BERR. T . AT ] el ittt i i
8 12 16 20 24 0 4 8 12 16 20 24 0 4 8 12 16 20 24
Time (hour) Time (hour) Time (hour)
(a) (®) ()
12 12 P
---------------------- AR A A A A
= 6 < h N = 6 W =
o 7 N o 7’ N (5]
g3 7 B3RV S
~ - . ) . ) | ~ - . ‘ . . ! ~ ) ) ) ) ) |
0 4 8 12 16 20 24 0 4 8 12 16 20 24 0 4 8 12 16 20 24
Time (hour) Time (hour) Time (hour)
(d) (e) (®
- - - The maximum SoC; — - - The minimum SoC; Forecasted scenario; Stochastic scenario; - - - - The maximum BSBB power; — BSBB power
----The minimum BSBB power;  Downward operational reserve capacity; = Upward operational reserve capacity; = PFR/IR reserve capacity
Fig. 8. Scheduling results of massive BSBBs. (a) Case 1 (power and operational reserve capacity of BSBBs). (b) Case 2 (power and operational reserve ca-

pacity of BSBBs). (c) Case 3 (power and operational reserve capacity of BSBBs). (d) Case 1 (SoC of BSBBs). (e) Case 2 (SoC of BSBBs). (f) Case 3

(SoC of BSBBs).

In case 1, massive BSBBs are only allowed to provide en-
ergy service, and the dispatch result of BSBBs is shown in

Fig. 8(a) and (d). The limited utilization of BSBB energy ca-
pacity is evident. This can be attributed to the fact that dur-
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ing the peak load period (16-20 hours) of the power system,
the load demand of BSs also reaches its highest level of the
day. Consequently, there is a high demand for backup energy
of BSBB, and their dispatchable capacity is small. As a re-
sult, the capability of BSBBs in peak shaving is constrained.

Compared with case 1, BSBBs are further allowed to pro-
vide operational reserve services in case 2, which reduces
the pressure on SGs to ensure power balance. Additionally,
it enhances the overall reserve capability of the power sys-
tem and reduces wind curtailment. The above results have
led to a 0.84% improvement in the total operational cost of
the power system. From Fig. 8(b) and (e), we can observe
that during leisure hours of BS such as 0-6 and 23-24 hours,
the power capacity of BSBB can be fully utilized to provide
operational reserve services. However, during busy periods
of BS, i.e., 8-20 hours, the operational reserve capacity pro-
vided by BSBBs is at a relatively low level throughout the
day. This is because the dispatchable capacity of BSBBs is
limited during those periods, and accordingly, their power ca-
pacity is underutilized. Otherwise, it may compromise the se-
curity of BSBB operations or impact the reliability of the
BS power supply. Therefore, the power capacity utilization
of BSBBs is not sufficient during busy periods of BS.

Furthermore, BSBBs are allowed to participate in the fre-
quency support ancillary services in case 3. Due to the short
duration of the PFR/IR dynamic process, typically around 30
s, the provision of these frequency support services does not
have a significant impact on its storage energy. Consequent-
ly, the underutilized power capacity of BSBBs in case 2 can
be fully utilized in case 3, releasing more flexibility of
BSBBs. This reduces the burden on SGs for providing fre-
quency support ancillary services and improves the econom-
ic performance of the power system, specifically, with opera-
tional cost reductions of 1.70% and 0.87% compared with
those of cases | and 2, respectively.

D. Frequency Security Sensitivity Analysis

A sensitivity analysis is conducted on disturbance ratio, as
shown in Fig. 9. It can be observed that the total operational
cost of case 3 is always the lowest. This is because both the
energy and power capacity of massive BSBBs have been ful-
ly utilized.

Cases 1 and 2

195 (infeasible)

2190 |
= 185 \ ™ Case 3
g 180 | | (infeasible)
5 175 ! ‘
2 170 !
0 1 2 3 4 5 6

Disturbance ratio (%)

Fig. 9. Sensitivity analysis on disturbance ratio.

Furthermore, compared with cases | and 2, case 3 allows
BSBBs to provide PFR/IR services, enhancing the system
ability to handle sudden power disturbance. Specifically, in
cases 1 and 2, the power system can handle a maximum dis-
turbance of approximately 21.8 MW, while in case 3, the
ability to handle the maximum power disturbance increases
to 25.4 MW.
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E. Convergence Performance of Proposed Distributed Opti-
mization Framework

The iteration process of the proposed distributed optimiza-
tion framework is presented in Fig. 10. The parameters for
the convergence criteria are set as ¢,=1x10" and &,=1x
107*, respectively.
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Fig. 10. Convergence performance of proposed distributed optimization
framework. (a) Total cost. (b) Optimization gap.

Since the proposed two-stage stochastic UC model is a
non-convex optimization problem with integer variables, it is
challenging to ensure the convergence to the global optimal
solutions when applying the proposed distributed optimiza-
tion framework. Specifically, the optimization gap converges
to 0.08% after 2000 iterations, but does not reach the opti-
mal solution. However, it can also be observed from Fig. 10
that the proposed distributed optimization framework exhib-
its great convergence performance to a feasible solution. A
feasible solution is found after 11 iterations with an accept-
able optimization gap of only 0.13%.

The above analysis shows that although the proposed dis-
tributed optimization framework cannot guarantee fast con-
vergence to the optimal solution, it is capable of finding a
near-optimal feasible solution in a few iterations. In practical
applications, DC can balance the trade-off between optimali-
ty and computation time to determine when to terminate the
iteration process.

F. Scalability Tests on Guangdong 500 kV Provincial Power
System in Southern China

The topology of the Guangdong 500 kV provincial power
system in Southern China is shown in Fig. 11, consisting of
280 thermal units (132 coal-fired units and 148 gas-fired
units), 20 hydro units, 32 pumped storage stations, 14 nucle-
ar units, 19 PV stations and 32 wind farms with total capaci-
ties of 71414 MW, 35431 MW, 1046.5 MW, 9680 MW,
16402 MW, 950 MW, and 12510 MW, respectively. Besides,
the system has been interconnected with 14 tie lines, provid-
ing a total capacity of 44000 MW to import electric power
from other provinces. The maximum total load is set to be
122273 MW, according to the historical data. Moreover, the
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planned number of 5G macro BSs to be constructed in
Guangdong Province in 2025 is 160000. With such a great
number of BSBBs, it is intractable to conduct centralized op-
timization.

o Bus; eSwitch station; &PV station; m Thermal unit
oPumped storage station; 4 Onshore wind farm
@ Hydro unit; 4 Offshore wind farm; @ Nuclear unit

Fig. 11.
Southern China.

Topology of Guangdong 500 kV provincial power system in

A sensitivity analysis is conducted on the number of
BSBBs involved in the ancillary services. We document the
number of iterations and corresponding total operational cost
when a feasible solution is first found under different num-
bers of BSs involved, as shown in Fig. 12, where the opera-
tional cost without BSBBs is also presented for comparison.
We observe that the operational cost decreases as the num-
ber of BSBBs involved increases and is always lower than
that of the case without BSBB participation. This verifies
the effectiveness in enhancing the economics of power sys-
tem operations.

Besides, the number of iterations required to find a feasi-
ble solution does not increase with the number of BSBBs in-
volved. Moreover, the number of iterations (shown as the
red dots) is always less than 20. This demonstrates the scal-
ability and practicality of the proposed distributed optimiza-
tion framework.

34.4 30
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E_./ 342 20 _5
= 34.0 o110 =
° ° e o o o ° ® o
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Fig. 12.
services.

Sensitivity analysis on number of BSBBs involved in ancillary

V. CONCLUSION

This paper proposes a two-stage stochastic UC model in-
corporating operational reserve and post-contingency frequen-
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cy support ancillary service provisions from massive BSBBs
in cellular networks, considering the minimum backup ener-
gy demand to ensure the BS power supply reliability. The en-
ergy, operational reserve, and frequency support reserve are
co-optimized to ensure power balance and frequency securi-
ty in both forecasted and stochastic VRE scenarios. Further-
more, a distributed optimization framework is proposed to
decompose the original problem into two main entities, i.e.,
DC optimization and BS optimization. The optimization of
each BS is autonomous, distributed, and parallel, which en-
sures great scalability. In addition, both the storage and pro-
cessing of the BS model parameters are performed locally,
and only the values of decision variables are transmitted be-
tween the two entities. This effectively protects the privacy
of BS data.

Case studies on a modified IEEE 14-bus system demon-
strate the effectiveness of the proposed model in promoting
VRE accommodation, ensuring post-contingency frequency
security, enhancing operational economics, and fully utiliz-
ing the dispatchable energy and power capacity of BSBBs.
Besides, the proposed distributed optimization framework is
validated to converge to a near-optimal feasible solution
within a few iterations. Moreover, numerical results on
Guangdong 500 kV provincial power system verify the scal-
ability and practicality of the proposed distributed optimiza-
tion framework.
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