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Abstract——Battery energy storage systems (BESSs) serve a 
crucial role in balancing energy fluctuations and reducing car‐
bon emissions in net-zero power systems. However, the efficien‐
cy and cost performance have remained significant challenges， 
which hinders the widespread adoption and development of 
BESSs. To address these challenges, this paper proposes a real-
time energy management scheme that considers the involve‐
ment of prosumers to support net-zero power systems. The 
scheme is based on two shared energy storage models, referred 
to as energy storage sale model and power line lease model. 
The energy storage sale model balances real-time power devia‐
tions by energy interaction with the goal of minimizing system 
costs while generating revenue for shared energy storage provid‐
ers (ESPs). Additionally, power line lease model supports peer-
to-peer (P2P) power trading among prosumers through the pow‐
er lines laid by ESPs to connect each prosumer. This model al‐
lows ESP to earn profits from the use of power lines while bal‐
ancing power deviations and better consuming renewable ener‐
gy. Experimental results validate the effectiveness of the pro‐
posed scheme, ensuring stable power supply for net-zero power 
systems and providing benefits for both the ESP and prosumers.

Index Terms——Shared energy storage, energy storage provider 
(ESP), energy management, peer-to-peer (P2P) trading, net-zero 
power system.

I. INTRODUCTION 

IN recent years, the clean and low-carbon transformation 
of the power systems has become an important develop‐

ment direction for energy and electricity [1]. The net-zero 
power system is a new type of power system constructed to 
ensure net-zero carbon emission. Carbon capture technology 
is one of the most critical net-zero technologies available, 
and is essential to achieving the goal of zero and negative 

carbon emissions [2] - [4]. In this context, the development 
and utilization of renewable energy sources (RESs) can re‐
duce the environmental pollution and ecological damage 
caused by excessive reliance on fossil fuels, optimize the en‐
ergy structure, and effectively alleviate global climate 
change and other environmental issues [5]. However, the in‐
stability and intermittency of the RES make it challenging to 
maintain a balance between electricity grid demand and sup‐
ply, leading to fluctuations in frequency and voltage within 
the power systems [6].

The application of battery energy storage systems 
(BESSs) serve as an effective means to tackle the aforemen‐
tioned challenges. They have gained extensive application in 
peak and frequency regulation within power systems. BESSs 
help mitigate fluctuations in RES generation and enhance 
the dependability of power delivery to electricity consumers 
[7]-[10]. On the energy supply side, RESs such as wind pow‐
er and photovoltaic (PV) power have been experiencing rap‐
id development. However, their output is intermittent, which 
leads to a mismatch between supply and demand [11]. The 
integration with energy storage not only enables the provi‐
sion of continuous and reliable electricity to users but also 
mitigates the impact of distributed power on the stability of 
power systems [12]-[14]. Using demand-side energy storage 
configuration as an example, energy storage by storing elec‐
tricity in low prices of grid and vice versa can save electrici‐
ty expenses for users. Additionally, it helps reduce the load 
on the grid [15]-[17]. Previous research on user-side energy 
storage has typically focused on the “self-storage, self-use” 
mode, resulting in a significant amount of unused storage re‐
sources and exposing issues of investment waste, thereby 
failing to achieve the maximum effectiveness [18]. Some re‐
searchers have examined the case for energy storage sharing 
among users. In [19], multiple load users can share their in‐
vested BESSs mutually. In [20], numerous households can 
utilize an auction mechanism to share their BESSs with pub‐
lic facilities in community. However, [18]-[20] still necessi‐
tated that users bear the investment of BESSs. The excessive 
cost of investment imposes an economic burden on users, ex‐
acerbating issues such as resource idleness typically ob‐
served on the user side.

Over the past decade, the emergence of the sharing econo‐
my has provided a novel approach to improving the efficien‐
cy of resource use, which has been widely used in fields 
such as housing rental and transportation and has resulted in 
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significant economic gains [21] - [23]. Accordingly, the con‐
cept of “shared energy storage”, which combines the sharing 
economy and energy storage, has been proposed to address 
the challenges of high investment costs and operational diffi‐
culties of energy storage operations [24], [25]. The shared 
model provides a clearer and more explicit investment frame‐
work to attract third-party capital investment and develop‐
ment. Energy storage providers (ESPs) offer energy storage 
services to users, which can be categorized into two types: 
capacity-based allocation and energy-based interaction. In 
[26], users can acquire capacity from shared energy storage 
facilities. This approach has the capability to decrease the av‐
erage investment cost of energy storage, but due to the fun‐
damental absence of practical energy exchange users, the at‐
tainment of optimal social energy remains unachievable. In 
[27], the ESP aggregated the BESS charging and discharging 
strategies of all users, and coordinated the optimal design of 
the capacity of shared energy storage based on the results of 
the aggregation with the objective of minimizing the total 
cost. Reference [28] modeled the interaction between the op‐
erator of facilities such as energy storage and the users as a 
two-level optimization problem, using apartment buildings 
equipped with energy storage and PV facilities as the study 
object. In this case, the distributed energy facilities such as 
energy storage are owned by a third party, and the users in 
the residential building can choose to purchase electricity 
from the facilities such as energy storage or from the grid to 
meet their daily electricity demands.

The development of the energy management strategy is an‐
other significant concern within the realm of energy sharing 
[29]. The energy management system is responsible for 
scheduling, managing, and planning the energy sharing sys‐
tems, ensuring coordinated economic operation among its 
various modules [30]. It should be noted that the develop‐
ment of energy management strategy is closely associated 
with the proposal of energy sharing mechanism. However, 
[30] explored a rather limited pattern of energy storage shar‐
ing, focusing only on the service model wherein ESPs offer 
charging and discharging services to users under third-party 
investment and construction.

Recently, the coordination between prosumers and ESPs 
has led to better energy utilization. In [31], a new coopera‐
tive sharing framework was proposed in day-ahead (DA) 
stage, which consists of prosumers, an ESP, and an ESP 
agent. Reference [32] focused on how an energy sharing net‐
work can be formed among prosumers with the assistance of 
an ESP, which was considered as an energy management is‐
sue within a smart grid context. Reference [33] proposed a 
framework for peer-to-peer (P2P) energy sharing of build‐
ings in a community to achieve sustainable development of 
building communities. However, the above studies did not 
consider the environmental pollution caused by CO2 emis‐
sions in the energy sharing process. There is a lack of rea‐
sonable trading rules for energy sharing behaviors among 
prosumers through ESPs. Furthermore, the realization of P2P 
specific energy sharing among prosumers lacks the support 
of practical lines. Moreover, the aforementioned literature 
primarily focused on investigating energy sharing manage‐

ment strategies in the DA stage. However, in the real-time 
stage, electricity demands to be purchased from the grid at a 
high price, which not only increases system expenses but al‐
so indirectly contributes to carbon emissions. Hence, deter‐
mining a rational energy sharing mechanism is a fundamen‐
tal issue. And it is crucial to introduce a real-time energy 
management scheme for facilitating energy sharing in net-ze‐
ro power systems. In real-time energy management, energy 
can be dynamically adapted to be generated and consumed 
in response to changes in demand, thereby better mitigating 
the challenges posed by energy fluctuations. In addition, the 
real-time energy management utilizes real-time information 
for intelligent deployment of energy demand and supply, 
which effectively reduces operating costs and improves utili‐
zation efficiency. Therefore, real-time energy management 
has become a research hotspot of energy section. Reference 
[34] proposed a real-time energy management method for 
electric vehicles that combines batteries and supercapacitors, 
which utilizes a Pontryagin’s minimum principle strategy to 
save the cost of battery usage. Reference [35] proposed a re‐
al-time energy management scheme based on an adaptive ap‐
proach, which reduces the operating cost of microgrids. Ref‐
erence [36] proposed an optimal real-time energy manage‐
ment scheme based on optimal currents, which coordinates 
distributed renewable energy generation to reduce the energy 
demand of the distribution network. However, the real-time 
energy management for shared energy storage is imperfect, 
so it is a fundamental problem to develop a reasonable ener‐
gy sharing mechanism.

Herein, we propose a new framework for net-zero power 
systems and give a real-time energy management scheme. 
The new framework consists of carbon capture power plants, 
thermal power units, wind turbines, ESP, prosumers, and de‐
mand responses (DRs). Carbon capture power plants are the 
result of decarbonizing traditional thermal power units, en‐
abling highly carbonized thermal power units to achieve low-
carbon emissions for the purpose of reducing carbon emis‐
sions from the system. An ESP charges and discharges as 
well as shares its lines under the management of the system 
operator. Prosumers equipped with shifting loads and PV bal‐
ance their own demand and supply by participating in the 
framework, and the ESP deploys power lines for groups of 
prosumers to realize energy interactions among prosumers. 
DRs facilitate the provision of responsive services to address 
the demand requirements of the system. We focus on an en‐
ergy management optimization problem during the real-time 
stage. The real-time energy management optimization takes 
into account both the energy storage sale model and the pow‐
er line lease model of ESP, and in order to guarantee the net-
zero nature of the system, the carbon capture power plant 
and wind turbine also provide the energy supply. Consider‐
ing the cost of participants in the net-zero power system and 
the cost of P2P power trading among prosumers, the goal is 
to minimize the total cost of the system through energy man‐
agement.

To this end, this paper aims to address the issue of real-
time energy sharing management in the net-zero power sys‐
tem. The main contributions and organization of the paper 
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are outlined as follows.
1) A novel real-time energy management scheme based on 

shared energy storage is developed for net-zero power sys‐
tems. In the proposed scheme, a real-time energy manage‐
ment model is established, taking into account the cost of 
carbon capture power plants, operating costs of thermal pow‐
er units, the load-shifting cost of DR, and the battery degra‐
dation cost of ESP. Furthermore, the cost of P2P power trad‐
ing among prosumers is considered to address the issue of 
energy shortage after DA scheduling.

2) Two sharing models of ESP are proposed for the real-
time stage, expanding energy sharing into the energy storage 
sale model and the power line lease model. The energy stor‐
age sale model involves the collaboration between ESP and 
carbon capture power plants to mitigate energy imbalances. 
The power line lease model aims to provide circuits for P2P 
transactions among prosumers. The combined effect of these 
sharing models enhances the consumption of renewable ener‐
gy and increases the profitability of ESPs.

3) A P2P power trading approach based on game theory is 
proposed within a shared energy storage framework to ad‐
dress real-time partial supply shortages. Stepped lease fees 
are set up for lines constructed by ESP to be leased by ex‐
porting prosumers (EPs). Building upon the known power 
line lease fees, a game-based pricing strategy is employed 
between EPs and importing prosumers (IPs). This process en‐
hances the utility for prosumers and promotes the consump‐
tion of renewable energy.

The rest of this paper is organized as follows. Section II 
presents the mathematical model that describes the main enti‐
ties involved in the energy sharing framework for net-zero 
power systems. In Section III, a real-time optimization mod‐
el of energy sharing for net-zero power systems is proposed. 
Numerous case studies are carried out in Section IV. Section V 
provides a summary of the main contributions of this paper.

II. MATHEMATICAL MODELING OF ENERGY SHARING 
FRAMEWORK FOR NET-ZERO POWER SYSTEMS 

The energy sharing framework for net-zero power systems 
is shown in Fig. 1, which includes the carbon capture power 
plant, wind turbines, ESP, load, prosumers, and DRs.

21 Energy storage sale model; Power line lease model

Prosumer j Prosumer l

LoadDRs

BESS

ESP Prosumers

1 2

Carbon capture

power plant

Carbon

capture system

Wind

turbines

Power flow; Information flow;CO2; P2P power flow

Fig. 1.　Energy sharing framework for net-zero power system.

Carbon capture power plant is the low-carbon one that im‐
prove on traditional thermal power units; wind turbines act 

as power generators to provide electricity to the system load; 
ESP owns numerous BESSs; and electricity users exhibit var‐
ious electricity attributes, including shiftable loads such as 
DRs, prosumers with rooftop PV, and others with conven‐
tional loads. Every participant is linked to a network, and 
the information network and the energy network have been 
adequately established to facilitate the smooth communica‐
tion and the exchange of energy among all participants. The 
model for each participant is described below.

A. Modeling of Carbon Capture Power Plant

Carbon capture power plant is the result of low-carbon 
transformation of traditional thermal power units, enabling 
high-carbon power plants to achieve the objective of reduc‐
ing system emissions. The total power output of carbon cap‐
ture power plants includes two components: net output pow‐
er and carbon capture energy consumption [37].

PGit =PGHit +PYit +PDi (1)

where PGit is the total power generated by the thermal pow‐
er unit i; PGHit is the net output power of the thermal power 
unit i; PDi is the fixed energy consumption of carbon cap‐
ture; and PYit is the operational energy consumption of car‐
bon capture. The relationship between PYit and the amount 
of CO2 captured EBCO2it

 can be expressed as:

PYit = σi EBCO2it (2)

where σi is the energy consumption required per unit of CO2 
captured. The actual carbon emissions from the thermal pow‐
er unit are as follows:

EGit = ei PGit (3)

where ei is the carbon emission intensity of the thermal pow‐
er unit i.

B. Modeling of DR

The system operator has the ability to flexibly adjust the 
electricity consumption schedule of DR loads [38]:

∑
t = 1

T

P load
mt =∑

t = 1

T -
P

load
mt (4)

P loadmin
mt £P load

mt £P loadmax
mt (5)

where P load
mt  and 

-
P

load
mt  are the actual shiftable load and the ex‐

pected shiftable load of DR m in time slot t, respectively; 
P loadmin

mt  and P loadmax
mt  are the minimum and maximum shift‐

able load limits, respectively; and T is the energy manage‐
ment period.

C. Modeling of ESP

In real-time energy management, in order to address the 
deviations that persist after the DA scheduling due to the un‐
certainty of renewable energy, as shown in Fig. 1, there are 
two different energy sharing models of ESP available for sys‐
tems when it comes to shared energy storage. The first mod‐
el is the energy storage sale model, where ESP under the co‐
ordination of system operators engages in charging and dis‐
charging operations in different time slots. This enables ener‐
gy transfer within the system while increasing the revenue 
of ESP. The second model is the power line lease model, 
which involves sharing the energy storage lines directly with‐
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out the involvement of batteries. This allows for energy  
sharing among prosumers by utilizing the shared energy stor‐
age infrastructure. Notice that these two different models 
work simultaneously in a net-zero power system, due to the 
fact that energy supply and demand do not match at every 
moment.
1)　Energy Storage Sale Model

In the energy storage sale model, it is essential for system 
operators to establish energy management plans. Within 
these plans, the ESP undergoes regulated charging and dis‐
charging actions under the control of the system operator, 
for which the system operator provides compensation [39]:

Est =Est - 1 + η
ch P ch

st -
1
ηdis

P dis
st (6)

0 £P ch
st £P chmax

s Ust (7)

0 £P dis
st £P dismax

st (1 -Ust ) (8)

E min
s £Est £E max

s (9)

EsT =Es0 (10)

where ηch and ηdis are the charging and discharging efficien‐
cies of the ESP, respectively; P ch

st and P dis
st  are the charging 

and discharging power of the ESP in time slot t, respective‐
ly; Ust is a binary variable representing the charging and dis‐
charging state of the BESS in time slot t; P chmax

st  and P dismax
st  

are the maximum charging and discharging power of the 
ESP, respectively; Est is the capacity of the ESP in time slot 
t; E min

s  and E max
s  are the minimum and maximum residual ca‐

pacities of the ESP, respectively; and Es0 and EsT are the ini‐
tial state and final state of the shared energy storage capaci‐
ty, respectively.
2)　Power Line Lease Model

Compared with the traditional transaction pricing mecha‐
nism, a stepped line lease fee pricing mechanism is used in 
order to ensure the reasonableness of the cost of leasing ESP 
for prosumers. The pricing mechanism divides the purchase 
intervals into multiple segments, and as the length of the 
leasing line increases, the purchase price of the correspond‐
ing distance interval increases:

λP2P
D =

ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïïï
ï

ï

ï

λDlj                                                     0 £Dlj < d

λ(1 + α)(Dlj - d)+ λd                       d £Dlj < 2d

λ(1 + 2α)(Dlj - 2d)+ λ(2 + α)d      2d £Dlj < 3d

λ(1 + 3α)(Dlj - 3d)+ λ(3 + 3α)d    3d £Dlj < 4d

λ(1 + 4α)(Dlj - 4d)+ λ(4 + 6α)d    Dlj ³ 4d

(11)

where λP2P
D  is the stepped line lease fee set by ESP for EPs; 

λ is the line lease price coefficient for decision-making of 
ESP, which is used to compensate for line losses incurred by 
ESP; d is the distance interval length; α is the price growth 
rate; and Dlj is the distance between prosumers in P2P trans‐
actions, which reflects the utilization level of P2P transac‐
tions between prosumers for the shared routes constructed 
by ESP.

D. Modeling of Prosumers

Prosumers play a crucial role in the power line lease mod‐

el as entities capable of both generating and consuming elec‐
tricity. In the energy sharing, we assume that prosumers dur‐
ing each time period can be classified into IPs and EPs 
based on their individual electricity situation.

The EP determines the line lease fee to be paid by the IP 
with whom it conducts a P2P transaction based on the length 
of the distance and credits it to the revenue function. As sell‐
ers of electricity in P2P transactions, the EPs want to maxi‐
mize their financial benefits. The profit of EPs UEP consists 
of the electricity sold, the electricity price, and the line lease 
fee:

UEP =∑
t = 1

Ta

(φt pjt - λ
P2P
D pjt ) (12)

where ∑
t = 1

Ta

φt pjt is the income of P2P power trading; Ta is the 

period in which the P2P transaction among prosumers oc‐
curs; φt is the ultimate matched price for P2P power trading 
in time slot t; and pjt is the discharging power of the EP.

In P2P transactions among prosumers, the IP aims to pur‐
chase electricity at a lower price. Moreover, the IP also ex‐
pects the seller to provide electricity in a timely manner to 
meet its own power consumption demands. Therefore, the 
electricity purchasing behavior of IP is influenced by both 
the price and the reputation of the EP. To better describe the 
electricity purchasing demands of prosumers, an utility func‐
tion UIP is established for the IP:

UIP = q1∑
t = 1

Ta

φt plt - q2 Rj - q3∑
t = 1

Ta

klt ln(1 + plt ) (13)

where plt is the charging power of the IP; Rj is the reputa‐
tion value of the EP who provides electricity to the IP, and a 
higher reputation value indicates a higher quality of charging 
service provided by the EP; q1 and q2 are the preference co‐
efficients of the IP for charging costs and the reputation val‐
ue of the EP, respectively; q3 is the coefficient of the utility 
received by the pronsumer for carrying out the consumption 
of electrical energy; and kltln(1 + plt ) is the utility that IP 
achieves through consuming energy plt. The IP determines 
the values of q1 and q2 based on their own preferences, and 
they satisfy the condition q1 + q2 + q3 = 1.

III. REAL-TIME OPTIMIZATION MODEL OF ENERGY SHARING 
FOR NET-ZERO POWER SYSTEMS 

A. Description of Proposed Real-time Energy Management 
Scheme

We present an overview of a two-stage decision-making 
process involving the net-zero power system. Due to the in‐
volvement of fewer entities in the decision-making process 
in the DA stage, and the absence of participants such as 
shared energy storage, our research focuses on energy shar‐
ing management strategies in the real-time stage. The sched‐
uling process of the DA stage is not elaborated in detail. The 
decision-making process for real-time energy management is 
based on careful consideration of system structure and ener‐
gy sharing models. The corresponding flowchart of the opti‐
mization problem modeling is illustrated in Fig. 2.
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1) DA optimization. The net-zero system considers the 
economic costs of individual participants in the case of load 
demand forecast and wind power output forecast. The pur‐
pose of the DA scheduling plan is to provide a baseline for 
the startup and shutdown condition of the units and an out‐
put reference of the following day [40].

A one-hour time interval is used, with a one-day cycle, to 
formulate a 24-hour scheduling plan for the following day 
based on short-term forecast of load and wind power. The 
objective function C1 consists of startup and shutdown costs, 
carbon trading costs, and thermal unit operating cost:

min C1 =min(CK +CP +CH ) (14)

PWt +∑
i = 1

n

uit PGHit =Pelt (15)

uit P
min
Gi £PGit £ uit P

max
Gi (16)

-RDi £PGit -PGit - 1 £RUi (17)

where CK is the startup and shutdown cost of thermal power 
units; CP is the cost of purchasing carbon emission trading 
rights; CH is the operating cost of thermal power units; P min

Gi  
and P max

Gi  are the minimum and maximum output power of 
thermal power unit i, respectively; RDi and RUi are the down 
ramp rate (hourly) and up ramp rate (hourly) of thermal pow‐

er unit i, respectively; PWt is the planned wind power output 
in the energy management; uit is the startup and shutdown 
status of thermal power unit i; n is the number of units; and 
Pelt is the amount of electricity used by the load in time slot 
t. The output climbing speed constraint, thermal unit startup 
and shutdown time constraints, and spinning reserve con‐
straints of the thermal power unit are detailed in [41].

For the purpose of assessing the stability of the distribu‐
tion network, the power fluctuation of the distribution net‐
work (energy deviation after DA scheduling due to wind 
power output forecast deviation) DP is defined as:

DP =
|

|

|
||
|
|
| (PWt +∑

i = 1

n

uit PGHit) -Pelt

|

|

|
||
|
|
|⩽ ε (18)

where ε is the threshold of fluctuation. When the deviation 
between the generation side and the load side is significant 
denoted by | P flu

t | > ε, the system operator will perform fur‐
ther real-time stages of energy management to maintain the 
balance of energy supply and demand.

2) Real-time optimization. The scheduling results in DA 
stage can promote the energy utilization efficiency of the 
proposed framework by minimizing the total energy cost, 
based on which the bidding power for the next 24 hours is 
declared to the electricity market. After the transaction settle‐
ment in DA phase is optimized, in order to improve the effi‐
ciency of energy utilization, the benefits of ESP are in‐
creased, and the carbon emissions during the real-time stage 
are reduced. A real-time energy management scheme based 
on shared energy storage is proposed to ensure the balance of 
energy supply and demand of the system and net-zero carbon 
emissions, considering the existence of wind power output 
forecast deviations. The scheme is based on energy sharing 
management realized in two different sharing models of ESP.

B. Overall Objective Function

The purpose of the system operator during the real-time 
stage is to provide a unit output plan, which is based on ul‐
tra-short-term forecast of wind power and load in 15-min pe‐
riods. Considering unit operating costs, carbon trading costs, 
load shifting costs for DR, battery degradation costs for ESP, 
and P2P power trading costs for ESP lines, the overall objec‐
tive function can be established as:

min C =min CESSM +min CP2P (19)

where CESSM is the total system cost under the energy storage 
sale model; and CP2P is the cost of P2P power trading under 
the power line lease model.

In the real-time stage of energy management, the consider‐
ation of unit startup and shutdown is omitted. Instead, the fo‐
cus lies solely on operating costs, carbon trading costs, load 
transfer costs associated with DR, and battery degradation 
costs associated with ESP.

Given that the startup and shutdown schedule of thermal 
power units has been determined in DA stage, the relevant 
constraints are not considered. However, since the time scale 
changes from 1 hour to 15 min, the climbing constraints and 
spinning reserve constraints for thermal power units are mod‐
ified. The mathematical formulation for this can be ex‐
pressed as:

Carbon capture

power plants

Wind power

output forecast

Bidding for the purchase and sale of

electricity in the DA market

ΔP

Wind turbine ESP

Load demand

forecast

DR

EP IP
ESP: setting a

pricing

mechanism for

line lease Prosumer j Prosumer l

Sellers Buyers

Minimized total cost function (19)

with constraints (27)-(37)

?�P2P

trading price

? Lease

price

Carbon trading costs

Unit operating costs

DR compensation costs

Battery degradation

costs for ESP

Objective function Constraints

Power balance constraint

Operational constraints of

carbon capture power plants

Energy storage operation

constraints

DR load constraints

Real-time energy sharing management scheme

Energy storage sharing of ESP

DA scheduling

Carbon capture

power plants

Power line leasing of ESP

Fig. 2.　Flowchart of optimization problem modeling.
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CESSM =CH +CP +Cm (P load
m )+Cs (P ch

s P dis
s ) (20)

where Cm (×) is the cost of compensation for DRs; P load
m : =

[P load
m1 P

load
m2 ...P

load
mT ]; Cs (×) is the cost of charging and dis‐

charging of ESP; P ch
s : = [P ch

s1P
ch
s2...P

ch
sT ]; and P dis

s : =
[P dis

s1 P
dis
s2 ...P

dis
sT ]

However, carbon trading occurs when there is a variance 
between carbon emissions and carbon emission allowances.

CP can be expressed as:

CP = γ (Ea -∑
i = 1

n∑
t = 1

T

θb PGit ) (21)

where γ is the carbon trading price; Ea is the amount of CO2 
emitted by the thermal power unit i operating in time slot t; 
and θb is the carbon allowance coefficient. CP consists of 
two parts: the first one represents the amount of CO2 pro‐
duced by the thermal power unit i operating in time slot t, 
and the second one is the amount of CO2 captured by the 
carbon capture device.

CK can be expressed as [41]:

CK =∑
i = 1

n

τ i∑
t = 1

24

[uit (1 - uit - 1 )+ uit - 1 (1 - uit )] (22)

where τ i is the unit startup and shutdown cost of thermal 
power unit i.

CH can be expressed as:

CH =∑
t = 1

T∑
i = 1

n

(ai P
2
Git + bi PGit + ci ) (23)

where ai, bi, and ci are the operating cost coefficients of ther‐
mal power unit i.

Cs (P ch
s P dis

s ) can be expressed as:

Cs (P ch
s P dis

s )= ρs∑
t = 1

T

(P ch
stη

ch +P dis
st /ηdis ) (24)

where ρs is the degradation parameter of the BESS for ESP, 
and ρs > 0.

However, the alteration of electricity schedules inevitably 
affects user comfort. Therefore, the system operator needs to 
provide appropriate compensation. Cm (P load

m ) can be ex‐
pressed as:

Cm (P load
m )= βm∑

t = 1

T |
|

|
| P

load
mt -

-
P

load
mt (25)

where βm is the unit scheduling cost of load for DR, which 
reflects the adverse impact on the deviation of shiftable load 
for DR m.

In order to conclude transactions among prosumers, we de‐
sign a P2P power trading scheme among prosumers, which 
normalizes the trading behavior of prosumers. It is assumed 
that in the real-time energy management stage, the value of 
power deviation after the energy storage sale model of ESP 
can be compensated by the P2P trading volume of all pro‐
sumers, and the overall system will not generate additional 
energy demand. The P2P power trading among prosumers is 
facilitated through shared energy storage infrastructure, and 
therefore, prosumers should allocate a certain power lease 
fee to the ESP. However, this cost is influenced by the dis‐
tance among the prosumers engaged in transactions and the 

length of power lines connected to the shared energy storage 
infrastructure, as well as the power of P2P transactions in 
which the prosumers participate in. Prosumers aim to mini‐
mize the frequency of P2P transactions as much as possible 
in order to reduce their costs and maximize their own utility.

CP2P =∑
jÎK
∑
t = 1

T

λP2P
D || P P2P

ljt (26)

where K is the set of EPs; and P P2P
ljt  is the power of P2P fi‐

nal transactions among prosumers.

C. Constraints

1)　Power System Constraints
The main constraints of the power system include power 

balance constraints, thermal power unit output constraints, 
thermal power unit ramp constraints, spinning reserve con‐
straints, and wind power output constraints.

∑
i = 1

n

PGHit +PWt - ( )Pelt +∑
m = 1

M

P load
mt +P ch

st -P dis
st +P P2P

ljt = 0 (27)

where M is the number of DRs.
Notice that (16) and (17) represent the constraints of the 

DA schedule, while the climbing and spinning reserve con‐
straints in the real-time stage are as follows:

-
RDi

4
£PGit -PGit - 1 £

RUi

4
(28)
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∑
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n

min é
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êêêê ù

û
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RDi

4
PGHit - uit P
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GJi ³ μ11 Pelt + μ22 Pwcp

(29)

where μ11 and μ22 are the reserve capacity factors set for 
load and wind power uncertainty, respectively; P max

GJi  and P min
GJi  

are the maximum and minimum net output power of thermal 
power unit i, respectively; and Pwcp is the installed capacity 
of the wind farm.

The upper and lower bounds of wind power are:

0 £PWt £PFt (30)

where PFt is the predicted wind power.
2)　Prosumer Constraints

The amount of electricity sold by the EP j is described as:

preq £ pjt £ pmax
j     "tÎ Ta (31)

where preq and pmax
j  are the minimum and maximum power 

to support P2P transactions, respectively.
The battery capacity constraints for the EP are:

{Bjlim £Bjt =Bjt - 1 - pjt /ηj £Bjmax    "tÎ Ta

Bj1 =Bj0

(32)

where Bjlim is the limit value of battery capacity; Bjt is the 
the battery capacity of the EP’s own energy storage; Bjmax is 
the limit value of battery capacity; ηj is the charging/dis‐
charging efficiency of the battery of EP; and Bj1 =Bj0 indi‐
cates that the capacity of the battery at t = 1 is equal to the 
initial capacity value at t = 0, which implies that there is no 
discharging behavior between t = 0 and t = 1.

EP as the seller of the trading price should have a reason‐
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able price range:

φ1
t £ φt £ φ

u
t     "tÎ Ta (33)

where φ1
t  is the price of the previous charging of the EP; 

and φu
t  is the trading price of the real-time market.

∑
t = 1

Ta

plt = γl B
max
l -B0

l (34)

where Bmax
l  is the maximum battery capacity of the IP; B0

l  is 
the initial capacity of the IP; and γl is charging ratio coeffi‐
cient of the IP.

ì
í
î

ïï
ïï

0 £ plt £ pmax
l     "tÎ Ta

plt = 0    "tÏ Ta

(35)

∑
jÎK

pjt =∑
lÎ L

plt    "tÎ Ta (36)

where pmax
l  is the limit value for purchased power; and L is 

the set of IPs .

D. Solution

We use the YALMIP to build a mathematical model of en‐
ergy management and use the CPLEX to solve optimization 
functions in MATLAB, which is an ideal tool for solving 
mixed-integer linear programming.

In addition, given the solution to the problem of P2P pow‐
er trading strategies for prosumers, we formulate the optimal 
power pricing strategy as a multi-objective optimization 
problem. The objective of this optimization is to maximize 
the benefits for both parties involved in power trading, en‐
compassing economic gains and utility. The economic bene‐
fits are determined by the trading price, traded electricity, 
and the cost of selling electricity, which contribute to the 
economic benefits of IP and EP. Additionally, the utility as‐
pect is reflected by the comprehensive reputation value of 
EP. To establish the pricing mechanism, we propose a multi-
objective optimization function as [42]:

ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

max UEP =∑
t = 1

Ta

(φt pjt - λ
P2P
D pjt )

min UIP = q1∑
t = 1

Ta

φt plt - q2 Rj - q3∑
t = 1

Ta

klt ln(1 + plt )

(37)

IV. CASE STUDY 

A. Experiment Environment

The performance of designed energy sharing framework 
for the net-zero power system is confirmed on a laptop with 
an Intel Core CPU i7-9750H. We carry out the emulation 
cases on energy sharing systems with three prosumers and 
an ESP. Simulation parameters are provided in Table I.

Figure 3 shows the wind power forcast output for real-
time stages, and the load forecast result, dividing the 24 
hours into a sequence of 96 periods with each period sched‐
uled for 15 min. The PV power generation and PV energy 
consumption of the prosumers are shown in Fig. 4 and Fig. 
5, respectively, where p1 to p3 represent prosumer 1 to pro‐
sumer 3, respectively.

B. Results and Discussions

The energy sharing results of ESP under different energy 
sharing models in different time slots are given in Fig. 6 and 
Fig. 7, respectively. The SOC variation of the BESS is given 
in Fig. 8. The findings indicate that, with the objective of mini‐
mizing the economic cost of system energy management, the 
ESP operates with different sharing modes in different time 
slots, and both modes can coexist at the same time scale.

TABLE I
SIMULATION PARAMETERS

Parameter

Initial state of charge (SOC) of BESS

The minimum and maximum SOCs of BESS 

Length of interval in stepped line lease fee pricing 
mechanism

Carbon trading price

Price growth rate

Charging/discharging efficiency of BESS

Carbon capture efficiency

Fixed energy consumption

Rated charging/discharging power of ESP

Degradation factor for ESP

Carbon emission allowance factor

Value

0.2

0.2, 0.9

50 km

12 $/t

25%

98%

80%

5 MWh

40 MW

1.43 $/MW

0.7
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Fig. 3.　Predicted wind power output and load forecast result.
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Fig. 4.　PV power generation of prosumers.
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From the period when the ESP is under energy storage 
sale model, it can be observed that the power balance re‐
quirement of the system is satisfied due to the participation 
of energy storage devices in the regulation. This is demon‐
strated by the fact that: during periods with low-load de‐
mand or high wind power generation such as periods of 4-
16, the BESS is charged, while during periods with high-
load demand such as periods of 40-48 and 72-76, the BESS 
is discharged to replace some of the output of carbon cap‐
ture units and meet the load demand. When ESP shares its 

power lines, it can be observed from Fig. 7 that since the 
prosumer is a customer equipped with rooftop PV systems, 
the PV generation facilities cannot produce electricity during 
the periods of 01:00-06:00 and 19:00-24:00, and the sharing 
activity cannot be implemented. So P2P transactions among 
prosumers primarily occur during the period of 08:00-18:00.

Figure 9 shows the net output of thermal power units and 
the energy consumption of carbon capture units. Due to the 
presence of the solvent storage tank in the carbon capture 
power plant, the energy consumption of carbon capture units 
can be adjusted by regulating the solvent inventory. Specifi‐
cally, during peak-load periods, the energy consumption of 
carbon capture units is reduced, while during off-peak-load 
periods, it is increased. This can facilitate wind power inte‐
gration and improve the flexibility of the system.

Table II presents the system optimization results in differ‐
ent scenarios. Scenario 1 considers DRs and the installation 
of carbon capture power plants without shared energy stor‐
age devices. While Scenario 2 is built on Scenario 1 by inte‐
grating shared energy storage devices, resulting in a total 
cost reduction of $4328. The shared energy storage devices 
discharge during peak-load periods, and the surplus electrici‐
ty is utilized by the carbon capture units, leading to a signifi‐
cant reduction of 46.6% in system carbon emissions. The in‐
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Fig. 9.　Net output of thermal power units and energy consumption of car‐
bon capture units.

6000

5000

4000

3000

2000

1000

0 20 40 60 80 100

E
n

er
g

y
 c

o
n

su
m

p
ti

o
n

 (
k

W
h

)

Period

p1

p2

p3

Fig. 5.　Energy consumption of prosumers.
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Fig. 6.　Energy sharing results under energy storage sale model of ESP.
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clusion of shared energy storage devices also decreases the 
wind curtailment rate and improves wind power integration. 
ESP can profit from the charging and discharging activities 
as well as the leasing process, making it a profitable venture 
for ESP.

With known energy sharing results under power line lease 
model of ESP, Table III presents the real-time trading strate‐
gies between prosumers. Taking the energy sharing during 
the time period of 07:00-07:15 as an example, as shown in 
Fig. 7, there is a P2P trading between p1 and p3. The trans‐
action volume between them is 716 kWh. Based on known 
volumes, the trading prices and volumes for both p1 and p3 

at each 1-min time scale are shown in Table III. It can be ob‐
served that in time slots with higher trading power, the 
game-based electricity price is lower, while in time slots 
with lower power trading, the game-based electricity price is 
higher. Furthermore, P2P trading price of p1 and p3 is al‐
ways smaller than the electricity price in the real-time mar‐
ket, which is determined by the objective functions of the 
EP and IP. This greatly enhances the motivation of prosum‐
ers to participate in the shared energy storage framework, 
and improves the consumption of RESs. The profits of p1, 
p2, and p3 are $3375, $2940, and $4616, respectively.

V. CONCLUSION 

This paper highlights the significance of BESSs in achiev‐
ing stable power supply and reducing carbon emissions in 
net-zero power systems. A real-time energy management 
scheme is proposed in this study, which incorporates the par‐
ticipation of prosumers to support net-zero power systems. 
The scheme introduces two shared energy storage models: 
the energy storage sale model and the power line lease mod‐
el. The energy storage sale model, combined with a carbon 
capture power plant, effectively balances real-time power de‐
viations while minimizing costs. The sale of energy storage 
in BESSs generates revenue for ESP. The power line lease 
model facilitates P2P power trading among prosumers, utiliz‐
ing power lines laid by ESP to connect each prosumer. This 
model allows ESP to earn profits from power line usage 
while ensuring power balance and maximizing the consump‐
tion of RESs. Experimental results demonstrate the effective‐
ness of the proposed scheme, which ensures stable power 
supply in net-zero power systems.

For future work, the traditional centralized information 
management model should be avoided due to the large num‐
ber of user groups involved in shared energy storage transac‐
tions. Adopting this model would exacerbate the potential 
single point of failure, vulnerability to malicious attacks, and 

untrustworthiness of the central server. This will lead to the 
leakage of private data of each user, making it difficult to 
implement shared energy storage transactions reliably and se‐
curely.
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