JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 12, NO. 1, January 2024

225

Bi-level Multi-leader Multi-follower
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Abstract—In the competitive energy market, energy retailers
are facing the uncertainties of both energy price and demand,
which requires them to formulate reasonable energy purchasing
and selling strategies for improving their competitiveness in this
market. Particularly, the attractive multi-energy retail packages
are the key for retailers to increase their benefit. Therefore,
combined with incentive means and price signals, five types of
multi-energy retail packages such as peak-valley time-of-use
(TOU) price package and day-night bundled price package are
designed in this paper for retailers. The iterative interactions
between retailers and end-users are modeled using a bi-level
model of stochastic optimization based on multi-leader multi-fol-
lower (MLMF) Stackelberg game, in which retailers are leaders
and end-users are followers. Retailers make decisions to maxi-
mize the profit considering the conditional value at risk (CVaR)
while end-users optimize the satisfaction of both energy comfort
and economy. Besides, a distributed algorithm is proposed to
obtain the Nash equilibrium of above MLMF Stackelberg game
model while the particle swarm optimization (PSO) algorithm
and CPLEX solver are applied to solve the optimization model
for each participant (retailer or end-user). Numeral results
show that the designed retail packages can increase the overall
profit of retailers, and the overall satisfaction of industrial us-
ers is the highest while that of residential users is the lowest af-
ter game interaction.

Index Terms—Conditional value at risk (CVaR), energy retail-
er, multi-energy retail package design, multi-leader multi-follow-
er (MLMF) Stackelberg game, satisfaction.
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Set of market clearing price (MCP) scenario
Indexes of contracts and scenarios
Indexes of package types and end-user types

Indexes of time periods, retailers, and end-
users

Electricity comfort and economy satisfaction
weights of end-user j

Natural gas comfort and economy satisfaction
weights of end-user j

Usage proportion of bilateral contract & signed
by the retailer during period ¢

Risk factor weight and confidence levels of
retailer i

Probability of scenario w

Boundary parameter of peak-valley excess
coefficient in package 3

Bundled sale proportion in package 2
The gas signed by
bilateral contract k for retailers and end-users

maximum natural

The maximum and minimum natural gas de-
mands of type n end-user

Natural gas quota value of type n end-user in
package 4

Numbers of end-users and retailers
Number of electricity bilateral contract

Numbers of natural gas bilateral contract for
retailers and end-users

MCP in scenario @ during period ¢
Price of electricity by bilateral contract &

Prices of natural gas sold to retailers and end-
users by bilateral contract &

The maximum and minimum electricity prices
of residential end-user during peak period in
package 1

The first- and second-level electricity demand
limits in package 4
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P The maximum electricity signed by bilateral

contract k

QPA-max The maximum electricity purchased from day-
ahead market during each period

Qr, Qmin The maximum and minimum electricity de-
mands of type n end-user

oNtim Limiting value of night-time electricity
demand in package 2

Qkm QVm  Limiting values of electricity demand during
peak and valley periods in package 3

T, T, Ty, T,, Peak, flat, valley, day, night, and month

T Ty periods

C. Optimization Variables

G3X Natural gas purchased from bilateral contract
k of retailer i

Gf}_‘jsz Natural gas purchased by type n end-user j
from bilateral contract & during period ¢

prek, pMt pvaley Electricity prices of type n end-user during
peak, flat, and valley periods in package 1

P oo Electricity and natural gas prices of type n
end-user in package 1 during period ¢

plm, prieht Electricity prices of type n end-user in pack-
age 2 during day and night-time periods

pr? Electricity price of type n end-user in package

2 during period ¢

phbasie pErevad Bagic, reward, and penalty electricity prices of

E penalty type n end-user in package 3
pEt Electricity price of type n end-user in package
4
pitp2d p Electricity prices of type n end-user at the

first, second, and third levels in package 4

potsie pGrevad Basic, reward, and penalty natural gas

popenalty prices of type n end-user in package 4
plixed pGixed  Blectricity and natural gas prices of type n
end-user in package 5
o Electricity purchased from bilateral contract k&
of retailer i
peos Electricity purchased from day-ahead market
of retailer 7 in scenario w during period ¢
i G, Electricity and natural gas purchased by type

n end-user j from retailer i during period ¢

D. Other Variables

CEY", €U Costs of purchasing electricity and natural gas
from retailer i in package m for end-user j

coue Cost of purchasing natural gas by bilateral

contracts for end-user j

G, Qre - Monthly natural gas and electricity pur-
chased of type n end-user j from retailer ¢

total
tj.n

Gtotal

e Total natural gas and electricity demands of

type n end-user j during period ¢

Electricity prices at the first, second, and
third

E.4 E. 4
p Ist,n? pan,nf
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D levels of type n in package 4
BN The first- and second-level electricity con-

sumptions in package 4

I. INTRODUCTION

ITH the rapid development of the energy retailing

market, electricity retailers have gradually changed
into energy retailers by providing both electricity and gas
[1]-[4]. The options of end-users become further liberalized
in the completely competitive energy retailing market. But
most of small- and medium-size end-users only purchase en-
ergy from retailers since purchasing electricity directly from
the wholesale market may result in expensive trading costs.
In this situation, retailers purchase electricity on behalf of
end-users in the wholesale market as the intermediary be-
tween energy suppliers and end-users. It brings the uncertain-
ties of both energy price and end-user demand to retailers
[5]-[7]. Meanwhile, the competition among retailers becomes
more intense because of the increasing number of retailers.
Thus, for retailers, it is important to design suitable multi-en-
ergy retail packages for end-users with different energy de-
mand and behaviors to effectively address the above issues
and improve the satisfaction of end-users.

In order to hedge against the risk caused by frequent mar-
ket price fluctuations and end-user demand uncertainty, ener-
gy retailers need to determine optimal energy procurement
portfolio and energy sale prices. In [8] and [9], a short-term
planning model is developed to determine the day-ahead
(DA) market bidding strategies for retailers, which aims to
maximize the short-term profit. Reference [10] presents a
stochastic model for an electricity retailer with flexible de-
mands under the short-term market trading mechanism. Espe-
cially, providing abundant retail packages can improve the
end-user stickiness of retailers when participating in market
trading. In recent years, according to the Administrative Mea-
sures for Zhejiang Electric Power Retail Market (Trial), the
existing retail electricity price package mainly includes fixed
electricity price package, proportional share electricity price
packages, and market price linkage package in China. For
the fixed electricity price package, retailers and users agree
on a fixed transaction settlement price. For the proportional
share electricity price package, retailers and users agree on
the sharing benchmark price and sharing proportion. They
share the profits and risks based on the average monthly
trading price. For the market price linkage package, retailer
and users agree on an up or down fluctuation fee as the trad-
ing settlement price based on the average monthly trading
price. Furthermore, some scholars have also carried out
some studies on retail packages. Reference [11] designs elec-
tricity retail packages for different groups of residential con-
sumers by using the quantile regression method. By investi-
gating the electricity price change and load peak-valley ratio,
time-of-use (TOU) discount based on peak energy usage is
also designed in [11]. Reference [12] proposes an accurate
applicability evaluation model for the electricity retail pack-
age, where data envelopment analysis and the cloud model
are combined. A hybrid electricity retail package is proposed
in [13] based on the characteristics of end-users and the
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multi-attribute utility of package. The above studies focus on
designing the electricity retail package with price mechanism
for retailers, which pay little attention to the multi-energy re-
tail package. However, the modern power systems are evolv-
ing into integrated multi-energy system because of the low
carbon economy and tight interdependence among multi-en-
ergy. As a result, it is obviously vital to formulate multi-ener-
gy retail packages for retailers to improve overall operation
benefits.

At present, price-based demand response (DR) such as the
fixed, TOUs and ladder prices are mainly applied into the en-
ergy selling for retailers [14], [15]. Reference [16] provides
an adaptive and adjustable DR model for reducing the risk
of the retailer by simulating the impact of price signal on
each user’s load curve. In [17], a new two-stage DR is de-
signed for electricity retailers with the energy storage sys-
tem. Especially, the energy storage system could adjust the
charging/discharging behaviors according to the bidding pow-
er price. However, the incentive-based DR is still not intro-
duced into the multi-energy retail packages. Therefore, this
paper designs the day-night bundled electricity price pack-
age, which involves the bundled and gift method. Mean-
while, peak-valley reward-penalty electricity price and quota
natural gas price packages are also designed by innovative
reward and penalty programs.

In the competitive energy market, there are two relations
including alliance and game among different retailers [18].
The Stackelberg game based on the bi-level stochastic opti-
mization is used to model the interaction between retailer
and end-user [19]. In [20], the TOU price optimization for
users is modeled as a bi-level Stackelberg game between the
retailer and users. In [21], a Stackelberg game model with
one leader and multiple followers between the retailers and
the users is established to study the real-time pricing scheme
in a smart community. In [22], a one-leader and multi-fol-
lower game is developed to characterize the interactions be-
tween the demand-side management (DSM) center and us-
ers. In [23], the transaction between the retailer and end-us-
ers with elastic price-based DRs is modeled as a bi-level
Stackelberg game. However, the above studies mainly focus
on the game between one retailer and multiple end-users. In
the practice, many retailers would appear in the deregulated
energy market. Therefore, the trading between energy retail-
ers and end-users is gradually described as a multi-leader
and multi-follower (MLMF) Stackelberg game [24], [25]. A
two-leader two-follower Nash-Stackelberg game is applied
to formulate transaction problem considering consumer satis-
faction and integrated DR among retailers and users in [26].
A Stackelberg game based DR method considering retailer
incentive mechanism is set in [27] for multiple retailers and
multiple users. Reference [28] generalizes the interactions be-
tween prosumers and end-users as a bi-level MLMF game
where prosumers are leaders and end-users are followers.
Reference [29] formulates an MLMF Stackelberg game mod-
el to describe the multilateral contract transactions between
integrated energy service providers and load aggregators.
Thus, a bi-level MLMF Stackelberg game model is adopted
based on stochastic optimization in this paper to formulate

the interaction between retailers and end-users in deregulated
energy retailing market.

It is essential for retailers to effectively manage the finan-
cial risk caused by uncertainties when formulating the ener-
gy purchasing and selling strategies. Compared with value at
risk (VaR) method, the conditional value at risk (CVaR)
method considers the risk under the extreme condition and
psychological preference. In [30]-[32], risk is considered and
measured by CVaR method for retailers. In [33]-[36], the im-
plications of demand uncertainty and the level of the play-
ers’ risk aversion on market equilibrium are studied, and the
players’ risk is also measured by CVaR. The management of
electricity retailer’s contract portfolio subjected to risk pref-
erences is analyzed in [37], [38]. Based on those studies, the
risk aversion of retailers is considered in this paper, which
measures the risk by CVaR when participating in the MLMF
Stackelberg game.

Motivated by the aforementioned analysis, this paper pro-
poses a bi-level MLMF Stackelberg game model to optimize
multi-energy retail packages. Firstly, the integrated electricity
and natural gas retailing market is described, which includes
not only the trading between retailers and energy suppliers
but also the trading between retailers and multi-energy end-
users. Secondly, five types of multi-energy retail energy
packages such as peak-valley penalty-compensation price
package, day-night bundled price package, etc., are designed.
Thirdly, a bi-level MLMF Stackelberg game model based on
stochastic optimization is presented, where energy retailers
are modeled as the leaders while multi-energy end-users are
regarded as the followers. The retailers decide optimal ener-
gy purchasing and package pricing strategies considering
profit maximization and risk integration at the upper level
while end-users aim to maximize the satisfaction of energy
comfort and economy at the lower level. Then, the particle
swarm optimization (PSO) combined with CPLEX solver is
used to solve the proposed bi-level stochastic optimization
model. Finally, case studies are performed to verify the effec-
tiveness of multi-energy retail packages.

The rest of this paper is organized as follows. In Section
I, the integrated electricity and natural gas retailing market
framework is presented. In Section III, the multi-energy re-
tail packages are fully designed. In Section IV, a bi-level
MLMF Stackelberg game model is formulated. In Section V,
the solution method is described. In Section VI, case studies
are performed and the results are discussed. Finally, the con-
clusions are presented in Section VII.

II. INTEGRATED ELECTRICITY AND NATURAL GAS
RETAILING MARKET FRAMEWORK

The trading framework for the integrated electricity and
natural gas retailing market is illustrated in Fig. 1. As can be
observed, market participants are composed of energy suppli-
ers, energy retailers, and multi-energy end-users. Energy re-
tailers purchase electricity from the upper electricity DA mar-
ket and power generation companies, and natural gas from
the upper natural gas companies. At the same time, they
should sell energy to different kinds of end-users including
residential, commercial, and industrial end-users.
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Fig. 1. Trading framework for integrated electricity and natural gas retail-
ing market.

A. Trading Between Energy Retailers and Energy Suppliers

Energy retailers often sign monthly bilateral contracts
with some power generation companies to ensure the majori-
ties of the supplied electricity. Besides, retailers would partic-
ipate in the electricity DA market so as to avoid the imbal-
ance caused by the uncertain demand of end-users. The Mon-
te Carlo method is used to generate the 24-hour marginal
clearing price of multiple scenarios as the DA market elec-
tricity price scenario set Q, based on the stochastic planning
theory. Then, the scenario reduction process is conducted by
the K-means algorithm. The electricity purchasing cost for
each retailer in scenario w is shown as:

NE.B
MCP
zk+ zp ttw

= EPk
=

Some retailers may sign monthly bilateral contracts with
the natural gas companies, which is depicted as:
NCLB.R

Cor= 3 pPPrGH

k=1

(M

2

B. Trading Between Retailers and Multi-energy End-users

Different kinds of end-users such as residential, commer-
cial, and industrial end-users are included in this paper. The
electricity and natural gas demands for different end-users
vary a lot. Thus, it is important for energy retailers to design
multi-energy retail packages to meet the diversified energy
consumption. It should be noted that not all retailers provide
both electricity and natural gas packages, i.e., some retailers
may only provide electricity or natural gas retail packages.
Relatively, end-users can choose more than one retailer to
purchase the energy. Details of the designed retail packages
are described in Section III. In this paper, the attractive de-
sign of multi-energy retail packages is paid more attention to
for maximizing retailers’ benefit and competitiveness in the
market.

In order to reflect the diversity of retail packages in the
competitive energy market, this paper designs five types of
packages. Packages 1, 4, and 5 include both electricity and
natural gas while only electricity is included in packages 2
and 3. In addition, all retail packages are settled monthly. Es-
pecially, various prices of energy sold to residential (n=1),
commercial (n=2), and industrial (n=3) end-users are differ-
ent in each package.

It should be noted that due to the difference in energy de-
mand characteristics of end-users, more factors need to be
considered when selecting the package. Therefore, the five
types of packages designed in this paper are only applicable
to the following end-users:

1) End-users with high price sensitivity: end-users with
high price elasticity of demand can rapidly change their ener-
gy demand and behaviors when the price changes.

2) End-users with high energy consumption cost in the to-
tal cost and with flexible energy demand behavior.

III. MULTI-ENERGY RETAIL PACKAGE DESIGN

A. Package 1: Peak-valley TOU Price

In this peak-valley TOU package, different electricity and
natural gas prices are both set during different time periods.
The load peak periods are 08:00-12:00 and 17:00-21:00. The
load flat periods are 12:00-17:00 and 21:00-24:00. The load
valley period is 00:00-08:00. p;, during each period can be
described as:

pEeak te TP
phl=1p™  teT, Vn=123 3)
p;alley te TV

The designed natural gas price is like the electricity price.
The retailer’s income from this package can be expressed
as:

NU
1__ E. U1 GU 1 _ user 1 vuser
B _zci,j C 22,[‘ [ljn+ptV1Gfljn

Jj=1 t=1j=

4)

B. Package 2: Day-night Bundled Price

In this day-night bundled package, different electricity
prices are set during day-time and night-time periods. The
night-time periods are from 21:00 to 06:00 while the day-
time periods are from 06:00 to 21:00. Meanwhile, this pack-
age introduces the bundled sale concept during the day-time
and night-time periods. When the night-time electricity de-
mand is higher than the stated limiting value in the package,
a few day-time electricity rewards can be given to end-users.
Specifically, the complimentary day-time electricity demand
depends on the excess quantity of night-time electricity de-
mand. The bundled sale proportion is stated in the given
package. The price of electricity sold to end-users during
each period and the excess quantity of night-time electricity
demand are respectively described as:

P teTy

pii= - vn=1,2,3 (5)

teTy
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The retailer’s income from this package can be expressed

as:
N

ZCE”Z EZ(pf‘f
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user __ bundle
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C. Package 3: Peak-valley Reward-penalty Price

The peak-valley excess coefficient is defined in this pack-
age to measure the peak-to-valley difference of end-users as:

T, Ty
Eijn= (EQ?,‘SE{,, - Q"““‘“) - (EQZT?-?{,, - QV"““) ®)
t=1 t=1

In this package, the electricity charge consists of basic
charge and reward-penalty fees. It should be noted that the
reward-penalty fee is charged according to the peak-valley
excess coefficient, and reward or penalty price. To be specif-
ic, when ¢, is positive and greater than the parameter e,
end-users need to pay the penalty fee. In this situation, the
larger ¢, is, the more the penalty fee is. When ¢, is nega-
tive and less than the parameter —¢;, end-users get the re-
ward fee. In this situation, the smaller ¢, , is, the more the
reward fee is. However, when ¢, is between —¢; and &,
there is no penalty or reward, as shown in Fig. 2.

Penalty fee

Neutral zone

Peak-valley
excess coefficient

Reward fee

Fig. 2. Peak-valley reward-penalty mechanism.

The retailer’s income from this package can be expressed
as:

Ty Ny
E U3 _ E, basic user Epenalty _
EC = 22 PO im0
t=1j=
80<8i,‘/1,n
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D. Package 4: Quota Natural Gas Price and Ladder Elec-
tricity Price

In this package, the monthly electricity demand of end-us-
ers is divided into several levels. Especially, different elec-
tricity prices are set at each level of ladder price, as shown
in Fig. 3.

229

Electricity price

Ed
Piian

pan n

E4
Qan

E4
Ql st

Monthly electricity
consumption

Fig. 3. Electricity price at each level of ladder price.

The electricity price at each level of ladder price is de-
scribed as:

p,IZSt ij}oll;th [0 let)
prt=iprt omte [0 o) vn=1.23  (10)
i ome o)
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N (11)
Gt = 3.6, V=123

=1

This package also proposes the natural gas quota, which
requires that the monthly natural gas demand of end-users is
not less than the quota value G,. Otherwise, end-users would
pay the penalty fee based on the natural gas demand and
penalty price. Similarly, if the natural gas demand of end-us-
ers is higher than the specified value, end-users will get re-
ward. The retailer’s income from this package can be ex-
pressed as:

1st ~ymonth month Ist
pn ij.n ij.n € |:07 n )

Ist ) lst 2nd month Ist month Ist 2nd
pn Qn +pn ( Lj.n - Qn ) ij.n € [Qll ? Qn )

E. U4 _
CEV4=
lst Ist 2nd 2nd Ist 3rd month 2nd

Q +pn (Q Q ) +pn ( ij.n _Qn )

month 2nd
Qi,j,n € I:Qn 700)

(12)
G, basic .ymonth __ G, reward month quota month quota
n Gl_/)l n Gl_/)l G thn >G
G, U4 _ G, basic ,ymonth month __ ,quota
C[,j =1P. Gun Gt/n G
pe baSlCGtTl/O:th +pG pcna]ty‘ G;"n/()::th Gguota G:r}o:th Gguota
(13)
NU
4 _ E.U,4 G, U4
Bi=D(CEU 4 Cov) (14)
Jj=1

E. Package 5: Fixed Electricity and Natural Gas Price

Package 5 provides end-users with the fixed electricity
and natural gas price. It is simple and suitable for risk-
averse end-users. The retailer’s income from this package
can be expressed as:
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IV. BI-LEVEL MLMF STACKELBERG GAME MODEL

A. Bi-Level MLMF Stackelberg Game Framework

The interaction between energy retailers and multi-energy
end-users is modeled by using a bi-level MLMF Stackelberg
game model combined with stochastic optimization. The re-
tailers act as leaders and end-users act as followers. As can
be observed from Fig. 4, by considering both profit and risk
factors, retailers decide the electricity and natural gas pur-
chasing quantities from the upper market or companies, and
the prices of multi-energy retail packages at the upper level.
Then, after the prices of five packages are decided, end-us-
ers aim at maximizing the satisfaction of energy comfort and
economy by choosing appropriate packages and retailers at
the lower level. The iterative interaction among retailers and
end-users would stop when the optimal game decision
(namely Nash equilibrium solution) is obtained. With regard
to the bi-level MLMF Stackelberg game, the game between
retailers is assumed to be a non-cooperative static game
while the game between retailers and end-users is assumed
to be a non-cooperative dynamic game.

Leaders

Upper-level: energy retailers

Decision variables: :
. Electrlmty purchased from bilateral contracts |
'» Electricity purchased from spot market :
3- Natural gas purchased from bilateral contracts !
i* Prices of multi-energy retail packages :

Package and | |+------------ - mommeme i Package
retai.ler prices
choice

Followers

Lower-level: multi-energy end-users

Objective: maximize satisfaction of energy
comfort and economy

' Decision variables:

. * Electricity consumption during each period

. * Natural gas consumption during each period !
.« Choice of retailers and packages :

Fig. 4. Bi-level MLMF Stackelberg game framework.

B. Upper-level Problem

1) Objective Function

Due to the fluctuation of both MCP and demand of end-
users during each period, energy retailers may face the finan-
cial risk [39]. CVaR is used for minimizing the expected val-
ue of regret over a set of worst scenarios [40]. Therefore,
the potential risk is evaluated by CVaR to obtain high profit
and low risk for retailers. The objective function in upper-
level problem consists of three parts (retailer’s income, cost,
and risk) as can be expressed as:

max PRY= (1-1,)m,(BX-CR,) =2, R™™ i=1,2,...Ny
(16)

Bt~ S By
m=1

R _ ~ER
Ci.w_Ci,(u +

(17)
cor

The mathematical model of risk evaluation based on
CVaR is expressed as:

prob{F,-(y, a))SRlyaR} =,
[F,(y,w)—R,.VaR]E ax[0,F, (v, )~ RV |

L

Qy

(18)

RCVaR — RVaR

[Fi (yv 6‘))_Rzyakj|+

where the undefined variables in (16)-(18) are explained
n [41].
In order to simplify the model, the auxiliary variables d,;

and x;, are introduced. The above equation is transformed
as:
1
REVR=5 + > w,x,, (19)
1 _ﬁ i weQy '

2) Constraints
1) Energy balance constraints: (20) and (21) determine the
energy balance for electricity and natural gas, respectively.

NU
Ol + 00l = 2005, n=1.2.3 (20)
j=1
GBR T NU
zle = zzG;‘sfjﬁn vn=1,23 1

t=1j=

2) Energy purchasing constraints: the purchased electricity
and natural gas are limited within the following ranges:

0< 0 <opm

0<GBR< GBRmex

O < QltZ)Aw < QDA, max

(22)

3) Package price constraints: the price relationship in each
package is constructed by the following constraints:
peak

valley ﬂat

Py 7 <P <P,
mght

pﬂ p

E,reward E, basic

pﬂ <p)l
E, penalty E. basic
Py <P

G, reward G, basic

Py <P
G, penalty G, basic
Py <P
Ist 2nd 3rd
p n < p n < p n

Meanwhile, the prices of energy sold to residential, com-
mercial, and industrial end-users in each package are related.
Taking package 1 as an example, it is shown as follows (oth-
er packages are similar):

(23)

Pt <pi<pry o
P <pds <pi

Also, there are upper and lower limits for prices in each
package. Take the electricity price sold to residential end-us-
ers during peak periods in package 1 as an example:
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peak, min peak peak, max
P Py Ep (25)

4) CVaR constraints: the relationship between the auxilia-

ry variables used to evaluate the risk is expressed by the fol-
lowing constraints:

~5,~(B" -

X;,20

CiRw )S xi 2]
’ ’ (26)

C. Lower-level Problem

1) Objective Function

In the MLMF Stackelberg game, end-users accept prices
of multi-energy retail packages passively. But the decisions
of end-users are also a crucial part of the game since the
strategies of end-users would affect prices of packages in
turn. In this paper, the objective function in lower-level prob-
lem consists of four parts (the satisfaction of end-user of
electricity comfort S, Ecom " patural gas comfort S(”"m electrici-
ty economy SE e and natural gas economy S Gec") as can be
expressed in (27) At the same time, different weights of
these satisfaction should be considered when end-users for-
mulate energy demand strategies.

max S C!)E comSE com ]!E,ecoS/E, eco ]G comSg, com G ecosG eco
(27)
S/E‘ eco _ (CE initial __ 2 2 CII:E/ U,m )/C/E initial (28)
i=lm=

S/G, eco __ (CG initial __ z Z C,G/ Um _ CjG,U,B )/C/G initial (29)

i=lm=
E,com _
S, (

Ty
G,com __ initial
Sfem=1- (Z EGM
t=1 =

It should be noted that the initial electricity cost C/™
and natural gas cost C/*"™™ are calculated according to the
fixed single price. Except for purchasing natural gas from re-
tailers, end-users can also trade with natural gas companies
directly by monthly bilateral contracts. This cost is ex-
pressed as:

~

N,

M

initial
tj.n

Quiin ~

i=1

(30)

TM

2 Qinitial
tj.n

t=1

Ny

Guscr
tij.n

Gmmal

tj.n

€2))

T (BU
G,UB _ B,user . G,B,U
G EEGW

The price that natural gas companies provide to end-users
is often higher than that to retailers because of the amount
difference of purchased natural gas.

2) Constraints

1) Energy demand constraints: the limits of energy de-
mand for end-users during each period are constructed by
the following constraints:

min total max
Q < Qt] n— < Q
Gmm < Gtotal < Gmax

tjn—

(32)

(33)

2) Energy balance constraints: energy balance constraints
of end-users are similarly modeled compared with retailers.

231
Equation (34) shows the corresponding constraints.
= th‘sf,in
N( B.U (34)

Gtotal

tj.n 2 G?/l;:f: EG‘tlstc/rn

3) Natural gas purchase constraint: the purchased natural
gas of end-users by bilateral contracts should be lower than
their maximum levels.

B, user B, U, max
0 < th kn = < Gk

(35)

V. SOLUTION METHOD

To verify the effectiveness of the designed multi-energy re-
tail packages for retailers, a distributed algorithm is pro-
posed to solve the bi-level MLMF Stackelberg game prob-
lem, which consists of 4 steps.

Step I: define the iterative number variable and the itera-
tivetolerance ¢,; initialize energy demand of end-users and
package prices, as represented by (3)-(15). Furthermore, gen-
erate MCP scenario and set prices of bilateral contracts, as
represented by (1) and (2).

Step 2: according to Section IV-C, each end-user decides
on its optimal trading strategy during each period. Then, its
energy demand behavior is updated.

Step 3: with the updated energy demand of end-users,
each retailer determines its optimal trading strategy which in-
cludes package prices and purchased energy by solving the
optimization problems shown in Section IV-B. The optimiza-
tion of each retailer is shown as follows.

Step 3.1: set the parameters of PSO, including the num-
bers of particles and iterations, iterative tolerance ¢,, etc.

Step 3.2: initialize the position and velocity of each parti-
cle.

Step 3.3: get the fitness values of initial particles and de-
termine the initial individual and global optimal position.

Step 3.4: update the position and velocity of particles.

Step 3.5: get the fitness values of initial particles again
and update the individual and global optimal position.

Step 3.6: if the solution satisfies the given tolerance ¢,,
output the optimal solution; otherwise, go to Step 3.4.

Step 4: the updated package prices determined by Step 3.6
are broadcasted to the end-users. If the difference between
optimal profit of retailers in the k" iteration and (k— 1) itera-
tion is not less than ¢,, go back to Step 2. Then, end-users
adjust their strategies and offers to retailers again based on
the updated package prices. Otherwise, the iteration termi-
nates, which means that the bi-level MLMF Stackelberg
game reaches the Nash equilibrium.

VI. CASE STUDY

A. System and Data Specifications

The integrated electricity and natural gas retailing market
is assumed to consist of three energy retailers and five end-
users (including three residential end-users, one commercial



232

end-user, and one industrial end-user). The packages provid-
ed by three energy retailers are shown in Table I, and the sat-
isfaction weights of end-users for natural gas comfort and
economy are 0.1 and 0.4, respectively.

TABLE I
PACKAGES PROVIDED BY THREE ENERGY RETAILERS

Energy

retailor Package | Package 2 Package 3 Package 4 Package 5
1 x x x N x
2 J x J x x
3 X N X X N

Note: v indicates that the energy retailer provides this package, and x indi-
cates that the energy retailer does not provide this package.

Due to the limited space, the quotation parameters of pow-
er generation companies and natural gas companies, package
parameters, and other parameters involved in solving the
model can be found in [41]. Based on a typical 24-hour
MCP in [1], 1000000 MCP scenarios are generated by the
Monte Carlo method. Then, the generated 1000000 MCP sce-
narios are reduced to 5 typical scenarios by the K-means al-
gorithm [41]. The initial electricity and natural gas demands
of end-users in a day are also shown in [41]. Assume that
the electricity and natural gas demand curves of each day of
the month are the same. All the algorithms are executed on a
personal computer with an Intel Core (i7 1.80 GHz) and
16 GB of memory. The proposed bi-level stochastic optimi-
zation model is solved by PSO and CPLEX 12.6.0 using
MATLAB R2016b.

B. Game Equilibrium Analysis

The energy comfort and economy satisfaction of end-users
are listed in Table II. The iterative interaction curves be-
tween retailers and end-users are shown in Figs. 5 and 6,
where the profit of retailers and economy satisfaction of end-
users fluctuate violently with the change of each other’s
strategy in the first 30 iterations. The slope of iteration
curves gradually decreases from the 30" to 60" iterations,
which implies that the competition between MLMF Stackel-
berg game players becomes less intense. In the 63" itera-
tion, the retailers and end-users get the Nash equilibrium so-
lution.

TABLE II
ENERGY COMFORT AND ECONOMY SATISFACTION OF END-USERS

End-user S/E,Com SjE,Ecn S/G.Com S/G,Eco
Residential 0.805 0.253 0.880 -0.721
end-user 1

Residential 0.669 ~0.043
end-user 2

Residential 0.946 —0.089
end-user 3

Commercial 0.886 0.114 0.818 -0.265
end-user 1
Industrial 0.906 0.247 0.850 0.147
end-user 1
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In Fig. 6, the order of overall satisfaction from the highest
to the lowest is the industrial, commercial, and residential
end-users, respectively. The reason could be found from Ta-
ble II. To be specific, residential end-users have the lowest
energy demand, which results in the lowest price elasticity
and range reduction of energy demand. Then, it further leads
to the lowest overall satisfaction. Meanwhile, the commer-
cial end-user has no night-time energy demand, resulting in
the higher satisfaction of energy economy compared with
residential end-users. Similarly, the industrial end-user has
the highest energy demand, resulting in the highest overall
satisfaction. The above detailed analysis demonstrates that
the industrial end-user has an advantage in the game. More-
over, Fig. 6 also shows that the overall satisfaction of both
resident end-user 1 and commercial end-user 1 decreases af-
ter the game. However, the overall satisfaction of residential
end-users 2 and 3 increases, and that of industrial end-user 1
remains almost unchanged.

C. Analysis of Package Choice of End-users

Figure 7(a) shows that the residential end-user 1 reduces
electricity demand as a whole in order to improve the econo-
my satisfaction of electricity. On the contrary, the residential
end-user 2 increases electricity demand in Fig. 7(b). This is
because the electricity demand of residential end-user 2 is
low during peak and flat periods and high during valley peri-
ods. It can reduce the electricity cost by choosing package 3
during valley periods to get a high reward fee. The optimal
solution indicates that the exact amount of the reward fee is
$6.5725x10° within a month. Thus, even if the electricity de-
mand of the end-user increases, the cost is almost un-
changed.
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Figure 8 shows the purchased electricity of commercial
end-user | and industrial end-user 1. In Fig. 8(a), during the
night-time period 21:00-23:00, commercial end-user 1 pur-
chases electricity from package 2 because of the low night-
time price. Furthermore, during the peak period 17:00-19:00,
the end-user purchases 870 kWh electricity at the basic price
of package 3. It indicates that the peak-valley excess coeffi-
cient of the end-user is between —¢; and &,, so there is no
penalty or reward. The monthly electricity purchased by the
end-user from package 4 is 76350 kWh, which does not ex-
ceed the first level of electricity demand limit in package 4.
Hence, the end-user is charged by the price at the first level
in package 4, which reduces the cost effectively.

Figure 8(b) shows that industrial end-user 1 purchases
92400 kWh electricity during the valley period and 19500
kWh during the flat period from package 3 within a month,
resulting in a reward fee of $7.9534x10°. In addition, the
end-user purchases 1180 kWh electricity from package 2 dur-
ing the night-time period 21:00-24: 00, which exceeds the
limit of night-time electricity demand in package 2. Thus,
the end-user gets 190 kWh electricity reward from package
2 during day-time periods 17:00-18:00 and 20:00-21:00. Sim-
ilarly, the 66000 kWh electricity is purchased from package
4 at the first-level price within a month because it is lower
than the second-level price.

According to Figs. 7 and 8, when formulating electricity
demand strategies to maximize overall satisfaction, they all
have selected multiple retail packages instead of a single re-
tail package. This shows that choosing multiple packages is
more conducive to reducing the electricity cost of end-users
with little change in electricity demand behavior. This is be-
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cause end-users can use electricity by different packages dur-
ing different periods, so as to improve the efficiency. Be-
sides, it can also be concluded from Figs. 7 and 8 that for
end-users whose electricity demand is high during the peak
period and low during the valley period, reducing overall
electricity demand is the main measure to improve their
economy. However, for end-users with opposite electricity
demand characteristics, they can increase electricity demand
as a whole while ensuring the cost almost unchanged.
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Fig. 8. Purchased electricity of commercial end-user 1 and industrial end-
user 1. (a) Commercial end-user 1. (b) Industrial end-user 1.

Figure 9 presents the purchased natural gas of end-users.
As shown in Fig. 9, end-users prefer to trade with the natu-
ral gas company because of the lowest price of the bilateral
contract.

It can be found that all end-users purchase 10000 m’ natural
gas from package 4 within a month. It slightly exceeds the
natural gas quota value in package 4 and results in a reward
fee. The reason why end-users do not choose package 1 is
that it is not beneficial to the economy satisfaction since all
end-users have large natural gas demand during peak periods
where the price is the highest. Moreover, package 5 is also
not chosen by end-users. This is because the retailer provid-
ing package 5 always increases the fixed natural gas price to
ensure income. These demonstrate that it is necessary for re-
tailers to provide suitable packages for end-users with differ-
ent natural gas demand behaviors such as the quota natural
gas price package. Otherwise, end-users will choose to trade
more with natural gas companies that provide lower prices
than retailers.

D. Analysis of Electricity Income and Cost of Retailers

The electricity income of retailers from end-users in pack-
ages is shown in Fig. 10, where end-user 1 represents resi-
dential end-user 1; end-user 2 represents residential end-user
2; end-user 3 represents commercial end-user 1; and end-us-
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er 4 represents industrial end-user 1. It can be oberserved
that among all packages, only package 2 is chosen by each
end-user with electricity demand. This is because all end-us-
ers have a number of night-time electricity demand. It leads
to a few day-time electricity reward by choosing package 2
which contributes to reducing the cost. Moreover, the type
of packages chosen by commercial end-user 3 is the least be-
cause of the shortest period with electricity demand. Mean-
while, except for residential end-user 2 with opposite elec-
tricity demand behaviors, the electricity income of retailer 1
from other end-users in package 4 is nearly the same. It can
be found that 70% of the electricity income of retailer 2
comes from package 3, but packages 2 and 5 bring similar
electricity income to retailer 3. The above comparison shows
that retailer 2 needs to adjust the prices of package 1 to im-
prove the market share.
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Fig. 9. Purchased natural gas of end-users. (a) Residential end-user 1. (b)
Residential end-user 3. (¢) Commercial end-user 1. (d) Industrial end-user 1.
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The optimal solution shows that the package prices tend
to rise firstly and then stabilize during the iteration. It im-
plies that the increasing prices are the main measure to im-
prove the electricity income for retailers in the MLMF Stack-
elberg game. By taking the penalty electricity price in pack-
age 3 and the reward natural gas price in package 4 as exam-
ples, their iterative curves are shown in Fig. 11.
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Fig. 11. [Iterative curves of penalty electricity price in package 3 and re-
ward natural gas price in package 4.

Figure 12 depicts the profit, risk, cost, income of electrici-
ty and natural gas, and total traded electricity of retailers. It
should be noted that the profit and cost take the expectations
of all scenarios. Meanwhile, costs of retailers 2 and 3 before
and after the game in five scenarios in the spot market are
shown in Fig. 13.

It can be observed from Fig. 12(a) that after the game, the
profits of retailers 1 and 3 greatly increase while those of re-
tailer 2 decrease. The reason may be that before the game,
many end-users purchase natural gas from retailer 2 in pack-
age 1, as shown in Fig. 12(e). However, after the game, end-
users prefer to trade with natural gas company 1 because of
the increased natural gas price of package 1. This reduces
the natural gas income of retailer 2 significantly. Therefore,
the profit and cost of retailer 2 are lower than those before
the game. In addition, as the only retailer with natural gas in-
come, retailer 1 has the highest profit. Figure 12(a) and (b)
shows that the higher the profit of retailer is, the greater risk
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it would face. In Fig. 12(d), retailer 3 has the highest elec-
tricity income with retailer 2 ranking the second, while retail-
er 1 has the lowest. This proves that it is more beneficial to
retailers than a single type by providing multi-type packag-
es. It also means that the adaptability of packages to end-us-
ers is the key to determine the retailers’ income. In Fig. 12(f),
the total traded electricity of retailers 1 and 3 increases after
the game while that of retailer 2 decreases. It implies that re-
tailer 2 is at a disadvantage in the game, and its package de-
sign cannot completely satisfy end-users. In contrast, packag-
es 2 and 4 are more favored by end-users in this paper.
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Fig. 12. Profit, risk, cost, income of electricity and natural gas, and total trad-
ed electricity of retailers. (a) Profit. (b) Risk. (c¢) Cost. (d) Electricity income.
(e) Natural gas income. (f) Total traded electricity.

The above results demonstrate that retailers still dominate
in the MLMF Stackelberg game although end-users have the
right to trade with multiple retailers and determine the quan-
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tity of energy demand during each period. Therefore, the
market manager should control the rise of prices provided
by retailers for the fairness of energy retailing market.

@1500

g W

glOOO

=}

= 500 M i_' i_' i_'

. H- B lm [lm
1 2 3 4 5

Scenario

=1 Retailer 2 before game; - Retailer 3 before game
mm Retailer 2 after game; —— Retailer 3 after game

Fig. 13. Costs of retailers 2 and 3 before and after game in five scenarios
in spot market.

E. Analysis of Energy Purchase and Sale of Retailers

The sold electricity of retailers before and after participat-
ing in the game is shown in Figs. 14 and 15. It can be ob-
served from Fig. 14 that before the game, the sold electricity
of retailer 1 is concentrated during the peak period. Howev-
er, it is concentrated during the peak and flat periods after
the game. Moreover, after the game, the main electricity
package sold by retailer 2 changes from package 1 to pack-
age 3 because of the rise of prices in package 1. And the
main selling electricity period distribution of retailer 2 also
transfers from flat periods to valley periods. The sold elec-
tricity of retailer 3 in package 5 increases slightly after the
game, which is mainly during the peak period. The reason is
that the second-level price of package 4 is gradually equal to
the fixed price of package 5. This results in the reduction of
electricity from package 4 and the increase of electricity
from package 5. Comparing Fig. 14(c) with Fig. 15(c), we can
find the sold electricity in package 2 decreases significantly
during the valley period. This is because that the increase of
the reward electricity price in package 3 makes end-users
who originally chooses package 2 turn to choose package 3.

§ 1400 =1600 mmBy package 1 = 1400 =3 By package 2
£ 1200 E 1200 61200 B By package 5
i z +

S S 2

2 600 R 2 0600

2 400 £ 400 2 400

g 200 3 3 200

I = =

1 357 911131517192123
2 4 6 81012141618202224

O1 357 911131517192123
2 4 6 81012141618202224

01 357 911131517192123
2 4 6 81012141618202224

Time (hour) Time (hour) Time (hour)
@) (b) ©
Fig. 14. Sold electricity of retailers before participating in game. (a) Retailer 1. (b) Retailer 2. (c) Retailer 3.
§ 1500 §1200 mm By package 1 —; }‘2‘88 3 By package 2
2 £ 1000 3 By package 3 = B By package 5
% 1000 = 800 % 1388
°
= 4 600 > 600
g 500 5 400 2400
B £ B
3 g 200 8 200
Z 0 o0 =0
1 357 911131517192123 1 357 911131517192123 1 357 911131517192123
2 4 6 81012141618202224 2 4 6 81012141618202224 2 4 6 81012141618202224
Time (hour) Time (hour) Time (hour)
() (b) ©

Fig. 15.

Sold electricity of retailers after participating in game. (a) Retailer 1. (b) Retailer 2. (c) Retailer 3.
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The purchased electricity of retailers after the game and
the MCP curve in the spot market in a typical scenario are
shown in Fig. 16. Retailers only trade with power generation
company 2 since the bilateral contract price is low. Besides,
the electricity in the spot market is mainly purchased from
04:00 to 07:00 when MCP is lower than the bilateral con-
tract price. In summary, after the MLMF Stackelberg game,
end-users prefer to choose package 3 during the valley peri-
od 00:00-08:00, package 5 during the peak period 08:00-
12: 00, package 4 during the flat period 12:00-17:00, and
package 2 during the flat period 21:00-24:00. In addition, all
packages are appropriate for end-users during the peak peri-
od 17:00-21:00.

VII. CONCLUSION

This paper designs five types of multi-energy retail pack-
ages for energy retailers, including peak-valley TOU price,
day-night bundled price, peak-valley reward-penalty price,
quota natural gas price and tiered electricity price, and fixed
single price. A bi-level stochastic optimization model is con-
structed based on MLMF Stackelberg game between energy
retailers and end-users. The case is solved by the combina-
tion of PSO and CPLEX solver. The simulation results veri-
fy the applicability of the designed retail packages to multi-
energy end-users. The main conclusions are as follows.

In addition, the design of electricity package and natural-
gas package in this paper is independent, but with the devel-
opment of Energy Internet, the possibility of electrical ener-
gy replacement is becoming greater and greater. How to de-
sign the package bundled with electricity and natural gas
will help retailers face a more complex market environment.

1) In the 63" iteration, retailers and end-users reach Nash
equilibrium. According to the Nash equilibrium solution, the
overall satisfaction of the industrial end-user is the highest,
followed by the overall satisfaction of commercial end-user
and the residential end-user is the lowest.

2) For end-users whose electricity demand is high during
load peak periods and low during load valley periods, reduc-
ing overall electricity demand is the main measure to im-
prove their economy. However, for end-users with opposite
electricity demand characteristics, they can increase electrici-
ty demand as a whole while ensuring the cost almost un-
changed.

3) The profits of retailers 1 and 3 greatly increase while

the profit of retailer 2 decreases after the MLMF Stackel-
berg game because the end-users choose to purchase natural
gas from the natural gas company 1 instead of the original
retailer 2. This demonstrates that the advantage in the game
for those retailers depends on whether their packages are fa-
vored by end-users.

In addition, the design of electricity package and natural
gas package in this paper is independent, but with the devel-
opment of Energy Internet, the possibility of electrical ener-
gy replacement is becoming greater and greater. How to de-
sign the package bundled with electricity and natural gas
will help retailers face a more complex market environ-
ment.
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