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Abstract——In the competitive energy market, energy retailers 
are facing the uncertainties of both energy price and demand, 
which requires them to formulate reasonable energy purchasing 
and selling strategies for improving their competitiveness in this 
market. Particularly, the attractive multi-energy retail packages 
are the key for retailers to increase their benefit. Therefore, 
combined with incentive means and price signals, five types of 
multi-energy retail packages such as peak-valley time-of-use 
(TOU) price package and day-night bundled price package are 
designed in this paper for retailers. The iterative interactions 
between retailers and end-users are modeled using a bi-level 
model of stochastic optimization based on multi-leader multi-fol‐
lower (MLMF) Stackelberg game, in which retailers are leaders 
and end-users are followers. Retailers make decisions to maxi‐
mize the profit considering the conditional value at risk (CVaR) 
while end-users optimize the satisfaction of both energy comfort 
and economy. Besides, a distributed algorithm is proposed to 
obtain the Nash equilibrium of above MLMF Stackelberg game 
model while the particle swarm optimization (PSO) algorithm 
and CPLEX solver are applied to solve the optimization model 
for each participant (retailer or end-user). Numeral results 
show that the designed retail packages can increase the overall 
profit of retailers, and the overall satisfaction of industrial us‐
ers is the highest while that of residential users is the lowest af‐
ter game interaction.

Index Terms——Conditional value at risk (CVaR), energy retail‐
er, multi-energy retail package design, multi-leader multi-follow‐
er (MLMF) Stackelberg game, satisfaction.

NOMENCLATURE

A. Set and Indices

ΩW Set of market clearing price (MCP) scenario
k, ω Indexes of contracts and scenarios
m, n Indexes of package types and end-user types
t, i, j Indexes of time periods, retailers, and end-

users

B. Parameters

ωEcom
j , ωEeco

j Electricity comfort and economy satisfaction 
weights of end-user j

ωGcom
j , ωGeco

j Natural gas comfort and economy satisfaction 
weights of end-user j

λB
kt Usage proportion of bilateral contract k signed 

by the retailer during period t
λi, βi Risk factor weight and confidence levels of 

retailer i
πω Probability of scenario ω
ε0 Boundary parameter of peak-valley excess 

coefficient in package 3
φbundle Bundled sale proportion in package 2

GBRmax
k , The maximum natural gas signed by 

GBUmax
k bilateral contract k for retailers and end-users

Gmax
n , Gmin

n The maximum and minimum natural gas de‐
mands of type n end-user

Gquota
n Natural gas quota value of type n end-user in 

package 4
NU, NR Numbers of end-users and retailers
NEB Number of electricity bilateral contract
NGBR, NGBU Numbers of natural gas bilateral contract for 

retailers and end-users
pMCP

tω MCP in scenario ω during period t

pEB
k Price of electricity by bilateral contract k

pGBR
k , pGBU

k Prices of natural gas sold to retailers and end-
users by bilateral contract k

ppeakmax
1 , The maximum and minimum electricity prices

ppeakmin
1 of residential end-user during peak period in 

package 1
Q1st, Q2nd The first- and second-level electricity demand 

limits in package 4
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QBmax
k The maximum electricity signed by bilateral 

contract k
QDAmax The maximum electricity purchased from day-

ahead market during each period
Qmax

n , Qmin
n The maximum and minimum electricity de‐

mands of type n end-user
QNlim Limiting value of night-time electricity 

demand in package 2
QKlim, QVlim Limiting values of electricity demand during 

peak and valley periods in package 3
TP, TF, TV, TD, Peak, flat, valley, day, night, and month 
TN, TM periods

C. Optimization Variables

GBR
ik Natural gas purchased from bilateral contract 

k of retailer i
GBuser

tjkn Natural gas purchased by type n end-user j 
from bilateral contract k during period t

ppeak
n , pflat

n , pvalley
n Electricity prices of type n end-user during 

peak, flat, and valley periods in package 1
pE1

tn , pG1
tn Electricity and natural gas prices of type n 

end-user in package 1 during period t
pday

n , pnight
n Electricity prices of type n end-user in pack‐

age 2 during day and night-time periods
pE2

tn Electricity price of type n end-user in package 
2 during period t

pEbasic
n , pEreward

n , Basic, reward, and penalty electricity prices of 
pEpenalty

n type n end-user in package 3

pE4
n Electricity price of type n end-user in package 

4
p1st

n , p2nd
n , p3rd

n Electricity prices of type n end-user at the 
first, second, and third levels in package 4

pGbasic
n , pGreward

n , Basic, reward, and penalty natural gas 

pGpenalty
n prices of type n end-user in package 4

pEfixed
n , pGfixed

n Electricity and natural gas prices of type n 
end-user in package 5

QB
ik Electricity purchased from bilateral contract k 

of retailer i
QDA

tiω Electricity purchased from day-ahead market 
of retailer i in scenario ω during period t

Quser
tijn, G

user
tijn Electricity and natural gas purchased by type 

n end-user j from retailer i during period t

D. Other Variables

C EUm
ij , C GUm

ij Costs of purchasing electricity and natural gas 
from retailer i in package m for end-user j

C GUB
j Cost of purchasing natural gas by bilateral 

contracts for end-user j
Gmonth

ijn , Qmonth
ijn Monthly natural gas and electricity pur‐

chased of type n end-user j from retailer i 

Gtotal
tjn, Q

total
tjn Total natural gas and electricity demands of 

type n end-user j during period t

pE4
1stn, p

E4
2ndn, Electricity prices at the first, second, and 

third 

pE4
3rdn levels of type n in package 4

QE4
1st , Q

E4
2nd The first- and second-level electricity con‐

sumptions in package 4

I. INTRODUCTION 

WITH the rapid development of the energy retailing 
market, electricity retailers have gradually changed 

into energy retailers by providing both electricity and gas 
[1]- [4]. The options of end-users become further liberalized 
in the completely competitive energy retailing market. But 
most of small- and medium-size end-users only purchase en‐
ergy from retailers since purchasing electricity directly from 
the wholesale market may result in expensive trading costs. 
In this situation, retailers purchase electricity on behalf of 
end-users in the wholesale market as the intermediary be‐
tween energy suppliers and end-users. It brings the uncertain‐
ties of both energy price and end-user demand to retailers 
[5]-[7]. Meanwhile, the competition among retailers becomes 
more intense because of the increasing number of retailers. 
Thus, for retailers, it is important to design suitable multi-en‐
ergy retail packages for end-users with different energy de‐
mand and behaviors to effectively address the above issues 
and improve the satisfaction of end-users.

In order to hedge against the risk caused by frequent mar‐
ket price fluctuations and end-user demand uncertainty, ener‐
gy retailers need to determine optimal energy procurement 
portfolio and energy sale prices. In [8] and [9], a short-term 
planning model is developed to determine the day-ahead 
(DA) market bidding strategies for retailers, which aims to 
maximize the short-term profit. Reference [10] presents a 
stochastic model for an electricity retailer with flexible de‐
mands under the short-term market trading mechanism. Espe‐
cially, providing abundant retail packages can improve the 
end-user stickiness of retailers when participating in market 
trading. In recent years, according to the Administrative Mea‐
sures for Zhejiang Electric Power Retail Market (Trial), the 
existing retail electricity price package mainly includes fixed 
electricity price package, proportional share electricity price 
packages, and market price linkage package in China. For 
the fixed electricity price package, retailers and users agree 
on a fixed transaction settlement price. For the proportional 
share electricity price package, retailers and users agree on 
the sharing benchmark price and sharing proportion. They 
share the profits and risks based on the average monthly 
trading price. For the market price linkage package, retailer 
and users agree on an up or down fluctuation fee as the trad‐
ing settlement price based on the average monthly trading 
price. Furthermore, some scholars have also carried out 
some studies on retail packages. Reference [11] designs elec‐
tricity retail packages for different groups of residential con‐
sumers by using the quantile regression method. By investi‐
gating the electricity price change and load peak-valley ratio, 
time-of-use (TOU) discount based on peak energy usage is 
also designed in [11]. Reference [12] proposes an accurate 
applicability evaluation model for the electricity retail pack‐
age, where data envelopment analysis and the cloud model 
are combined. A hybrid electricity retail package is proposed 
in [13] based on the characteristics of end-users and the 
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multi-attribute utility of package. The above studies focus on 
designing the electricity retail package with price mechanism 
for retailers, which pay little attention to the multi-energy re‐
tail package. However, the modern power systems are evolv‐
ing into integrated multi-energy system because of the low 
carbon economy and tight interdependence among multi-en‐
ergy. As a result, it is obviously vital to formulate multi-ener‐
gy retail packages for retailers to improve overall operation 
benefits.

At present, price-based demand response (DR) such as the 
fixed, TOUs and ladder prices are mainly applied into the en‐
ergy selling for retailers [14], [15]. Reference [16] provides 
an adaptive and adjustable DR model for reducing the risk 
of the retailer by simulating the impact of price signal on 
each user’s load curve. In [17], a new two-stage DR is de‐
signed for electricity retailers with the energy storage sys‐
tem. Especially, the energy storage system could adjust the 
charging/discharging behaviors according to the bidding pow‐
er price. However, the incentive-based DR is still not intro‐
duced into the multi-energy retail packages. Therefore, this 
paper designs the day-night bundled electricity price pack‐
age, which involves the bundled and gift method. Mean‐
while, peak-valley reward-penalty electricity price and quota 
natural gas price packages are also designed by innovative 
reward and penalty programs.

In the competitive energy market, there are two relations 
including alliance and game among different retailers [18]. 
The Stackelberg game based on the bi-level stochastic opti‐
mization is used to model the interaction between retailer 
and end-user [19]. In [20], the TOU price optimization for 
users is modeled as a bi-level Stackelberg game between the 
retailer and users. In [21], a Stackelberg game model with 
one leader and multiple followers between the retailers and 
the users is established to study the real-time pricing scheme 
in a smart community. In [22], a one-leader and multi-fol‐
lower game is developed to characterize the interactions be‐
tween the demand-side management (DSM) center and us‐
ers. In [23], the transaction between the retailer and end-us‐
ers with elastic price-based DRs is modeled as a bi-level 
Stackelberg game. However, the above studies mainly focus 
on the game between one retailer and multiple end-users. In 
the practice, many retailers would appear in the deregulated 
energy market. Therefore, the trading between energy retail‐
ers and end-users is gradually described as a multi-leader 
and multi-follower (MLMF) Stackelberg game [24], [25]. A 
two-leader two-follower Nash-Stackelberg game is applied 
to formulate transaction problem considering consumer satis‐
faction and integrated DR among retailers and users in [26]. 
A Stackelberg game based DR method considering retailer 
incentive mechanism is set in [27] for multiple retailers and 
multiple users. Reference [28] generalizes the interactions be‐
tween prosumers and end-users as a bi-level MLMF game 
where prosumers are leaders and end-users are followers. 
Reference [29] formulates an MLMF Stackelberg game mod‐
el to describe the multilateral contract transactions between 
integrated energy service providers and load aggregators. 
Thus, a bi-level MLMF Stackelberg game model is adopted 
based on stochastic optimization in this paper to formulate 

the interaction between retailers and end-users in deregulated 
energy retailing market.

It is essential for retailers to effectively manage the finan‐
cial risk caused by uncertainties when formulating the ener‐
gy purchasing and selling strategies. Compared with value at 
risk (VaR) method, the conditional value at risk (CVaR) 
method considers the risk under the extreme condition and 
psychological preference. In [30]-[32], risk is considered and 
measured by CVaR method for retailers. In [33]-[36], the im‐
plications of demand uncertainty and the level of the play‐
ers’ risk aversion on market equilibrium are studied, and the 
players’ risk is also measured by CVaR. The management of 
electricity retailer’s contract portfolio subjected to risk pref‐
erences is analyzed in [37], [38]. Based on those studies, the 
risk aversion of retailers is considered in this paper, which 
measures the risk by CVaR when participating in the MLMF 
Stackelberg game.

Motivated by the aforementioned analysis, this paper pro‐
poses a bi-level MLMF Stackelberg game model to optimize 
multi-energy retail packages. Firstly, the integrated electricity 
and natural gas retailing market is described, which includes 
not only the trading between retailers and energy suppliers 
but also the trading between retailers and multi-energy end-
users. Secondly, five types of multi-energy retail energy 
packages such as peak-valley penalty-compensation price 
package, day-night bundled price package, etc., are designed. 
Thirdly, a bi-level MLMF Stackelberg game model based on 
stochastic optimization is presented, where energy retailers 
are modeled as the leaders while multi-energy end-users are 
regarded as the followers. The retailers decide optimal ener‐
gy purchasing and package pricing strategies considering 
profit maximization and risk integration at the upper level 
while end-users aim to maximize the satisfaction of energy 
comfort and economy at the lower level. Then, the particle 
swarm optimization (PSO) combined with CPLEX solver is 
used to solve the proposed bi-level stochastic optimization 
model. Finally, case studies are performed to verify the effec‐
tiveness of multi-energy retail packages.

The rest of this paper is organized as follows. In Section 
II, the integrated electricity and natural gas retailing market 
framework is presented. In Section III, the multi-energy re‐
tail packages are fully designed. In Section IV, a bi-level 
MLMF Stackelberg game model is formulated. In Section V, 
the solution method is described. In Section VI, case studies 
are performed and the results are discussed. Finally, the con‐
clusions are presented in Section VII.

II. INTEGRATED ELECTRICITY AND NATURAL GAS 
RETAILING MARKET FRAMEWORK 

The trading framework for the integrated electricity and 
natural gas retailing market is illustrated in Fig. 1. As can be 
observed, market participants are composed of energy suppli‐
ers, energy retailers, and multi-energy end-users. Energy re‐
tailers purchase electricity from the upper electricity DA mar‐
ket and power generation companies, and natural gas from 
the upper natural gas companies. At the same time, they 
should sell energy to different kinds of end-users including 
residential, commercial, and industrial end-users.
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A. Trading Between Energy Retailers and Energy Suppliers

Energy retailers often sign monthly bilateral contracts 
with some power generation companies to ensure the majori‐
ties of the supplied electricity. Besides, retailers would partic‐
ipate in the electricity DA market so as to avoid the imbal‐
ance caused by the uncertain demand of end-users. The Mon‐
te Carlo method is used to generate the 24-hour marginal 
clearing price of multiple scenarios as the DA market elec‐
tricity price scenario set ΩW based on the stochastic planning 
theory. Then, the scenario reduction process is conducted by 
the K-means algorithm. The electricity purchasing cost for 
each retailer in scenario ω is shown as:

C ER
iω =∑

k = 1

NEB

pEB
k QB

ik +∑
t = 1

TM

pMCP
tω QDA

tiω (1)

Some retailers may sign monthly bilateral contracts with 
the natural gas companies, which is depicted as:

C GR
i = ∑

k = 1

NGBR

pGBR
k GBR

ik (2)

B. Trading Between Retailers and Multi-energy End-users

Different kinds of end-users such as residential, commer‐
cial, and industrial end-users are included in this paper. The 
electricity and natural gas demands for different end-users 
vary a lot. Thus, it is important for energy retailers to design 
multi-energy retail packages to meet the diversified energy 
consumption. It should be noted that not all retailers provide 
both electricity and natural gas packages, i.e., some retailers 
may only provide electricity or natural gas retail packages. 
Relatively, end-users can choose more than one retailer to 
purchase the energy. Details of the designed retail packages 
are described in Section III. In this paper, the attractive de‐
sign of multi-energy retail packages is paid more attention to 
for maximizing retailers’ benefit and competitiveness in the 
market.

In order to reflect the diversity of retail packages in the 
competitive energy market, this paper designs five types of 
packages. Packages 1, 4, and 5 include both electricity and 
natural gas while only electricity is included in packages 2 
and 3. In addition, all retail packages are settled monthly. Es‐
pecially, various prices of energy sold to residential (n = 1), 
commercial (n = 2), and industrial (n = 3) end-users are differ‐
ent in each package.

It should be noted that due to the difference in energy de‐
mand characteristics of end-users, more factors need to be 
considered when selecting the package. Therefore, the five 
types of packages designed in this paper are only applicable 
to the following end-users:

1) End-users with high price sensitivity: end-users with 
high price elasticity of demand can rapidly change their ener‐
gy demand and behaviors when the price changes.

2) End-users with high energy consumption cost in the to‐
tal cost and with flexible energy demand behavior.

III. MULTI-ENERGY RETAIL PACKAGE DESIGN 

A. Package 1: Peak-valley TOU Price

In this peak-valley TOU package, different electricity and 
natural gas prices are both set during different time periods. 
The load peak periods are 08:00-12:00 and 17:00-21:00. The 
load flat periods are 12:00-17:00 and 21:00-24:00. The load 
valley period is 00:00-08:00. pE1

tn  during each period can be 
described as:

pE1
tn =

ì

í

î

ï
ïï
ï

ï
ïï
ï

ppeak
n tÎ TP

pflat
n tÎ TF

pvalley
n tÎ TV

    "n = 123 (3)

The designed natural gas price is like the electricity price. 
The retailer’s income from this package can be expressed 
as:

B1
i =∑

j = 1

NU

C EU1
ij +C GU1

ij =∑
t = 1

TM∑
j = 1

NU

pE1
tn Quser

tijn + pG1
tn Guser

tijn (4)

B. Package 2: Day-night Bundled Price

In this day-night bundled package, different electricity 
prices are set during day-time and night-time periods. The 
night-time periods are from 21: 00 to 06: 00 while the day-
time periods are from 06:00 to 21:00. Meanwhile, this pack‐
age introduces the bundled sale concept during the day-time 
and night-time periods. When the night-time electricity de‐
mand is higher than the stated limiting value in the package, 
a few day-time electricity rewards can be given to end-users. 
Specifically, the complimentary day-time electricity demand 
depends on the excess quantity of night-time electricity de‐
mand. The bundled sale proportion is stated in the given 
package. The price of electricity sold to end-users during 
each period and the excess quantity of night-time electricity 
demand are respectively described as:

pE2
tn =

ì
í
î

ïï
ïï

pday
n tÎ TD

pnight
n tÎ TN

    "n = 123 (5)

 DA market Power generation

companies

Energy suppliers

Energy retailer 1

Package 1 Package 2 Package 3 Package 4 Package 5

Electricity sale

Electricity purchase

Natural gas companies

Natural gas purchase

Natural gas sale

Energy retailer 2 Energy retailer 3

Resident end-users Commercial end-users Industrial end-users

Multi-energy end-users

Fig. 1.　Trading framework for integrated electricity and natural gas retail‐
ing market.
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Qexcess
ijn =

ì

í

î

ïïïï

ï
ïï
ï

∑
tÎ TN

Quser
tijn -QNlim ∑

tÎ TN

Quser
tijn >QNlim

0 ∑
tÎ TN

Quser
tijn £QNlim

(6)

The retailer’s income from this package can be expressed 
as:

B2
i =∑

j = 1

NU

C EU2
ij =∑

t = 1

TM∑
j = 1

NU ( )pE2
tn Quser

tijn - φ
bundle pday

n Qexcess
tijn (7)

C. Package 3: Peak-valley Reward-penalty Price

The peak-valley excess coefficient is defined in this pack‐
age to measure the peak-to-valley difference of end-users as:

εijn = (∑t = 1

TP

Quser
tijn -QKlim ) - (∑t = 1

TV

Quser
tijn -QVlim ) (8)

In this package, the electricity charge consists of basic 
charge and reward-penalty fees. It should be noted that the 
reward-penalty fee is charged according to the peak-valley 
excess coefficient, and reward or penalty price. To be specif‐
ic, when εi,jn is positive and greater than the parameter ε3, 
end-users need to pay the penalty fee. In this situation, the 
larger εijn is, the more the penalty fee is. When εijn is nega‐
tive and less than the parameter -ε3, end-users get the re‐
ward fee. In this situation, the smaller εijn is, the more the 
reward fee is. However, when εijn is between -ε3 and ε3, 
there is no penalty or reward, as shown in Fig. 2.

The retailer’s income from this package can be expressed 
as:

B3
i =

ì

í

î

ï

ï

ï

ï
ïïï
ï

ï

ï

ï

ï

ï

ï
ïïï
ï

ï

ï

ï

ï

∑
j = 1

NU

C EU3
ij =∑

t = 1

TM∑
j = 1

NU

pEbasic
n Quser

tijn + pEpenalty
n || εijn - ε0

ε0 < εijn               

∑
j = 1

NU

C EU3
ij =∑

t = 1

TM∑
j = 1

NU

pEbasic
n Quser

tijn     -ε0 < εijn < ε0

∑
j = 1

NU

C EU3
ij =∑

t = 1

TM∑
j = 1

NU

pEbasic
n Quser

tijn - pEreward
n || εijn + ε0

εijn <-ε0             

(9)

D. Package 4: Quota Natural Gas Price and Ladder Elec‐
tricity Price

In this package, the monthly electricity demand of end-us‐
ers is divided into several levels. Especially, different elec‐
tricity prices are set at each level of ladder price, as shown 
in Fig. 3.

The electricity price at each level of ladder price is de‐
scribed as:

pE4
n =

ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

p1st
n Qmonth

ijn Î [ )0Q1st
n

p2nd
n Qmonth

ijn Î [ )Q1st
n Q2nd

n

p3rd
n Qmonth

ijn Î [ )Q2nd
n ¥

    "n = 123 (10)

ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

Qmonth
ijn =∑

t = 1

TM

Quser
tijn "n = 123

Gmonth
ijn =∑

t = 1

TM

Guser
tijn "n = 123

(11)

This package also proposes the natural gas quota, which 
requires that the monthly natural gas demand of end-users is 
not less than the quota value G4. Otherwise, end-users would 
pay the penalty fee based on the natural gas demand and 
penalty price. Similarly, if the natural gas demand of end-us‐
ers is higher than the specified value, end-users will get re‐
ward. The retailer’s income from this package can be ex‐
pressed as:

C EU4
ij =

ì

í

î

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

p1st
n Qmonth
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E. Package 5: Fixed Electricity and Natural Gas Price

Package 5 provides end-users with the fixed electricity 
and natural gas price. It is simple and suitable for risk-
averse end-users. The retailer’s income from this package 
can be expressed as:

Reward fee

Peak-valley

excess coefficient

Neutral zone

Penalty fee

Fig. 2.　Peak-valley reward-penalty mechanism.
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Fig. 3.　Electricity price at each level of ladder price.
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B5
i =∑

j = 1

NU

C EU5
ij =∑

t = 1

TM∑
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NU ( )pEfixed
n Quser

tijn + pGfixed
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IV. BI-LEVEL MLMF STACKELBERG GAME MODEL

A. Bi-Level MLMF Stackelberg Game Framework

The interaction between energy retailers and multi-energy 
end-users is modeled by using a bi-level MLMF Stackelberg 
game model combined with stochastic optimization. The re‐
tailers act as leaders and end-users act as followers. As can 
be observed from Fig. 4, by considering both profit and risk 
factors, retailers decide the electricity and natural gas pur‐
chasing quantities from the upper market or companies, and 
the prices of multi-energy retail packages at the upper level. 
Then, after the prices of five packages are decided, end-us‐
ers aim at maximizing the satisfaction of energy comfort and 
economy by choosing appropriate packages and retailers at 
the lower level. The iterative interaction among retailers and 
end-users would stop when the optimal game decision 
(namely Nash equilibrium solution) is obtained. With regard 
to the bi-level MLMF Stackelberg game, the game between 
retailers is assumed to be a non-cooperative static game 
while the game between retailers and end-users is assumed 
to be a non-cooperative dynamic game.

B. Upper-level Problem

1)　Objective Function
Due to the fluctuation of both MCP and demand of end-

users during each period, energy retailers may face the finan‐
cial risk [39]. CVaR is used for minimizing the expected val‐
ue of regret over a set of worst scenarios [40]. Therefore, 
the potential risk is evaluated by CVaR to obtain high profit 
and low risk for retailers. The objective function in upper-
level problem consists of three parts (retailer’s income, cost, 
and risk) as can be expressed as:

max PRR
i = ( )1 - λi πω( )BR
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The mathematical model of risk evaluation based on 
CVaR is expressed as:

ì

í

î

ï
ïï
ï
ï
ï

ï

ï
ïï
ï

ï

prob{ }Fi (yω)£RVaR
i = βi

[ ]Fi (yω)-RVaR
i

+
=max [ ]0Fi (yω)-RVaR

i

RCVaR
i =RVaR

i +
1

1 - βi
∑
ωÎΩW

πω[ ]Fi (yω)-RVaR
i

+

(18)

where the undefined variables in (16) - (18) are explained 
in [41].

In order to simplify the model, the auxiliary variables δi 
and xiω are introduced. The above equation is transformed 
as:

RCVaR
i = δi +

1
1 - βi

∑
ωÎΩW

πωxiω (19)

2)　Constraints
1) Energy balance constraints: (20) and (21) determine the 

energy balance for electricity and natural gas, respectively.
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2) Energy purchasing constraints: the purchased electricity 
and natural gas are limited within the following ranges:
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3) Package price constraints: the price relationship in each 
package is constructed by the following constraints:
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Meanwhile, the prices of energy sold to residential, com‐
mercial, and industrial end-users in each package are related. 
Taking package 1 as an example, it is shown as follows (oth‐
er packages are similar):
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t2

pG1
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t2

(24)

Also, there are upper and lower limits for prices in each 
package. Take the electricity price sold to residential end-us‐
ers during peak periods in package 1 as an example:

Objective: maximize profit and minimize risk

Decision variables:

•
•
• Choice of retailers and packages

Decision variables:

•   
• 
• 
• 

Upper-level: energy retailers

Leaders

Electricity purchased from bilateral contracts
Electricity purchased from spot market
Natural gas purchased from bilateral contracts
Prices of multi-energy retail packages

Package

prices

Package and

retailer

choice

Followers

Lower-level: multi-energy end-users

Objective: maximize satisfaction of energy
comfort and economy

Electricity consumption during each period
Natural gas consumption during each period

Fig. 4.　Bi-level MLMF Stackelberg game framework.
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ppeakmin
1 £ ppeak

1 £ ppeakmax
1 (25)

4) CVaR constraints: the relationship between the auxilia‐
ry variables used to evaluate the risk is expressed by the fol‐
lowing constraints:
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(26)

C. Lower-level Problem

1)　Objective Function
In the MLMF Stackelberg game, end-users accept prices 

of multi-energy retail packages passively. But the decisions 
of end-users are also a crucial part of the game since the 
strategies of end-users would affect prices of packages in 
turn. In this paper, the objective function in lower-level prob‐
lem consists of four parts (the satisfaction of end-user of 
electricity comfort S Ecom

j , natural gas comfort S Gcom
j , electrici‐

ty economy S Eeco
j , and natural gas economy S Geco

j ) as can be 
expressed in (27). At the same time, different weights of 
these satisfaction should be considered when end-users for‐
mulate energy demand strategies.
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It should be noted that the initial electricity cost C Einitial
j  

and natural gas cost C Ginitial
j  are calculated according to the 

fixed single price. Except for purchasing natural gas from re‐
tailers, end-users can also trade with natural gas companies 
directly by monthly bilateral contracts. This cost is ex‐
pressed as:
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The price that natural gas companies provide to end-users 
is often higher than that to retailers because of the amount 
difference of purchased natural gas.
2)　Constraints

1) Energy demand constraints: the limits of energy de‐
mand for end-users during each period are constructed by 
the following constraints:
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2) Energy balance constraints: energy balance constraints 
of end-users are similarly modeled compared with retailers. 

Equation (34) shows the corresponding constraints.
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3) Natural gas purchase constraint: the purchased natural 
gas of end-users by bilateral contracts should be lower than 
their maximum levels.

0 £GBuser
tjkn £GBUmax

k (35)

V. SOLUTION METHOD

To verify the effectiveness of the designed multi-energy re‐
tail packages for retailers, a distributed algorithm is pro‐
posed to solve the bi-level MLMF Stackelberg game prob‐
lem, which consists of 4 steps.

Step 1: define the iterative number variable and the itera‐
tivetolerance φ1; initialize energy demand of end-users and 
package prices, as represented by (3)-(15). Furthermore, gen‐
erate MCP scenario and set prices of bilateral contracts, as 
represented by (1) and (2).

Step 2: according to Section IV-C, each end-user decides 
on its optimal trading strategy during each period. Then, its 
energy demand behavior is updated.

Step 3: with the updated energy demand of end-users, 
each retailer determines its optimal trading strategy which in‐
cludes package prices and purchased energy by solving the 
optimization problems shown in Section IV-B. The optimiza‐
tion of each retailer is shown as follows.

Step 3.1: set the parameters of PSO, including the num‐
bers of particles and iterations, iterative tolerance φ2, etc.

Step 3.2: initialize the position and velocity of each parti‐
cle.

Step 3.3: get the fitness values of initial particles and de‐
termine the initial individual and global optimal position.

Step 3.4: update the position and velocity of particles.
Step 3.5: get the fitness values of initial particles again 

and update the individual and global optimal position.
Step 3.6: if the solution satisfies the given tolerance φ2, 

output the optimal solution; otherwise, go to Step 3.4.
Step 4: the updated package prices determined by Step 3.6 

are broadcasted to the end-users. If the difference between 
optimal profit of retailers in the kth iteration and (k - 1)th itera‐
tion is not less than φ1, go back to Step 2. Then, end-users 
adjust their strategies and offers to retailers again based on 
the updated package prices. Otherwise, the iteration termi‐
nates, which means that the bi-level MLMF Stackelberg 
game reaches the Nash equilibrium.

VI. CASE STUDY

A. System and Data Specifications

The integrated electricity and natural gas retailing market 
is assumed to consist of three energy retailers and five end-
users (including three residential end-users, one commercial 
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end-user, and one industrial end-user). The packages provid‐
ed by three energy retailers are shown in Table I, and the sat‐
isfaction weights of end-users for natural gas comfort and 
economy are 0.1 and 0.4, respectively. 

Due to the limited space, the quotation parameters of pow‐
er generation companies and natural gas companies, package 
parameters, and other parameters involved in solving the 
model can be found in [41]. Based on a typical 24-hour 
MCP in [1], 1000000 MCP scenarios are generated by the 
Monte Carlo method. Then, the generated 1000000 MCP sce‐
narios are reduced to 5 typical scenarios by the K-means al‐
gorithm [41]. The initial electricity and natural gas demands 
of end-users in a day are also shown in [41]. Assume that 
the electricity and natural gas demand curves of each day of 
the month are the same. All the algorithms are executed on a 
personal computer with an Intel Core (i7 1.80 GHz) and 
16 GB of memory. The proposed bi-level stochastic optimi‐
zation model is solved by PSO and CPLEX 12.6.0 using 
MATLAB R2016b.

B. Game Equilibrium Analysis

The energy comfort and economy satisfaction of end-users 
are listed in Table II. The iterative interaction curves be‐
tween retailers and end-users are shown in Figs. 5 and 6, 
where the profit of retailers and economy satisfaction of end-
users fluctuate violently with the change of each other’s 
strategy in the first 30 iterations. The slope of iteration 
curves gradually decreases from the 30th to 60th iterations, 
which implies that the competition between MLMF Stackel‐
berg game players becomes less intense. In the 63rd itera‐
tion, the retailers and end-users get the Nash equilibrium so‐
lution.

In Fig. 6, the order of overall satisfaction from the highest 
to the lowest is the industrial, commercial, and residential 
end-users, respectively. The reason could be found from Ta‐
ble II. To be specific, residential end-users have the lowest 
energy demand, which results in the lowest price elasticity 
and range reduction of energy demand. Then, it further leads 
to the lowest overall satisfaction. Meanwhile, the commer‐
cial end-user has no night-time energy demand, resulting in 
the higher satisfaction of energy economy compared with 
residential end-users. Similarly, the industrial end-user has 
the highest energy demand, resulting in the highest overall 
satisfaction. The above detailed analysis demonstrates that 
the industrial end-user has an advantage in the game. More‐
over, Fig. 6 also shows that the overall satisfaction of both 
resident end-user 1 and commercial end-user 1 decreases af‐
ter the game. However, the overall satisfaction of residential 
end-users 2 and 3 increases, and that of industrial end-user 1 
remains almost unchanged.

C. Analysis of Package Choice of End-users

Figure 7(a) shows that the residential end-user 1 reduces 
electricity demand as a whole in order to improve the econo‐
my satisfaction of electricity. On the contrary, the residential 
end-user 2 increases electricity demand in Fig. 7(b). This is 
because the electricity demand of residential end-user 2 is 
low during peak and flat periods and high during valley peri‐
ods. It can reduce the electricity cost by choosing package 3 
during valley periods to get a high reward fee. The optimal 
solution indicates that the exact amount of the reward fee is  

$6.5725×103 within a month. Thus, even if the electricity de‐
mand of the end-user increases, the cost is almost un‐
changed.

TABLE II
ENERGY COMFORT AND ECONOMY SATISFACTION OF END-USERS

End-user

Residential 
end-user 1

Residential 
end-user 2

Residential 
end-user 3

Commercial 
end-user 1

Industrial 
end-user 1

S E,Com
j

0.805

0.669

0.886

0.906

S E,Eco
j

0.253

-0.043

0.114

0.247

S G,Com
j

0.880

0.946

0.818

0.850

S G,Eco
j

-0.721

-0.089

-0.265

0.147

TABLE I
PACKAGES PROVIDED BY THREE ENERGY RETAILERS

Energy 
retailer

1

2

3

Package 1

×

√
×

Package 2

×

×

√

Package 3

×

√
×

Package 4

√
×

×

Package 5

×

×

√
Note: √ indicates that the energy retailer provides this package, and × indi‐
cates that the energy retailer does not provide this package.
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Fig. 5.　Iterative curves of retailers.
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Figure 8 shows the purchased electricity of commercial 
end-user 1 and industrial end-user 1. In Fig. 8(a), during the 
night-time period 21: 00-23: 00, commercial end-user 1 pur‐
chases electricity from package 2 because of the low night-
time price. Furthermore, during the peak period 17:00-19:00, 
the end-user purchases 870 kWh electricity at the basic price 
of package 3. It indicates that the peak-valley excess coeffi‐
cient of the end-user is between -ε3 and ε3, so there is no 
penalty or reward. The monthly electricity purchased by the 
end-user from package 4 is 76350 kWh, which does not ex‐
ceed the first level of electricity demand limit in package 4. 
Hence, the end-user is charged by the price at the first level 
in package 4, which reduces the cost effectively.

Figure 8(b) shows that industrial end-user 1 purchases 
92400 kWh electricity during the valley period and 19500 
kWh during the flat period from package 3 within a month, 
resulting in a reward fee of $7.9534×103. In addition, the 
end-user purchases 1180 kWh electricity from package 2 dur‐
ing the night-time period 21: 00-24: 00, which exceeds the 
limit of night-time electricity demand in package 2. Thus, 
the end-user gets 190 kWh electricity reward from package 
2 during day-time periods 17:00-18:00 and 20:00-21:00. Sim‐
ilarly, the 66000 kWh electricity is purchased from package 
4 at the first-level price within a month because it is lower 
than the second-level price.

According to Figs. 7 and 8, when formulating electricity 
demand strategies to maximize overall satisfaction, they all 
have selected multiple retail packages instead of a single re‐
tail package. This shows that choosing multiple packages is 
more conducive to reducing the electricity cost of end-users 
with little change in electricity demand behavior. This is be‐

cause end-users can use electricity by different packages dur‐
ing different periods, so as to improve the efficiency. Be‐
sides, it can also be concluded from Figs. 7 and 8 that for 
end-users whose electricity demand is high during the peak 
period and low during the valley period, reducing overall 
electricity demand is the main measure to improve their 
economy. However, for end-users with opposite electricity 
demand characteristics, they can increase electricity demand 
as a whole while ensuring the cost almost unchanged.

Figure 9 presents the purchased natural gas of end-users. 
As shown in Fig. 9, end-users prefer to trade with the natu‐
ral gas company because of the lowest price of the bilateral 
contract. 

It can be found that all end-users purchase 10000 m3 natural 
gas from package 4 within a month. It slightly exceeds the 
natural gas quota value in package 4 and results in a reward 
fee. The reason why end-users do not choose package 1 is 
that it is not beneficial to the economy satisfaction since all 
end-users have large natural gas demand during peak periods 
where the price is the highest. Moreover, package 5 is also 
not chosen by end-users. This is because the retailer provid‐
ing package 5 always increases the fixed natural gas price to 
ensure income. These demonstrate that it is necessary for re‐
tailers to provide suitable packages for end-users with differ‐
ent natural gas demand behaviors such as the quota natural 
gas price package. Otherwise, end-users will choose to trade 
more with natural gas companies that provide lower prices 
than retailers.

D. Analysis of Electricity Income and Cost of Retailers

The electricity income of retailers from end-users in pack‐
ages is shown in Fig. 10, where end-user 1 represents resi‐
dential end-user 1; end-user 2 represents residential end-user 
2; end-user 3 represents commercial end-user 1; and end-us‐

1 2 3 4 5 6 7 8 9 101112131415161718192021222324
0

100

200

300

400

500

600

From package 3

Initial demand

From package 2

From package 4

0

200

400

600

800

1000
From package 1
From package 2
From package 3
From package 4
From package 5
Initial demand

E
le

ct
ri

ci
ty

 p
u

rc
h

as
ed

 (
k

W
h

)
E

le
ct

ri
ci

ty
 p

u
rc

h
as

ed
 (

k
W

h
)

Time (hour)
(a)

1 2 3 4 5 6 7 8 9 101112131415161718192021222324
Time (hour)

(b)

Fig. 8.　Purchased electricity of commercial end-user 1 and industrial end-
user 1. (a) Commercial end-user 1. (b) Industrial end-user 1.
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er 4 represents industrial end-user 1. It can be oberserved 
that among all packages, only package 2 is chosen by each 
end-user with electricity demand. This is because all end-us‐
ers have a number of night-time electricity demand. It leads 
to a few day-time electricity reward by choosing package 2 
which contributes to reducing the cost. Moreover, the type 
of packages chosen by commercial end-user 3 is the least be‐
cause of the shortest period with electricity demand. Mean‐
while, except for residential end-user 2 with opposite elec‐
tricity demand behaviors, the electricity income of retailer 1 
from other end-users in package 4 is nearly the same. It can 
be found that 70% of the electricity income of retailer 2 
comes from package 3, but packages 2 and 5 bring similar 
electricity income to retailer 3. The above comparison shows 
that retailer 2 needs to adjust the prices of package 1 to im‐
prove the market share.

The optimal solution shows that the package prices tend 
to rise firstly and then stabilize during the iteration. It im‐
plies that the increasing prices are the main measure to im‐
prove the electricity income for retailers in the MLMF Stack‐
elberg game. By taking the penalty electricity price in pack‐
age 3 and the reward natural gas price in package 4 as exam‐
ples, their iterative curves are shown in Fig. 11.

Figure 12 depicts the profit, risk, cost, income of electrici‐
ty and natural gas, and total traded electricity of retailers. It 
should be noted that the profit and cost take the expectations 
of all scenarios. Meanwhile, costs of retailers 2 and 3 before 
and after the game in five scenarios in the spot market are 
shown in Fig. 13.

It can be observed from Fig. 12(a) that after the game, the 
profits of retailers 1 and 3 greatly increase while those of re‐
tailer 2 decrease. The reason may be that before the game, 
many end-users purchase natural gas from retailer 2 in pack‐
age 1, as shown in Fig. 12(e). However, after the game, end-
users prefer to trade with natural gas company 1 because of 
the increased natural gas price of package 1. This reduces 
the natural gas income of retailer 2 significantly. Therefore, 
the profit and cost of retailer 2 are lower than those before 
the game. In addition, as the only retailer with natural gas in‐
come, retailer 1 has the highest profit. Figure 12(a) and (b) 
shows that the higher the profit of retailer is, the greater risk 
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it would face. In Fig. 12(d), retailer 3 has the highest elec‐
tricity income with retailer 2 ranking the second, while retail‐
er 1 has the lowest. This proves that it is more beneficial to 
retailers than a single type by providing multi-type packag‐
es. It also means that the adaptability of packages to end-us‐
ers is the key to determine the retailers’ income. In Fig. 12(f), 
the total traded electricity of retailers 1 and 3 increases after 
the game while that of retailer 2 decreases. It implies that re‐
tailer 2 is at a disadvantage in the game, and its package de‐
sign cannot completely satisfy end-users. In contrast, packag‐
es 2 and 4 are more favored by end-users in this paper.

The above results demonstrate that retailers still dominate 
in the MLMF Stackelberg game although end-users have the 
right to trade with multiple retailers and determine the quan‐

tity of energy demand during each period. Therefore, the 
market manager should control the rise of prices provided 
by retailers for the fairness of energy retailing market.

E. Analysis of Energy Purchase and Sale of Retailers

The sold electricity of retailers before and after participat‐
ing in the game is shown in Figs. 14 and 15. It can be ob‐
served from Fig. 14 that before the game, the sold electricity 
of retailer 1 is concentrated during the peak period. Howev‐
er, it is concentrated during the peak and flat periods after 
the game. Moreover, after the game, the main electricity 
package sold by retailer 2 changes from package 1 to pack‐
age 3 because of the rise of prices in package 1. And the 
main selling electricity period distribution of retailer 2 also 
transfers from flat periods to valley periods. The sold elec‐
tricity of retailer 3 in package 5 increases slightly after the 
game, which is mainly during the peak period. The reason is 
that the second-level price of package 4 is gradually equal to 
the fixed price of package 5. This results in the reduction of 
electricity from package 4 and the increase of electricity 
from package 5. Comparing Fig. 14(c) with Fig. 15(c), we can 
find the sold electricity in package 2 decreases significantly 
during the valley period. This is because that the increase of 
the reward electricity price in package 3 makes end-users 
who originally chooses package 2 turn to choose package 3.
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The purchased electricity of retailers after the game and 
the MCP curve in the spot market in a typical scenario are 
shown in Fig. 16. Retailers only trade with power generation 
company 2 since the bilateral contract price is low. Besides, 
the electricity in the spot market is mainly purchased from 
04: 00 to 07: 00 when MCP is lower than the bilateral con‐
tract price. In summary, after the MLMF Stackelberg game, 
end-users prefer to choose package 3 during the valley peri‐
od 00:00-08:00, package 5 during the peak period 08:00-
12: 00, package 4 during the flat period 12: 00-17: 00, and 
package 2 during the flat period 21:00-24:00. In addition, all 
packages are appropriate for end-users during the peak peri‐
od 17:00-21:00.

VII. CONCLUSION

This paper designs five types of multi-energy retail pack‐
ages for energy retailers, including peak-valley TOU price, 
day-night bundled price, peak-valley reward-penalty price, 
quota natural gas price and tiered electricity price, and fixed 
single price. A bi-level stochastic optimization model is con‐
structed based on MLMF Stackelberg game between energy 
retailers and end-users. The case is solved by the combina‐
tion of PSO and CPLEX solver. The simulation results veri‐
fy the applicability of the designed retail packages to multi-
energy end-users. The main conclusions are as follows.

In addition, the design of electricity package and natural- 
gas package in this paper is independent, but with the devel‐
opment of Energy Internet, the possibility of electrical ener‐
gy replacement is becoming greater and greater. How to de‐
sign the package bundled with electricity and natural gas 
will help retailers face a more complex market environment.

1) In the 63rd iteration, retailers and end-users reach Nash 
equilibrium. According to the Nash equilibrium solution, the 
overall satisfaction of the industrial end-user is the highest, 
followed by the overall satisfaction of commercial end-user 
and the residential end-user is the lowest.

2) For end-users whose electricity demand is high during 
load peak periods and low during load valley periods, reduc‐
ing overall electricity demand is the main measure to im‐
prove their economy. However, for end-users with opposite 
electricity demand characteristics, they can increase electrici‐
ty demand as a whole while ensuring the cost almost un‐
changed.

3) The profits of retailers 1 and 3 greatly increase while 

the profit of retailer 2 decreases after the MLMF Stackel‐
berg game because the end-users choose to purchase natural 
gas from the natural gas company 1 instead of the original 
retailer 2. This demonstrates that the advantage in the game 
for those retailers depends on whether their packages are fa‐
vored by end-users.

In addition, the design of electricity package and natural  
gas package in this paper is independent, but with the devel‐
opment of Energy Internet, the possibility of electrical ener‐
gy replacement is becoming greater and greater. How to de‐
sign the package bundled with electricity and natural gas 
will help retailers face a more complex market environ‐
ment.
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Fig. 16.　Purchased electricity of retailers after participating in game. (a) Retailer 1. (b) Retailer 2. (c) Retailer 3.
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