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A Privacy-preserving Energy Management
System Based on Homomorphic Cryptosystem
for IoT-enabled Active Distribution Network

Qian Hu, Siqi Bu, Wencong Su, and Vladimir Terzija

Abstract—Active distribution network (ADN), as a typically
cyber-physical system, develops with the evolution of Internet
of Things (IoTs), which makes the network vulnerable to cyber-
security threats. In this paper, the eavesdropping attacks that
lead to privacy breaches are addressed for the loT-enabled
ADN. A privacy-preserving energy management system (EMS)
is proposed and empowered by secure data exchange protocols
based on the homomorphic cryptosystem. During the informa-
tion transmission among distributed generators and load cus-
tomers in the EMS, private information including power usage
and electricity bidding price can be effectively protected against
eavesdropping attacks. The correctness of the final solutions,
e.g., optimal market clearing price and unified power utilization
ratio, can be deterministically guaranteed. The simulation re-
sults demonstrate the effectiveness and the computational effi-
ciency of the proposed homomorphically encrypted EMS.

Index Terms—Eavesdropping attack, energy management sys-
tem, homomorphic cryptosystem, Internet of Things (IOTs), ac-
tive distribution network (ADN), privacy-preserving.

1. INTRODUCTION

HE deployment of digital smart sensing, distributed gen-

erators (DGs), and advanced information and communi-
cation technology has been accelerated in the past few de-
cades to drive the power grid toward a more interconnected
network. Along with the emerging control strategy, various
components and devices in the power grid can be managed
in a distributed and connected manner through the internet
or communication platforms [1], [2]. Such an evolution into
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a big Internet of Things (IoT) extensively boosts the grow-
ing functionalities of modern power grids [3]. However, po-
tential cybersecurity threats are inevitably posed to power
networks. Among different types of cybersecurity threats,
eavesdropping attack has received increasing attention [4]-
[8]. It can be provoked by an unauthorized and corrupted en-
tity to obtain confidential information of legitimate compo-
nents when the information is transmitted between two com-
ponents.

An IoT-enabled active distribution network (ADN) com-
prises a wide range of physical components, e.g., DGs and
load customers, and devices, e.g., advanced sensors and me-
tering infrastructures, that require interactive communica-
tions to realize a bunch of functions in a distributed manner.
It is a typical multi-agent cyber-physical system. Consensus
theory is the foundation of most of the existing distributed
algorithms. With several advantages, e.g., robustness to the
single-point failure and scalability in computation and com-
munication, consensus-based algorithm has been widely ap-
plied to facilitate multi-agent distributed operations in the cy-
ber-physical power network with different network-wide ob-
jectives such as economic dispatch, cost minimization, loss
minimization, and accurate power sharing [9] - [17]. To
achieve an effective and flexible operation of IoT-enabled
ADN, it is necessary to apply promising distributed algo-
rithms like consensus algorithm in a well-designed energy
management system (EMS).

In the context of the IoT evolution, the deployment of dis-
tributed EMS in the ADN will be greatly facilitated through
peer-to-peer communications. Nevertheless, in an IoT-en-
abled ADN, confidential data are more easily inferred and
collected by eavesdropping attacks during the distributed de-
cision-making process because of the collaborative and con-
nective nature of agents. For instance, hackers who success-
fully eavesdrop on the cyber network of an ADN can steal
power usage data of load customers and bidding price infor-
mation of DGs, and may even disclose important decisions
or control actions for illegal purposes [18], [19]. Private in-
formation such as power usage is at a high confidential level
as it can imply personal preferences and activities. Hence,
measures to keep private data of agents secure are extremely
essential in the loT-enabled ADN.

Generally, two common approaches with regard to data-
processing are used for preventing privacy disclosure in the
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literature. One approach is to implement differential privacy
to protect data, and the other is to use cryptographic tech-
niques. For differential privacy, randomized noises are added
to an individual’s data to make sure that an eavesdropper
cannot infer the original information. Some studies have ap-
plied differential privacy for information privacy in the pow-
er sector. In [20]-[22], privacy-preserving algorithms are de-
veloped based on differential privacy for energy manage-
ment and economic dispatch problems in smart grids and mi-
crogrids. To protect the confidentiality of private loads, dif-
ferential privacy is also implemented in [23] for optimal
power flow calculation. However, by utilizing differential pri-
vacy, the injected perturbations will potentially affect the ex-
act accuracy of the algorithm convergence and deteriorate
the control system performance. There exists an inherent
tradeoff between correctness and privacy in the differential
privacy scheme [24]. The injected noise should follow strict
mathematical requirements. Otherwise, the convergence can-
not be ensured.

By contrast, cryptographic techniques do not inject any
perturbation in the power network and are capable of finding
the exact solution to the problem after the decryption [18].
In particular, a homomorphic cryptosystem allows certain
computations to be carried out on the ciphertext, i.e., the en-
crypted data, to maintain the confidentiality of the original
data. After decrypting the encrypted data, the decrypted re-
sult exactly matches the computation result performed on the
plaintext [25]. Thanks to the advantage of semantically se-
cure encryption and efficient decryption, the homomorphic
cryptosystem has been employed to create privacy-preserv-
ing distributed control schemes lately in the field of control.
For example, privacy-preserving average consensus algo-
rithms are developed to ensure the accurate average consen-
sus without disclosing the initial states of agents in [26] and
[27]. In addition, homomorphic encryption has been used in
smart grid such as secure data aggregation in [24], privacy
protection of customer usage information in the forecast pre-
diction in [25], and the data security of smart meters in [26].
All of them only need one-step data aggregation, which
makes the application of HE relatively simple. However, the
application of the homomorphic cryptosystem in energy man-
agement has not been sufficiently investigated for IoT-en-
abled power networks, especially distribution networks, with
high requirement for data exchange.

Therefore, to address the pressing demand for privacy
preservation in the IoT-enabled ADN, this paper develops a
privacy-preserving EMS by utilizing the homomorphic cryp-
tosystem. The core task is to protect data privacy against
eavesdropping attacks during the information exchange need-
ed for distributed optimization and coordination in the EMS.
The privacy preservation is empowered by secure data ex-
change protocols based on the homomorphic cryptosystem.
The contributions of the paper are summarized as follows.

1) For IoT-enabled ADNs highly relying on the communi-
cations among heterogeneous components, a two-level EMS
is proposed to maximize the social welfare of DGs and load
customers and achieve cooperative power sharing among
DGs.

2) Privacy concerns and risks subject to eavesdropping at-
tacks in the IoT-enabled ADN with distributed consensus-
based EMS are comprehensively analyzed and mitigated. Se-
cure data exchange protocols are developed based on the ho-
momorphic cryptosystem to prevent the leakage of private in-
formation of each agent during the distributed operation of
the EMS. The operation of secure protocols is fully distribut-
ed without the supervision of a third party, which is cost-ef-
fective and efficient to be implemented.

3) The proposed two-level EMS based on the homomor-
phic cryptosystem can accomplish two advantageous proper-
ties at the same time: privacy preservation and correctness,
guaranteeing the effectiveness of the EMS.

The remaining paper is organized as follows. Section II
presents the proposed two-level EMS and its associated in-
formation privacy concerns. Section III introduces the pre-
liminaries on the homomorphic cryptosystem. Section IV
presents the homomorphically encrypted EMS based on se-
cure exchange protocols. Simulation results are demonstrated
in Section V. The discussion and conclusion are presented in
Sections VI and VII.

II. PROPOSED TWO-LEVEL EMS AND ITS ASSOCIATED
INFORMATION PRIVACY CONCERNS

In this section, a two-level EMS is first introduced for the
IoT-enabled ADN. To realize its functions in a distributed
way, distributed consensus-based algorithms are then present-
ed. The privacy concerns and potential risks are discussed.

A. Proposed Two-level EMS for loT-enabled ADN

The schematic diagram of ADN structure and proposed
two-level EMS is illustrated in Fig. 1, including three types
of entities: virtual power plants (VPPs), DGs, and load cus-
tomers. VPP consists of multiple DGs. A group of DGs are
aggregated as a VPP to provide flexible power generation
and multiple VPPs work cooperatively as power suppliers to
quickly respond to changing power demand of load custom-
ers. Dash lines indicate the communication connections
among different entities. The economic dispatch of VPPs, de-
mand response of customers, and the cooperative control of
DGs can be realized through a proposed two-level EMS,
which is demonstrated in Fig. 1, where P,,, is the optimal
power generation.

. First level: economic coordination

3| Vlgl; |---|Loac; ;;;;omer|--- ;/P]; Loac; ;:ustomer 3

. Second level: power sharing within a VPP

Fig. 1. Schematic diagram of ADN structure and proposed two-level EMS.

During the first-level operation of EMS, the information
of each VPP (or load customer) is encrypted by the local
VPP operator (or customer) and then transmitted to other
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VPPs (or customers). Similarly, the information of each DG
in a VPP is encrypted by DG itself and then transmitted to
other DGs for the encrypted data processing in the second-
level operation.

Economic operation of a distribution network should in-
volve active participations of both supply and demand sides
in energy market. In a deregulated energy market, both par-
ties are supposed to be self-interested and have optimal strat-
egies to participate in the market. The self-interested market
model describes the essential objectives of suppliers and cus-
tomers, which are discussed below. Let us consider VPPs be-
longing to the set V,,,={1.2,...,N,} and load customers be-
longing to the set V.={l,2,...,N_.}. The active power loss is
incorporated into the market model. For each VPP operator
i€ V,pp and each customer je€ V., the energy selling price
and bidding price are denoted by 4, and 4, respectively,
and the objective of the self-interested market model is to
maximize VPP profit and customer utility, respectively, for-
mulated as:

r?i—:‘ (’ls,iPVPP,i(l =)= Ci(Pypp;)) (1
n}fnlx ((U/ (PD,_/' )_j’b‘iPD‘j 1+ Vi ) )

where Py, and P are the power generation of the VPP
and the power demand of the customer, respectively; y, and
7; are the loss coefficients in a range of [0, 1] that can be de-
fined by ,=0P,5/0Ppp,; and y,=0P /0P, for the i

VPP and j" customer, respectively [28], and P, is the total

. 1 .
active power loss; C,= Ea,P,z,PP’i+biPVPPJ.+c, is the cost

function of the VPP, and a,, b,, c; are the cost coefficients of

the i" VPP; and U,= %ajPéﬁﬁjPDJ is the utility function

of the customer [11], and @; and f, are the utility coefficients
of the /" customer. The marginal cost function R, for the i"
VPP and the marginal utility function R, ; for the Jj™ custom-
er are defined as (3) and (4), respectively.

0C;(Pypp,;)
R (Pypp;)= P — =a,Pypp,+b, 3)
VPP.i
oU,(Pp)
R, ;(Pp;)= (’;PDL.)/ =0, Py +p; “)
J

At the first level of the EMS, to maximize social welfare
and to reduce energy costs from the perspective of the entire
ADN, based on (1) and (2), the economic coordination prob-
lem can be formulated as:

max 2 U./’(PD,./') - 2 CI(PVPPJ) (53)
jev. i€ Vipp
s.t.

N, N,
ZPVPPJ = EPD,j+PLOSS (5b)

= j=1
Piop i SPypp SPUR, (5¢)
Py} <Py, <Py (5d)

where P}y, and Pjpy, are the lower and upper limits of the
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VPP generation, respectively; and Pg’f}“ and Pp7 are the low-
er and upper limits of the load demand, respectively.
P, o5 can be written as:
N, N,
PLOSS=inPVPP,i+yj ZPD,j (6)
f j=
Through the self-interested model, each VPP operator will
find an optimal power generation for the i" VPP P,,,, such
that the marginal cost equals the energy selling price A,
The optimal solution of (1) therefore can be found by:

AgiU=y)= R ;(Pypp;)=0 (7)

Similarly, the customer will find the optimal solution P,
of (2) by equating the marginal utility to its bidding price:

/Ib,i(l +yj)_Ru‘j(PD‘j):0 (8)

Considering constraints (5¢) and (5d), the generation of

the VPP and consumption of the customer can be deter-
mined based on (7) and (8) as:

min RI:;H
P VPP, i ;{s,i< ﬁ
RE
Pypp= Py, Agi> ﬁ )
A .(1—y)-b.
Al =r)=b, otherwise
a;
min RZ;H
Iy Api< 1+7,
R
Pyy= | PRy b i (10)
J
A (L+y)—p,
Ani042)=F; b otherwise
9;

where R™" and R™ are the lower and upper bounds of the
marginal cost, respectively; and R‘u‘j“ and R} are the lower
and upper bounds of the utility, respectively. They can be
known from (3) and (4) by giving P}, (or Pp) and
Pypp; (or Pp7*). Social welfare is maximized at the equilibri-
um of the market, i.e., 4, and 1,; both settle at a unique
price denoted by A". This optimum will also result in an iden-
tical marginal cost and utility for all participants.

At the second level of the proposed two-level EMS, a co-
operative power sharing strategy will be subsequently con-
ducted by all DGs in each VPP once the optimal power gen-
eration P, is determined. Consider DGs belonging to the
set Vp={l.2,...,N,}. For each DG m e ), the following
problem is formulated to satisfy the power generation re-
quirement and meanwhile to ensure accurate power sharing
among DGs:

N
rg;g(ng”—PWY) (11a)
S.t.
Nt/
P= "5, PR, (11b)
m=1
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P

osalz...zamzpﬁ—imsl (11c¢)
DG, m

OSPDGﬁmSng.(m (lld)

where P,;, and PJg, are the power output and its upper
limit, respectively; and J,, €[0, 1] is defined as the power utili-
zation ratio. A VPP manager only participates in the first lev-
el of the EMS, so when conducting (11a)-(11d), VPP opera-
tor does not know P, of each DG. This value is only de-
termined by each DG itself through communications with
other neighboring DGs in the second-level EMS operation.

B. Consensus-based Distributed Algorithms for EMS

A graph G=(V,€) is used to capture the communication
network of an IoT-enabled system. Nodes belonging to the
set V={V,,V,,...,V,} represent the agent in the ADN. A fi-
nite edge set E={(p,q)}e VxV consists of all communica-
tion links between any pair of connecting agents, where
agent V, can receive the information from agent V,. For
agent V, € G, the agents that can directly receive information
from it are defined as its out-neighbors, denoted by N;*'=
{V (p.q)€ £}. The cardinality of N;* is called as out-degree
and is denoted by D;". The agents that can directly send in-
formation to the agent V, € G are defined as its in-neighbors,
denoted by N,"={V [¢.p)e £}. The cardinality of N, is
called the in-degree and denoted by D;".

At the first level of the EMS, a strongly connected graph
G.iov=Vipn»E4py) 1s introduced to describe the communica-
tion network of the IoT-enabled ADN. V, ={V,p,UV.}.
For any i,jeV,,y, the associated weighting factors for the
communication link between a pair of communicating neigh-
bors are defined as [10]:

- ] c Niin
¢ij: Di (12)
0 otherwise
o LENT
;= Dj (13)
0 otherwise

where i and j represent either a VPP or a load customer. An
operator [-]_ is used to define the mathematical operation as:

[a] = {a a=0 (14)

0 a<0

Based on the weighting factor, the economic coordination
for the VPPs and load customers at the first level of the pro-
posed two-level EMS is solved by a consensus-based distrib-
uted algorithm, formulated as:

Ai(k+T1)=4;(k)+ [ > ¢;,-(/1,(k)—/1,-(k))J +oy; (k) (15a)

jeN!"

yi(k+ 1= z wijyj(k)_(Pi(k"" D-P, (k) (15b)
JjeN"

where 4,(k) is a compact set of the energy selling price and

energy bidding price for the VPP and the load customer;

v, (k) is the local estimation of the power imbalance, which

is the feedback item driving 4, (k) to the optimal value; and
P, (k) is updated by (9) if i € V), and by (10) if i € ), at ev-
ery step k. By introducing (14), z ¢;(2;(k)=4,(k)) in (15a)
JeN!
is guaranteed to be nonnegative, which ensures convergence.
From (13), it is not difficult to find that z ¢;=1 and
jeNy
z w;=1, which is a sufficient condition for convergence.
ieN™
And the following theorem holds.
Theorem 1 [29]: considering the algorithm (15) with the
weighting factors in (13), the algorithm achieves an optimal
global solution ,}im 2,(k)=2" and klim v,(k)=0, provided that

the communication graph is strongly connected and there ex-
ists a sufficiently small gain o.

At the second level of the EMS, a strongly connected
graph G,.=(Vps. Epg) 1s adopted to describe the communica-
tion network for a single VPP consisting of multiple DGs.
For any m,n € V,;, the element of the weighted adjacency
matrix D can be defined as:

d neN"andm=#n

mn

p =)1- zdmn m=n

neN! (16)

0 otherwise

" row and the n™column

where d,, is the element at the m'
of D.

Obviously, D is a row-stochastic matrix, i.e., z d,,=1.

neN,'
All entries should be positive and satisfy ¢<d,, <1 for all
ne N, where 0<e< min {I/D”}. A leader-follower consen-

m?

sus algorithm is used to solve the self-organizing power shar-
ing problem (11) in the VPP. Without loss of generality,
DGI is assigned as the leader that has access to the refer-
ence P,,, as well as a global variable P“*“. Even though
DGI1 can collect the power output of each DG, such informa-
tion will only be received in an encrypted form (data encryp-
tion processes will be introduced in the next section). De-
note ¢ as the iteration step of the second-level cooperative
control in the EMS. The utilization ratio of the leader DG is
updated by (17a). To achieve a unified power utilization ra-
tio for each DG in the VPP, the utilization ratio of the fol-
lower DG is updated by (17b).

9, (t+1)=0,(k)+p(Pypp— P (1)) (17a)
S, t+D= > d,5,0 mn=l (17b)

neN!
where p >0 is the control gain.

The convergence of the cooperative power sharing prob-
lem is guaranteed with a sufficiently small gain p, as stated
in the following theorem.

Theorem 2 [30]: the cooperative control (11) solved by
the leader-follower consensus (17) guarantees that all DGs
asymptotically converge to the optimal solution, }er; 9, (0)=

6" and lim P"““(t)=P,,p, provided that the communication
t— 0

graph is strongly connected and there exists a sufficiently
small gain p.
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The solution of (5) and (11) in a privacy-preserving man-
ner and against eavesdropping attacks is our focus, so a de-
tailed convergence analysis is not provided here.

C. Privacy Concerns in loT-enabled ADNs

In an IoT-enabled ADN, due to the strong communicative
connections among agents, significant concerns are raised
that the privacy of individual agents can be leaked during
the information sharing under eavesdropping attacks. Note
that the eavesdropping attacks can be launched not only by
an extraneous observer but also by a corrupted entity in the
cyber network. Curious and adversarial attackers can collect
private data or sensitive information for illegal purposes.

In particular, the consensus-based distributed algorithms
discussed above relying on the information exchange among
different entities through iterative communications will pose
the risk of unintentional information disclosure. At the first
level of the EMS, the initial price 4,(0) and the initial load
demand/power supply P,(0) are regarded as the privacy of
the participating VPP and customer. It cannot be revealed to
others during the distributed decision-making process in the
communication network. In fact, it is crucial to keep partici-
pants’ parameters, e.g., coefficients of the cost/utility func-
tion, private from unauthorized parties by protecting the in-
formation of initial bidding/selling price and the power de-
mand/supply. Besides, load demand and power supply
should be maintained at a high-security level as the exposure
of such information may reveal much about the personal
preference of the load customer and the business secret of
the VPP. Therefore, necessary measures for privacy preserva-
tion should be taken in the EMS to prevent the curious enti-
ty from gathering the personal information of others during
the information exchange.

III. PRELIMINARIES ON HOMOMORPHIC CRYPTOSYSTEM

The homomorphic cryptosystem, as one of the crypto-
graphic techniques, empowers a distinguished feature to
maintain data confidentiality during both information trans-
mission and processing. Compared with the approach of dif-
ferential privacy, the correctness of the results and the priva-
cy of agents can be both ensured by applying a homomor-
phic cryptosystem. Such functionalities make it a suitable
candidate to be implemented in the distributed EMS to pre-
vent agents’ private information from being disclosed.

A homomorphic cryptosystem comprises three main func-
tions to prevent data leakage during the entire process of da-
ta transmission and processing: (1) key generation K, 2 data
encryption E, and 3 data decryption. A public key Key?
and a private key Key?" are generated through the key gener-
ation process. Based on the public key, an original message
o can be turned into a ciphertext £ by encryption function E.
Oppositely, the ciphertext f can be decrypted by decryption
function D to the original message a based on the private
key. Any agent can use the same public key to encrypt origi-
nal messages to cipher ones while only the trustworthy enti-
ty with the corresponding private key can decrypt the cipher-
text.

The Paillier cryptosystem, as one of the homomorphic

cryptosystems, is implemented in this paper. The functions
of the Paillier cryptosystem are introduced below to facili-
tate the development of the proposed homomorphically en-
crypted EMS in the next section.

Notations. Denote the set of positive real numbers in the
format of floating-point and integer as R, and R,, respective-
ly. gcd(a,b) and lcm (a,b) denote the greatest common divi-
sor and the least common multiple of integers a and b, re-
spectively; mod denotes the modular operation; | a | denotes
the floor of a real number «, i.e., the largest integer smaller
or equal to a.

Key generation. Randomly select two large prime num-
bers ¢ and v and calculate A=cv and g=Ilcm(c—1,v-1). A
random integer g is chosen such that ged(Z(g?mod h*), h)=1,
where Z(f)= [%
Key? (g, h) and the private key is Key”" (p).

Encryption. A natural integer number o € R, can be en-
crypted using the public key as:

E(0)=g"r" mod i*
where r € R, is a random positive integer.

Decryption. Ciphertext / can be decrypted using the pri-
vate key as:

J. The public key is denoted as

(18)

0 2
Z(f’mod hz) (19)
Z(g’mod /™)

The correctness, semantic security, and homomorphic
property of the Paillier cryptosystem are demonstrated as fol-
lows [31].

1) Correctness: for any nonnegative integer o € R, (20)
holds.

D(p)= mod &

D(E(@)=a (20)

2) Semantic security: if the decisional composite residuosi-

ty assumption holds (DCRA), the Paillier cryptosystem is se-
mantically secure.

3) Homomorphic properties: define any a,,a,,...,a, € R,
a) Additively homomorphic property:
D(HE(a,.)) =, (21)
i=1 i=1
b) Multiplicatively semi-homomorphic property:
D(E(a,)")=a,a, (22)

The homomorphic properties allow in-network algebraic
operations on encrypted values without the need for decryp-
tion, which is vital for developing the proposed homomorphi-
cally encrypted EMS in the next section.

IV. HOMOMORPHICALLY ENCRYPTED EMS BASED ON
SECURE EXCHANGE PROTOCOLS

This section presents a detailed design and practical de-
ployment for the privacy-preserving EMS. The Paillier cryp-
tosystem is implemented to construct the secure information
exchange protocol to maintain confidentiality for each partic-
ipant during the information exchange. It is fully distributed
without adding noise to the state variables. The proposed se-
cure exchange protocol can prevent information leakage to
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the eavesdropping attacker while achieving the deterministic
convergence to the optimal solution of (15) and (17). The ob-
jective of the secure exchange protocol is twofold.

1) Privacy preservation: for each participant (can be either
VPP ieV,,, or a load customer i€V, or a DG me)), its
information £, (k), y,(k) and J, (f) cannot be inferred by any
semi-honest eavesdropping attacker in each iteration during
data exchange.

2) Correctness: at the first level of EMS, when k— oo,
A,,;(k) and 4, (k) can settle at an optimal solution 4" for each
VPP and load customer. At the second level of EMS, when
t— o, the power utilization ratio J,,(¢) can converge to a uni-
fied ratio for each DG.

A. Random Weight Reconstruction

As shown in (15), participant i needs the information on
the weighted difference ¢, (4;(k)—4,(k)) for the local update.
To ensure that any participant obtains the weighted differ-
ence between itself and any of its neighbors without reveal-
ing each other’s information, the state information can be
encrypted and broadcasted to neighbors at every iteration
step. However, without a third party secretly distributing ¢,
the privacy of both interacting participants cannot be protect-
ed even with state encryption. For example, participant ;s
state 4;(k) can be still inferred through 4,(k)=¢;(4;(k)—
A (k)/¢,+7,(k) by its communicating neighbor i as the
weight ¢, is constant and available to participant i. To ad-
dress this issue, a random weight construction approach [27]
is extended to the homomorphically encrypted EMS, prevent-
ing a pair of communicating participants from inferring each
other’s states through the information exchange. The weight
can be represented by the product of two random numbers,
as given by:

¢g/:¢i—>/¢j—>i (23a)

(23b)

a)ij_a)iajwjai
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where ¢, , (v, ,;) is the random weight generated by and on-
ly known to participant #; and ¢, ,;(w;,;) is the random
weight generated by and only known to participant j. As de-
fined in [32], the random weight ¢, (¢4, ,,) and o, (o, ;)
should be selected in the feasible range of [¢,, 1/D;"—¢,] and
[e,,1/D" ~¢, ], respectively, where ¢, and ¢, are the positive

numbers that satisfy ¢, +¢,< l/m_ax {D!"}. Similarly, for the

weight (16), we can obtain:
d, . .d

dmn = m-—>n-"n—>m (24)

The random weight should be selected in the feasible
range of [d,d] [27], to ensure convergence, the feasible

range must satisfy 0< d <d< 1/ /p- max {D"}.

B. Transformation Between Floating-point Numbers and In-
tegers

The Paillier cryptosystem relying on certain modular oper-
ations only works for integers. However, the state values of
electrical variables are primarily in the form of floating-
point numbers [33]. Thus, the transformation between the
floating-point number and the integer is necessary before the
encryption. According to floating-point arithmetic, a floating-
point number x, € R, can be simply transformed to an inte-
ger x, € R, by x,=10"x,, where 7 denotes the preserved deci-
mal fraction digits. After the decryption, the following func-
tions can be applied to convert an integer x, to a signed real
number x, with 7 decimal fraction digits, where £ € R, is a
positive odd integer [18].

C. Secure Exchange Protocols

Next, without loss of generality, a pair of communicating
participants ()}, ),) is used to illustrate the design process
of the secure exchange protocol for the first level of EMS,
as shown in Fig. 2.

e e Keyf”‘% EH | A EaA), Keyp |K—y-| EGD.EOD [

) u o< ub
o {processing g o Ko K | | B Ko |- . Bop 1o
T e P T e S Y T T oar T e, [ B

$1(A,=2,) |processing] — ol Key?" S
L o | e L e L2 T ) O X e

— Computation flow;

Fig. 2.

V, and ), represent either the VPP or load customer. The
subscript & is omitted next for the sake of a clear demonstra-
tion. The step-by-step details of Fig. 2 are explained next.
Note that the operation at the k™ iteration is described.

1) Pre-processing: Key Generation

Before conducting the privacy-preserving interaction proto-

col, V, (or V,) generates a public key Key? (or Key2”) and a

- - > Information exchange in communication link

Illustration of secure exchange protocol based on homomorphic cryptosystem for first level of EMS.

private key Key?" (or Keyy™").
2) Step 1: Initialization

Integer transformation: state variables of V, and V, are
transformed into integers by multiplying 10°, denoted by
M 25y € R,

Random weight selection: V', randomly selects weight
#,,, and w, ,,; and V, randomly selects weight ¢, .,
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and o, ,,.
3) Step 2: Encryption Using Own Public Key

), uses public key Key?” to encrypt —A! to E,(-1!); and
), uses public key Keys” to encrypt =45 to E, (—A}).
4) Step 3: Transmission of Encrypted States and Public Key

), sends E,(—}) and Key?” to V,; and V), sends E,(—A})
and Key?” to ), (private keys are kept as secret on their
own and do not share with others).
5) Step 4: Encryption Using Neighbor’s Public Key

)V, uses public key Keys to encrypt A\ and y! to E,(2})
and E,(y!), respectively; and ), uses public key Key”” to
encrypt A} and y} to E, (1)) and E, (}), respectively.
6) Step 5: Computation on Encrypted States

According to additively homomorphic property (21)
and multiplicatively semi-homomorphic property (22), V|
computes the encrypted difference as E,(A/-A))=
E,(A1)E,(=/}), then multiplying the weight to acquire
E,(A'=25)7 and E,(y!)”-. Similarly, E,(4,—21})"*" and
E,(y))” are acquired by V.
7) Step 6: Transmission of Processed Encrypted Results

Y, returns E, (A —15)"~ and E,(y))” to V); and V), re-
turns E, (AL -1y and E, (y})* to V.

x,/10° 0<x,< %

) 25)

Xp=

(v-nor A5

8) Step 7: Decryption Using Own Private Key

), uses private key Key?" to decrypt D(E,(JL—11)"1)=
¢, (A5—=41) and D(E, (y3)"*')=w, ,,y5 and ), uses pri-
vate key Keyy” to decrypt D(E,(A]—25)" )=, (A1 —4)
and D(E,(y})" )= @, )1
9) Step 8: Weight Multiplication

V), multiplies the decrypted result with its own generated
weight to get: ¢,,(A=21)=¢,,,4,,,(33=2]) and @,y;=
®, ,,0, ,,v5 and V, multiplies the decrypted result with its
own generated weight to get: ¢,, (A1 =A0)=¢,_ ,d,_,(A =)
and w,, Y=o, ,,0, ,, ).

10) Post-processing: Floating-point Number Transmission

The states are converted to floating-point numbers us-
ing (25).

Similarly, a secure exchange protocol is designed to find a
unified power utilization ratio for all DGs in the VPP to pre-
vent information disclosure, which is shown in Fig. 3. In
summary, Fig. 4 illustrates the execution process of the ho-
momorphically encrypted EMS based on the secure ex-
change protocols to achieve different objectives at each lev-
el. It should be noted that: (D the key generation process is
only required once at the beginning of the iteration. Generat-
ed public and private keys are reused in subsequent itera-
tions till the convergence; (@ the conversion between float-
ing-point numbers and integers is performed at each itera-
tion; (3 since the homomorphic encryption scheme is al-
ready computation-intensive, we use a pre-set condition to
stop the iterative convergence. k__ is set to be the a reason-
able value through a trial-and-error approach to make sure
the proposed approach converges each time.

<x;<u

l Step 1 ‘
ol di_y,

Key]]mh B (61), Key]zuh ; dlaz
—»Keypub Keypri4’ E](lsll) 4 K’zeypzub E2(51)
12 1 1 5
v
pub n

ol d. Key! E.(oD). |Key dy_,
> i 2 o 1( )a 1 Ut
Keyé”‘b, Keyl”! E5(3))] 3 Key,;ﬂlub I_IEI((;Z)

lStep8‘

lStepZ‘ lStep3‘

Pre-
0, |processing

lStep7‘ llStep6‘ lStep5‘

d 7(5 d . Ké‘yp”
B e [l o= ot HE 0] [ty
d3191|processin d Key A
13 g <—|d2_,1d1—>25{ 21ld, 01 I.iiEz(éf)dhzr |El(5£)dza‘|.7

—> Computation flow; - - > Information exchange in communication link

Fig. 3. [Illustration of secure exchange protocol based on homomorphic
cryptosystem for second level of EMS.

‘ Initialization: £,(0), P,(0), y,(0) ‘

|

‘Pre-processing: key generation‘

‘Initialization: Ppp, 0,,(0), P,o,al(O)‘

|

‘ Pre-processing: key generation ‘

‘ Secure exchange protocol ‘ ‘ Secure exchange protocol ‘
Each participant executes local l

Each VPP obtains required
power generation: "—Pjpp;

Pypp

First level: economic coordination Second level: power sharing
among VPPs and load customers among DGs within a VPP

Each DG obtains optimal
output: 0" =P,

Each DG executes local |

| update (15) ! update (17)

Fig. 4. Flowchart of execution process of homomorphically encrypted
EMS based on secure exchange protocols.

V. SIMULATION RESULTS

In this section, the effectiveness of the proposed secure ex-
change protocols for two-level EMS is verified. The impact
of key length on computational efficiency is examined in the
following simulation studies. The functions of the Paillier
cryptosystem and the proposed privacy-preserving protocols
are developed and implemented in MATLAB running on an
Intel Core i5 CPU at 3.5 GHz with a 16 GB RAM computer.

A. Case 1: IEEE 5-bus Test Network

An IEEE 5-bus test network, as shown in Fig. 5(a), con-
sists of two VPPs and three load customers. The ring-circle
with undirected links is used as the communication topology
for the VPPs and loads. The communications among DGs in
the VPP2 are illustrated in Fig. 5(b) and DGI is set as the
leader DG which can access the power reference P;,,. Solid
lines represent the information exchange among DGs. Corre-
sponding parameter configurations are shown in Tables I and
11
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Information exchange among VPPs and loads
—

DGl DGS8
@];j | | l—>L0'§id2 DG2 DG7
\\"'Lo;ad—ll ! DG3 DG6
\\\_”L?fi“ [VeP2)” DG4 DG5S
@ (b)

Fig. 5. Schematic diagram of 5-bus test network and communication con-
figuration for DGs in VPP1. (a) 5-bus network. (b) DGs in VPPI1.

TABLE I
PARAMETER CONFIGURATION OF VPP FOR CASE 1

VPP a; b c

i i i

Py (kW) PR (kW) P(0) (kW)

1 0.0016 426 40 180 255 220 —-0.025
2 0.0017 4.54 60 150 355 206 0.016
TABLE I

PARAMETER CONFIGURATION OF LOAD FOR CASE 1

Load ¢ B, PEr (kW) PR (kW) P,(0) KW) 7
1 -0.065 1586 100 160 160 0.017
2 0061 1745 150 200 180 0.022
3 0056 1935 180 250 230 0.013

The effectiveness of homomorphically encrypted econom-
ic coordination under the secure exchange protocols is first
evaluated. Set r=5. The bit length of public and private
keys is set to be 256. Variable states in the format of the
floating-point number are converted to 64-bit integers before
the encryption. The feedback gain ¢ is set to be 0.5x107°
for (15). The weights ¢, ,; and o, ,; are also scaled up and
represented by 64-bit integers. The obtained results are
shown in Figs. 6 and 7. The optimal value of 4, is found to
be 5.6 and the power balance between generation and de-
mand approaches zero when the algorithm converges.

4.5 . . : . . . . . -
10 15 20 25 30 35 40 45 50
Iteration
----- VPP1; ----VPP2; Load 1; —+—Load 2; - - -Load 3

Fig. 6. Convergence to optimal market-clearing price.

Figure 8 visualizes the encrypted state difference transmit-
ted to communicating neighbors. At each iteration, the en-
crypted difference E,(4/—1/)"* is exchanged as a random
big integer between a pair of communicating participants
(/). It should be underlined that the convergence is still
achieved although the encrypted messages appear to be ran-
dom, verifying that an eavesdropping attacker cannot infer
any information during the entire distributed operation.
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300
200§
_ 100f A
= o
-100¢
-200 - : : - : : : : : .
1 5 10 15 20 25 30 35 40 45 50
Iteration
(a)
400
350+
300 /
a9
250:,—/ ----------------------------
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---VPP1;, —VPP2; Load 1; ----- Load 2;- Load 3

Fig. 7. Updates of local power mismatch y, and generation/demand P, at
first level of EMS. (a) Local power mismatch update in response to price
update. (b) Generation/demand adjustment in response to price update and
limited by constraints.

Encrypted state difference (10°7)

0 5 10 15 20 25 30 35 40 45 50
Iteration

By A — By Aoy Ex(AyAg)tes
- Ey(A5A)psy ~ Es(A{-29)bs

Fig. 8. Encrypted state difference transmitted to communicating neighbors.

Once the optimal power generation of the VPP, i.e.,
Ppp =255 kW and P,,,,=350 kW, is determined at the
first level of EMS, the second level of the EMS is activat-
ed within a VPP. Here, VPP2 is taken as an example to
demonstrate the process of cooperative power sharing.
Choose the control gain p=0.004 for (17). As shown in Fig.
5(b), DG1 has the most communicating neighbors, which

lead to max {D"}=7. Hence,0< d <d< 1/ /p- max {D"} =

VvV 0.004 x7 =0.167 and the permissible range for the weight
d.,, is set as [d.d]=[0.01,0.16]. The objective is to meet
Ppp,=350 kW and to ensure that the unified power utiliza-
tion ratio is achieved.

Figure 9 shows the cooperative power sharing among
DGs at the second level of EMS within VPP2. The reference
in Fig. 9 is P;,,,=350kW that is acquired from the first
level of EMS, which is to be satisfied by all DGs in the
VPP2. The difference between the power output reference
value and the total amount of DG power output gradually ap-
proaches zero when the consensus algorithm iterates to find
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the convergence. Each DG approaches a unified power utili-
zation ratio ¢,=0.8 while the total power output of all DGs
satisfies the required power reference when the algorithm
converges.

450
~400

- - - Power output reference value
—— Total amount of DG power output

=< 350
e
2 300
o
~ 250
200 L L L L L L J
1 10 20 30 40 50 60 70
Iteration
(a)
e
2.0 DC3
2 — DG4
s 1.5 — DG5S
= —— DGo6
19 —DG7
= 10 —DG8
<
N
=05
=]
O n n n n n n J
1 10 20 30 40 50 60 70
Iteration
(b)
Fig. 9. Cooperative power sharing among DGs at second level of EMS

within VPP2. (a) Update of total amount of DG power output. (b) Update
of power utilization ratio for each DG.

DQ@G2 is taken as an example to examine its received en-
crypted states from communicating neighbors, as shown in
Fig. 10. The disorderliness verifies that the privacy is pro-
tected.

—
o) (=]
T 1

[=))
)
—F s
>0

[\ »
T

Encrypted state (10153)

0

Iteration
O O SO T

B8~ B0

Fig. 10. Encrypted states received by DG2 from communicating neighbors.

B. Case 2: IEEE 34-bus Test Network

IEEE 34-bus test network is used as the second test distri-
bution network, including 10 VPPs and 19 load customers,
as shown in Fig. 11. The parameter configurations of VPP
and load for case 2 are presented in Tables Al and AIl in Ap-
pendix A, respectively. The communication configuration for
29 participants in the IEEE 34-bus test network is shown in
Fig. 12.

The performance of the first-level economic coordination
under a secure exchange protocol is investigated. In the sim-
ulation, the bit length of the key is set to be 256. The feed-
back gain o is set to be 0.1x10™* for (15). The results are
shown in Fig. 13, revealing that the consensus on A" is
achieved within 150 iterations and the generation and load
demand are adjusted in response to the price. The encrypted
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state difference E,(Z/—2!)"*" is shown in Fig. 14. The ran-
dom big integers verify that the privacy of each agent is ade-
quately protected as it is difficult for the attackers to obtain
or infer any useful information from such unreadable pat-

terns.
TLIS
V8
+L12

| L10
V2 T V7
Vi L2 4
Vi g4 Vo
3 L |
0 1% 19 iVIO
L6 L6
— o
L

L
L17
18

VPP (V)
@ Load (L) TL5

\&

V5 LI19

Fig. 11.  Schematic diagram of IEEE 34-bus test network.
123 122 L26
Fig. 12.  Communication configuration for 29 participants in IEEE 34-bus

test network.
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Fig. 13. State evolution. (a) Update of prices (all VPPs and loads). (b)

Power mismatch. (c) Generation adjustment in response to price update (10
VPPs). (d) Demand adjustment in response to price update (19 loads).

The computational efficiency under different key lengths
is compared, as shown in Table IIl. It takes a longer total
simulation time to run homomorphic cryptosystem based al-
gorithm (15) with a longer key length. Overall, the simula-
tion time is still acceptable and efficient enough for the
EMS operation even under the longer key length.
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Fig. 14. Encrypted state difference transmitted to communicating neigh-
bors (total 29 encrypted state differences).

TABLE III
COMPUTATIONAL EFFICIENCY UNDER DIFFERENT KEY LENGTHS

Key length (bit) Total simulation time (s) Computation time per agent (s)

64 6.12 0.21

128 8.48 0.29

256 10.86 0.27

512 14.65 0.51
1024 17.21 0.59
Unencrypted 4.56 0.15

VI. DISCUSSION

A. Properties of Secure Exchange Protocols

The proposed secure exchange protocol has two main
properties: privacy preservation and correctness. The compar-
ison between privacy-preserving EMS under two approaches
is given in Table IV. As the working principle of differential
privacy is to inject perturbations and noises into the original
signal, the convergence and optimality of the final value
may not be guaranteed if the injected perturbations and nois-
es are not carefully selected. But for the proposed secure ex-
change protocols based on the homomorphic cryptosystems,
the property of privacy preservation follows the semantic se-
curity of the Paillier cryptosystem (introduced in Section III)
so that absolute correctness of the final value can be
achieved all the time.

TABLE IV
COMPARISON BETWEEN PRIVACY-PRESERVING EMS UNDER TWO
APPROACHES
Approach Correctness Privacy preservation
EMS based on homo- J J
morphic cryptosystem
EMS based on differen- Only guaranteed with J

tial privacy [17] proper noise selection

Next, we take A/ as an example to explain the privacy
preservation between two communicating participants at
each iteration step. For agent )/, after receiving encrypted
information E,(A,—20)"* from ), )V, decrypts it with
Key?™ so that decrypted information ¢, ,,(15—A4]) is ob-
tained. Nevertheless, )V, cannot infer A through ¢, , (A1—A})

as ¢,_,, is only known to ). For agent ), after receiving
encrypted information E, (-A}) from ), it cannot see /! as it
does not have the private key Key”?" to decrypt it. For an ex-
traneous eavesdropper that eavesdrops on the communication
link between participants, it cannot infer A/ as the informa-
tion is encrypted to E,(-A!) by the corresponding agent it-
self, and then transmitted over the communication link. The
information privacy on y’ and &' is protected in the same
way through the secure exchange protocol. Therefore, it can
be concluded that the privacy of all participants is preserved
against eavesdropping attacks.

B. Quantization Error and Computation Complexity

The conversion between the floating-point and the integer
number will bring unavoidable quantization error A, as fol-
lows:

A= |xp—x,| =x,](1-10%) (26)

Such a quantization error can be neglected if we choose a
sufficiently large preserved digital number z.

The computation overhead, i.e., the algorithmic complexi-
ty, indicates how the computation complexity depends on the
input size, which is specified using the Big-O notation. The
bit length of the key is denoted by /. Under the proposed se-
cure exchange protocol, for an agent i, the total computation
overhead of each iteration is O(D;"[) [27]. The computation-
al complexity of the secure exchange protocol based on the
Paillier cryptosystem is increased with the number of in-
neighbors of a certain agent rather than network size. Hence,
the homomorphically encrypted EMS can be applied on
large networks with moderate connections.

C. Implementation Considerations of Proposed Privacy-pre-
serving EMS

Since homomorphic encryption allows computation direct-
ly on encrypted data which makes the computation speed
slower compared with operating on non-encrypted data, it is
not suitable to be applied in computational-heavy applica-
tions and real-time applications. In this paper, the proposed
privacy-preserving EMS is not intended to be applied in real-
time operation. Instead, it is conducted every 15 min in the
ADN to accommodate the stochastic demand and according-
ly update the market-clearing price and DG power output.

VII. CONCLUSION

In this paper, a homomorphically encrypted EMS for eco-
nomic coordination and power sharing in the IoT-enabled
ADN is developed to guarantee the data privacy of DGs and
load customers during the information transmission. As a
typical homomorphic cryptosystem, the Paillier cryptosystem
is applied to develop secure exchange protocols by encoding
randomness into the system dynamics so that enhanced priva-
cy security and deterministic convergence of the consensus-
based algorithms can be achieved. Private information such
as price information, load demand, and power utilization is
successfully protected against eavesdropping attackers. The
effectiveness and the computational efficiency of the pro-
posed encrypted approach are verified by two test networks.
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APPENDIX A

TABLE Al
PARAMETER CONFIGURATION OF VPP FOR CASE 2

VPP a, b, P.(0) (kW)
1 0.0046 13.060 135.880
2 0.0111 5.295 214.920
3 0.0099 11.370 108.040
4 0.0095 3.360 127.690
5 0.0104 12.790 232.560
6 0.0029 11.750 240.000
7 0.0021 3.375 44.628
8 0.0062 9.435 234.480
9 0.0077 6.450 74.600

10 0.0048 12.390 172.090
TABLE AIl

PARAMETER CONFIGURATION OF LOAD FOR CASE 2

(1]

(5]

(6]

Load o 5, P,(0) (kW)
1 —0.140 25.750 110.15
2 —0.062 18.420 176.75
3 -0.151 27.630 109.69
4 -0.084 10.590 75.55
5 —0.081 16.275 120.64
6 -0.212 28.365 80.26
7 -0.119 28.140 142.02
8 -0.159 23.550 88.57
9 -0.127 21.420 100.80

10 -0.069 15.225 132.38
11 —-0.097 28.560 175.75
12 —-0.082 10.305 75.13
13 -0.092 23.940 154.69
14 —0.094 22.050 139.30
15 —-0.091 26.250 172.85
16 —0.340 16.455 28.98
17 —0.183 24375 79.67
18 -0.132 26.295 127.37
19 -0.130 14.760 67.92
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