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Abstract——Active distribution network (ADN), as a typically 
cyber-physical system, develops with the evolution of Internet 
of Things (IoTs), which makes the network vulnerable to cyber‐
security threats. In this paper, the eavesdropping attacks that 
lead to privacy breaches are addressed for the IoT-enabled 
ADN. A privacy-preserving energy management system (EMS) 
is proposed and empowered by secure data exchange protocols 
based on the homomorphic cryptosystem. During the informa‐
tion transmission among distributed generators and load cus‐
tomers in the EMS, private information including power usage 
and electricity bidding price can be effectively protected against 
eavesdropping attacks. The correctness of the final solutions, 
e.g., optimal market clearing price and unified power utilization 
ratio, can be deterministically guaranteed. The simulation re‐
sults demonstrate the effectiveness and the computational effi‐
ciency of the proposed homomorphically encrypted EMS.

Index Terms——Eavesdropping attack, energy management sys‐
tem, homomorphic cryptosystem, Internet of Things (IOTs), ac‐
tive distribution network (ADN), privacy-preserving.

I. INTRODUCTION

THE deployment of digital smart sensing, distributed gen‐
erators (DGs), and advanced information and communi‐

cation technology has been accelerated in the past few de‐
cades to drive the power grid toward a more interconnected 
network. Along with the emerging control strategy, various 
components and devices in the power grid can be managed 
in a distributed and connected manner through the internet 
or communication platforms [1], [2]. Such an evolution into 

a big Internet of Things (IoT) extensively boosts the grow‐
ing functionalities of modern power grids [3]. However, po‐
tential cybersecurity threats are inevitably posed to power 
networks. Among different types of cybersecurity threats, 
eavesdropping attack has received increasing attention [4] -
[8]. It can be provoked by an unauthorized and corrupted en‐
tity to obtain confidential information of legitimate compo‐
nents when the information is transmitted between two com‐
ponents.

An IoT-enabled active distribution network (ADN) com‐
prises a wide range of physical components, e. g., DGs and 
load customers, and devices, e.g., advanced sensors and me‐
tering infrastructures, that require interactive communica‐
tions to realize a bunch of functions in a distributed manner. 
It is a typical multi-agent cyber-physical system. Consensus 
theory is the foundation of most of the existing distributed 
algorithms. With several advantages, e. g., robustness to the 
single-point failure and scalability in computation and com‐
munication, consensus-based algorithm has been widely ap‐
plied to facilitate multi-agent distributed operations in the cy‐
ber-physical power network with different network-wide ob‐
jectives such as economic dispatch, cost minimization, loss 
minimization, and accurate power sharing [9] - [17]. To 
achieve an effective and flexible operation of IoT-enabled 
ADN, it is necessary to apply promising distributed algo‐
rithms like consensus algorithm in a well-designed energy 
management system (EMS).

In the context of the IoT evolution, the deployment of dis‐
tributed EMS in the ADN will be greatly facilitated through 
peer-to-peer communications. Nevertheless, in an IoT-en‐
abled ADN, confidential data are more easily inferred and 
collected by eavesdropping attacks during the distributed de‐
cision-making process because of the collaborative and con‐
nective nature of agents. For instance, hackers who success‐
fully eavesdrop on the cyber network of an ADN can steal 
power usage data of load customers and bidding price infor‐
mation of DGs, and may even disclose important decisions 
or control actions for illegal purposes [18], [19]. Private in‐
formation such as power usage is at a high confidential level 
as it can imply personal preferences and activities. Hence, 
measures to keep private data of agents secure are extremely 
essential in the IoT-enabled ADN.

Generally, two common approaches with regard to data-
processing are used for preventing privacy disclosure in the 
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literature. One approach is to implement differential privacy 
to protect data, and the other is to use cryptographic tech‐
niques. For differential privacy, randomized noises are added 
to an individual’s data to make sure that an eavesdropper 
cannot infer the original information. Some studies have ap‐
plied differential privacy for information privacy in the pow‐
er sector. In [20]-[22], privacy-preserving algorithms are de‐
veloped based on differential privacy for energy manage‐
ment and economic dispatch problems in smart grids and mi‐
crogrids. To protect the confidentiality of private loads, dif‐
ferential privacy is also implemented in [23] for optimal 
power flow calculation. However, by utilizing differential pri‐
vacy, the injected perturbations will potentially affect the ex‐
act accuracy of the algorithm convergence and deteriorate 
the control system performance. There exists an inherent 
tradeoff between correctness and privacy in the differential 
privacy scheme [24]. The injected noise should follow strict 
mathematical requirements. Otherwise, the convergence can‐
not be ensured.

By contrast, cryptographic techniques do not inject any 
perturbation in the power network and are capable of finding 
the exact solution to the problem after the decryption [18]. 
In particular, a homomorphic cryptosystem allows certain 
computations to be carried out on the ciphertext, i.e., the en‐
crypted data, to maintain the confidentiality of the original 
data. After decrypting the encrypted data, the decrypted re‐
sult exactly matches the computation result performed on the 
plaintext [25]. Thanks to the advantage of semantically se‐
cure encryption and efficient decryption, the homomorphic 
cryptosystem has been employed to create privacy-preserv‐
ing distributed control schemes lately in the field of control. 
For example, privacy-preserving average consensus algo‐
rithms are developed to ensure the accurate average consen‐
sus without disclosing the initial states of agents in [26] and 
[27]. In addition, homomorphic encryption has been used in 
smart grid such as secure data aggregation in [24], privacy 
protection of customer usage information in the forecast pre‐
diction in [25], and the data security of smart meters in [26]. 
All of them only need one-step data aggregation, which 
makes the application of HE relatively simple. However, the 
application of the homomorphic cryptosystem in energy man‐
agement has not been sufficiently investigated for IoT-en‐
abled power networks, especially distribution networks, with 
high requirement for data exchange.

Therefore, to address the pressing demand for privacy 
preservation in the IoT-enabled ADN, this paper develops a 
privacy-preserving EMS by utilizing the homomorphic cryp‐
tosystem. The core task is to protect data privacy against 
eavesdropping attacks during the information exchange need‐
ed for distributed optimization and coordination in the EMS. 
The privacy preservation is empowered by secure data ex‐
change protocols based on the homomorphic cryptosystem. 
The contributions of the paper are summarized as follows.

1) For IoT-enabled ADNs highly relying on the communi‐
cations among heterogeneous components, a two-level EMS 
is proposed to maximize the social welfare of DGs and load 
customers and achieve cooperative power sharing among 
DGs.

2) Privacy concerns and risks subject to eavesdropping at‐
tacks in the IoT-enabled ADN with distributed consensus-
based EMS are comprehensively analyzed and mitigated. Se‐
cure data exchange protocols are developed based on the ho‐
momorphic cryptosystem to prevent the leakage of private in‐
formation of each agent during the distributed operation of 
the EMS. The operation of secure protocols is fully distribut‐
ed without the supervision of a third party, which is cost-ef‐
fective and efficient to be implemented.

3) The proposed two-level EMS based on the homomor‐
phic cryptosystem can accomplish two advantageous proper‐
ties at the same time: privacy preservation and correctness, 
guaranteeing the effectiveness of the EMS.

The remaining paper is organized as follows. Section II 
presents the proposed two-level EMS and its associated in‐
formation privacy concerns. Section III introduces the pre‐
liminaries on the homomorphic cryptosystem. Section IV 
presents the homomorphically encrypted EMS based on se‐
cure exchange protocols. Simulation results are demonstrated 
in Section V. The discussion and conclusion are presented in 
Sections VI and VII.

II. PROPOSED TWO-LEVEL EMS AND ITS ASSOCIATED 
INFORMATION PRIVACY CONCERNS 

In this section, a two-level EMS is first introduced for the 
IoT-enabled ADN. To realize its functions in a distributed 
way, distributed consensus-based algorithms are then present‐
ed. The privacy concerns and potential risks are discussed.

A. Proposed Two-level EMS for IoT-enabled ADN

The schematic diagram of ADN structure and proposed 
two-level EMS is illustrated in Fig. 1, including three types 
of entities: virtual power plants (VPPs), DGs, and load cus‐
tomers. VPP consists of multiple DGs. A group of DGs are 
aggregated as a VPP to provide flexible power generation 
and multiple VPPs work cooperatively as power suppliers to 
quickly respond to changing power demand of load custom‐
ers. Dash lines indicate the communication connections 
among different entities. The economic dispatch of VPPs, de‐
mand response of customers, and the cooperative control of 
DGs can be realized through a proposed two-level EMS, 
which is demonstrated in Fig. 1, where P *

VPP is the optimal 
power generation.

First level: economic coordination

VPP

VPP

Load customer… VPP Load customer……

…
DG … DG … DG

VPP

DG … DG … DG

P*
VPP

P*
VPP

Second level: power sharing within a VPP

Fig. 1.　Schematic diagram of ADN structure and proposed two-level EMS. 

During the first-level operation of EMS, the information 
of each VPP (or load customer) is encrypted by the local 
VPP operator (or customer) and then transmitted to other 
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VPPs (or customers). Similarly, the information of each DG 
in a VPP is encrypted by DG itself and then transmitted to 
other DGs for the encrypted data processing in the second-
level operation.

Economic operation of a distribution network should in‐
volve active participations of both supply and demand sides 
in energy market. In a deregulated energy market, both par‐
ties are supposed to be self-interested and have optimal strat‐
egies to participate in the market. The self-interested market 
model describes the essential objectives of suppliers and cus‐
tomers, which are discussed below. Let us consider VPPs be‐
longing to the set VVPP ={12Ns } and load customers be‐
longing to the set Vc ={12Nc }. The active power loss is 
incorporated into the market model. For each VPP operator 
iÎVVPP and each customer jÎVc, the energy selling price 
and bidding price are denoted by λsi and λbj, respectively, 
and the objective of the self-interested market model is to 
maximize VPP profit and customer utility, respectively, for‐
mulated as:

max
PVPP

(λsi PVPPi (1 - γi )-Ci (PVPPi )) (1)

max
PD

((Uj (PDj )- λbi PDj (1 + γj )) (2)

where PVPPi and PDj are the power generation of the VPP 
and the power demand of the customer, respectively; γi and 
γj are the loss coefficients in a range of [01] that can be de‐
fined by γi = ¶PLOSS /¶PVPPi and γj = ¶PLOSS /¶PDj for the ith 
VPP and j th customer, respectively [28], and PLOSS is the total 

active power loss; Ci =
1
2

ai P
2
VPPi + bi PVPPi + ci is the cost 

function of the VPP, and ai, bi, ci are the cost coefficients of 

the ith VPP; and Uj =
1
2
αj P

2
Dj + βj PDj is the utility function 

of the customer [11], and αj and βj are the utility coefficients 
of the j th customer. The marginal cost function Rci for the ith 
VPP and the marginal utility function Ruj for the j th custom‐
er are defined as (3) and (4), respectively.

Rci (PVPPi )=
¶Ci (PVPPi )
¶PVPPi

= ai PVPPi + bi (3)

Ruj (PDj )=
¶Uj (PDj )

¶PDj
= αj PDj + βj (4)

At the first level of the EMS, to maximize social welfare 
and to reduce energy costs from the perspective of the entire 
ADN, based on (1) and (2), the economic coordination prob‐
lem can be formulated as:

max (∑jÎVc

Uj (PDj ) - ∑
iÎVVPP

Ci (PVPPi ) ) (5a)

s.t.  

∑
i = 1

Ns

PVPPi =∑
j = 1

Nc

PDj +PLOSS (5b)

P min
VPPi £PVPPi £P max

VPPi (5c)

P min
Dj £PDj £P max

Dj (5d)

where P min
VPPi and P max

VPPi are the lower and upper limits of the 

VPP generation, respectively; and P min
Dj  and P max

Dj  are the low‐
er and upper limits of the load demand, respectively.

PLOSS can be written as:

PLOSS = γi∑
i = 1

Ns

PVPPi + γj∑
j = 1

Nc

PDj (6)

Through the self-interested model, each VPP operator will 
find an optimal power generation for the ith VPP P *

VPPi such 
that the marginal cost equals the energy selling price λsi. 
The optimal solution of (1) therefore can be found by:

λsi (1 - γi )-Rci (PVPPi )= 0 (7)

Similarly, the customer will find the optimal solution P *
Dj 

of (2) by equating the marginal utility to its bidding price:

λbi (1 + γj )-Ruj (PDj )= 0 (8)

Considering constraints (5c) and (5d), the generation of 
the VPP and consumption of the customer can be deter‐
mined based on (7) and (8) as:

PVPPi =

ì

í

î

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

P min
VPPi                       λsi <

Rmin
ci

1 - γi

P max
VPPi                       λsi >

Rmax
ci

1 - γi

λsi (1 - γi )- bi

ai

    otherwise

(9)

PDj =

ì

í

î

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

P min
Dj                          λbi <

Rmin
uj

1 + γj

P max
Dj                          λbi >

Rmax
uj

1 + γj

λbi (1 + γj )- βj

αj

    otherwise

(10)

where Rmin
ci  and Rmax

ci  are the lower and upper bounds of the 
marginal cost, respectively; and Rmin

uj  and Rmax
uj  are the lower 

and upper bounds of the utility, respectively. They can be 
known from (3) and (4) by giving P min

VPPi  (or P min
Dj ) and 

P max
VPPi  (or P max

Dj ). Social welfare is maximized at the equilibri‐
um of the market, i. e., λsi and λbj both settle at a unique 
price denoted by λ*. This optimum will also result in an iden‐
tical marginal cost and utility for all participants.

At the second level of the proposed two-level EMS, a co‐
operative power sharing strategy will be subsequently con‐
ducted by all DGs in each VPP once the optimal power gen‐
eration P *

VPP is determined. Consider DGs belonging to the 
set VDG ={12Nd }. For each DG mÎVDG, the following 
problem is formulated to satisfy the power generation re‐
quirement and meanwhile to ensure accurate power sharing 
among DGs:

min
PDG ( )1

2
(Ptotal -P *

VPP )2 (11a)

s.t.

Ptotal =∑
m = 1

Nd

δm P max
DGm (11b)
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0 £ δ1 = = δm =
PDGm

P max
DGm

£ 1 (11c)

0 £PDGm £P max
DGm (11d)

where PDGm and P max
DGm are the power output and its upper 

limit, respectively; and δmÎ[01] is defined as the power utili‐
zation ratio. A VPP manager only participates in the first lev‐
el of the EMS, so when conducting (11a)-(11d), VPP opera‐
tor does not know PDGm of each DG. This value is only de‐
termined by each DG itself through communications with 
other neighboring DGs in the second-level EMS operation.

B. Consensus-based Distributed Algorithms for EMS

A graph G = (VE) is used to capture the communication 
network of an IoT-enabled system. Nodes belonging to the 
set V ={V1V2VN } represent the agent in the ADN. A fi‐
nite edge set E = {(pq)}ÎV ´V consists of all communica‐
tion links between any pair of connecting agents, where 
agent Vq can receive the information from agent Vp. For 
agent VpÎG, the agents that can directly receive information 
from it are defined as its out-neighbors, denoted by N out

p =
{Vq|(pq)Î E}. The cardinality of N out

p  is called as out-degree 
and is denoted by D out

p . The agents that can directly send in‐
formation to the agent VpÎG are defined as its in-neighbors, 
denoted by N in

p ={Vq|(qp)Î E}. The cardinality of N in
p  is 

called the in-degree and denoted by D in
p .

At the first level of the EMS, a strongly connected graph 
GADN = (VADNEADN ) is introduced to describe the communica‐
tion network of the IoT-enabled ADN. VADN ={VVPPVc }. 
For any ijÎVADN the associated weighting factors for the 
communication link between a pair of communicating neigh‐
bors are defined as [10]:

ϕij =
ì
í
î

ïïïï

ïïïï

1
D in

i

jÎN in
i

0 otherwise

(12)

ωij =
ì

í

î

ïïïï

ïïïï

1
D out

j

iÎN out
j

0 otherwise

(13)

where i and j represent either a VPP or a load customer. An 
operator [×]- is used to define the mathematical operation as:

[a]- = {a    a ³ 0
0    a < 0

(14)

Based on the weighting factor, the economic coordination 
for the VPPs and load customers at the first level of the pro‐
posed two-level EMS is solved by a consensus-based distrib‐
uted algorithm, formulated as:

λi (k + 1)= λi (k)+
é

ë

ê
êê
ê
ê
ê∑

jÎN in
i

ϕij (λj (k)- λi (k))
ù

û

ú
úú
ú
ú
ú

-

+ σyi (k) (15a)

yi (k + 1)= ∑
jÎN in

i

ωij yj (k)- (Pi (k + 1)-Pi (k)) (15b)

where λi(k ) is a compact set of the energy selling price and 
energy bidding price for the VPP and the load customer; 
yi (k) is the local estimation of the power imbalance, which 

is the feedback item driving λi (k) to the optimal value; and 
Pi (k) is updated by (9) if iÎVVPP and by (10) if iÎVc at ev‐
ery step k. By introducing (14), ∑

jÎN in
i

ϕij (λj (k)- λi (k)) in (15a) 

is guaranteed to be nonnegative, which ensures convergence.
From (13), it is not difficult to find that ∑

jÎN in
i

ϕij = 1 and 

∑
iÎN out

j

ωij = 1, which is a sufficient condition for convergence. 

And the following theorem holds.
Theorem 1 [29]: considering the algorithm (15) with the 

weighting factors in (13), the algorithm achieves an optimal 
global solution lim

k®¥
 λi (k)= λ* and lim

k®¥
 yi (k)= 0, provided that 

the communication graph is strongly connected and there ex‐
ists a sufficiently small gain σ.

At the second level of the EMS, a strongly connected 
graph GDG = (VDGEDG ) is adopted to describe the communica‐
tion network for a single VPP consisting of multiple DGs. 
For any mnÎVDG, the element of the weighted adjacency 
matrix D can be defined as:

Dmn =

ì

í

î

ï
ïï
ï

ï
ïï
ï

dmn nÎN in
m  and m ¹ n

1 - ∑
nÎN in

m

dmn m = n

0 otherwise

(16)

where dmn is the element at the mth row and the nth column 
of D.

Obviously, D is a row-stochastic matrix, i. e., ∑
nÎN in

m

dmn = 1 . 

All entries should be positive and satisfy ε £ dmn £ 1 for all 
nÎN in

m , where 0 < ε £ min
m

{1/Din
m }. A leader-follower consen‐

sus algorithm is used to solve the self-organizing power shar‐
ing problem (11) in the VPP. Without loss of generality, 
DG1 is assigned as the leader that has access to the refer‐
ence P *

VPP as well as a global variable Ptotal. Even though 
DG1 can collect the power output of each DG, such informa‐
tion will only be received in an encrypted form (data encryp‐
tion processes will be introduced in the next section). De‐
note t as the iteration step of the second-level cooperative 
control in the EMS. The utilization ratio of the leader DG is 
updated by (17a). To achieve a unified power utilization ra‐
tio for each DG in the VPP, the utilization ratio of the fol‐
lower DG is updated by (17b).

δ1 (t + 1)= δ1 (k)+ ρ(P *
VPP -Ptotal (t)) (17a)

δm (t + 1)= ∑
nÎN in

m

dmnδn (t)     mn ¹ 1 (17b)

where ρ > 0 is the control gain. 
The convergence of the cooperative power sharing prob‐

lem is guaranteed with a sufficiently small gain ρ, as stated 
in the following theorem.

Theorem 2 [30]: the cooperative control (11) solved by 
the leader-follower consensus (17) guarantees that all DGs 
asymptotically converge to the optimal solution, lim

t®¥
 δm (t)=

δ* and lim
t®¥

 Ptotal (t)=P *
VPP, provided that the communication 

graph is strongly connected and there exists a sufficiently 
small gain ρ.

170



HU et al.: A PRIVACY-PRESERVING ENERGY MANAGEMENT SYSTEM BASED ON HOMOMORPHIC CRYPTOSYSTEM FOR IOT-ENABLED...

The solution of (5) and (11) in a privacy-preserving man‐
ner and against eavesdropping attacks is our focus, so a de‐
tailed convergence analysis is not provided here.

C. Privacy Concerns in IoT-enabled ADNs

In an IoT-enabled ADN, due to the strong communicative 
connections among agents, significant concerns are raised 
that the privacy of individual agents can be leaked during 
the information sharing under eavesdropping attacks. Note 
that the eavesdropping attacks can be launched not only by 
an extraneous observer but also by a corrupted entity in the 
cyber network. Curious and adversarial attackers can collect 
private data or sensitive information for illegal purposes.

In particular, the consensus-based distributed algorithms 
discussed above relying on the information exchange among 
different entities through iterative communications will pose 
the risk of unintentional information disclosure. At the first 
level of the EMS, the initial price λi (0) and the initial load 
demand/power supply Pi (0) are regarded as the privacy of 
the participating VPP and customer. It cannot be revealed to 
others during the distributed decision-making process in the 
communication network. In fact, it is crucial to keep partici‐
pants’ parameters, e. g., coefficients of the cost/utility func‐
tion, private from unauthorized parties by protecting the in‐
formation of initial bidding/selling price and the power de‐
mand/supply. Besides, load demand and power supply 
should be maintained at a high-security level as the exposure 
of such information may reveal much about the personal 
preference of the load customer and the business secret of 
the VPP. Therefore, necessary measures for privacy preserva‐
tion should be taken in the EMS to prevent the curious enti‐
ty from gathering the personal information of others during 
the information exchange.

III. PRELIMINARIES ON HOMOMORPHIC CRYPTOSYSTEM 

The homomorphic cryptosystem, as one of the crypto‐
graphic techniques, empowers a distinguished feature to 
maintain data confidentiality during both information trans‐
mission and processing. Compared with the approach of dif‐
ferential privacy, the correctness of the results and the priva‐
cy of agents can be both ensured by applying a homomor‐
phic cryptosystem. Such functionalities make it a suitable 
candidate to be implemented in the distributed EMS to pre‐
vent agents’ private information from being disclosed.

A homomorphic cryptosystem comprises three main func‐
tions to prevent data leakage during the entire process of da‐
ta transmission and processing: ① key generation K, ② data 
encryption E, and ③ data decryption. A public key Key pub 
and a private key Key pri are generated through the key gener‐
ation process. Based on the public key, an original message 
α can be turned into a ciphertext β by encryption function E. 
Oppositely, the ciphertext β can be decrypted by decryption 
function D to the original message α based on the private 
key. Any agent can use the same public key to encrypt origi‐
nal messages to cipher ones while only the trustworthy enti‐
ty with the corresponding private key can decrypt the cipher‐
text.

The Paillier cryptosystem, as one of the homomorphic 

cryptosystems, is implemented in this paper. The functions 
of the Paillier cryptosystem are introduced below to facili‐
tate the development of the proposed homomorphically en‐
crypted EMS in the next section.

Notations. Denote the set of positive real numbers in the 
format of floating-point and integer as RF and RI, respective‐
ly. gcd (ab) and lcm (ab) denote the greatest common divi‐
sor and the least common multiple of integers a and b, re‐
spectively; mod denotes the modular operation; ë ûa  denotes 
the floor of a real number a, i.e., the largest integer smaller 
or equal to a.

Key generation. Randomly select two large prime num‐
bers c and v and calculate h = cv and φ = lcm(c - 1v - 1). A 
random integer g is chosen such that gcd(Z(gφmod h2 )h)=1, 

where Z(t)= ê
ë
êêêê ú

û
úúúút - 1

h
. The public key is denoted as 

Key pub (gh) and the private key is Key pri (φ).
Encryption. A natural integer number αÎRI can be en‐

crypted using the public key as:

E(α)= gαrh mod h2 (18) 

where rÎRI is a random positive integer.
Decryption. Ciphertext β can be decrypted using the pri‐

vate key as:

D(β)=
Z(βφmod h2 )
Z(gφmod h2 )

mod h (19)

The correctness, semantic security, and homomorphic 
property of the Paillier cryptosystem are demonstrated as fol‐
lows [31].

1) Correctness: for any nonnegative integer αÎRI, (20) 
holds.

D(E(α))= α (20)

2) Semantic security: if the decisional composite residuosi‐
ty assumption holds (DCRA), the Paillier cryptosystem is se‐
mantically secure.

3) Homomorphic properties: define any α1α2αnÎRI.
a) Additively homomorphic property:

D (∏i = 1

n

E(αi ) ) =∑i = 1

n

αi (21)

b) Multiplicatively semi-homomorphic property:

D(E(α1 )α2 )= α1α2 (22)

The homomorphic properties allow in-network algebraic 
operations on encrypted values without the need for decryp‐
tion, which is vital for developing the proposed homomorphi‐
cally encrypted EMS in the next section.

IV. HOMOMORPHICALLY ENCRYPTED EMS BASED ON 
SECURE EXCHANGE PROTOCOLS 

This section presents a detailed design and practical de‐
ployment for the privacy-preserving EMS. The Paillier cryp‐
tosystem is implemented to construct the secure information 
exchange protocol to maintain confidentiality for each partic‐
ipant during the information exchange. It is fully distributed 
without adding noise to the state variables. The proposed se‐
cure exchange protocol can prevent information leakage to 
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the eavesdropping attacker while achieving the deterministic 
convergence to the optimal solution of (15) and (17). The ob‐
jective of the secure exchange protocol is twofold.

1) Privacy preservation: for each participant (can be either 
VPP iÎVVPP or a load customer iÎVc or a DG mÎVc), its 
information λi (k), yi (k) and δm (t) cannot be inferred by any 
semi-honest eavesdropping attacker in each iteration during 
data exchange.

2) Correctness: at the first level of EMS, when k®¥, 
λsi (k) and λbi (k) can settle at an optimal solution λ* for each 
VPP and load customer. At the second level of EMS, when 
t®¥, the power utilization ratio δm (t) can converge to a uni‐
fied ratio for each DG.

A. Random Weight Reconstruction

As shown in (15), participant i needs the information on 
the weighted difference ϕij (λj (k)- λi (k)) for the local update. 
To ensure that any participant obtains the weighted differ‐
ence between itself and any of its neighbors without reveal‐
ing each other’s information, the state information can be 
encrypted and broadcasted to neighbors at every iteration 
step. However, without a third party secretly distributing ϕij, 
the privacy of both interacting participants cannot be protect‐
ed even with state encryption. For example, participant j’ s 
state λj (k) can be still inferred through λj (k)= ϕij (λj (k)-
λi (k))/ϕij + λi (k) by its communicating neighbor i as the 
weight ϕij is constant and available to participant i. To ad‐
dress this issue, a random weight construction approach [27] 
is extended to the homomorphically encrypted EMS, prevent‐
ing a pair of communicating participants from inferring each 
other’s states through the information exchange. The weight 
can be represented by the product of two random numbers, 
as given by:

ϕij = ϕi® jϕj® i (23a)

ωij =ωi® jωj® i (23b)

where ϕi® j (ωi® j ) is the random weight generated by and on‐
ly known to participant i; and ϕj® i (ωj® i ) is the random 
weight generated by and only known to participant j. As de‐
fined in [32], the random weight ϕi® j (ϕj® i ) and ωi® j (ωj® i ) 
should be selected in the feasible range of [ϵ11/D in

i - ϵ2 ] and 
[ϵ11/D out

j - ϵ2 ], respectively, where ϵ1 and ϵ2 are the positive 
numbers that satisfy ϵ1 + ϵ2 < 1 max

i
{D in

i }. Similarly, for the 

weight (16), we can obtain:

dmn = dm® ndn®m (24)

The random weight should be selected in the feasible 
range of [-d d̄] [27], to ensure convergence, the feasible 

range must satisfy 0 < -d < d̄ < 1 ρ × max
m

{D in
m }.

B. Transformation Between Floating-point Numbers and In‐
tegers

The Paillier cryptosystem relying on certain modular oper‐
ations only works for integers. However, the state values of 
electrical variables are primarily in the form of floating-
point numbers [33]. Thus, the transformation between the 
floating-point number and the integer is necessary before the 
encryption. According to floating-point arithmetic, a floating-
point number xFÎRF can be simply transformed to an inte‐
ger xIÎRI by xI = 10τ xF, where τ denotes the preserved deci‐
mal fraction digits. After the decryption, the following func‐
tions can be applied to convert an integer xI to a signed real 
number xF with τ decimal fraction digits, where μÎRI is a 
positive odd integer [18].

C. Secure Exchange Protocols

Next, without loss of generality, a pair of communicating 
participants (V1V2 ) is used to illustrate the design process 
of the secure exchange protocol for the first level of EMS, 
as shown in Fig. 2.

V1 and V2 represent either the VPP or load customer. The 
subscript k is omitted next for the sake of a clear demonstra‐
tion. The step-by-step details of Fig. 2 are explained next. 
Note that the operation at the k th iteration is described.
1)　Pre-processing: Key Generation

Before conducting the privacy-preserving interaction proto‐
col, V1 (or V2 ) generates a public key Keypub

1 (or Keypub
2 ) and a 

private key Keypri
1 (or Keypri

2 ).
2)　Step 1: Initialization

Integer transformation: state variables of V1 and V2 are 
transformed into integers by multiplying 10τ, denoted by 
λI

1λ
I
2y

I
1y

I
2 ÎRI.

Random weight selection: V1 randomly selects weight 
ϕ1® 2 and ω1® 2; and V2 randomly selects weight ϕ2® 1 

E2(�λ2
I)

Key2
pub

Step 1 Step 2 Step 3 Step 4 

E1(�λ1
I)
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processing

V1

λ1
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λ2

λ
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1
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1
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1
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λ
2
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2
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2
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2
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Key1
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pub

E2(�λ2
I), Key

2
pub E2(λ1

I), E2(y1
I)

E1(λ2
I), E1(y2

I)E1(�λ1
I), Key

1
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ϕ12(λ2�λ1)
ω12y2
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1
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I ϕ2→1(λ2
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1
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Fig. 2.　Illustration of secure exchange protocol based on homomorphic cryptosystem for first level of EMS.
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and ω2® 1.
3)　Step 2: Encryption Using Own Public Key
V1 uses public key Keypub

1  to encrypt -λI
1 to E1 (-λI

1 ); and 
V2 uses public key Keypub

2  to encrypt -λI
2 to E2 (-λI

2 ).
4)　Step 3: Transmission of Encrypted States and Public Key
V1 sends E1 (-λI

1 ) and Keypub
1  to V2; and V2 sends E2 (-λI

2 ) 
and Keypub

2  to V1 (private keys are kept as secret on their 
own and do not share with others).
5)　Step 4: Encryption Using Neighbor’s Public Key
V1 uses public key Keypub

2  to encrypt λI
1 and yI

1 to E2 (λI
1 ) 

and E2 (yI
1 ), respectively; and V2 uses public key Keypub

1  to 
encrypt λI

2 and yI
2 to E1 (λI

2 ) and E1 (yI
2 ), respectively.

6)　Step 5: Computation on Encrypted States
According to additively homomorphic property (21) 

and multiplicatively semi-homomorphic property (22), V1 
computes the encrypted difference as E2 (λI

1 - λ
I
2 ) =  

E2 (λI
1 )E2 (-λI

2 ), then multiplying the weight to acquire 
E2 (λI

1 - λ
I
2 )ϕ1® 2 and E2 (yI

1 )ω1® 2. Similarly, E1 (λI
2 - λ

I
1 )ϕ2® 1 and 

E1 (yI
2 )ω2® 1 are acquired by V2.

7)　Step 6: Transmission of Processed Encrypted Results
V1 returns E2 (λI

1 - λ
I
2 )ϕ1® 2 and E2 (yI

1 )ω1® 2 to V2; and V2 re‐
turns E1 (λI

2 - λ
I
1 )ϕ2® 1 and E1 (yI

2 )ω2® 1 to V1.

xF =

ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

xI /10τ              0 £ xI £
μ - 1

2

(xI - μ)/10τ    
μ + 1

2
£ xI < μ

(25)

8)　Step 7: Decryption Using Own Private Key
V1 uses private key Keypri

1  to decrypt D(E1 (λI
2 - λ

I
1 )ϕ2® 1 )=

ϕ2® 1 (λI
2 - λ

I
1 ) and D(E1 (yI

2 )ω2® 1 )=ω2® 1 yI
2; and V2 uses pri‐

vate key Keypri
2  to decrypt D(E2 (λI

1 - λ
I
2 )ϕ1® 2 )= ϕ1® 2 (λI

1 - λ
I
2 ) 

and D(E2 (yI
1 )ω1® 2 )=ω1® 2 yI

1.
9)　Step 8: Weight Multiplication
V1 multiplies the decrypted result with its own generated 

weight to get: ϕ12 (λI
2 - λ

I
1 )= ϕ1® 2ϕ2® 1 (λI

2 - λ
I
1 ) and ω12 yI

2 =
ω1® 2ω2® 1 yI

2; and V2 multiplies the decrypted result with its 
own generated weight to get: ϕ21 (λI

1 - λ
I
2 )= ϕ2® 1ϕ1® 2 (λI

1 - λ
I
2 ) 

and ω21 yI
1 =ω2® 1ω1® 2 yI

1.
10) Post-processing: Floating-point Number Transmission

The states are converted to floating-point numbers us‐
ing (25).

Similarly, a secure exchange protocol is designed to find a 
unified power utilization ratio for all DGs in the VPP to pre‐
vent information disclosure, which is shown in Fig. 3. In 
summary, Fig. 4 illustrates the execution process of the ho‐
momorphically encrypted EMS based on the secure ex‐
change protocols to achieve different objectives at each lev‐
el. It should be noted that: ① the key generation process is 
only required once at the beginning of the iteration. Generat‐
ed public and private keys are reused in subsequent itera‐
tions till the convergence; ② the conversion between float‐
ing-point numbers and integers is performed at each itera‐
tion; ③ since the homomorphic encryption scheme is al‐
ready computation-intensive, we use a pre-set condition to 
stop the iterative convergence. kmax is set to be the a reason‐
able value through a trial-and-error approach to make sure 
the proposed approach converges each time.

V. SIMULATION RESULTS 

In this section, the effectiveness of the proposed secure ex‐
change protocols for two-level EMS is verified. The impact 
of key length on computational efficiency is examined in the 
following simulation studies. The functions of the Paillier 
cryptosystem and the proposed privacy-preserving protocols 
are developed and implemented in MATLAB running on an 
Intel Core i5 CPU at 3.5 GHz with a 16 GB RAM computer.

A. Case 1: IEEE 5-bus Test Network

An IEEE 5-bus test network, as shown in Fig. 5(a), con‐
sists of two VPPs and three load customers. The ring-circle 
with undirected links is used as the communication topology 
for the VPPs and loads. The communications among DGs in 
the VPP2 are illustrated in Fig. 5(b) and DG1 is set as the 
leader DG which can access the power reference P *

VPP. Solid 
lines represent the information exchange among DGs. Corre‐
sponding parameter configurations are shown in Tables I and 
II.
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Initialization:�λi(0), Pi(0), yi(0)

Pre-processing: key generation

Secure exchange protocol

Each participant executes local

 update (15)

Each DG obtains optimal 
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Each DG executes local 
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N
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power generation��λ*→P*
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Y
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t�tmax?

t=t+1

Secure exchange protocol

Pre-processing: key generation

Initialization:�P*
VPP, δm(0), Ptotal(0)

t=0

P*
VPP

First level: economic coordination

 among VPPs and load customers

Second level: power sharing 

among DGs within a VPP

Fig. 4.　 Flowchart of execution process of homomorphically encrypted 
EMS based on secure exchange protocols.
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The effectiveness of homomorphically encrypted econom‐
ic coordination under the secure exchange protocols is first 
evaluated. Set τ = 5. The bit length of public and private 
keys is set to be 256. Variable states in the format of the 
floating-point number are converted to 64-bit integers before 
the encryption. The feedback gain σ is set to be 0.5 ´ 10-3 
for (15). The weights ϕi® j and ωi® j are also scaled up and 
represented by 64-bit integers. The obtained results are 
shown in Figs. 6 and 7. The optimal value of λi is found to 
be 5.6 and the power balance between generation and de‐
mand approaches zero when the algorithm converges.

Figure 8 visualizes the encrypted state difference transmit‐
ted to communicating neighbors. At each iteration, the en‐
crypted difference Ei (λ

I
j - λ

I
i )ϕj® i is exchanged as a random 

big integer between a pair of communicating participants 
(ij). It should be underlined that the convergence is still 
achieved although the encrypted messages appear to be ran‐
dom, verifying that an eavesdropping attacker cannot infer 
any information during the entire distributed operation.

Once the optimal power generation of the VPP, i. e., 
P *

VPP1 = 255  kW and P *
VPP2 = 350  kW, is determined at the 

first level of EMS, the second level of the EMS is activat‐
ed within a VPP. Here, VPP2 is taken as an example to 
demonstrate the process of cooperative power sharing. 
Choose the control gain ρ = 0.004 for (17). As shown in Fig. 
5(b), DG1 has the most communicating neighbors, which 

lead to max
i

{Din
i }= 7. Hence, 0< -d < d̄< 1 ρ × max

i
{Din

i } = 

0.004 ´ 7 = 0.167 and the permissible range for the weight 
di® j is set as [-d d̄]=[0.010.16]. The objective is to meet 
P *

VPP2 = 350  kW and to ensure that the unified power utiliza‐
tion ratio is achieved.

Figure 9 shows the cooperative power sharing among 
DGs at the second level of EMS within VPP2. The reference 
in Fig. 9 is P *

VPP2 = 350 kW that is acquired from the first 
level of EMS, which is to be satisfied by all DGs in the 
VPP2. The difference between the power output reference 
value and the total amount of DG power output gradually ap‐
proaches zero when the consensus algorithm iterates to find 

TABLE II
PARAMETER CONFIGURATION OF LOAD FOR CASE 1

Load

1

2

3

αj

-0.065

-0.061

-0.056

βj

15.86

17.45

19.35

P min
Dj  (kW)

100

150

180

P max
Dj  (kW)

160

200

250

Pi (0) (kW)

160
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230

γi
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Fig. 8.　Encrypted state difference transmitted to communicating neighbors.

TABLE I
PARAMETER CONFIGURATION OF VPP FOR CASE 1

VPP

1

2

ai

0.0016

0.0017

bi

4.26

4.54

ci

40

60

P min
VPPi (kW)

180

150

P max
VPPi (kW)

255

355

Pi (0) (kW)

220

206

γi

-0.025

0.016
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Fig. 7.　Updates of local power mismatch yi and generation/demand Pi at 
first level of EMS. (a) Local power mismatch update in response to price 
update. (b) Generation/demand adjustment in response to price update and 
limited by constraints.
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the convergence. Each DG approaches a unified power utili‐
zation ratio δi = 0.8 while the total power output of all DGs 
satisfies the required power reference when the algorithm 
converges.

DG2 is taken as an example to examine its received en‐
crypted states from communicating neighbors, as shown in 
Fig. 10. The disorderliness verifies that the privacy is pro‐
tected.

B. Case 2: IEEE 34-bus Test Network

IEEE 34-bus test network is used as the second test distri‐
bution network, including 10 VPPs and 19 load customers, 
as shown in Fig. 11. The parameter configurations of VPP 
and load for case 2 are presented in Tables AI and AII in Ap‐
pendix A, respectively. The communication configuration for 
29 participants in the IEEE 34-bus test network is shown in 
Fig. 12.

The performance of the first-level economic coordination 
under a secure exchange protocol is investigated. In the sim‐
ulation, the bit length of the key is set to be 256. The feed‐
back gain σ is set to be 0.1 ´ 10-4 for (15). The results are 
shown in Fig. 13, revealing that the consensus on λ* is 
achieved within 150 iterations and the generation and load 
demand are adjusted in response to the price. The encrypted 

state difference Ei (λ
I
j - λ

I
i )ϕj® i is shown in Fig. 14. The ran‐

dom big integers verify that the privacy of each agent is ade‐
quately protected as it is difficult for the attackers to obtain 
or infer any useful information from such unreadable pat‐
terns.

The computational efficiency under different key lengths 
is compared, as shown in Table III. It takes a longer total 
simulation time to run homomorphic cryptosystem based al‐
gorithm (15) with a longer key length. Overall, the simula‐
tion time is still acceptable and efficient enough for the 
EMS operation even under the longer key length.
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VI. DISCUSSION 

A. Properties of Secure Exchange Protocols

The proposed secure exchange protocol has two main 
properties: privacy preservation and correctness. The compar‐
ison between privacy-preserving EMS under two approaches 
is given in Table IV. As the working principle of differential 
privacy is to inject perturbations and noises into the original 
signal, the convergence and optimality of the final value 
may not be guaranteed if the injected perturbations and nois‐
es are not carefully selected. But for the proposed secure ex‐
change protocols based on the homomorphic cryptosystems, 
the property of privacy preservation follows the semantic se‐
curity of the Paillier cryptosystem (introduced in Section III) 
so that absolute correctness of the final value can be 
achieved all the time.

Next, we take λI
i as an example to explain the privacy 

preservation between two communicating participants at 
each iteration step. For agent V1 after receiving encrypted 
information E1 (λI

2 - λ
I
1 )ϕ2® 1 from V2, V1 decrypts it with 

Keypri
1  so that decrypted information ϕ2® 1 (λI

2- λ
I
1 ) is ob‐

tained. Nevertheless, V1 cannot infer λI
2 through ϕ2® 1 (λI

2 - λ
I
1 ) 

as ϕ2® 1 is only known to V1. For agent V2, after receiving 
encrypted information E1 (-λI

1 ) from V1, it cannot see λI
1 as it 

does not have the private key Keypri
1  to decrypt it. For an ex‐

traneous eavesdropper that eavesdrops on the communication 
link between participants, it cannot infer λI

i as the informa‐
tion is encrypted to Ei (-λ

I
i ) by the corresponding agent it‐

self, and then transmitted over the communication link. The 
information privacy on yI

i and δI
i is protected in the same 

way through the secure exchange protocol. Therefore, it can 
be concluded that the privacy of all participants is preserved 
against eavesdropping attacks.

B. Quantization Error and Computation Complexity

The conversion between the floating-point and the integer 
number will bring unavoidable quantization error ∆, as fol‐
lows:

∆ = | xF - xI | = xF| (1 - 10τ ) | (26)

Such a quantization error can be neglected if we choose a 
sufficiently large preserved digital number τ.

The computation overhead, i.e., the algorithmic complexi‐
ty, indicates how the computation complexity depends on the 
input size, which is specified using the Big-O notation. The 
bit length of the key is denoted by l. Under the proposed se‐
cure exchange protocol, for an agent i, the total computation 
overhead of each iteration is O(D in

i l) [27]. The computation‐
al complexity of the secure exchange protocol based on the 
Paillier cryptosystem is increased with the number of in-
neighbors of a certain agent rather than network size. Hence, 
the homomorphically encrypted EMS can be applied on 
large networks with moderate connections.

C. Implementation Considerations of Proposed Privacy-pre‐
serving EMS

Since homomorphic encryption allows computation direct‐
ly on encrypted data which makes the computation speed 
slower compared with operating on non-encrypted data, it is 
not suitable to be applied in computational-heavy applica‐
tions and real-time applications. In this paper, the proposed 
privacy-preserving EMS is not intended to be applied in real-
time operation. Instead, it is conducted every 15 min in the 
ADN to accommodate the stochastic demand and according‐
ly update the market-clearing price and DG power output.

VII. CONCLUSION 

In this paper, a homomorphically encrypted EMS for eco‐
nomic coordination and power sharing in the IoT-enabled 
ADN is developed to guarantee the data privacy of DGs and 
load customers during the information transmission. As a 
typical homomorphic cryptosystem, the Paillier cryptosystem 
is applied to develop secure exchange protocols by encoding 
randomness into the system dynamics so that enhanced priva‐
cy security and deterministic convergence of the consensus-
based algorithms can be achieved. Private information such 
as price information, load demand, and power utilization is 
successfully protected against eavesdropping attackers. The 
effectiveness and the computational efficiency of the pro‐
posed encrypted approach are verified by two test networks.

TABLE IV
COMPARISON BETWEEN PRIVACY-PRESERVING EMS UNDER TWO 

APPROACHES

Approach

EMS based on homo‐
morphic cryptosystem

EMS based on differen‐
tial privacy [17]

Correctness

√
Only guaranteed with 
proper noise selection

Privacy preservation

√
√

Iteration
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Fig. 14.　 Encrypted state difference transmitted to communicating neigh‐
bors (total 29 encrypted state differences).

TABLE III
COMPUTATIONAL EFFICIENCY UNDER DIFFERENT KEY LENGTHS

Key length (bit)

64

128

256

512

1024

Unencrypted

Total simulation time (s)

6.12

8.48

10.86

14.65

17.21

4.56

Computation time per agent (s)

0.21

0.29

0.27

0.51

0.59

0.15
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