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Abstract——The uncertainties of the power load, wind power, 
and photovoltaic power lead to errors between point prediction 
values and real values, which challenges the safe operation of 
distribution networks. In this paper, a robust reactive power 
scheduling (RRPS) model based on a modified bootstrap tech‐
nique is proposed to consider the uncertainties of power loads 
and renewable energy sources. Firstly, a deterministic reactive 
power scheduling (DRPS) model and an RRPS model are for‐
mulated. Secondly, a modified bootstrap technique is proposed 
to estimate prediction errors of power loads and renewable en‐
ergy sources without artificially assuming the probability densi‐
ty function of prediction errors. To represent all possible scenar‐
ios, point prediction values and prediction errors are combined 
to construct two worst-case scenarios in the RRPS model. Final‐
ly, the RRPS model is solved to find a scheduling scheme, 
which ensures the security of distribution networks for all possi‐
ble scenarios in theory. Simulation results show that the worst-
case scenarios constructed by the modified bootstrap technique 
outperform popular baselines. Besides, the RRPS model based 
on the modified bootstrap technique balances economics and se‐
curity well.

Index Terms——Distribution network, worst-case scenario, ro‐
bust programming, prediction error, bootstrap technique.

I. INTRODUCTION 

REACTIVE power scheduling aims to reduce active 
power losses of distribution networks and maintain the 

desired voltage level by regulating different power devices 
such as transformers, distributed generators (DGs), and shunt 
capacitor banks. Reactive power scheduling is generally re‐
garded as a special case of optimal power flow, which plays 
an important role in the safe and economic operation of dis‐
tribution networks [1].

The traditional reactive power scheduling is formulated as 
a deterministic model, in which the input data (e. g., deter‐
ministic point prediction values of power loads and renew‐
able energy sources) are assumed to be ideally accurate. Pre‐

diction errors (also called uncertainty sets in some publica‐
tions) are ignored. Practically, the prediction errors of power 
loads are unavoidable due to various reasons such as insuffi‐
cient real-time measurements in distribution networks, state 
estimations heavily dependent on pseudo measurements, and 
changing consumption habits [2]. In addition, real output 
power of renewable energy sources varies with meteorologi‐
cal factors (e.g., wind speed, wind direction, and light inten‐
sity), which fluctuates frequently. In such situations, the tra‐
ditional deterministic reactive power scheduling (DRPS) 
model has difficulty in ensuring the security of distribution 
networks [3], especially when prediction errors of power 
loads and renewable energy sources are large.

To account for the prediction errors of power loads and re‐
newable energy sources, fuzzy optimization, stochastic opti‐
mization, interval optimization, and robust optimization have 
been extensively explored. For example, a fuzzy logic con‐
trol model and a particle swarm optimization method are 
combined to minimize tie-line power flow in [4]. The work 
in [5] employs the Weibull distribution to represent wind 
power uncertainty by producing a set of scenarios. To consid‐
er the fluctuation of loads in one day, a new interval power 
flow analysis is proposed to obtain the accurate ranges of in‐
terval state variables in [6]. Generally, the solutions of fuzzy 
optimization, stochastic optimization, and interval optimiza‐
tion are not always feasible for all possible combinations of 
load conditions and output power of renewable energy sourc‐
es. In contrast, robust optimization attempts to find such 
guaranteed feasible solutions by constructing worst-case sce‐
narios. The worst-case scenarios are utilized to obtain an op‐
timal solution. If the solution can ensure the security of dis‐
tribution networks in worst-case scenarios, it should also be 
applicable to other possible scenarios [7]. In view of this, 
there are an increasing number of robust optimization appli‐
cations in distribution networks.

The main challenge in robust reactive power scheduling 
(RRPS) of distribution networks is to construct worst-case 
scenarios. Traditionally, the worst-case scenarios are divided 
into two categories [8]: ① the maximum power loads and 
the minimum output power of renewable energy sources; 
and ② the minimum power loads and the maximum output 
power of renewable energy sources. Obviously, this tradition‐
al method is too simple, and even it does not use any point 
prediction value when constructing these two categories of 
worst-case scenarios. The reactive power scheduling scheme 
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based on this traditional method is too conservative, that is, 
it loses the economy of distribution networks.

To balance economy and security, a large number of publi‐
cations have focused on constructing the worst-case scenari‐
os in recent years. Normally, the worst-case scenario con‐
struction consists of point prediction and prediction error es‐
timation. The worst-case scenarios are constructed by adding 
point prediction values and prediction errors. This paper fo‐
cuses on the latter one (i.e., the prediction error estimation).

To represent the prediction errors of power loads and 
wind power, a Gaussian distribution model is proposed in 
[9]. The prediction errors of wind power are assumed to 
obey the Laplace distribution in [10], and the Latin hyper‐
cube sampling algorithm is utilized to produce possible sce‐
narios. To describe the variation of wind speed, the Rayleigh 
distribution and Weibull distribution are integrated in [11] 
and [12]. Similarly, the Beta distribution is employed to cap‐
ture the uncertainty of the photovoltaic (PV) output power, 
and then the Monte Carlo method is used to sample possible 
errors in [13]. Other popular distributions such as the Cau‐
chy distribution are presented in [14], and the mixed Laplace 
distribution is adopted in [15]. However, the prediction er‐
rors of power loads and renewable energy sources vary from 
meteorological factors, point prediction models, and geo‐
graphical locations, leading to no uniform and accurate prob‐
ability density function (PDF) exists to describe the real dis‐
tribution in different scenarios.

Generally, these existing methods cannot accurately esti‐
mate prediction errors. If the estimated prediction errors are 
much greater than real errors, the worst-case scenarios will 
be too conservative (i.e., the solution loses economy). Con‐
versely, if the estimated prediction errors are much smaller 
than real values, the worst-case scenarios cannot represent 
all possible scenarios (i.e., the solution loses security). It re‐
mains a challenge to accurately estimate prediction errors 
without assuming and sampling PDFs for the RRPS model 
of distribution networks.

Bootstrap technique is a popular method, which is widely 
used to estimate uncertainty (confidence interval, prediction 
error, variance, bias, etc.) by random sampling with replace‐
ment [16]. One of the advantages of the bootstrap technique 
over traditional methods is that it does not require artificial 
assumptions about the empirical PDF [17]. As long as the 
sampled errors and the real errors obey the same distribu‐
tion, the bootstrap technique can accurately represent the un‐
certainty of the observed data. These advantages make the 
bootstrap technique a perfect candidate to estimate the pre‐
diction errors for the RRPS model of distribution networks. 
However, there are two limitations of the traditional boot‐
strap technique that need to be addressed.

Firstly, the prediction errors estimated by the traditional 
bootstrap technique are often smaller than the real prediction 
errors. Secondly, the traditional bootstrap technique requires 
a sufficiently large sample size for the new error set, which 
imposes a tedious sampling process.

To fill the knowledge gap, this paper proposes a new kind 
of RRPS model of distribution networks based on the modi‐
fied bootstrap technique. The key contributions are summa‐
rized as follows.

1) Accuracy prediction errors are estimated by a new kind 
of bootstrap technique, which does not require artificial as‐
sumptions about the PDF. To accommodate prediction error 
estimation for the RRPS model, some necessary modifica‐
tions are made to address the two gaps in the traditional 
bootstrap technique.

2) After estimating prediction errors, two worst-case sce‐
narios are constructed to represent all possible scenarios in 
the RRPS model.

3) An RRPS model is formulated to fully account for the 
uncertainties of power loads and renewable energy sources 
by considering operational constraints in worst-case scenari‐
os.

The rest of this paper is organized as follows. Section II 
formulates the DRPS model. Section III introduces the 
RRPS model. Simulations are performed to test the perfor‐
mance of the proposed RRPS model based on the modified 
bootstrap technique in Section IV. Finally, Section V summa‐
rizes conclusions and presents future works.

II. DRPS MODEL 

The reactive power scheduling of distribution networks 
generally aims to reduce active power losses and maintain 
the voltage profiles in a safe range by controlling transform‐
er taps and reactive power compensators within a given time 
frame [18], [19].

Normally, the reactive power compensators can be catego‐
rized into discrete control devices, e. g., shunt capacitor 
banks (CBs) and continuous control devices (e.g., DGs). The 
states of shunt CBs and transformer taps cannot be regulated 
frequently owing to the limitations of existing manufacturing 
technologies and the lifetime of control devices. Similar to 
the previous study [20], the maximum allowable action 
times of control devices are considered by adding action 
costs into the objective function. Specifically, the DRPS 
model is defined as follows [21].

1) Objective function

min F =Closs∑
t = 1

24

P loss tDt +CCB∑
i = 1

nC∑
t = 2

24 ( )QCB it - 1ÅQCB it +

CT∑
i = 1

nT∑
t = 2

24 ( )Tit - 1ÅTit (1)

P loss t =∑
i = 1

n

Gij( )U 2
it +U 2

jt - 2UitUjt cos ( )θ it - θjt (2)

where F is the objective function, including the operational 
cost of power losses, the action cost of shunt CBs, and the 
action cost of transformer taps; Closs is the price of energy 
loss; CCB is the price of a single adjustment of CBs; CT is 
the price of a single adjustment of the transformer tap; nT is 
the number of transformers in distribution networks; nC is 
the number of shunt CBs in distribution networks; QCBit is 
the reactive power output provided by shunt CB i at time t; 
Tit is the tap ratio of transformer i at time t; Å is the exclu‐
sive operation, whose value is 1 only if its arguments differ; 
Dt is the time horizon, which is usually 1 hour; P losst is the 
active power loss at time t; n is the number of distribution 
lines; θit is the voltage phase angle of bus i at time t; Uit is 
the voltage magnitude of bus i at time t; and Gij is the mutu‐
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al conductance of distribution line from bus i to bus j.
2) Power flow constraints

ì

í

î

ï
ïï
ï

ï
ïï
ï
ï
ï

Pit -PDG it -Uit∑
j = 1

m

Ujt( )Gij cos θijt +Bij sin θijt = 0

Qit -QCB it -QDG it -Uit∑
j = 1

m

Ujt( )Gij sin θijt -Bij cos θijt = 0

(3)

where Pit and Qit are the active and reactive power loads of 
bus i at time t, respectively; PDGit and QDGit are the active 
and reactive power outputs provided by DGs of bus i at time 
t, respectively; Bij is the mutual susceptance of distribution 
line from bus i to bus j; θijt is the voltage phase angle of dis‐
tribution line from bus i to bus j at time t; and m is the num‐
ber of buses.

3) Current constraints

Iit £ Imax t    i = 12n (4)

where Imax t is the maximum allowable current of distribution 
line i; and Iit is the current of distribution line i at time t.

4) Voltage constraints

Umin i £Uit £Umaxi    i = 12m (5)

where Umin i and Umax i are the minimum and maximum al‐
lowable voltages of bus i, respectively.

5) Transformer constraints

Tmini £ Tit £ Tmaxi    i = 12nT (6)

where Tmin i and Tmax i are the minimum and maximum tap 
ratios of transformer i, respectively.

6) DG constraints

QDGit £QDGitmax = S 2
DGi -P 2

DGit     i = 12nDG (7)

where QDG itmax is the maximum reactive power output pro‐
vided by DG i at time t; nDG is the number of DGs in distribu‐
tion networks; and SDGi is the maximum apparent power (i.e., 
capacity) of DG i.

The capability curve of a DG is depicted in Fig. 1 [22]. 
The maximum reactive power output QDGmax is limited by 
the capacity SDG and active power output PDG of the DG. Be‐
sides, the reactive power outputs provided by DGs can be 
leading or lagging power.

Note that (7) represents the DGs operating in the widely 
used P-Q control mode [23], while the DGs operating in oth‐
er control modes (e.g., P-V control mode) can be easily add‐
ed in future works.

7) CB constraints
0 £QCBit £QCBimax    i = 12nC (8)

where QCBimax is the maximum reactive power output provid‐
ed by the shunt CB i.

In summary, the framework of the proposed DRPS model 
is shown in Fig. 2. The objective function is to minimize the 
operational cost given the deterministic point prediction val‐
ues of load conditions and renewable energy sources. The 
variables to be optimized include the transformer tap ratio, 
number of operational CBs, and reactive power output of 
DGs at each time horizon given a set of operational con‐
straints. Note that more objective functions (e.g., voltage de‐
viation) as well as control devices (e.g., heat pumps, energy 

storage, and electric vehicles) can be added to the above 
DRPS model in extended work [24].

III. RRPS MODEL 

The focus of this paper is on the construction of the worst-
case scenario for the RRPS model. First, a modified boot‐
strap technique is proposed to estimate prediction errors ac‐
curately. Then, the upper and lower boundaries of these pre‐
diction errors and the point prediction values are combined 
to form two worst-case scenarios, representing the full range 
of possible scenarios. Finally, the DRPS model is general‐
ized to the RRPS model considering worst-case scenarios.

A. Prediction Error Estimation

The point prediction models only provide a single most 
likely value to estimate the power loads or output power of 
renewable energy sources, which brings risks to the safe op‐
eration of distribution networks due to ignoring the uncer‐
tainty.

As an advanced method of error estimation, the bootstrap 
technique employs upper and lower boundaries to represent 
the uncertainty of a single prediction value without assuming 
the PDF of prediction errors. In particular, Fig. 3 presents 
the framework of the standard bootstrap technique. The pre‐
diction error estimation of the point prediction values by us‐
ing the standard bootstrap technique consists of three main 
steps [16].

Active power

Reactive power

SDG

PDG

QDG,max

Fig. 1.　Capability curve of a DG.

Solutions

CB

PV system

Distribution network

Wind turbine

Transformer tap

Scheduling schemes

Fig. 2.　Framework of proposed DRPS model.
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Fig. 3.　Framework of standard bootstrap technique.
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1) Calculate prediction errors of the training set and vali‐
dation set. First, a point prediction model is trained to obtain 
point prediction values of the training set, validation set, and 
test set. Then, the prediction errors of the training set and 
validation set can be obtained by calculating the Euclidean 
distance between the real values and point prediction values. 
The prediction errors of the training set and validation set 
are used to construct the prediction intervals (PIs) of the test 
set.

2) Construct an error set. To obtain the PIs of the test set, 
prediction errors of the training set and validation set are 
sampled (sampled with replacement) to obtain a new error 
set. The number of samples in the new error set should be 
large enough to ensure statistical significance (the more sam‐
ples the better, if there are enough computing resources), 
generally tens of thousands of times.

3) Construct PIs for the test set. The new error set is sort‐
ed in descending order, and then the lower and upper bound‐
aries are determined by selecting a value at the percentile α 
for the confidence level (CL). For example, if the CL is set 
to be 95%, the percentile α would be 0.95. The value at the 
2.5% percentile of this new error set is considered as the 
lower boundary, and the value at the 97.5% percentile of 
this new error set is regarded as the upper boundary.

To accommodate the prediction error estimation of the 
RRPS model, the standard bootstrap technique in this paper 
is modified in the following two aspects, and the framework 
of the modified bootstrap technique is shown in Fig. 4.

1) The prediction error of the training set is removed. The 
reason is that the training set has been used to train the 
point prediction model, which results in smaller prediction 
errors in the training set than those in the test set. In particu‐
lar, the difference in prediction errors can be large between 
the training set and test set, if the point prediction model suf‐
fers from severe over-fitting problems.

2) The second step of the standard bootstrap technique re‐
quires a sufficiently large sample size for the new error set, 
which imposes a tedious sampling process. Fortunately, if 
the number of samples is infinite, the new error set will 
have the same probability distribution as the prediction er‐
rors in the validation set (i.e., the quantile of the new error 
set is the same as the prediction error set in the validation 
set). In other words, the new error set is redundant, and it 
can be replaced by the prediction errors in the validation set 
ignoring the second step of the standard bootstrap technique. 
Therefore, the prediction error set in the validation set can 
be sorted in descending order to construct the PIs of the test 

set, and then the lower and upper boundaries are determined 
by selecting a value at the percentile α for the CL.

Note that both traditional and modified bootstrap tech‐
niques share the same hypothesis that the data distributions 
in the training, validation, and test sets are similar [25]. On‐
ly in this case, the prediction errors of the validation and 
test sets can be small, and the prediction errors of the test 
set can be accurately estimated by those of the validation 
set. Besides, the data size of the training set should be large 
enough (e.g., several thousands of samples) to train a good 
point prediction model, and the data size of the validation 
set should also be large enough to accurately estimate the 
prediction errors of the test set.

B. Worst-case Scenario Construction

So far, prediction errors of point prediction values can be 
represented as PIs by the modified bootstrap technique de‐
scribed above. The next important aspect is to construct the 
worst-case scenarios for the RRPS model of distribution net‐
works. If the scheduling scheme is suitable for the worst-
case scenarios (also called extreme scenarios in some stud‐
ies), it also should be suitable for other possible scenarios. 
Therefore, the worst-case scenarios are generally used to rep‐
resent all possible scenarios in the RRPS model. Normally, 
the worst-case scenarios include the following two cases [9].

Case 1: the real power loads are larger than the point pre‐
diction values, while the real output power of the renewable 
energy sources is smaller than the point prediction values.

Specifically, the power load can be represented as a sum 
of point prediction values and upper boundaries of predic‐
tion errors, as shown in the upper boundary of the blue area 
in Fig. 5. The output power of renewable energy sources can 
be represented as a sum of point prediction values and lower 
boundaries of prediction errors, as shown in the lower 
boundary of the blue area in Fig. 6. This case can be formu‐
lated as:

ì
í
î

ïïPCase1it =Pit +DPUp it     i = 12m

QCase1it =Qit +DQUp it    i = 12m (9)

PCase1DGit =PDGit +DPLowDGit    i = 12m (10)

where PCase1it  and QCase1it are the active and reactive power 
loads of bus i at time t for case 1, respectively; DPUp it  and 
DQUp it are the upper boundaries of prediction errors for ac‐
tive and reactive power loads of bus i at time t, respectively; 
PCase1DGit  is the active power output provided by DG i at 
time t for case 1; and DPLowDGit is the lower boundary of 
the prediction error of the active power output provided by 
DG i at time t.

Case 2: the active power loads are smaller than the point 
prediction values, while the active power output of the re‐
newable energy sources is larger than the point prediction 
values.

Specifically, the power load can be represented as a sum 
of point prediction values and low boundaries of prediction 
errors, as shown in the lower boundary of the blue area in 
Fig. 5. The power output of renewable energy sources can 
be represented as a sum of point prediction values and upper 
boundaries of prediction errors, as shown in the upper 

� �PI PI PI

A point

prediction model

Prediction
error

Prediction
error

Prediction
error

A point

prediction model

Point prediction values of

the validation set

Point prediction
values of the test set

Fig. 4.　Framework of modified bootstrap technique.
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boundary of the blue area in Fig. 6. This case can be formu‐
lated as:

ì
í
î

PCase 2it =Pit +DPLow it     i = 12m

QCase 2it =Qit +DQLow it    i = 12m (11)

PCase 2DGit =PDGit +DPUpDG it    i = 12m (12)

where PCase2it and QCase2it are the active and reactive power 
loads of bus i at time t for case 2, respectively; DPLow it and 
DQLow it are the lower boundaries of prediction errors for ac‐
tive and reactive power loads of bus i at time t, respectively; 
PCase2DGit is the active power output provided by DG i at 
time t for case 2; and DPUp DG it is the upper boundary of 
prediction errors of the active power output provided by DG 
i at time t.

In summary, two worst-case scenarios have been construct‐
ed based on the modified bootstrap technique. Unlike previ‐
ous studies [9] - [12], the modified bootstrap technique does 
not need to assume the PDF of prediction errors.

C. RRPS Model

After constructing two worst-case scenarios, the RRPS 
model is formulated to search for solutions, which should en‐
sure the security of distribution networks in point prediction 
values and two worst-case scenarios. The framework of the 
RRPS model is shown in Fig. 7.

Specifically, the point prediction value scenarios are most 
likely to occur, while the worst-case scenarios are rare. 
Therefore, the objective function of the RRPS model is de‐
fined to be consistent with the DRPS model, i.e., (1).

Furthermore, the constraints of the RRPS model include 
not only the constraints (3)-(8) of the DRPS model, but also 
the constraints in two worst-case scenarios:

ICase 1it £ Imax t    i = 12n (13)

ICase 2it £ Imax t    i = 12n (14)

Umin i £UCase 1it £Umax i    i = 12m (15)

Umin i £UCase 2it £Umax i    i = 12m (16)

QDG it £QDG itmax = S 2
DG i -P 2

Up DG it     i = 12nD (17)

where ICase1it and ICase2it are the currents of distribution line 
i at time t for cases 1 and 2, respectively; and UCase1it and 
UCase2it are the voltage magnitudes of bus i at time t for cas‐
es 1 and 2, respectively.

Note that the constraints (13)-(16) ensure that the solution 
is also feasible for two worst-case scenarios, and the con‐
straint (17) describes the maximum reactive power output of 
DGs, which is limited by the active power output of DGs.

Up to this point, the RRPS model has been formulated. 
By solving this model, the obtained solution ensures the se‐
curity of distribution networks for all possible scenarios in 
theory.

IV. CASE STUDY 

A. Simulation Details

To verify the effectiveness of the proposed modified boot‐
strap technique for the RRPS model of distribution net‐
works, simulations and analyses are performed on an IEEE 
33-bus distribution network, whose parameters can be found‐
ed in [26]. Further, various control devices such as the CB, 
transformer, PV system, and wind turbine (WT) are added to 
the feeders, as shown in Fig. 8.

In particular, the voltage base value is 12.66 kV. The trans‐
former tap includes 9 ratios, which vary from -4 × 1.25% to 
4 × 1.25%. Various control devices are generally decentral‐
ized and located at the end of feeders to reduce power loss 
and boost voltage. Therefore, this paper makes the following 
assumptions about the location and capacity of DGs and 
CBs: WTs are added to the 10th bus and 25th bus. A PV sys‐
tem is added to the 22nd bus. The maximum apparent power 
(i.e., capacity) of the PV system and WTs is 300 kVA. The 

Physical constraints of
point prediction values

Physical constraints of the
worst scenario (case 2)

Physical constraints of the
worst scenario (case 1)

Objective function (the
operational cost for one day)

Fig. 7.　Framework of RRPS model.
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reactive power outputs provided by DGs (i. e., PV system 
and WTs) can be leading or lagging power. Both the 18th bus 
and the 33rd bus are added with 5 CBs (denoted as CB1 and 
CB2). The reactive power provided by each CB is 100 kvar. 
The safe voltages at all buses range from 0.95 p.u. to 1.05 p.u.. 
The electricity price is 0.5 ¥/kWh, and the price of a single 
adjustment of the CBs and the transformer tap is ¥6 [20]. 
The maximum allowable action times over 24 hours are 5 
and 4 for CBs and transformer taps, respectively [27].

The original IEEE 33-bus distribution network only in‐
cludes one moment of loads, which cannot be used to train 
the point prediction model. The London smart meter dataset 
is employed to construct the power load for each bus [28]. 
Specifically, this dataset includes hourly load curves of 112 
blocks. To simulate the nodal loads of the distribution net‐
work, loads of three neighboring blocks are combined and 
then scaled appropriately as the load data of a bus in the dis‐
tribution network. The 1st bus is the slack bus. The data 
from the first 96 blocks are used to simulate the power loads 
from the 2nd bus to 33rd bus. Since there are different time 
ranges of power loads in different blocks, the power loads 
from January to June 2012 are used for simulation and analy‐
sis. Hourly PV generation curves and hourly wind genera‐
tion curves are selected from the National Renewable Ener‐
gy Laboratory [29], [30]. For power loads and renewable en‐
ergy sources, the first 80% of the data in each month consti‐
tutes the training set, and the last 10% of the data in each 
month constitutes the test set. The middle 10% of the data in 
each month constitutes the validation set.

Point prediction, prediction error estimation, and worst-
case scenario construction are implemented in the Python, in‐
cluding Spektral 1.0 and Tensorflow 2.0. The power flow 
analysis is performed in MATLAB 2018a using a computer 
with the CPU of Intel Core i5-8265U (base frequency is 
1.80 GHz) and the RAM of 8 GB.

The DRPS model and RRPS model are solved by a genet‐
ic algorithm. Specifically, to ensure the operational con‐
straints, the penalty method is employed to transform con‐
strained models into an unconstrained model. In addition, 
the coding method (i.e., how to initialize the chromosome in 
the genetic algorithm) of various power devices can be 
found in [31].

B. Feasibility Analysis of Prediction Error Estimation

The prediction error estimation directly affects the quality 
of the worst-case scenarios. Only when the constructed PIs 
cover enough real values can the worst-case scenarios repre‐
sent all possible scenarios. In this subsection, the effective‐
ness of the proposed modified bootstrap technique for predic‐
tion error estimation is demonstrated.

Specifically, the time-series predictions of power loads in 
the 2nd bus, wind power in the 10th bus, and PV power in the 
22nd bus are considered as simple examples. First, a point 
prediction model named gated recurrent unit is employed to 
predict power loads, wind power, and PV power, because of 
its outstanding ability in time-series prediction [25], [32]. 
Then, the PDFs of prediction errors of the training, valida‐
tion, and test sets using the power load, wind power, and PV 
power datasets are visualized, as shown in Figs. 9-11.

Comparing Fig. 9(a) and Fig. 9(c), it is clear that the aver‐
age prediction error of the training set is smaller than that of 
the validation and test sets. The reason is that the samples in 
the training set have been used to train the point prediction 
model, and any point prediction model involves over-fitting 
problems to some extent. Normally, the better the generaliza‐
tion of a point prediction model, the closer the prediction er‐
ror between the training and test sets.

Further, if the prediction error of the training set is used 
to estimate prediction errors of the test set, the obtained PIs 
will be too narrow to cover possible scenarios, and the secu‐
rity of distribution networks cannot be ensured. This shows 
that the modifications (i. e., prediction errors of the training 
set are not used to estimate prediction errors of the test set) 
to the traditional bootstrap technique in this paper are neces‐
sary.

Relatively, the prediction errors of the validation set and 
test set are very similar, which can be verified by comparing 
Fig. 9(b) and Fig. 9(c). This is because both the validation 
and test sets are not used to train the point prediction model, 
and they have similar data distributions. Further, the predic‐
tion errors of the validation set and test set obey the same 
distribution, which is why the modified bootstrap technique 
only uses the prediction errors of the validation set to esti‐
mate those of the test set.
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Fig. 9.　PDFs of prediction errors of training, validation, and test sets using 
power load dataset. (a) Training set. (b) Validation set. (c) Test set.
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Fig. 10.　PDFs of prediction errors of training, validation, and test sets us‐
ing wind power dataset. (a) Training set. (b) Validation set. (c) Test set.

Prediction error (p.u.)
-0.8 -0.4 0 0.4 0.8
0

0.2

0.4

0.6

1.0

0.8

P
D

F

(a)
Prediction error (p.u.)
-0.8 -0.4 0 0.4 0.8
0

0.2

0.4

0.6

1.0

0.8

P
D

F
Prediction error (p.u.)
-0.8 -0.4 0 0.4 0.8
0

0.2

0.4

0.6

1.0

0.8

P
D

F

(b) (c)

Frequency� Real probability distribution

Fig. 11.　PDFs of prediction errors of training, validation, and test sets us‐
ing PV power dataset. (a) Training set. (b) Validation set. (c) Test set.

159



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 12, NO. 1, January 2024

Note that the above analysis and conclusions on power 
loads are also applicable to wind power and PV power, 
which can be verified by observing Fig. 10 and Fig. 11.

To demonstrate the performance of the proposed modified 
bootstrap technique, the widely used ensemble Gaussian 
model in [33] and the traditional bootstrap technique are con‐
sidered as baselines. First, the prediction errors of power 
loads, wind power, and PV power are estimated based on 
the bootstrap techniques and the ensemble Gaussian model 
at different CLs. PIs of power loads and renewable energy 
sources are obtained by combining point prediction values 
and prediction errors. Then, the popular indicators such as 
prediction interval coverage percentage (PICP) and predic‐
tion interval normalized average width (PINAW) in [2] are 
selected to evaluate PIs. The PICP describes the probability 
that PIs cover the real value, while PINAW represents the 
width of PIs. The larger the PICP, the better the uncertainty 
set. The smaller the PINAW, the better the uncertainty set. 
Finally, indicators of PIs generated by different models are 
calculated, as shown in Table I.

Besides, an hourly power load curve, an hourly wind pow‐
er generation curve, and an hourly PV power generation 

curve are randomly selected for visualization, as shown in 
Figs. 12-14.

1) Comparison analysis between modified bootstrap tech‐
nique and ensemble Gaussian model

It is obvious that the PIs (i. e., the combination of point 
prediction values and prediction errors) generated by the en‐
semble Gaussian model have difficulty in covering the real 
scenarios, since its PICP is much smaller than the CL (i.e., 
the expected probability covers the real values). Although 
the PINAW of the modified bootstrap technique is larger 

than that of the ensemble Gaussian model at the same CL, 
the PICP of the modified bootstrap technique is close to the 
CL and much larger than that of the ensemble Gaussian mod‐
el. This indicates that the modified bootstrap technique can 
accurately capture the uncertainties in power loads, wind 
power, and PV power. For example, for the prediction errors 
of power loads with 99% CL, the PICP of the ensemble 
Gaussian model is 88.24%, while that of the modified boot‐

TABLE I
INDICATORS OF PIS GENERATED BY DIFFERENT MODELS

Dataset

Power 
load

Wind 
power

PV power

CL 
(%)

60

80

90

99

60

80

90

99

60

80

90

99

Modified boot‐
strap technique

PICP 
(%)

61.53

84.12

91.18

99.53

63.25

83.58

91.08

98.83

64.00

83.76

92.47

99.06

PINAW 
(p.u.)

0.023

0.041

0.060

0.136

0.087

0.169

0.251

0.572

0.011

0.050

0.118

0.239

Traditional boot‐
strap technique

PICP 
(%)

57.88

75.41

86.94

97.94

57.67

77.58

87.83

98.92

58.82

79.88

87.41

97.41

PINAW 
(p.u.)

0.021

0.034

0.053

0.133

0.070

0.139

0.218

0.566

0.008

0.046

0.113

0.186

Ensemble 
Gaussian model

PICP 
(%)

48.12

64.71

74.76

88.24

28.42

40.33

50.92

68.33

66.82

76.12

82.65

95.88
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Fig. 12.　Prediction errors and real values of power loads at different CLs when using modified bootstrap technique, traditional bootstrap technique, and en‐
semble Gaussian model. (a) Modified bootstrap technique. (b) Traditional bootstrap technique. (c) Ensemble Gaussian model.
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Fig. 13.　Prediction errors and real values of wind power at different CLs when using modified bootstrap technique, traditional bootstrap technique, and en‐
semble Gaussian model. (a) Modified bootstrap technique. (b) Traditional bootstrap technique. (c) Ensemble Gaussian model.
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strap technique is 99.53%. If the prediction errors estimated 
by the ensemble Gaussian model are used for the RRPS 
model, the solution is difficult to ensure the security of the 
distribution network. In contrast, the RRPS solution based 

on the prediction errors generated by the modified bootstrap 
technique has a higher probability to ensure the security of 
the distribution network.

2) Comparison analysis between modified bootstrap tech‐
nique and traditional bootstrap technique

Normally, the real values are expected to lie within the 
lower and upper boundaries of PIs with a prescribed proba‐
bility (i.e., CL). Comparing the modified bootstrap technique 
and traditional bootstrap technique in Table I, it is found that 
the difference between them mainly lies in the size of PICP 
and CL. The PICP of the modified bootstrap technique is 
greater than the CL, indicating that the prediction error esti‐
mated by the modified bootstrap technique meets the expec‐
tation.

Relatively, the PICP of the traditional bootstrap technique 
is smaller than the CL, showing that the prediction errors es‐
timated by the traditional bootstrap technique fail to cover re‐
al values with the prescribed probability. The reason is that 
the traditional bootstrap technique uses the prediction errors 
of the training and validation sets to estimate the prediction 
errors of the test set. In fact, the average prediction error of 
the training set is smaller than that of the test set, resulting 
in the PIs constructed by the traditional bootstrap technique 
is not wide enough to cover real values. This is why the 
modified bootstrap technique only employs the prediction er‐
rors of the validation set to estimate the prediction errors of 
the test set.

3) Time efficiency of each method
Normally, the real-time system requires an appropriate 

scheduling scheme within 60 s [34]. During this time, the 
distribution network acquires observations from sensors and 
calculates the optimal combination of different power devic‐
es. Regarding the time efficiency, the computation time of 
the modified bootstrap technique, traditional bootstrap tech‐
nique, and ensemble Gaussian model is 1.13 s, 2.35 s, and 
1.28 s, respectively, which indicates their potential to be ap‐
plied to real-time scheduling of distribution networks.

C. Comparative Analysis of Voltages Between DRPS Model 
and RRPS Model

The difference in voltages between the DRPS model and 
RRPS model is clarified in this subsection by discussing the 

worst-case scenarios (i.e., cases 1 and 2 in Section II).
1) Case 1: voltages cross the lower bound considering un‐

certainties of power loads of renewable energy sources
First, a sample with a large prediction error is selected. 

Then, the DRPS and RRPS models are used to obtain the re‐
active power output schemes of power devices in case 1, as 
shown in Table II. Finally, the power flow analysis is per‐
formed to obtain the voltages of each bus, as shown in 
Fig. 15.

The objective function of the DRPS model is to minimize 
the operational cost given point prediction values of power 
loads and renewable energy sources without considering pre‐
diction errors. Under ideal conditions (i. e., point prediction 
is completely accurate and error free), if the DRPS model-
based scheduling scheme is applied to distribution networks, 
the voltage of each bus is within the safe range, as shown 
by the blue line in Fig. 15(a). However, the prediction errors 
of power loads and renewable energy sources are inevitable 
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Fig. 14.　Prediction errors and real values of PV power at different CLs when using modified bootstrap technique, traditional bootstrap technique, and. en‐
semble Gaussian model. (a) Modified bootstrap technique. (b) Traditional bootstrap technique. (c) Ensemble Gaussian model.

TABLE II
REACTIVE POWER OUTPUT SCHEMES OF POWER DEVICES IN CASE 1

Model

DRPS

RRPS

Tap ratio 
(%)

4×1.25

4×1.25

Reactive power output (kvar)

CB1

500

500

CB2

200

500

WT1

299.17

299.52

WT2

295.69

294.37

PV1

113.83

230.58
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Fig. 15.　Voltage of each bus in case 1. (a) DRPS. (b) RRPS.
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in practical engineering. For this specific sample, the real 
power loads are larger than the point prediction values, 
while the real active power outputs of the renewable energy 
sources are smaller than the point prediction values. There‐
fore, the DRPS model-based scheduling scheme provides in‐
sufficient reactive power outputs to support the voltages, and 
the voltage magnitudes of buses (e. g., the 16th bus to 18th 
bus) fall below the lower boundary.

In contrast, the RRPS model takes into account the predic‐
tion errors of power loads and renewable energy sources by 
combining point prediction values and prediction errors, and 
then provides sufficient reactive power to ensure that the 
voltage is in a safe range for both the worst-case scenario 
(i.e., the blue line in Fig. 15(b)) and real scenario (i.e., the 
red line in Fig. 15(b)).

2) Case 2: voltages cross the upper bound considering un‐
certainties of power loads of renewable energy sources

There may be opposite scenarios to case 1. Specifically, in 
this case, another sample with a large prediction error is se‐
lected. Then, the DRPS and RRPS models are used to obtain 
the scheduling schemes of power devices in case 2, as 
shown in Table III. Finally, the power flow analysis is per‐
formed to obtain the voltages of each bus, as shown in Fig. 16.

Similarly, the DRPS model based scheduling scheme at‐
tempts to ensure the security of distribution networks for the 
deterministic point prediction scenario, as shown by the blue 
line in Fig. 16(a). Nevertheless, for this specific sample, the 
real power loads are smaller than the point prediction values, 

and the real active power outputs of the renewable energy 
sources are larger than the point prediction values. The dif‐
ference between the point prediction values and real values 
causes voltage magnitudes of buses to cross the upper bound‐
ary, as shown by the red line in Fig. 16(a).

Relatively, the RRPS model reduces the leading reactive 
power output and ensures the safety of the distribution net‐
work for the possible worst-case scenario and real scenario.

D. Comparative Analysis of Reactive Power Outputs Be‐
tween DRPS Model and RRPS Model

The difference in reactive power outputs between the 
DRPS model and RRPS model is clarified in this subsection.

Specifically, a sample is randomly selected. A gated recur‐
rent unit model (i.e., point prediction model) is employed to 
predict the day-ahead power loads, wind power, and PV 
power, which are used to obtain a DRPS model based sched‐
uling scheme. To obtain an RRPS model based scheduling 
scheme, the modified bootstrap techniques are utilized to 
construct two worst-case scenarios (90% CL is used as a 
simple example). Finally, Figs. 17 and 18 show the reactive 
power output schemes of the DRPS model and RRPS mod‐
el, respectively. Besides, Table IV presents the operational 
costs and voltage ranges of the DRPS model and RRPS mod‐
el for one day.

51 9 13 17 21 25 29 33
0.94

0.98

1.02

1.06

V
o

lt
ag

e 
(p

.u
.)

0.94

0.98

1.02

1.06

V
o

lt
ag

e 
(p

.u
.)

Bus No.
(a)

51 9 13 17 21 25 29 33
Bus No.

(b)

Expected voltageReal voltage;Boundary;

Out of
range

Fig. 16.　Voltage of each bus in case 2. (a) DRPS. (b) RRPS.

TABLE III
REACTIVE POWER OUTPUT SCHEMES OF POWER DEVICES IN CASE 2

Model

DRPS

RRPS

Tap ratio 
(%)

4×1.25

4×1.25

Reactive power output (kvar)

CB1

500

500

CB2

100

200

WT1

89.46

20.74

WT2

124.66

17.37

PV1

97.95

-160.79
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Fig. 17.　Reactive power output scheme of DRPS model. (a) Tap position when action times are 3. (b) Reactive power output of CB1 when action times 
are 3. (c) Reactive power output of CB2 when action times are 2. (d) Reactive power output of WT1. (e) Reactive power output of WT2. (f) Reactive power 
output of PV1.
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For the DRPS model-based scheduling scheme, the reac‐
tive power outputs of renewable energy sources exceed the 
real maximum available range at times, making the schedul‐
ing scheme unworkable. For example, the planned reactive 
power output of WT1 from the 7th hour to the 21st hour is 
greater than the maximum available reactive power. In con‐
trast, the RRPS model-based scheduling scheme ensures that 
the outputs of renewable energy sources are always within 
the maximum available range, as shown in Fig. 17(d) to Fig. 
17(f). The reason is that the RRPS model takes into account 
the uncertainty of the reactive power output through (17).

No matter the DRPS model-based scheduling scheme or 
the RRPS model-based scheduling scheme, their transformer 
tap and CBs do not exceed the maximum allowable action 
times (the maximum allowable action times over 24 hours 
are 5 for CBs, and the maximum allowable action times 
over 24 hours are 4 for transformer taps). For example, for 
the RRPS model-based scheduling scheme, the transformer 
tap switches 3 times a day, the CB1 switches 2 times a day, 
and the CB2 switches 3 times a day.

After performing the DRPS model-based scheduling 
scheme, the voltage magnitude crosses the boundary, as 
shown in column 3 of Table IV. This indicates that the 
DRPS model cannot guarantee the security of distribution 
networks. Although the RRPS model can guarantee the secu‐
rity of distribution networks, it pays a higher operational 
cost as a price, which is the main limitation of robust pro‐
gramming.

E. Comparative Analysis of Economy and Safety

Section IV-C and Section IV-D employ a specific sample 
to demonstrate the difference between the DRPS model and 
the RRPS model in terms of voltage and reactive power out‐
put. The difference may exist by chance, as it is too depen‐
dent on this specific sample. To fully evaluate the perfor‐
mance of the proposed modified bootstrap technique, this 
subsection analyzes the economy and safety of the DRPS 
model and RRPS model through all samples in the test set.

For the DRPS model, a gated recurrent unit model is used 
to predict day-ahead power loads, wind power, and PV pow‐
er for each sample test set. Then, the DRPS model based on 
the point prediction values is solved.

For the RRPS model, the traditional method in [8], ensem‐
ble Gaussian model, and traditional bootstrap technique are 
considered as baselines to construct worst-case scenarios. 
Specifically, the traditional method in [8] does not require 
point prediction values. It simply divides the worst-case sce‐
narios into two categories: ① the maximum power loads 
and the minimum output power of renewable energy sourc‐
es; ② the minimum power loads and the maximum output 
power of renewable energy sources. In contrast, the ensem‐
ble Gaussian model, traditional bootstrap technique, and 
modified bootstrap technique need point prediction values to 
estimate prediction errors. Then, worst-case scenarios are 
constructed by combining point prediction values and predic‐
tion errors at different CLs, as represented in (9)-(12).

After the worst-case scenarios are constructed, the RRPS 
models based on the traditional method in [8], ensemble 
Gaussian model, traditional bootstrap technique, and modi‐
fied bootstrap technique (denoted as models A, B, C, and D 
in Table V) are solved. Table V shows the average operation‐
al costs of the test set and the average percentage of inse‐
cure scenarios of each model.

TABLE IV 
OPERATIONAL COSTS AND VOLTAGE RANGES OF DRPS AND RRPS 

MODELS FOR ONE DAY

Model

DRPS

RRPS

Operational cost (¥)

472.37

487.50

Voltage range (p.u.)

[0.998, 1.056]

[0.986, 1.050]
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Fig. 18.　Reactive power output scheme of RRPS model. (a) Tap position when action times are 3. (b) Reactive power output of CB1 when action times are 
2. (c) Reactive power output of CB2 when action times are 4. (d) Reactive power output of WT1. (e) Reactive power output of WT2. (f) Reactive power out‐
put of PV1.
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1) Comparison Analysis of Security
The DRPS model-based scheduling scheme can only en‐

sure the security of the distribution network for most scenari‐
os, while the physical constraints are not satisfied for scenar‐
ios with large prediction errors (the percentage of insecure 
scenarios is 12.86%). The reason is that the DRPS model 
does not take into account the prediction errors of power 
loads, wind power, and PV power.

Although the RRPS models based on the ensemble Gauss‐
ian model and traditional bootstrap technique reduce the pro‐
portion of insecure scenarios to some extent, they cannot al‐
ways guarantee the security of the distribution network. The 
reason is that the PIs constructed by the ensemble Gaussian 
model and traditional bootstrap technique have small PICPs, 
which have been elaborated in Section IV-B. The RRPS 
model based on the modified bootstrap technique has a larg‐
er PICP than that of the other models (e.g., models based on 
ensemble Gaussian model and traditional bootstrap tech‐
nique) at different CLs, which leads to a very small percent‐
age of insecure scenarios. For example, when the CL is 
99%, the proportion of insecure scenarios is 0%. This shows 
that the RRPS model based on the modified bootstrap tech‐
nique can ensure that the distribution network is always with‐
in the physical constraints. Especially, for distribution net‐
works with important loads (e. g., hospitals, transportation 
hubs, coal mines, chemical plants), power operators expect 
to find robust solutions where the average percentage of inse‐
cure situations is close to 0%. In this case, the RRPS model 
based on the modified bootstrap technique is a better choice 
than the RRPS models based on the ensemble Gaussian mod‐
el and traditional bootstrap technique.
2) Comparison Analysis of Economy

Although the operational costs of the RRPS models based 
on the ensemble Gaussian model and traditional bootstrap 
technique are slightly lower than those of the RRPS model 
based on the modified bootstrap technique, they cannot en‐
sure the security of the distribution network, even if the CL 
is 99%. Conversely, the percentage of insecure scenarios is 
0% for the RRPS model based on the traditional method in 
[8], but it has the highest operational cost due to over-conser‐
vatism.

Further, the RRPS model based on the modified bootstrap 
technique can be considered a compromise approach that bal‐

ances economy and security well. For example, when the CL 
is 99%, the average operational cost of this model is only 
8.91% higher than that of the DRPS model, but it reduces 
the percentage of insecure scenarios by 12.86%. In other 
words, the RRPS model based on the modified bootstrap 
technique has higher safety than the DRPS model, the RRPS 
model based on the ensemble Gaussian model, and the 
RRPS model based on the traditional bootstrap technique, 
while it has a better economy than the RRPS model based 
one the traditional method in [8].

V. CONCLUSION 

To solve the risk brought by the uncertainties of power 
loads and renewable energy sources to distribution networks, 
this paper proposes a new RRPS model of distribution net‐
works based on a modified bootstrap technique. Simulation 
and analysis in IEEE 33-bus distribution network lead to the 
following conclusions.

1) The modified bootstrap technique can accurately cap‐
ture the uncertainty in power loads, wind power, and PV 
power. At the same CL, the PICP of PIs generated by the 
modified bootstrap technique is much larger than that of the 
traditional ensemble Gaussian model and traditional boot‐
strap technique, which shows that the worst-case scenarios 
constructed by the modified bootstrap technique are better 
than other models to represent all possible scenarios.

2) The traditional DRPS model does not consider the un‐
certainties of power loads, wind power, and PV power, re‐
sulting in the voltages may cross the boundary, especially 
for extreme scenarios (e. g., case 1 and case 2 discussed in 
Section IV-C). In contrast, the RRPS model keeps the voltag‐
es of the distribution network within a safe range at all time, 
even in the worst-case scenarios.

3) No matter the DRPS model-based scheduling scheme 
or the RRPS model-based scheduling scheme is, its trans‐
former taps and CBs do not exceed the maximum allowable 
action times. For the DRPS model-based scheduling scheme, 
the outputs of renewable energy sources exceed the real max‐
imum available range at times, making the scheduling 
scheme unworkable. In contrast, the RRPS model-based 
scheduling scheme ensures that the outputs of renewable en‐
ergy sources are always within the maximum available range.

4) The RRPS model based on the modified bootstrap tech‐
nique balances the economy and security well. It has higher 
safety than the DRPS model, RRPS model based on the en‐
semble Gaussian model, and RRPS model based on the tradi‐
tional bootstrap technique, while it has a better economy 
than the RRPS model based on the traditional method in [8].

The main limitation of the modified bootstrap technique 
proposed in this paper is that the operational cost is higher 
than that of some existing methods, so one of the extensions 
is to reduce the operational cost.

In addition to centralized scheduling, the RRPS model 
may be generalized to the distributed optimization schedul‐
ing of distribution networks in future works [35]. Theoreti‐
cally, the modified bootstrap technique-based prediction er‐
ror estimation and new worst-case scenario construction 
should be applicable to other robust programming models 

TABLE V
AVERAGE OPERATIONAL COSTS OF TEST SET AND AVERAGE PERCENTAGE 

OF INSECURE SCENARIOS OF EACH MODEL

Model

DRPS

Model A

Model B

Model C

Model D

Model B

Model C

Model D

CL (%)

None

None

90

99

Average percentage of in‐
secure scenarios (%)

12.86

0

8.21

3.75

1.67

4.98

0.14

0

Average 
operational cost (¥)

465.49

525.51

477.15

490.14

494.31

483.10

503.56

506.98
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(regardless of whether a model is centralized or distributed 
optimization), since they are independent of the specific opti‐
mization model that is actually used.
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