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Hybrid Network Model Based on Data 
Enhancement for Short-term Power 

Prediction of New PV Plants
Shangpeng Zhong, Xiaoming Wang, Bin Xu, Hongbin Wu, and Ming Ding

Abstract——This study proposes a hybrid network model based 
on data enhancement to address the problem of low accuracy 
in photovoltaic (PV) power prediction that arises due to insuffi‐
cient data samples for new PV plants. First, a time-series gener‐
ative adversarial network (TimeGAN) is used to learn the distri‐
bution law of the original PV data samples and the temporal 
correlations between their features, and these are then used to 
generate new samples to enhance the training set. Subsequently, 
a hybrid network model that fuses bi-directional long-short 
term memory (BiLSTM) network with attention mechanism 
(AM) in the framework of deep & cross network (DCN) is con‐
structed to effectively extract deep information from the origi‐
nal features while enhancing the impact of important informa‐
tion on the prediction results. Finally, the hyperparameters in 
the hybrid network model are optimized using the whale optimi‐
zation algorithm (WOA), which prevents the network model 
from falling into a local optimum and gives the best prediction 
results. The simulation results show that after data enhance‐
ment by TimeGAN, the hybrid prediction model proposed in 
this paper can effectively improve the accuracy of short-term 
PV power prediction and has wide applicability.

Index Terms——New photovoltaic (PV) plant, short-term predic‐
tion, time-series generative adversarial network (TimeGAN), hy‐
brid network, hyperparameter.

I. INTRODUCTION 

AS one of the most productive energy sources available, 
photovoltaic (PV) power plays a crucial role in meet‐

ing the growing global demand for clean energy [1] - [4]. 
However, the intermittent and fluctuating nature of PV pow‐
er generation due to variations in irradiance poses many chal‐

lenges in terms of the safe and stable operation of the grid 
system when large-scale PV generators are connected to the 
power grid [5]-[7]. Improving the accuracy of PV power pre‐
diction offers an effective solution to overcome these chal‐
lenges [8], [9].

The accuracy of PV power prediction not only depends on 
the model itself but also usually needs to be based on suffi‐
cient historical data. When the amount of training data is in‐
sufficient, it is extremely difficult to train the model to give 
a highly accurate prediction network with normal fitting. A 
lack of large amounts of historical data is a common prob‐
lem for most new PV plants, and the inadequacy of the train‐
ing data poses a great challenge in terms of PV power pre‐
diction. It is therefore crucial to find an effective method to 
reduce the impact of insufficient raw data on the output pow‐
er prediction accuracy of new PV plants.

At present, when faced with insufficient raw PV data, the 
methods typically used to obtain accurate PV power predic‐
tion values can be divided into two categories, i.e., methods 
based on physical models and based on data synthesis.

1) Methods based on physical models mainly use numeri‐
cal weather prediction to obtain the effective irradiance and 
then combine parameters such as the PV array conversion ef‐
ficiency and the installation angle of the PV system to estab‐
lish a physical model to obtain the output power of the plant 
[10], [11]. However, although this type of method does not 
require historical data (such as power and meteorology infor‐
mation) to train the prediction model, it relies on the geo‐
graphical information of the PV plant and real-time meteoro‐
logical data, and the physical model itself contains certain er‐
rors, making the model less resistant to disturbances 
[12], [13].

2) Methods based on data synthesis do not require com‐
plex physical modeling and can generate new samples with 
fewer sample data [14], [15]. This type of method uses neu‐
ral networks to learn a sample distribution law for the PV 
data for different weather types, generates new samples that 
are similar to the original samples to expand the sample 
training set, and thus improves the prediction accuracy of 
the network model [16].

Unlike methods based on physical models, those based on 
data synthesis generate new samples to increase the sample 
capacity, which is more effective for solving the problem of 
insufficient raw data for PV plants. This type of method not 
only ensures that the generated samples are similar to the 
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original samples, but also maintains a certain amount of di‐
versity. In this paper, we therefore present a study of short-
term power prediction of new PV plants based on data syn‐
thesis.

Current PV power prediction models based on data synthe‐
sis usually contain the following two links: data synthesis 
and model prediction, as described below.

1) Data synthesis. Generative adversarial networks 
(GANs) were proposed by Goodfellow and Pouget-Abadie 
to provide a proven solution for data synthesis, and have re‐
cently become the mainstream approach to data synthesis 
[17], [18]. A GAN generates new samples based on the dis‐
tribution law of the original samples through a confrontation 
between a generative model and a discriminative model. Its 
powerful modeling capabilities not only enable the synthesis 
of new samples that are similar to the original sample data 
but can also maintain the diversity of the generated data. 
Reference [19] used Wasserstein GANs (WGANs) to gener‐
ate wind power data based on limited historical information 
by augmenting the original dataset to improve the estimation 
of the worst-case probability distribution in distributed ro‐
bust optimization. Reference [20] used a WGAN with penal‐
ized gradients to generate solar irradiance data and train a 
convolutional neural network based weather classification 
model with an augmented dataset consisting of the original 
and generated data to improve the classification accuracy of 
the model. In [21], a GAN based on financial time-series 
models was proposed to generate real data in a data-driven 
manner by learning the properties of the data. Although a 
large number of studies have shown that GANs are effective 
in terms of generating new samples, they have rarely consid‐
ered the temporal correlations among variables when per‐
forming time-series data generation, which tends to reduce 
the diversity and accuracy of the generated samples.

2) Model prediction. Following the rapid development of 
machine learning, many researchers now use artificial neural 
networks (ANNs), long-short term memory (LSTM) net‐
works, recurrent neural networks (RNNs), and support vec‐
tor machines (SVMs) for the PV power prediction. In [22], a 
genetic-algorithm-based SVM (GA-SVM) model was pro‐
posed to classify historical weather data, in which a GA-opti‐
mized SVM was used to improve the short-term power pre‐
diction capability of residential PV power systems. Refer‐
ence [23] proposed a deep learning based spatio-temporal 
correlation model that used a CNN to extract the spatial fea‐
tures from meteorological data and an LSTM to extract the 
temporal features from historical irradiance data to improve 
the prediction accuracy of solar irradiance. A variational 
modal decomposition method using a combination of ant col‐
ony optimization and neural networks was proposed [24] 
that combined ANNs with data processing, input variable se‐
lection, and external optimization techniques to predict the 
short-term output power of PV systems. Reference [25] used 
a short-term PV power prediction method based on an MFA-
Elman neural network, which improved the prediction rate 
and accuracy by using MFA to solve problems such as the 
randomness of initial weights and thresholds of the Elman 
neural network and the slow training speed. A large number 
of studies have shown that although existing PV power pre‐

diction models could give good prediction results, they tend 
to favor the optimization of the network model, and few au‐
thors have mined deep information from the original data.

In summary, in order to improve the short-term power pre‐
diction accuracy of new PV plants, and to reduce the impact 
of insufficient original sample data on the accuracy of PV 
power prediction, we propose a hybrid network prediction 
method based on data augmentation, in which TimeGAN is 
used to generate new samples in the data synthesis phase. A 
deep & cross network with bi-directional long-short term 
memory and attention mechanism (DCN-BiLSTM-AM) hy‐
brid network is then constructed, and finally, a hybrid net‐
work optimized using the whale optimization algorithm 
(WOA) is used to predict the PV output power on future 
days.

The main contributions of this paper are as follows.
1) TimeGAN is used to learn a sample distribution law 

from the PV data, and the temporal correlations between fea‐
tures, in order to generate new samples to enhance the origi‐
nal dataset. Principal component analysis (PCA) and t-distri‐
bution stochastic neighborhood embedding (t-SNE) are ap‐
plied to analyze the similarity and diversity of the generated 
data and the original data, as a way of proving the validity 
of the generated data.

2) We extract higher-order cross-features using DCN in or‐
der to mine the deep information contained in the original 
features. The DCN-BiLSTM-AM hybrid network model is 
constructed by fusing BiLSTM and an AM in the framework 
of DCN to obtain the correlation between PV power output 
and historical timing information at the current moment, 
while the AM is used to assign different weights to the hid‐
den states of BiLSTM.

3) The WOA is used to optimize the hyperparameters of 
the DCN-BiLSTM-AM hybrid network such as the number 
of neurons in the hidden layer, the number of model itera‐
tions, the learning rate, and the number of network layers in 
the deep and cross layers of the DCN. This gives the opti‐
mal hyperparameters for the network, thus optimizing the hy‐
brid network model and giving the best prediction values 
while avoiding falling into local optima.

The rest of this paper is organized as follows. Section II 
introduces the overall prediction framework proposed in this 
paper. Section III investigates the data selection and synthe‐
sis. Section IV describes the components of the DCN-BiL‐
STM-AM hybrid network model and its overall prediction 
process. Section V explores the WOA optimization for the 
hybrid network model. The simulation verification results 
are presented in Section VI, and conclusions are summarized 
in Section VII.

II. PROPOSED PREDICTION FRAMEWORK 

The proposed prediction framework consists of three mod‐
ules, as shown in Fig. 1.

1) Module 1: data analysis and synthesis. The main task 
of this part is to analyze the correlation between feature vari‐
ables and historical power and use this as a basis for feature 
selection. Subsequently, TimeGAN is applied to learn the 
sample distribution law of the original PV data and to gener‐
ate new PV data for different weather types to enhance the 
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original sample training set.
2) Module 2: DCN-BiLSTM-AM hybrid network model. 

The main task of this part is to fuse BiLSTM and AM in the 
DCN framework to obtain a DCN-BiLSTM-AM hybrid net‐
work. This network mines deep information from the origi‐
nal data to lay the foundation for model prediction while as‐
signing different weights to important information to 
strengthen its influence on the final prediction results.

3) Module 3: WOA optimization. This part optimizes the 
parameters of the hybrid network model constructed in Mod‐
ule 2 to give the optimal hyperparameters of the network, 
thus allowing us to construct the optimal network model. Fi‐
nally, the optimized hybrid network model is used to train 
and test the new sample training set to obtain the final PV 
power prediction results.

We will introduce these three modules in detail in the sub‐
sequent sections, which describe in more detail the correla‐
tion among data analysis and synthesis, DCN-BiLSTM-AM 
hybrid network model, and WOA optimization.

III. DATA ANALYSIS AND SYNTHESIS 

A. Correlation Analysis

When historical data containing eight-dimensional features 
such as temperature, humidity, and horizontal irradiance are 
used for PV power prediction and data synthesis, the correla‐
tion between the feature variables and historical power data 

and the correlation among the feature variables, are first cal‐
culated using Pearson correlation coefficient. The aim is to 
select the features with higher correlation with the PV pow‐
er, to facilitate data synthesis and hence PV power predic‐
tion.

The Pearson correlation coefficient r is calculated as:

r =
∑
i = 1

n

(xi - x̂)(pi - p̂)

∑
i = 1

n

(xi - x̂)2∑
i = 1

n

(pi - p̂)2

(1)

where n is the number of meteorological features; xi repre‐
sents the meteorological features; pi is the PV output power; 
and x̂ and p̂ are the mean values of the corresponding vari‐
ables. The closer the absolute value of Pearson correlation 
coefficient converges to one, the stronger the correlation be‐
tween the two variables. The Pearson correlation coefficients 
between the features are shown in Fig. 2, and it can be ob‐
served that the PV output power maintains a strong correla‐
tion with six characteristic variables: radiation global tilted, 
radiation diffuse tilted, diffuse horizontal radiation, global 
horizontal radiation, temperature, and humidity. The correla‐
tion between daily rainfall and wind direction is small, so 
these variables will not be considered for PV power predic‐
tion and data synthesis in this paper.

B. Data Synthesis: TimeGAN

To address the problem of insufficient original sample da‐
ta of PV plants, we apply sample expansion to the PV data 
using a GAN [26] for the purpose of increasing the amount 
of data available. However, since a traditional GAN does not 
fully consider the time correlation unique to time-series data, 
a TimeGAN is used for this purpose. TimeGAN enables the 
generated data to have temporal dynamic properties by con‐
sidering the inter-row correlations of time series to satisfy 
the original relationships between the historical data and the 
feature variables, and the relationships among the feature 
variables [27].
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As shown in Fig. 3, TimeGAN is a generative model 
based on RNNs and is used to deal with the inter-row corre‐
lations of time-series data by combining the GAN frame‐
work with autoregressive methods. The model consists of 
four networks: an embedding function, a recovery function, 
a sequence generator, and a sequence discriminator. The key 
to its model is the joint training of the autoencoder network 
(embedding function and recovery function) and the adver‐
sarial network (sequence generator and sequence discrimina‐
tor), which makes TimeGAN simultaneously learn encoded 
features, generate representation morphology, and iterate 
over time. The autoencoder network is trained through super‐
vised and reconstruction losses, where reconstruction losses 
ensure the accuracy of the learned potential representations 
and supervised losses help the sequence generator learn the 
temporal dynamic characteristics of the data. 

The adversarial network operates in the potential space 
provided by the embedded network, making the potential dy‐
namics of original and synthetic data synchronized by super‐
vised losses. Ultimately, after the model training is complet‐
ed, the time-series data that meet the sample requirements 
are obtained.

C. Synthesis and Analysis of PV Data Under Different 
Meteorological Conditions

To verify the validity of the time-series PV data generated 
by TimeGAN, we learn the sample distribution laws for raw 
data of four weather types: sunny, cloudy, sunny to cloudy, 
and sunny to drizzly. This is done to generate new samples 
with temporal dynamic characteristics, as shown in Fig. 4. It 
can be observed that TimeGAN generates new samples with 
similar data on PV power and its meteorological characteris‐
tics for each weather type, which can enhance the dataset.
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This paper uses gated recurrent units (GRUs) and LSTM 
networks to build TimeGAN for learning the data distribu‐
tion of a daily 48×7 tensor. This means there are 48 time 
points of PV data per day, and each time point contains PV 
power and 6 meteorological information data. The input of 
the sequence generator is a 72×1 dimensional noise conform‐
ing to the Gaussian normal distribution, and the output is a 
48×24 tensor, for which the output of the sequence generator 
is transformed into a 48×7 tensor of synthetic data by the re‐
covery function. The input of the sequence discriminator is 
the PV data of 48×7 tensor (at this point, PV data contains 
both synthetic and original data), which represents the input 
true and false samples, and the output is the discriminated re‐
sult of one dimension. The structural parameters of Time‐
GAN are shown in Table I.

In addition, to compare the similarity and diversity of the 
newly generated samples and the original samples, the new 
samples are analyzed using PCA and t-SNE, as shown in 
Figs. 5 and 6, respectively. From the PCA plot, it can be ob‐
served that the new samples generated by TimeGAN overlap 
well with the original sample data under different meteoro‐
logical conditions. Some of the sample points are evenly dis‐
tributed around the original sample points, which indicates 
that the newly generated synthetic data are similar to the 
original data and have sufficient diversity. From the t-SNE 
plot, we see that the original samples are uniformly distribut‐
ed among the new synthetic samples, which indicates that Ti‐
meGAN generates high-quality samples that match the data 
distribution of the original sample training set.

IV. DCN-BILSTM-AM HYBRID NETWORK MODEL 

When used for PV power prediction, historical PV data 
contain a large amount of potential information that can play 
a crucial role in predicting future PV power generation. 

In this paper, DCN is used to obtain higher-order feature 
cross information, which exploits the concept of residuals to 
retain the low-dimensional feature information and to solve 
the problem of network performance degradation due to the 
increase in the number of network layers. Subsequently, BiL‐
STM is used to mine the intrinsic connection between the 
PV power output at the current moment and the historical 
timing information, to extract the temporal correlations be‐
tween the data. 

Finally, an AM is used to enhance the contribution of the 
important information to the final prediction results, so that 
the model can more easily capture the information on the 
long-range interrelated features in the sequence. To this end, 
a hybrid prediction model incorporating BiLSTM and AM, 
based on the framework of the DCN, is proposed to improve 
the accuracy of short-term PV power prediction through the 

TABLE Ⅰ
STRUCTURAL PARAMETERS OF TIMEGAN

Name of 
structure

Sequence 
generator

Sequence 
discriminator

Embedding 
function

Recovery 
function

Network

GRU

GRU

LSTM

LSTM

Parameter

Number of hidden layer 
neurons

Number of output layer 
neurons

Activation function

Number of hidden layer 
neurons

Number of output layer 
neurons

Activation function

Number of hidden layer 
neurons

Number of output layer 
neurons

Activation function

Number of hidden layer 
neurons

Number of output layer 
neurons

Activation function

Numerical 
value

Two layers: 24, 24

24

ReLU

Two layers: 24, 24

1

Sigmoid

Two layers: 24, 24

24

ReLU

Two layers: 24, 24

7

ReLU

Original; Synthetic
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rological conditions. (a) Sunny. (b) Cloudy. (c) Sunny to cloudy. (d) Sunny 
to drizzly.
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effective combination of multiple structures.

A. Principle of DCN Model

DCN [28] consists of two parts, a cross network and a 
deep network, which are used to obtain higher-order explicit 
and implicit feature combinations, respectively.

The cross network consists of several cross layers that can 
perform explicit feature cross-learning in an efficient manner 
on the original features of the input. The deep network is a 
feedforward neural network composed of multiple fully con‐
nected layers with strong nonlinear expression capability and 
is used here to perform implicit feature cross-learning on the 
original features of the input.

B. Principles of BiLSTM Model

As a variant of the RNN, LSTM gives better performance 
when dealing with long-time sequences, and can effectively 
solve the gradient explosion problem faced in the backpropa‐
gation step of RNNs when the time sequence is too long.

However, the information obtained by the LSTM is ex‐
tracted before the moment of output, and does not take ad‐
vantage of the reverse information. In a prediction made by 
a model, the output information for the current moment is 
not only related to past information, but may also be related 
to future information. Hence, we propose the use of a BiL‐
STM network for PV power prediction, as this can better 
capture the bi-directional sequence information by consider‐
ing the changing patterns of previous and subsequent data si‐
multaneously.

C. Principle of AM

AM [29] was developed to simulate the human brain’s at‐
tention to different things at any given moment by highlight‐
ing key information and ignoring invalid information 
through the assignment of probabilities. The fundamental 
aim is to enhance the impact of important information on 
the final output of the model to allow for the effective min‐
ing of serial long-range data features with temporal correla‐
tions. An AM is introduced here to enhance the influence of 
important information by assigning different weights to the 
hidden states in BiLSTM, and hence to improve the training 
accuracy of the model.

D. Construction of DCN-BiLSTM-AM Hybrid Network

The proposed DCN-BiLSTM-AM hybrid network, as 
shown in Fig. 7, mainly consists of an input layer, a DCN 
layer, a BiLSTM layer, an AM layer, and an output layer. 
The proposed network takes PV data as input, extracts ex‐
plicit and implicit higher-order feature information through 
the cross and deep networks in DCN, respectively, and then 
stitches the extracted feature information through the stack‐
ing layer to form the input to BiLSTM. The BiLSTM and 
AM layers then learn the intrinsic connections between PV 
power data from the extracted features and assign corre‐
sponding weights to different information to achieve PV 
power prediction. Finally, the final prediction results are gener‐
ated by the output layer. The internal parameters of the DCN-
BiLSTM-AM hybrid network model are shown in Table II.
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Fig. 7.　Proposed DCN-BiLSTM-AM hybrid network framework.

The operation of the DCN-BiLSTM-AM hybrid network 
can be summarized as follows.

1) Input layer. The input layer accepts historical PV data 
as the input to the hybrid network model.

2) DCN layer. The DCN layer mainly extracts the features 

from the input historical PV data. After cross-combining the 
input features by DCN, the extracted feature information is 
stitched by stack layers to obtain the output xstack of DCN, 
which can be expressed as:
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xL1
= x0 x T

L1 - 1wcL1 - 1 + bcL1 - 1 + xL1 - 1 (2)

dL2
=ReLU(wdL2 - 1dL2 - 1 + bdL2 - 1 ) (3)

xstack = concat(xL1
dL2

) (4)

where xL1
 and xL1 - 1 denote the outputs of layers L1 and L1 - 1 

of the cross network, respectively; dL2
 and dL2 - 1 denote the 

outputs of layers L2 and L2 - 1 of the deep network, respec‐
tively; wcL1 - 1, bcL1 - 1 and wdL2 - 1, bdL2 - 1 are the weights and 

biases of layers L1 - 1 and L2 - 1, and the subscripts c and d 
represent cross and deep network network, respectively; and 
concat denotes the stitching operation to be performed on 
the output sequence.

3) BiLSTM layer. The feature information xstack extracted 
by DCN is used as the input to BiLSTM. The extracted fea‐
ture information is fully learned by using BiLSTM to cap‐
ture the effect of bidirectional information on the final pre‐
diction results and consider the changing patterns of the data 
before and after the time series. The output of BiLSTM is 
represented as:

ht = concat(htahtb ) (5)

where ht denotes the output of the BiLSTM hidden layer at 
moment t; and hta and htb denote the outputs of the forward 
and inverse LSTM hidden layers, respectively.

4) AM layer. The output of ht is used as the input to the 
AM layer, and the weights of different input features are cal‐
culated using AM to highlight important information. The 
output st of AM at moment t can be expressed as:

s t =∑
t = 1

i

αtht (6)

αt =
exp(et )

∑
j = 1

t

ej
(7)

et = ua tanh(waht + ba ) (8)

where et is the value of the probability distribution of the 
AM over the BiLSTM output at moment t; ua and wa are the 
weighting factors; and ba is the bias.

5) Output layer. The output layer takes the output of the 
AM layer as input and computes the final prediction yi via 

the fully-connected layer. In this paper, we adopt the ReLU 
function as the activation function of the fully-connected lay‐
er. Therefore, yi can be expressed as:

yi =ReLU(wo si + bo ) (9)

where wo and bo denote the weights and biases of the output 
layer, respectively.

V. WOA OPTIMIZATION 

A. Optimizing Model Hyperparameters

The prediction accuracy of DCN-BiLSTM-AM hybrid net‐
work is affected by hyperparameters such as the number of 
iterations, the number of hidden layer neurons of BiLSTM, 
the learning rate, and the number of cross and deep layers of 
the DCN model. To prevent the hybrid network from falling 
into local optimal solutions in the prediction process, which 
will affect the final prediction results of the hybrid network 
model, we carry out hyperparameter optimization of the 
model using WOA.

WOA, a meta-revelation optimization algorithm, was pro‐
posed to simulate the bubble hunting of humpback whales 
[30]. The bubble hunting strategy has the local exploitation 
ability of whale shrinkage surrounding prey and the spiral 
hunt method as well as the global optimal search features of 
a random search. It has a simple mode of operation, strong 
search ability, fast convergence speed, and can jump out of a 
local optimal solution. In this paper, we therefore optimize 
the parameters of the hybrid network model using WOA, in 
which each whale represents an optimization strategy, and 
the number of dimensions of individual whale positions cor‐
responds to the number of parameters to be optimized in the 
hybrid network model. The optimal hyperparameters of the 
hybrid network are obtained as the individual whales contin‐
uously update their positions.

B. Steps Used for Parameter Optimization

WOA was used to optimize the parameters of the hybrid 
network, as shown in Fig. 8, with the following steps. In 
Fig. 8, P is the probability of the predation mechanism, a 
random number with value domain [0,1]; and A is the vector 
coefficient for selecting the path to search for prey.

Step 1: initialize the whale population size M, the maxi‐
mum number of iterations Tmax, and the upper and lower 
bounds of the search range.

Step 2: initialize the number of iterations in the DCN-BiL‐
STM-AM hybrid network, the number of the hidden layer 
neurons of the BiLSTM, the learning rate, and the number 
of network layers in the cross and deep layers of the DCN.

Step 3: compute the fitness value of individual whale ac‐
cording to the fitness function. Based on the magnitude of 
the fitness value, M individual whales are selected as the ini‐
tial population.

Step 4: compute the fitness value of each of the M individ‐
ual whales. The position of the individual whale with the 
smallest fitness value is taken as the optimal position.

Step 5: update the position of the next generation of indi‐
vidual whales.

Step 6: continuously optimize the hyperparameters of the 

TABLE Ⅱ
INTERNAL PARAMETERS OF DCN-BILSTM-AM HYBRID NETWORK MODEL

Name of structure

DCN (deep 
network)

DCN (cross 
network)

Concatenate

BiLSTM

AM

Fully-connected 
layer

Output layer

Parameter

Number of neurons

Activation function

Number of cross network 
layers

Axis

Number of hidden layer 
neurons

Activation function

Number of neurons

Activation function

Number of neurons

Activation function

Numerical value

Three layers: 36, 32, 28

ReLU

3

-1

Two layers: 18, 12

Softmax

10

ReLU

1

ReLU
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hybrid network until the maximum number of iterations is 
reached, to obtain the optimal hyperparameters of the DCN-
BiLSTM-AM hybrid network.

Step 7: substitute the obtained optimal hyperparameters in‐
to the DCN-BiLSTM-AM hybrid network for training and 
testing. In this paper, the hyperparameter optimization time 
in different cases is kept around 40 min, and the number of 
iterations of WOA optimization is 20.

VI. SIMULATION VALIDATION 

In this paper, the mean absolute error (MAE) EMAE and 
root mean square error (RMSE) ERMSE are used to evaluate 
the model prediction accuracy after obtaining the PV power 
prediction values, as shown in (10) and (11), respectively.

EMAE =
1
m∑t = 1

m

|| yt - yst (10)

ERMSE =
1
m∑t = 1

m

(yt - yst )
2 (11)

where m is the number of prediction points; yt is the predict‐
ed value of the PV output power at moment t; and yst is the 
measured value of PV output power at moment t.

A. Analysis of Prediction Results

To analyze the performance of the hybrid network model 
proposed in this paper, the summer data from an Australian 

PV power station drawn from December 2014 to February 
2015 are used as the original sample data. During this peri‐
od, sample data of 16 days are selected for the four meteoro‐
logical conditions, of which 15 are used as the original sam‐
ple training set and one as the test set, to build the network 
model. In this paper, we use historical data for single-step 
prediction and predict the PV output power 1 hour in ad‐
vance, then gradually output the prediction results for 24 
hours with a prediction interval of 30 min. The normalized 
PV power prediction curves are obtained by predicting the 
PV output power under different meteorological conditions, 
as shown in Fig. 9. The prediction errors of the proposed hy‐
brid network model under different meteorological condi‐
tions are shown in Table III.

In Fig. 9, the trend of the PV power prediction curve for 
sunny days largely coincides with the actual PV output. 
However, for cloudy weather, the prediction values do not 
fit well with the actual values due to the uncertainty in the 
cloud cover. There are more fluctuations in the prediction 
curve after 12: 00 for sunny to cloudy days than for sunny 
days due to the changes in the weather. Abrupt changes in 
weather, lack of light intensity, and uncertainty due to chang‐
es in other meteorological factors under sunny to drizzly con‐
ditions mean that the actual output power curve is more vola‐
tile compared with that of sunny to cloudy weather, and we 
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Fig. 9.　PV power prediction results under different meteorological condi‐
tions. (a) Sunny. (b) Cloudy. (c) Sunny to cloudy. (d) Sunny to drizzly.

TABLE Ⅲ
PREDICTION ERRORS OF HYBRID NETWORK MODEL UNDER DIFFERENT 

METEOROLOGICAL CONDITIONS

Condition

Sunny

Cloudy

Sunny to cloudy

Sunny to drizzly

ERMSE (%)

0.0655

0.1279

0.0812

0.1437

EMAE (%)

0.0351

0.0749

0.0483

0.0761
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Fig. 8.　Flow chart of hybrid network based on WOA optimization.
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can observe the deviation of a certain magnitude range be‐
tween the prediction and actual values at some instants on 
the graph.

B. Verification of Model Validity and Effectioness

To verify the validity and effectiveness of the proposed 
model, we compare the prediction effects of six different 
models under four meteorological conditions (sunny, cloudy, 
sunny to cloudy, and sunny to drizzly), as follows.

Model 1: the proposed DCN-BiLSTM-AM hybrid net‐
work model with WOA optimization in this paper.

Model 2: the BP model.
Model 3: the LSTM model.
Model 4: the BiLSTM model.
Model 5: the BiLSTM-AM model.
Model 6: the DCN-BiLSTM-AM hybrid network model.
The prediction curves and error results for the above mod‐

els are shown in Figs. 10 and 11, respectively.

It can be observed that model 6 has better prediction accu‐
racy and the minimum error value for short-term PV power 
prediction under different meteorological conditions com‐
pared to models 2-4. Meanwhile, the prediction accuracy of 
model 6 is improved to some extent by introducing the 
WOA.

By combining the data in Fig. 11, it can be observed that 
the prediction accuracy of model 1 is higher than the other 
five prediction models. On sunny days, for example, the 
RMSE of model 1 is reduced by 52.22%, 19.53%, 14.15%, 
6.96%, and 2.53%, respectively, compared with that of mod‐
els 2-6, while the MAE of model 1 is reduced by 65.42%, 
26.88%, 24.03%, 23.36%, and 14.18%, respectively.

C. Validation of PV Data Generated by TimeGAN

To verify the effectiveness of the data generated by the Ti‐
meGAN for actual predictions, sample data are generated to 
enhance the dataset to improve the prediction accuracy of 
the TimeGAN. TimeGAN is used to expand the original sam‐
ple training set by 20%, 40%, and 60% of the data volume 
for each weather condition of the PV plant in summer; in 
other words, we expand the sample data for three, six, and 
nine days, respectively. The original training set is merged 
with the new sample data to train a hybrid network model to 
predict the PV output power under different meteorological 
conditions. Meanwhile, nine days of sunny, cloudy, sunny to 
cloudy, and sunny to drizzly weather are selected from the 
summer data of this PV station from December 2015 to Feb‐
ruary 2016. Original samples are used to expand the original 
sample training set for PV power prediction as a comparison 
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Fig. 10.　Short-term PV power prediction results of different models under 
different meteorological conditions. (a) Sunny. (b) Cloudy. (c) Sunny to 
cloudy. (d) Sunny to drizzly.
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validation experiment with the synthetic expanded training 
set. The different schemes used for expansion of training 
sets are shown in Table IV.

To better demonstrate the prediction results, the output 
power prediction curves under sunny, cloudy, sunny to 
cloudy, and sunny to drizzly weather conditions for different 
expansion schemes in summer are shown in Fig. 12. The PV 
power prediction errors under different meteorological condi‐
tions are shown in Fig. 13.

In the proposed prediction model, we use TimeGAN to 
generate new samples to expand the original sample training 
set under different meteorological conditions and show that 
this could effectively improve the accuracy of prediction 
model for PV output power. We also find that the use of Ti‐
meGAN to expand the original training set under different 
meteorological conditions under the same circumstances 
gives prediction results very similar to those when the train‐
ing set is expanded with original data.

Table V shows a comparison of the results for the predic‐
tion errors in Cases A-G under different meteorological con‐
ditions. The relative optimization rates (RORs) ERMSE and 
EMAE in the table denote the degree to which each method 
(Cases B-G) is optimized with regard to the original solution 
(Case A).

As shown in Table V, compared with the original data pre‐
diction, the prediction accuracy is significantly improved 
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Fig. 13.　PV power prediction errors of different expansion schemes under 
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TABLE Ⅳ
SCHEMES USED FOR EXPANSION OF TRAINING SET

Case

Case A

Case B

Case C

Case D

Case E

Case F

Case G

Scheme

Expansion of 20%

Expansion of 40%

Expansion of 60%

Data

Raw data

Synthetic data

Original data

Synthetic data

Original data

Synthetic data

Original data
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when the original data are expanded by 20%, 40%, and 60% 
of the data volume using TimeGAN. As the amount of data 
expanded by TimeGAN from the original sample training set 
becomes larger, the model predicts the PV output power 
with higher accuracy. It can also be observed that the im‐
provement in prediction accuracy is approximately the same 

for both training sets (i. e., training sets expanded with syn‐
thetic and original data) under meteorological conditions 
with the same expansion ratio. Taking the data volume ex‐
panded by 20% on sunny days as an example, RMSE de‐
creases by 9.31% and MAE decreases by 9.69% during the 
synthetic data expansion. 

During real data expansion, RMSE decreases by 9.16% 
and MAE decreases by 12.82%. It can be observed that the 
accuracy improvement of PV power prediction is approxi‐
mately the same for the same expansion ratio, regardless of 
whether synthetic data expansion or real data expansion is 
used, which proves the feasibility of using synthetic data in‐
stead of real data expansion for training. This indicates that 
expanding the samples with synthetic data can achieve the 
same prediction accuracy as using original data, which also 
demonstrates the effectiveness of the proposed method.

VII. CONCLUSION 

A hybrid network prediction model based on data augmen‐
tation has been proposed for new PV plants with insufficient 
original sample data, and the correctness and validity of this 
model are verified. The conclusions are as follows.

1) When original sample data are scarce, TimeGAN can 
generate new samples of high quality that conform to the 
sample distribution pattern, thereby enhancing the sample da‐
taset for different meteorological conditions and preserving 
the temporal correlation between sample features.

2) WOA is used to maximize the capability of the hybrid 
network model, and to effectively improve the accuracy and 
robustness of PV power prediction. Compared with other pre‐
diction models, it yields a higher prediction accuracy.

3) The proposed model has good applicability and applica‐
tion prospects for the power prediction of new PV plants 
with few samples.

Due to the complex meteorological changes of turning 
weather, this is a feasible direction for future research to pro‐
pose a more refined way to classify weather types when ex‐
panding different types of weather data to further improve 
the effectiveness of synthetic data.
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