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Abstract——Multi-area combined economic/emission dispatch 
(MACEED) problems are generally studied using analytical 
functions. However, as the scale of power systems increases, ex‐
isting solutions become time-consuming and may not meet oper‐
ational constraints. To overcome excessive computational ex‐
pense in high-dimensional MACEED problems, a novel data-
driven surrogate-assisted method is proposed. First, a cosine-
similarity-based deep belief network combined with a back-
propagation (DBN + BP) neural network is utilized to replace 
cost and emission functions. Second, transfer learning is applied 
with a pretraining and fine-tuning method to improve 
DBN + BP regression surrogate models, thus realizing fast con‐
struction of surrogate models between different regional power 
systems. Third, a multi-objective antlion optimizer with a novel 
general single-dimension retention bi-objective optimization poli‐
cy is proposed to execute MACEED optimization to obtain 
scheduling decisions. The proposed method not only ensures the 
convergence, uniformity, and extensibility of the Pareto front, 
but also greatly reduces the computational time. Finally, a 4-ar‐
ea 40-unit test system with different constraints is employed to 
demonstrate the effectiveness of the proposed method.

Index Terms——Multi-area combined economic/emission dis‐
patch, high-dimensional power system, deep belief network, da‐
ta driven, transfer learning.

I. INTRODUCTION 

WITH the expansion of power systems and the decen‐
tralization of load centers, multi-area power systems 

consisting of multiple interconnected load centers are essen‐
tial for safe and stable operation [1]. Additionally, as the 
electricity industry achieves more autonomy in its business 
practices, improved economic performance and reduced 
emissions are expected [2]. Based on these two factors, 
multi-area combined economic/emission dispatch (MACEED) 

provides power systems with greater stability and better eco‐
nomic performance [3]. In multi-area power systems, the cus‐
tomer load is the collective responsibility of generators dis‐
tributed in different areas, offering richer possibilities for the 
economic and stable operation of power systems. Therefore, 
MACEED systems warrant further study to minimize fuel 
costs and emissions.

Traditional methods for solving MACEED problems in‐
clude the linear weighted-sum method [4], Jacobian-based al‐
gorithm [5], and Lagrange algorithm [6]. Many evolutionary 
algorithms can also be employed to solve MACEED prob‐
lems such as the multilayer distributed multi-objective con‐
sensus [7], fuzzified squirrel search [8], and multi-objective 
squirrel search [9] algorithms.

Existing methods for solving MACEED problems have 
been applied to low-dimensional small-scale power systems. 
However, as the power industry continues to grow, power 
systems have become increasingly complex. This has result‐
ed in high-dimensional MACEED problems in large-scale 
power systems, which are computationally expensive [10]. 
Traditional methods and evolutionary algorithms have strug‐
gled to solve such problems [11]. When a method is said to 
be “computationally expensive”, this means that the evalua‐
tion itself requires considerable time, computing power, mon‐
ey, and other expenses [12]. However, other problems will 
become “computationally expensive” under certain circum‐
stances [13]. For high-dimensional large-scale MACEED 
problems, high-dimensional optimization requires a signifi‐
cant amount of time. However, due to the 15 min dispatch 
cycle, MACEED problems have become more expensive. 
Therefore, a computationally efficient method suitable to ad‐
dress high-dimensional MACEED problems is urgently re‐
quired.

Data-driven surrogate-assisted models [14] have been 
widely employed to solve computationally expensive prob‐
lems [15]. In [16], a support vector regression (SVR) surro‐
gate-assisted optimization method was proposed to solve 
MACEED problems. The original cost and emission func‐
tions in MACEED problems were replaced by two SVR sur‐
rogate models to reduce the execution time. However, the di‐
vided multi-area system was treated as a whole during the 
optimization process. This implies that the transfer-learning 
method may not work well in other systems. Accordingly, 
applications of this method are limited. In [17], a novel com‐
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bined deep belief network (DBN) and self-organizing map 
model was proposed to denoise and combine vibration sig‐
nals. This model removed the noise from the vibration sig‐
nals of a wind turbine, enabling the evaluation of the perfor‐
mance degradation process. In [18], a DBN combined with 
an extreme learning machine model was developed to pre‐
dict heart disease. The extreme learning machine was regard‐
ed as the top layer of the DBN, and the DBN was then trans‐
formed into a regression model. This model achieved good 
performance in medical data classification across various da‐
tasets. In [19], expensive multimodal optimization problems 
were solved using a multitasking particle swarm optimiza‐
tion (PSO) algorithm assisted by a surrogate model. The mul‐
tiple surrogate models were integrated by using a multitask‐
ing optimization method. However, the convergence of the 
algorithm was improved by the mixed application of migra‐
tion and the surrogate model management and trust region 
search strategies. This algorithm obtained a greater number 
of improved global optimal solutions for benchmark test 
functions and energy conservation design problems. In [20], 
a dual-surrogate-assisted cooperative PSO algorithm was pro‐
posed to search for optimal solutions. The algorithm com‐
bines a dual-population cooperative PSO with a dual-layer 
cooperative surrogate model guided by a model. Multiple 
low-computational-cost-based and highly competitive opti‐
mal solutions were obtained using the proposed algorithm. 
In short, DBN models perform well in solving high-dimen‐
sional optimization problems.

From a modeling perspective, consistently rebuilding the 
surrogate model is extremely time-consuming. Transfer-learn‐
ing method can be applied to reduce the time required to 
build models. In [21], a new pretraining and fine-tuning 
transfer-learning method was applied to problems with nu‐
merous parameters by adjusting the deep representation scal‐
ing (DRS) layers. During network training, the parameters in 
DRS layers were trained to improve the pretrained convolu‐
tional neural network (CNN). Through this pretraining and 
fine-tuning transfer-learning method, the number of retrained 
parameters was reduced, and the classification performance 
was enhanced as compared with typical transfer-learning 
methods. In [22], a multiscale fusion method with CNNs by 
pretraining and fine-tuning was proposed for skin-disease 
classification utilizing dermoscopic images. The results 
showed that the integration of the three pretraining and fine-
tuning CNNs significantly improved the classification perfor‐
mance. Thus, pretraining and fine-tuning transfer-learning 
method can ensure surrogate model accuracy and significant‐
ly reduce the computational load.

If transfer-learning method is used to construct a surrogate 
model for MACEED problem, finding a superior heuristic al‐
gorithm for iterative optimization is necessary. In [23], novel 
evolutionary programs were used to solve MACEED prob‐
lems using valve points. This evolutionary technique ensures 
a better convergence, higher-quality solutions, and low-com‐
putational costs. In [24], a combined differential evolution 
and PSO algorithm was proposed to solve MACEED prob‐
lems. This algorithm is effective in terms of balancing the 
convergence characteristics with a global search capability. 

Overall, heuristic algorithms have outstanding capabilities in 
solving decision-making problems, and selecting an appropri‐
ate algorithm to solve MACEED problems is entirely feasi‐
ble.

In general, the aforementioned heuristic algorithms are 
less effective as the dimensions of the decision variables in‐
crease. Thus, a new method for solving MACEED problems 
is urgently required. The previous analysis reveals three key 
factors in solving high-dimensional MACEED problems in 
large-scale power systems: ① constructing surrogate models 
using historical data to replace the fuel cost and emission 
functions; ② applying transfer learning to enable the rapid 
development of the surrogate model; and ③ constructing an 
algorithm that can match different surrogate models.

In this paper, a method for data-driven high-dimensional 
MACEED optimization, including constraints, is proposed 
for large-scale complex power systems. Unlike the research 
in [16], in which the multi-area system was treated as a 
whole in the optimization process, in this paper, the original 
multi-area system is divided into several sub-area systems. 
This method combines a surrogate model with pretraining 
and fine-tuning through transfer-learning method and an im‐
proved multi-objective antlion optimizer (MOALO). A DBN 
combined with a back-propagation (DBN +BP) regression 
surrogate model based on the cosine similarity index is intro‐
duced to replace the original objective function. Pretraining 
and fine-tuning technologies are applied through transfer 
learning, allowing surrogate models to be constructed as nec‐
essary, and the traditional MOALO is improved to match the 
proposed surrogate models. The main contributions of this 
paper are as follows.

1) A novel cosine-similarity-based DBN + BP regression 
surrogate model is proposed for high-dimensional MACEED 
problems with expensive computing. Surrogate models are 
employed to replace the original objective functions in the 
MACEED problems to reduce execution time. Unlike in the 
classical DBN + BP regression model, the cosine similarity is 
treated as an additional convergence condition, where the co‐
sine similarity significantly improves the accuracy of 
MACEED solution.

2) A novel pretraining and fine-tuning transfer-learning 
method is developed for the cosine-similarity-based DBN+
BP regression surrogate model. The surrogate model of one 
area can be transferred to another using a dimensional trans‐
formation scheme. The DBN part of the proposed surrogate 
model is copied to the DBN parts of other areas, and the da‐
ta in the corresponding areas are used to fine-tune the DBN. 
This transfer-learning method reduces the time required to re‐
build DBN + BP models in other areas.

3) An improved MOALO matching surrogate model is 
proposed to solve computationally expensive MACEED 
problems. To enhance the performance of MOALO, a novel 
general single-dimension retention (SDR) policy for bi-objec‐
tive optimization is used to accelerate convergence. In addi‐
tion, the optimization process of the sub-areas is executed in 
parallel. This scheme significantly reduces the operational 
time for solving MACEED.

The remainder of this paper is organized as follows. Sec‐
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tion II describes the problem formulation. Section III intro‐
duces the data-driven surrogate-assisted method for 
MACEED problems. Section IV presents the simulation ex‐
periments and results. Finally, Section V presents the conclu‐
sion and future research.

II. PROBLEM FORMULATION

This section introduces the objective functions and con‐
straints of a typical MACEED problem [25]. High-dimen‐
sional MACEED problems are solved using the surrogate-as‐
sisted method and transfer-learning method.

A. Typical Mathematical Descriptions of MACEED Problems

1)　Optimization Objectives of MACEED Problems
1) Fuel-cost function:

C(P)=∑
i = 1

Na∑
j = 1

Ng

(aij P
2
ij + bij Pij + cij ) + |dijsin(eij (P

min
ij -Pij ))| (1)

where Na is the number of sub-area systems; Ng is the num‐
ber of units in one sub-area; Pij is the power output of the jth 
unit in the ith area; P min

ij  is the floor level of the j th unit in the 
ith area; aij, bij, and cij are the coefficients in the fuel-cost 
functions of the j th unit in the ith area; and dij and eij are the 
valve-point effect coefficients of the j th unit in the ith area 
[26], [27].

2) Emission function:

E(P)=∑
i = 1

Na∑
j = 1

Ng

[10-2 (αij P
2
ij + βij Pij + γij )+ εijexp(λij Pij )] (2)

where αij, βij, γij, εij, and λij are the coefficients of the pollut‐
ant emission functions of the j th unit in the ith area.
2)　Constraints

1) Generation capacity limit:

P min
ij £Pij £P max

ij (3)

where P max
ij  is the upper limit of the j th unit in the ith area.

2) Power balance limit:

Pi =Pdi +P lossi + ∑
p = 1p ¹ i

N

Tip (4)

where Pi, Pdi, and P lossi are the total output, power load, and 
power loss in the ith area, respectively.

3) Tie-line capacity limit:

-T max
ip £ Tip £ T max

ip (5)

where T max
ip  is the maximum capacity of tie line between the 

ith and pth areas.
4) Spinning reserve constraint between different areas:

∑
j = 1

Mp

Spj ³ Spreq +RCip (6)

where Spj is the surplus capacity of the j th unit in the pth ar‐
ea; Spreq is the reserve requirement in the pth area; and RCip  
is the transferable reserve from the ith area to the pth area.

5) Tie-line capacity limit with shared spinning reserve:

-T max
ip £ Tip +RCip £ T max

ip (7)

In addition, as described in (4), Pi represents the sum of 
all units in the ith area:

Pi =∑
j = 1

Mi

Pij (8)

where Mi is the number of units in the ith area. The transmis‐
sion loss P lossi is calculated using B coefficient method:

P lossi =∑
k = 1

Mi∑
l = 1

Mi

Pik Bi
kl Pil +∑

j = 1

Mi

Bi
0l Pil +Bi

00 (9)

where Bi
kl is the (kl)th element in the loss-coefficient matrix 

of the ith area; Bi
0l is the l th element in the loss-coefficient 

vector of the ith area; and Bi
00 is the loss constant of the ith ar‐

ea. Note that all other specific descriptions of the proposed 
variables in (3)-(8) can be found in [16].

B. Additional Tasks of Large-scale MACEED Problems

For high-dimensional MACEED problems in large-scale 
power systems, the construction of surrogate models of fuel 
cost and emission functions must be considered:

ì
í
î

Cost(·)»Fcost (S1S2Sn )

Emission(·)»Femission (S1S2Sn )
(10)

where Cost(·) and Emission(·) are the fuel cost and emission 
objective functions, respectively; (S1S2Sn ) represent n 
feasible scheduling solutions, in which n is the scale of the 
surrogate model training set; and Fcost (S1S2Sn ) and 
Femission (S1S2Sn ) are the surrogate models of Cost(·) and 
Emission(·), respectively. In addition, fast modeling can be 
achieved using transfer learning, as shown in Fig. 1.

III. DATA-DRIVEN SURROGATE-ASSISTED METHOD FOR 
MACEED PROBLEMS

This section introduces the cosine-similarity-based DBN +
BP regression surrogate models to replace the fuel cost and 
emission functions (1) and (2). The transfer-learning method 
for pretraining and fine-tuning is used to train the surrogate 
models rapidly in different areas. Finally, the MOALO is im‐
proved and introduced to match surrogate models for high-di‐
mensional MACEED problems.

A. Construction of Cosine-similarity-based DBN+BP Regres‐
sion Surrogate Model

Most existing methods for addressing high-dimensional 
MACEED problems require long computational time to de‐
termine scheduling strategies and may in fact even fail to 
find meaningful scheduling strategies [28]. The “curse of di‐
mensionality” is a result of numerous units and constraints 

Surrogate

model 1

Surrogate

model 2

Surrogate

model n

Transfer learning

Transfer learning

Sub-area 1 Sub-area 2 Sub-area n…

…

Surrogate

model

Sub-area

Fig. 1. Transfer learning between different areas.

54



LIN et al.: DATA-DRIVEN SURROGATE-ASSISTED METHOD FOR HIGH-DIMENSIONAL MULTI-AREA COMBINED ECONOMIC/EMISSION DISPATCH

introduced by power system interconnections meaning that 
the computational time increases exponentially. To overcome 
this drawback, cosine-similarity-based DBN + BP regression 
surrogate models are constructed online to replace the mathe‐
matical expressions of optimization objectives [29], where 
the structure is shown in Fig. 2. The settings of the cosine-
similarity-based DBN + BP regression surrogate model are 
presented in Table I. Specifically, the fourth layer of the 
DBN involves logistic regression, the output of which pro‐
vides the input for the BP neural network. First, unlabeled 
data are extracted from the five layers of the DBN. The cor‐
responding labels are then added, and logistic regression is 
applied to obtain the primary estimation values. Finally, re‐
gression evaluation is performed using the BP neural net‐
work.

The chief operation in the surrogate model is that the con‐
vergence criterion combines the minimum mean square error 
(MSE) with the maximum cosine similarity of the result vec‐
tor, which is described by:

Cs =
∑
i = 1

ns

Ais
Bis

∑
is = 1

ns

A2
is
∑
is = 1

ns

B2
is

(11)

where Cs is the cosine similaring between Ais
 and Bis

; Ais
 and 

Bis
 are the ith elements in the sequences of fitting results and 

of true results, respectively; and ns is the number of ele‐
ments in the sequence.

The goal of an optimization task is to find the minimum 
value that differs from that of the prediction tasks. However, 
employing only the minimum MSE to evaluate the model is 
not appropriate because correct scheduling results can be ob‐
tained with a relatively large error if the size relationship be‐
tween elements remains consistent. Conversely, even if the 
MSE is very small, the optimal solution will be inaccurate if 
the original size relationship cannot be guaranteed. Based on 
these points, the cosine similarity between the fitting result 
and real value vectors should be as large as possible. This 
provides the convergence criterion for the cosine-similarity-
based DBN + BP regression surrogate models and represents 
the main improvement to the traditional DBN regression 
model.

To further examine the time-saving advantage of the 
DBN + BP regression surrogate model, comparison results of 
the proposed model, original objective functions, and piece‐
wise linear functions [30] are presented in Table II. Specifi‐
cally, a 4-area 40-unit test system (corresponding to an actu‐
al Taiwan power grid, China) [31] is simulated as an exam‐
ple. The segments of the piecewise linear function are set to 
be 5.

Input

layer

DBN layer Logistic

regression

layer

BP

middle

layer

Output

layer

Fig. 2.　Structure of proposed cosine-similarity-based DBN + BP regression 
surrogate model.

TABLE II
COMPARISON RESULTS OF ACCURACY AND TIME

Area

Area 
1

Area 
2

Area 
3

Area 
4

Type

Cost

Emis‐
sion

Cost

Emis‐
sion

Cost

Emis‐
sion

Cost

Emis‐
sion

Method

Original objective functions

Piecewise linear functions

Proposed model

Original objective functions

Piecewise linear functions

Proposed model

Original objective functions

Piecewise linear functions

Proposed model

Original objective functions

Piecewise linear functions

Proposed model

Original objective functions

Piecewise linear functions

Proposed model

Original objective functions

Piecewise linear functions

Proposed model

Original objective functions

Piecewise linear functions

Proposed model

Original objective functions

Piecewise linear functions

Proposed model

Accuracy

99.51

99.73

99.38

99.45

99.49

99.13

99.01

99.25

98.98

99.36

97.36

99.02

98.65

98.69

99.09

99.61

Time (s)

7.94 ´ 10-3

7.37 ´ 10-3

1.20 ´ 10-5

8.18 ´ 10-3

7.68 ´ 10-3

1.19 ´ 10-5

9.68 ´ 10-3

8.96 ´ 10-3

1.32 ´ 10-5

1.03 ´ 10-2

9.89 ´ 10-3

1.71 ´ 10-5

6.38 ´ 10-3

5.44 ´ 10-3

1.59 ´ 10-5

7.09 ´ 10-3

5.74 ´ 10-3

2.36 ´ 10-5

5.85 ´ 10-3

4.17 ´ 10-3

1.88 ´ 10-5

6.58 ´ 10-3

5.97 ´ 10-3

1.39 ´ 10-5

TABLE I
SETTINGS OF COSINE-SIMILARITY-BASED DBN + BP REGRESSION 

SURROGATE MODEL

Section

Input layer

DBN layer

Logistic regression layer

BP middle layer

Output layer

Floor

1

1

2

3

4

1

1

1

Number of node

10

80

60

40

20

20

10

1
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In contrast to piecewise linear functions, the execution 
time is reduced using the proposed model. In addition, the 
accuracy is improved by a small degree. The accuracy of a 
piecewise linear function can be improved by dividing the 
function into additional segments. However, the execution 
time is also improved. Therefore, the application of piece‐
wise linear functions is limited. This further illustrates the 
advantages of the proposed model, where both a significant‐
ly reduced execution time and a higher degree of accuracy 
are achieved.

The execution of the MACEED optimization process is fa‐
cilitated by the accuracy of the high surrogate model. On the 
one hand, the quality of the solution benefits from the accu‐
racy of the surrogate model. Thus, compared with the piece‐
wise linear function, the proposed model with a higher de‐
gree of accuracy is preferable for solving MACEED prob‐
lems. On the other hand, the error of the piecewise linear 
function represents the cumulative result of each generator. 
The error of the emission function in each generator also ac‐
cumulates because a piecewise linear function is employed. 
Let us consider a scenario in which a very low emission of 
polluting gas is obtained by the cumulative error of the 
piecewise linear function when multi-objective optimization 
is performed. However, in practice, this solution is not feasi‐
ble, as it causes the final Pareto frontier to collapse into an 
unfeasible domain. Even if the sampling mechanism is add‐
ed to perform real function fitness, the results calculated us‐
ing a real function do not fully provide individuals with 
guiding significance for the algorithm. This undoubtedly 
makes the algorithm non-convergent and even impossible to 
solve. Using the proposed model ensures better scheduling 
schemes with reduced computational time.

B. Fast Transfer-learning Method for Building Surrogate 
Models in Different Areas

The construction of online cosine-similarity-based DBN +
BP regression surrogate models requires massive amounts of 
data, and processing these data is time-consuming [32]. To 
more closely match the surrogate model to the original mod‐
el, considerable data are required to train the surrogate mod‐
el. Unfortunately, this time-consuming process goes against 
the original intention of reducing computational time.

To overcome this drawback, a high-dimensional large-
scale power system is decomposed into several dispatching 
sub-areas. By learning the surrogate models constructed for 
one area, surrogate models can be developed for other areas 
using the transfer-learning method. A schematic of the pre‐
training and fine-tuning processes of transfer learning is 
shown in Fig. 3.

First, the surrogate model trained in area 1 is divided into 
five layers as introduced in Section III-A. Second, the entire 
DBN section of the surrogate model in area 1 is copied to 
the DBN of the surrogate model in other areas; that is, the 
DBN of area 1 is treated as the pretrained DBN of other ar‐
eas. In addition, the data in the original domain must be ade‐
quately labeled to access the target domain. If the data in the 
original domain are not accessible to the target domain, di‐
mensionality reduction schemes can be utilized. 

Finally, the data from other areas are used to fine-tune the 
copied DBN and reconstruct the logistic regression layer and 
BP neural network. Based on this transfer-learning method, 
cosine-similarity-based DBN + BP regression surrogate mod‐
els are quickly constructed for different areas. The mean 
square errors and cosine similarities of different surrogate 
models are guaranteed.

Different areas are used to verify the advantages of trans‐
fer learning. Specifically, a 4-area 40-unit test system is em‐
ployed. The surrogate models of area 1 are used as the 
source domain, with the other three areas used as the target 
domains. This means that the dimensions of the source and 
target domains are identical. Additionally, the transfer learn‐
ing with different dimensions is simulated as another case. 
The different combinations of the four areas are used as tar‐
get domains. In the second case, the dimensions of the 
source and target domains are different.
1)　Transfer Learning with the Same Dimensions

In this case, the surrogate models of areas 2, 3, and 4 are 
built using the proposed transfer-learning method. The accu‐
racies of surrogate models with the same dimensions are list‐
ed in Table III. Specifically, a better surrogate model accura‐
cy is obtained using the transfer-learning method because 
the characteristics of the objective functions are included in 
the DBN structure. Then, the common characteristics of the 
two objective functions are inherited through the proposed 
transfer-learning method. Thus, better performances are 
achieved by the other surrogate models. In other words, the 
surrogate models are based on an improved DBN structure.

2)　Transfer Learning with Different Dimensions
In this case, the surrogate models of the combinations of 

areas 2 and 3, of areas 2, 3, and 4, and of all four areas are 

Trained
surrogate

models

Area 1

Surrogate

model

Area 2

Surrogate

model

Area 3

Surrogate

model

Area n

…

Pretraining

and fine-tuning

Pretraining

and fine-tuning

Pretraining

and fine-tuning

Fig. 3.　Pretraining and fine-tuning processes of transfer learning.

TABLE III
ACCURACIES OF SURROGATE MODELS WITH THE SAME DIMENSIONS

Surrogate 
model

Area 2

Area 3

Area 4

Objective 
function

Cost

Emission

Cost

Emission

Cost

Emission

Accuracy without 
transfer learning (%)

94.51

94.90

97.43

92.46

95.77

94.38

Accuracy with 
transfer learning (%)

99.13

99.25

99.36

99.02

98.69

99.61
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built using the proposed transfer-learning method. The de‐
grees of accuracy of surrogate models with different dimen‐
sions are presented in Table IV.

Compared with the last case, the dimensions of the surro‐
gate models are different; that is, the dimensions of the do‐
mains have changed. Thus, dimension reduction is used for 
data preprocessing. Many familiar methods of dimension re‐
duction, i.e., linear discriminant analysis (LDA), multidimen‐
sional scaling (MDS), isometric mapping (Iso map), land‐
mark isometric mapping (landmark Iso map), locally linear 
embedding (LLE), Laplacian eigenmaps (Laplacian), local 
tangent space alignment (LTSA), diffusion maps, Kernel 
principal component analysis (Kernel PCA), stochastic neigh‐
bor embedding (SNE), and autoencoders using evolutionary 
optimization (autoencoder EA), are tested in this paper. The 
simulation results are listed in Table V.

In these simulations, the best performance is obtained us‐
ing the MDS method. MDS is a classical data-dimensional 
reduction method and reconstructs the Euclidean distance co‐
ordinates between samples using a similarity matrix. In other 
words, MDS reconstructs the relative positions of samples in 
a low-dimensional space by utilizing the distances between 
samples in a high-dimensional space. This method preserves 

more high-dimensional information. Thus, MDS is suitable 
for dimension reduction of multiple generators. In general, 
this method can realize transfer learning in MACEED when 
the dimensions of the source and target domains are differ‐
ent.

C. Improved MOALO for Matching Surrogate Model

One drawback of the original MOALO method is its low 
convergence speed. MOALO chooses the shortest niche radi‐
us as the optimization direction, and the direction informa‐
tion introduced by numerical changes is not fully utilized. 
To overcome this drawback, a general bi-objective optimiza‐
tion strategy based on SDR is proposed, which enhances the 
convergence speed by moving to the current optimal individ‐
ual. The best single dimension is saved to reduce the search 
uncertainty and enhance convergence speed. A flowchart of 
the improved MOALO is shown in Fig. 4. The SDR optimi‐
zation policy is a general module for bi-objective optimiza‐
tion. This policy consists of eight steps.

1) The population is divided into four regions, as shown 
in Fig. 5 and the specific descriptions are shown in Table VI.

TABLE IV
DEGREES OF ACCURACIES OF SURROGATE MODELS WITH DIFFERENT 

DIMENSIONS

Surrogate 
model

Areas 2 and 3

Areas 2, 3, 
and 4

All areas

Objective 
function

Cost

Emission

Cost

Emission

Cost

Emission

Accuracy without 
transfer learning (%)

93.63

93.15

96.79

91.54

94.36

95.33

Accuracy with 
transfer learning (%)

99.69

99.11

99.61

97.80

99.20

95.84

Region 3 Region 2

Region 1 Region 4

Mean of

objective 1

Mean of objective 2

Objective 2

Objective 1

Fig. 5.　Population divided into four regions.

Start

End

Initialize ant and antlion population

Use true models to compute fitness

Store non-dominated sorting antlion fitness value
 and particles with rank of 1 in “external archive”

Use surrogate models to compute antlion fitness

Execute single dimension retention optimization
policy to update population

Compute the new non-dominated sorting antlion fitness value
and particles with rank of 1 by true models 

Compute the new dominated sorting particles by true models

and original “external archive” to update “external archive”

Is the number of

iterations equal to 250?

Output “external archive”

N

Y

Fig. 4. Flowchart of improved MOALO.

TABLE V
ACCURACIES OF SURROGATE MODELS WITH DIFFERENT DIMENSIONS USING 

DIFFERENT DIMENSION REDUCTION METHODS

Dimension 
reduction 

mothod

LDA

MDS

Iso map

Landmark 
Iso map

LLE

Laplacian

LTSA

Diffusion 
maps

Kernel PCA

SNE

Autoencoder 
EA

Accuracy of 
areas 2 and 3 (%)

Cost

95.28

99.69

98.20

96.16

99.50

98.67

96.03

99.18

94.27

95.25

97.42

Emission

90.70

99.11

95.05

90.99

97.86

96.33

89.51

96.86

88.48

90.57

93.15

Accuracy of areas 
2, 3, and 4 (%)

Cost

96.09

99.61

96.52

97.60

99.22

98.46

95.79

97.36

95.14

95.78

97.09

Emission

91.67

97.80

93.44

91.99

95.90

94.85

90.52

91.74

88.22

89.07

91.21

Accuracy of 
all areas (%)

Cost

96.11

99.20

98.48

98.52

98.37

97.82

99.22

99.01

96.75

96.50

95.58

Emission

91.02

95.84

93.70

96.02

96.49

94.25

97.68

95.84

91.78

92.24

89.34
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2) The minimum values of the two objective functions of 
miny1 and miny2 are found, and the corresponding individuals 
are named minx1 and minx2, respectively.

3) The individuals in each region execute different opera‐
tions and move to a new position P1 (t + 1).

a) Individuals in region 1 execute random walking in the 
direction of the vector sum between minx1 and minx2.

b) Individuals in region 2 execute random walking in the 
direction of the vector sum between minx1 and minx2.

c) Individuals in region 3 execute random walking in the 
direction of minx1.

d) Individuals in region 4 execute random walking in the 
direction of minx2.

The mathematical model of the random walk process is:

X (t)=[0  csumu (2r(t1 )- 1)    csumu (2r(tn )- 1)] (12)

where X (t) is the set of steps that individuals walk random‐
ly; csumu (·) is an accumulation formula; n is the maximum 
number of iterations; t is the number of steps of a random 
walk, which can also be understood as the current number of 
iterations; and r(·) is described as:

r(·)= {1    rand > 0.5
0    rand £ 0.5

(13)

4) The maxima of two objective functions (labeled maxy1 
and maxy2) are found, and the corresponding individuals are 
named maxx1 and maxx2.

5) All original populations exploit their advantages and 
avoid their disadvantages. This operation is described as:

ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïï
ï

ï

P2 (t + 1)= q1 P(t)+ q2minxU - q3maxxU

q1 = 0.7 - 0.7·iter/itermax

q2 = 0.1 + 0.9·iter/itermax

q3 = 0.2 - 0.2·iter/itermax

(14)

where P2 (t + 1) is the new position after the advantages are 
exploited and the disadvantages are avoided; P(t) is the origi‐
nal position of the individual; q1, q2, and q3 are the coeffi‐
cients that vary with the number of iterations; iter is the cur‐
rent iteration number; itermax is the maximum number of iter‐
ations; and minxU and maxxU represent different vectors, 
where their descriptions are given in Table VII.

At the beginning of the iteration process, a considerable 

amount of information regarding the initial individual is re‐
tained. Thus, the initial performance is unstable, and the 
guidance is not obvious. As the iterations proceed, the infor‐
mation retained from the initial state decreases, and the infor‐
mation learned by high-performing particles is increasingly 
used. At the end of the iteration process, the operation is ef‐
fectively optimized around high-performing particles. Specifi‐
cally, the optimization direction is away from the worst parti‐
cle and closer to the best particle.

6) The individual with the maximal niche radius is used 
to guide other individuals through a random walking pro‐
cess. The third updated position for the entire population is 
denoted as P3 (t + 1).

7) The final location P4 (t + 1) is obtained by integrating 
P1 (t + 1), P2 (t + 1), and P3 (t + 1) according to:

ì

í

î

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

P4 (t + 1)= fP1 (t + 1)+ gP2 (t + 1)+ hP3 (t + 1)

f =C1 + iter/itermax

g = 0.5(C2 - iter/itermax )

h = 0.5(C3 - iter/itermax )

C1 +C2 +C3 = 1

(15)

where C1, C2, and C3 are the constants between 0 and 1; and 
f, g, and h are the coefficients that vary with the iteration 
number. Equation (15) indicates that the information of 
P1 (t + 1) becomes increasingly important as the iterations 
progress.

8) Finally, the one-dimensional retention mechanism is ac‐
tivated through the pseudo code in Algorithm 1, and Pold is 
the position of the last iteration. The result is Pnew, which is 
the final updated individual position.

To further illustrate the effectiveness of the SDR-MOA‐
LO, the original MOALO [33] along with a multi-objective 
particle swarm optimization (MOPSO) [34], multi-objective 
evolutionary algorithm based on decomposition (MOEA/D) 

Algorithm 1: one-dimensional retention mechanism

Input: P4 (t + 1) and Pold

Output: Pnew

1: for j = 1: length (dimension)
2:  Generate a random number between 0 and 1
3:  if the random number is no larger than 0.2, then 
4:   Pnew ( j)=P4 (t + 1)( j)
5:  else
6:   Pnew ( j)=Pold ( j)
7:  end if
8: end for
9: return Pnew

TABLE VI
DESCRIPTIONS OF FOUR REGIONS

Region

Region 1

Region 2

Region 3

Region 4

Description

Both fitness values are less than the corresponding current 
average fitness values

Both fitness values are greater than the corresponding cur‐
rent average fitness values

The fitness value of objective 2 is less than the current av‐
erage fitness value of objective 2 and the fitness value of 
objective 1 is greater than the current average fitness val‐
ue of objective 1

The fitness value of objective 1 is less than the current av‐
erage fitness value of objective 1 and the fitness value of 
objective 2 is greater than the current average fitness val‐
ue of objective 2

TABLE VII
SPECIFIC DESCRIPTIONS OF minxU AND maxxU IN FOUR REGIONS

Region

Region 1

Region 2

Region 3

Region 4

minxU

Vector sum of minx1 and minx2

Vector sum of minx1 and minx2

minx1

minx2

maxxU

Vector sum of maxx1 and maxx2

Vector sum of maxx1 and maxx2

maxx1

maxx2
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[35], and non-dominated sorting genetic algorithm II (NSGA-
II) [36] are employed. Specifically, the population sizes are 
set to be 100, where the other parameter settings are listed 
in Table VIII. In addition, the population sizes and iterations 
are set to be 100 and 300, respectively. Hypervolume (HV), 
inverted generational distance (IGD), and spread index are 
then utilized to compare the algorithm performances. The re‐
sults of different algorithms are presented in Table IX.

This section illustrates the superiority of the SDR-MOA‐
LO when tested on the ZDT1, ZDT2, and ZDT3 datasets. 
With the application of the one-dimensional retention mecha‐
nism, the convergence and diversity of the Pareto fronts are 
excellent. Compared with other algorithms, the SDR-MOA‐
LO achieves optimal results for all three indices. Specifical‐
ly, a common drawback is found to exist in the four contras‐
tive algorithms, namely, powerless local search ability in lat‐
er iterations. In the one-dimensional retention mechanism, 
some dimensions of superior solutions are retained. Because 
of this mechanism, more search opportunities are obtained 
near the superior solutions. Undoubtedly, sufficient and pre‐
cise local search capabilities emerge to improve the algo‐
rithm performance.

IV. SIMULATION EXPERIMENTS AND RESULTS 

The superiority of the proposed method is demonstrated 
using a test system that includes 40 generators and four ar‐
eas. The specific settings for the constraints in Cases 1, 2, 
and 3 are listed in Table X. The units of emission, fuel cost, 
unit output, and time are ton/hour, $/hour, MW, and s, re‐
spectively. In addition, the solutions from several previous 
studies are used to illustrate the effectiveness of the pro‐
posed method. For the three simulation cases, Tables I, Sup‐
plementary Material A Table SAI, and Table SAII list the set‐
tings of the cosine-similarity-based DBN + BP regression sur‐
rogate model, the coefficients of the fuel cost function [23], 
and the coefficients of the emission function [37], respectively.

A. Case 1: Comparison and Simulation in Proposed Method 
Considering Power Transmission Between Different Areas

In this case, the power load demand is set to be 10500 
MW. For Case 1, 20 non-dominated solutions in four areas 
are shown in Fig. 6. 

In addition, the iterative process for the four areas is paral‐
lel, and therefore, the Pareto front of each area is generated 
instead of the Pareto front of all 40 generators. Feasible 
scheduling decisions are obtained in every sub-area. More 
flexible scheduling commands can then be introduced by dis‐

TABLE VIII
PARAMETERS OF SDR-MOALO, MOALO, MOPSO, MOEA/D, 

AND NSGA-II

Algorithm

SDR-MOALO

MOALO

MOPSO

MOEA/D

NSGA-II

Parameter

Mutation rate is set to be 0.02 and cardinality of Pareto 
archive is set to be 100

Mutation rate is set to be 0.02 and cardinality of Pareto 
archive is set to be 100

The size of adaptive grid is 30, inertia weight is 0.5, 
learning factor c1 is 1, and learning factor c2 is 2

Sub-problem number is set to be 20

Mutation and crossover rates are 0.02 and 0.7, respectively

TABLE IX
RESULTS OF DIFFERENT ALGORITHMS ON ZDT1, ZDT2, AND ZDT3

Dataset

ZDT1

ZDT2

ZDT3

Algorithm

SDR-MOALO

MOALO

MOPSO

MOEA/D

NSGA-II

SDR-MOALO

MOALO

MOPSO

MOEA/D

NSGA-II

SDR-MOALO

MOALO

MOPSO

MOEA/D

NSGA-II

HV value

4.397 ´ 10-1

4.704 ´ 10-1

6.974 ´ 10-1

7.035 ´ 10-2

5.562 ´ 10-1

4.398 ´ 10-2

1.167 ´ 10-1

2.753 ´ 10-1

0

2.435 ´ 10-1

2.854 ´ 10-1

6.748 ´ 10-1

5.799 ´ 10-1

3.597 ´ 10-1

6.924 ´ 10-1

IGD value

7.814 ´ 10-3

3.661 ´ 10-1

2.089 ´ 10-2

8.870 ´ 10-1

2.069 ´ 10-1

7.919 ´ 10-3

4.912 ´ 10-1

3.374 ´ 10-1

2.112 ´ 100

1.942 ´ 10-1

1.129 ´ 10-2

2.010 ´ 10-1

3.720 ´ 10-2

5.051 ´ 10-1

1.807 ´ 10-1

Spread index 
value

1.559 ´ 10-1

1.170 ´ 100

7.018 ´ 10-1

1.009 ´ 100

8.603 ´ 10-1

1.736 ´ 10-1

1.040 ´ 100

8.300 ´ 10-1

1.000 ´ 100

9.093 ´ 10-1

3.129 ´ 10-1

1.287 ´ 100

7.323 ´ 10-1

1.025 ´ 100

8.959 ´ 10-1
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Fig. 6.　Pareto fronts in Case 1. (a) Pareto front of area 1. (b) Pareto front 
of area 2. (c) Pareto front of area 3. (d) Pareto front of area 4.

TABLE X
SPECIFIC SETTINGS FOR CONSTRAINTS

Constraint

Generation capacity constraint

Power balance constraint

Tie-line capacity limit

Transmission loss

Spinning reserve constraint between different areas

Tie-line capacity limits with shared spinning reserve

Case 
1

√
√
√
×

×

×

Case 
2

√
√
√
√
×

×

Case 
3

√
√
√
√
√
√
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patchers. The minimum fuel cost and emissions, obtained by 
summing the minimum values of the four areas, are 
124395.29 $/hour and 177386.30 ton/hour, respectively. The 
algorithm coefficients of the symbiotic organisms search 
(SOS) [23], a new and efficient variety of the SOS algo‐
rithm (NSOS) [23], multi-objective competitive swarm opti‐
mizer (MOCSO) [38], and exponent-logistic-modulo map-
based NSGA-III (ELM-NSGA-III) [16], are listed in Table 
XI. The comparisons of the results are presented in Supple‐
mentary Material A Table SAIII. The execution time of SOS 
and NSOS is obtained by evaluating one point on the Pareto 
front. Thus, the operational time is increased by 20 times to 
generate the entire Pareto front. The maximum, minimum, 
and average results for Case 1 are presented in Table XII.

First, compared with SOS, NSOS, and MOCSO, the fuel 
costs are reduced by 0.77%, 0.84%, and 0.05%, respectively, 
and the emissions are reduced by 15.01%, 12.83%, and 
24.20%, respectively. More importantly, the operational time 
is reduced by 92.30%, 92.60%, and 82.52%, respectively. 
Compared with ELM-NSGA-III, the emission index is re‐
duced by 21112.28 ton/hour (10.63%), the execution time is 
reduced by 0.81 s (2.51%), and the cost is nearly the same. 
Thus, the proposed method produces the lowest costs, emis‐
sions, and operational time. In addition, it provides more 
flexible and extensive decision-making space for scheduling 
in other areas.

We also consider how superior solutions are obtained. 
First, compared with the other algorithms, the fuel cost val‐
ue shows a slight improvement due to the sufficient search 
capabilities of using a one-dimensional retention mechanism 
in the SDR-MOALO. Better solutions can be found by re‐
taining the values in several dimensions. Thus, better solu‐

tions can be obtained by one-dimensional retention mecha‐
nism.

Next, we focus on the execution time, where only 31.47 s 
are consumed in Case 1. Compared with SOS, NSOS, MOC‐
SO, and ELM-NSGA-III, the execution time is improved by 
92.30%, 92.60%, 82.52%, and 2.51%, respectively. The com‐
putational time of the objective values is considerably short‐
ened by the surrogate models. This also results from using 
transfer learning. Transfer learning then further reduces the 
modeling time. Thus, the operational time for MACEED is 
drastically reduced.

B. Case 2: Comparison and Simulation in Proposed Method 
Considering Power Transmission and Losses

The power demand for Case 2 is set to be 10500 MW. To 
further verify the effectiveness of the proposed method, ac‐
tive loss is considered as an additional constraint. For Case 
2, 20 non-dominated solutions in four areas are shown in Fig. 
7. The outputs of 40 units are listed in Supplementary Mate‐
rial A Table SAIV. Again, the optimization process for the 
four areas is parallel, and therefore the Pareto front of each 
area is generated instead of that of all 40 generators. The 
best fuel cost and emissions, obtained by summing the best 
values of the four areas, are 125035.51 $/hour and 
186439.80 ton/hour, respectively. The losses are listed in 
Supplementary Material A Table SAIV. The execution time 
is only 31.85 s. More importantly, compared with SOS, 
NSOS, MOCSO, and ELM-NSGA-III for Case 1, the execu‐
tion time is reduced by 92.21%, 92.51%, 82.31%, and 
1.33%, respectively. Even when more complex constraints 
are considered, the proposed method can solve MACEED 
problems in a short time.

Next, we examine the performance of the SDR-MOALO. 
The maximum, minimum, and average results for Case 2 are 
listed in Table XIII. These values reveal that high-dimension‐
al MACEED problems with complex constraints in large-

TABLE XII
THE MAXIMUM, MINIMUM, AND AVERAGE RESULTS FOR CASE 1

Item

The maximum

The minimum

Average

Best fuel cost ($/hour)

125768.36

124395.29

124789.04

Best emission (ton/hour)

185864.58

177386.30

180169.68

Time (s)

36.69

29.68

32.55

TABLE XI
PARAMETERS OF SDR-MOALO, SOS, NSOS, MOCSO, AND ELM-NSGA-III

Algorithm

SDR-
MOALO

SOS

NSOS

MOCSO

ELM-
NSGA-III

Parameter

The maximum iteration is 300, mutation rate is 0.02, and car‐
dinality of Pareto archive is 20

The maximum iteration is 100000, trial values for O are [50, 
60, 70], trial values for kmax are [100, 150, 200], selected O 
is 70, and selected kmax is 200

The maximum iteration is 100000, trial values for O are [50, 
75, 100], trial values for kmax are [100, 150, 200], selected 
O is 60, and selected kmax is 100

The number of iteration is 6000, crossover probability Pv is 
0.85, penalty coefficients pp /pp2 is 40/78, pp,1 /pp2,1 is 18/80, 
pp,2 /pp2,2 is 28/50, pp,3 /pp2,3 is 28/50, and pp,4 /pp2,4 is 18/80

The number of iterations, crossover probability, mutation pro- 
bability, crossover distribution index, variation step, and the 
size of the elite archive are 500, 1.0, 0.01, 30, 20, and 20, 
respectively
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Fig. 7.　Pareto fronts in Case 2. (a) Pareto front of area 1. (b) Pareto front 
of area 2. (c) Pareto front of area 3. (d) Pareto front of area 4.
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scale power systems can be solved accurately and in a stable 
manner using the proposed method. Because of the search 
capabilities of the SDR-MOALO, a convergent Pareto front 
can be obtained. The computational time of the DBN + BP 
surrogate model is shorter than that of the original mathemat‐
ical function. As shown in Table XIV, compared with ELM-
NSGA-III, the cost, emissions, and average time are reduced 
by 0.37%, 2.60%, and 9.47%, respectively. With parallel 
computing, convergence is improved, and the execution time 
is reduced.

C. Case 3: Comparison and Simulation in Proposed Method 
Considering Spinning Reserve and All Mentioned Constraints

A total of 10 non-dominated solutions in four areas of 
Case 3 are shown in Fig. 8, and the best outputs are listed in 
Supplementary Material A Table SAV. Again, the iterative 
process for the four areas is parallel, and therefore the Pare‐
to front of each area is generated instead of that of all 40 
generators. The best fuel cost and emissions are 108353.46 $/
hour and only 166302.27 ton/hour, respectively. The corre‐
sponding losses are both 62.76 MW. The execution time is 
only 32.46 s. Compared with the SOS, NSOS, and MOCSO 
of Case 1, with a higher power load, the execution time is 
reduced by 92.10%, 92.37%, and 81.97%, respectively. This 
case represents a real scheduling scenario and demonstrates 
that the use of surrogate models and transfer learning can 
significantly reduce the execution time of computationally 
expensive MACEED problems while deriving excellent feasi‐
ble solutions.

We next consider the performance of the SDR-MOALO. 
The results are presented in Table XV and show that the 
SDR-MOALO is effective at solving high-dimensional 
MACEED problems with all proposed constraints. Because 
of the superior search capabilities of the SDR-MOALO, the 
convergent Pareto front in MACEED problems with all con‐
straints can be obtained. In addition, the short execution 
time illustrates that the model is also feasible in addressing 
MACEED problems with all constraints. 

Furthermore, transfer learning is feasible for quickly build‐
ing surrogate models for MACEED problems with flexible 
constraints. Compared with the results of Case 3 in [16], the 
best fuel cost is reduced by 0.34%. Moreover, even in the 

most time-consuming state, the execution time is reduced by 
10.55%. This means that the proposed method can solve 
MACEED problems under all constraints in a stable manner. 
In summary, MACEED problems under all constraints can 
be solved in a timely manner.

D. Case 4: Comparison and Simulation with Gurobi and 
Cplex Optimizers

To further illustrate the effectiveness of the proposed 
method, two commercial solvers, i.e., Gurobi [39] and Cplex 
[40], are applied to the aforementioned three cases.

The two optimizers have two limitations:
1) They cannot directly obtain a real Pareto front for the 

multi-objective optimization problem [41], [42]. To achieve 
non-dominated solutions, the commonly used method is to 
reconstruct objective functions using the weight-sum method:

F(P)=ωC(P)+ γ(1 -ω)E(P) (16)

where F(P) is the single objective function obtained by the 
weight sum method; C(P) and E(P) are the fuel cost and 
emission functions, respectively; and ω and γ are the weight 
and scaling factors, respectively. In Cases 1 and 2, to obtain 
a Pareto front with 20 non-dominated solutions, ω changes 
from 1 to 0 with a step size of 0.05, and γ is set to be 0.5. 
In Case 3, to obtain a Pareto front with 10 non-dominated 
solutions, ω changes from 1 to 0 with a step size of 0.1, and 
γ is set to be 0.5.

2) They do not directly support general non-linearities, 
whether in objective functions or constraints [43]. Thus, the 

TABLE XIV
COMPARATIVE SOLUTIONS FOR CASE 2

Algorithm

SDR-MOALO

ELM-NSGA-III

Best fuel cost 
($/hour)

125035.51

125509.09

Best emission 
(ton/hour)

188897.19

193929.85

Average time 
(s)

33.08

36.54

TABLE XIII
THE MAXIMUM, MINIMUM, AND AVERAGE RESULTS FOR CASE 2

Item

The maximum

The minimum

Average

Best fuel cost 
($/hour)

126003.84

125035.51

125558.08

Best emission 
(ton/hour)

188897.19

186439.80

187454.64

Time (s)

38.73

31.28

33.08
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Fig. 8.　Pareto fronts in Case 3. (a) Pareto front of area 1. (b) Pareto front 
of area 2. (c) Pareto front of area 3. (d) Pareto front of area 4.

TABLE XV
THE MAXIMUM, MINIMUM, AND AVERAGE RESULTS FOR CASE 3

Item

The maximum

The minimum

Average

Best fuel cost 
($/hour)

110525.77

108353.46

109025.87

Best emission 
(ton/hour)

169974.31

166302.27

167288.84

Time (s)

35.77

31.98

33.19
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cost function with the valve-point effect should be trans‐
formed into piecewise linear functions. To obtain feasible so‐
lutions with high accuracy, the number of segments in piece‐
wise linear functions should be as large as possible. We test 
the number of segments from 5 to 30. If the number of seg‐
ments is less than 19, generating a Pareto front is nearly im‐
possible. Thus, in these three cases, the number of segments 
is set to be 19. The piecewise linear function for these three 
cases is described by:

DP = (Pmax -Pmin )/19 (17)

Cpiece (P)=

ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïïï

ï

ï

ï

Cpicce1 (P)      Pmin £P £Pmin +DP
Cpiece2 (P)      Pmin +DP <P £Pmin + 2DP

      
Cpiccei (P)      Pmin + (i - 1)DP <P £Pmin + iDP

      
Cpicce19 (P)    Pmin + 18DP <P £Pmax

   (18)

where DP is the length of P in a segment; Cpiece (P) is the 
piecewise linear fuel cost function; and Cpiccei (P) is the ith 
segment of Cpiece (P). Then, C(P) can be expressed as:

ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïï
ï

ï

C(P)=∑
i = 1

19

bi Cpiecei (P)

biÎ{01}

∑
i = 1

19

bi = 1

(19)

where bi is a 0/1 variable, bi = 1 means that Cpiecei (P) is se‐

lected, and ∑
i = 1

19

bi = 1 means that only one bi can be set to be 

1, where the other bi must be set to be 0. The Gurobi and 
Cplex optimizers can then be utilized to simulate the afore‐
mentioned three cases, where the results are listed in Table 
XVI.

Compared with the Gurobi solver, for Case 1, the best fu‐
el cost and emissions as well as average execution time ob‐
tained by the proposed method are reduced by 0.09%, 
24.41%, and 38.33%, respectively. For Case 2, these three in‐
dices are reduced by 0.52%, 22.90%, and 82.04%, respec‐
tively. For Case 3, the best fuel cost and emissions as well 
as average execution time are reduced by 0.09%, 22.87%, 
and 70.82%, respectively. 

Compared with the Cplex solver, for Case 1, the best fuel 
cost and emissions as well as average execution time ob‐
tained by the proposed method are reduced by 0.12%, 
28.73%, and 74.90%, respectively. For Case 2, these three in‐
dices are reduced by 0.44%, 28.35%, and 71.51%, respec‐
tively. For Case 3, the best fuel cost and emissions as well 
as average execution time are reduced by 0.09%, 22.78%, 
and 24.10%, respectively. These excellent results demon‐
strate that the proposed method is effective in solving com‐
putationally expensive MACEED problems. In addition, non-
convex and multiple optimization objective functions can be 
solved quickly and accurately. The surrogate model is thus a 
powerful tool for dealing with non-convex and computation‐
ally expensive objective functions. However, the SDR-MOA‐
LO is suitable for solving computationally expensive 
MACEED problems.

Naturally, the accuracy of the Gurobi and Cplex solvers 
can be improved by dividing ω more fully (for example, ω 
changes from 1 to 0 with a step size of 0.01, 0.001) or by 
enhancing the number of segments in piecewise linear func‐
tions. However, these changes enhance the execution time, 
which may exceed the scheduling cycles. Compared with 
Gurobi and Cplex, the proposed method significantly reduc‐

es the execution time without sacrificing the accuracy of the 
solutions.

V. CONCLUSION AND FUTURE RESEARCH 

This paper describes a new method for solving MACEED 
problems with high-dimensional decision variables in large-
scale power systems. Cosine-similarity-based DBN + BP re‐
gression surrogate models are proposed to replace the two 
objective functions in MACEED. Compared with the origi‐
nal numerical objective functions, the execution time is re‐
duced using the DBN + BP models. The transfer-learning 
method is then utilized to pretrain and fine-tune the cosine-
similarity-based DBN + BP models. Based on the initial sur‐
rogate model, data from other areas are used for fine-tuning, 
significantly reducing the time required to build the surro‐
gate models of different areas. An improved MOALO that 
matches the surrogate models is introduced to obtain optimi‐
zation results for computationally expensive MACEED prob‐
lems. General bi-objective optimization is used to accelerate 
convergence, allowing the improved MOALO to find the Pa‐
reto fronts in different areas. The advantages of this method 
are verified by a 4-area 40-unit test system, where simula‐
tion results demonstrate the effectiveness of the proposed 
method. Building surrogate models to replace time-consum‐
ing constraint functions is also feasible and deserves mean‐
ingful future study. MACEED problems are intraday schedul‐
ing problems. Therefore, another interesting direction is to 
use a data-driven method to investigate day-ahead unit com‐
mitment problems with 0/1 integer variables [44], [45]. Fu‐
ture research should include the study of data-driven mixed-

TABLE XVI
COMPARATIVE RESULTS OF GUROBI AND CPLEX SOLVERS AND PROPOSED METHOD

Case index

1

2

3

Best fuel cost ($/hour)

Proposed

124395.29

125035.51

108353.46

Gurobi

124511.00

125687.30

108446.31

Cplex

124542.92

125592.26

108448.25

Best emission (ton/hour)

Proposed

177386.30

188897.19

166302.27

Gurobi

234694.90

244997.10

215621.08

Cplex

248908.89

263642.48

215356.38

Execution time (s)

Proposed

32.55

33.08

33.19

Gurobi

52.78

184.18

113.73

Cplex

129.67

116.13

43.73
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integer programming in unit commitment problems.
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