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Abstract——The subsynchronous oscillations (SSOs) related to 
renewable generation seriously affect the stability and safety of 
the power systems. To realize the dynamic monitoring of SSOs 
by utilizing the high computational efficiency and noise-resilient 
features of the matrix pencil method (MPM), this paper propos‐
es an improved MPM-based parameter identification with syn‐
chrophasors. The MPM is enhanced by the angular frequency 
fitting equations based on the characteristic polynomial coeffi‐
cients of the matrix pencil to ensure the accuracy of the identi‐
fied parameters, since the existing eigenvalue solution of the 
MPM ignores the angular frequency conjugation constraints of 
the two fundamental modes and two oscillation modes. Then, 
the identification and recovery of bad data are proposed by uti‐
lizing the difference in temporal continuity of the synchropha‐
sors before and after noise reduction. The proposed parameter 
identification is verified with synthetic, simulated, and actual 
measured phase measurement unit (PMU) data. Compared with 
the existing MPM, the improved MPM achieves better accuracy 
for parameter identification of each component in SSOs, better 
real-time performance, and significantly reduces the effect of 
bad data.

Index Terms——Subsynchronous oscillations (SSOs), synchro‐
phasor, parameter identification, matrix pencil method, bad da‐
ta.

I. INTRODUCTION 

WITH the development of renewable generations in 
modern power systems, subsynchronous oscillations 

(SSOs) caused by the resonances between power electronic 
devices and series compensators or weak grids are of fre‐
quent occurrence [1] - [3]. Compared with the traditional 
SSOs caused by the resonances between electrical systems 
and turbine generators in which only one oscillation compo‐
nent exits [4], the SSOs caused by renewable generations 

may contain one subsynchronous component together with 
another frequency-coupled supersynchronous component due 
to the power electronic converters [3], [5]. The oscillation 
features of these SSOs are more changeable and widely 
spread, which endanger the operation of the power system. 
Therefore, the parameters of each component in instanta‐
neous data during oscillation should be accurately identified 
in order to monitor and mitigate SSOs effectively [6]-[8].

There has been much research on identifying SSOs using 
instantaneous data, which can accurately obtain SSO parame‐
ters [9]-[12]. However, since instantaneous data are only ob‐
tainable from fault recorders (FRs), which are primarily 
stored at different buses, it is challenging to collect FR data 
on time. Also, there are no unified timing standards for FR, 
which makes it difficult to observe SSOs dynamically and 
globally.

SSO parameter identification based on synchrophasors pro‐
vided by phasor measurement units (PMUs) and wide area 
measurement systems (WAMSs) can realize dynamic and 
synchronized monitoring of SSOs by using the synchronous 
measurement mechanism and high reporting rate of synchro‐
phasors [13], [14]. Among the existing SSO parameter identi‐
fication methods with synchrophasors, the discrete fourier 
transform (DFT) based algorithms are widely studied. The 
feasibility of identifying the subsynchronous parameters by 
synchrophasors is explored in [15] for the first time, and the 
spectrum analysis is performed on the amplitude of synchro‐
phasors by taking advantage of the linear transformation fea‐
tures of synchrophasor calculation. In [16], the interpolated 
DFT enhanced by the Hann window is adopted to identify 
SSOs with a 2-s data window. The limitation of the spec‐
trum analysis is that the spectrum resolution ratio is greatly 
affected by the length of the data window. A long data win‐
dow is required to ensure a sufficiently high spectrum resolu‐
tion ratio. However, for the fast-changing SSOs, the longer 
the data window is, the worse the real-time performance and 
reliability of parameter identification are.

In addition, non-DFT methods based on synchrophasors 
have also been studied. Two classic modal parameter extrac‐
tion (MPE) algorithms, i. e., Prony analysis [17], [18] and 
the matrix pencil method (MPM) [19], are adopted to identi‐
fy the parameters of SSO with a 1-s data window in [20]. 
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Based on historical data and the incremental learning of the 
multi-support vector basis model, the features of PMU data 
are classified and identified in [21], [22]. Compared with the 
spectrum analysis method, the non-DFT methods are less 
constrained by the spectrum resolution ratio, so the identifi‐
cation accuracy is less sensitive to the data window length, 
which can theoretically shorten the data window for SSO 
paramenter identification. However, the shortening of the da‐
ta window leads to fewer extractable features simultaneous‐
ly, thus increasing the difficulty of parameter identification, 
and needs to be compensated by the computational volume.

As mentioned before, the supersynchronous component 
may exist during the SSO. Due to the coupling frequency of 
the subsynchronous and supersynchronous components, the 
positive and negative spectra of which are aliasing, the pa‐
rameters obtained by the above methods are incorrect be‐
cause the supersynchronous component is not considered. In 
the primary research of our team [23], the subsynchronous 
and supersynchronous parameters are extracted based on 
spectrum analysis, but the supersynchronous component has 
not yet been involved in SSO parameter identification based 
on MPE algorithms. In addition, for the SSOs caused by re‐
newable generations, a 1-s data window still cannot reflect 
the changeable characteristics of SSO.

MPM is a classic MPE algorithm with advantages in com‐
putational efficiency and noise-resilient features [19]. The 
SSO parameter identification based on MPM is implemented 
in [20], in which the matrix pencil is constructed with syn‐
chrophasors, and solving the eigenvalues of the matrix pen‐
cil can extract the modal parameter. In solving the eigenval‐
ue problem, the approximate calculation does not perform 
like the spectrum analysis method, so the calculation errors 
of MPM can theoretically be decreased to almost zero. How‐
ever, the angular frequency conjugation constraints of the 
two fundamental modes and two oscillation modes are ig‐
nored when solving the eigenvalues directly, and the accura‐
cy of the frequency obtained by the MPM is difficult to 
guarantee when the model error exists, which leads to the 
identified parameters suffering from low accuracy. More‐
over, in practical applications of PMUs, in the event of mea‐
surement error of the PMU or data variation during commu‐
nication, bad data may exist in synchrophasors uploaded by 
the PMU, which results in temporal discontinuity of synchro‐
phasors and seriously affects the performance of MPM. Few 
existing studies on MPM have dealt with bad data.

To take advantage of the computational efficiency and 
noise-resilient features of MPM, the MPM is improved by 
solving issues in the matrix pencil solution and identification 
and recovery of bad data in this paper. The features of the 
proposed improved SSO parameter identification based on 
MPM are twofold.

1) By analyzing the principle of the MPM and the disad‐
vantage of the matrix pencil solution, the angular frequency 
fitting equations corresponding to fundamental and oscilla‐
tion frequencies are established based on the characteristic 
polynomial coefficients of the matrix pencil, in which the an‐
gular frequency conjugation constraints of the two fundamen‐
tal modes and two oscillation modes are considered. Multi-
order matrix pencil is proposed to further smooth model er‐

rors.
2) Identification and recovery methods of bad data are pro‐

posed. The significance of bad data is evaluated by utilizing 
the difference in temporal continuity of the synchrophasors 
before and after noise reduction. Based on the significance 
level of the bad data, whether to perform noise reduction or 
recovery of bad data can be determined, thus reducing the 
impact of bad data on the performance of the MPM.

Finally, the proposed improved MPM is verified with syn‐
thetic, simulated, and actual measured PMU data. Also, it is 
compared with the existing MPM in [20]. The comparison 
results demonstrate that the proposed improved MPM can re‐
alize better accuracy of the frequency, amplitude, and phase 
of the fundamental, subsynchronous, and supersynchronous 
components in SSOs with a 200-ms data window. Mean‐
while, the consideration for the identification and recovery 
of bad data can effectively guarantee the performance of the 
MPM.

This paper is organized as follows. Section II studies the 
synchrophasors model and principle of MPM. Section III in‐
troduces SSO parameter identification based on improved 
MPM. Section IV proposes the identification and recovery 
of improved MPM of the bad data. The performance of the 
proposed method is evaluated using synthetic, simulated, and 
actual measured PMU data in Section V. The conclusions 
are illustrated in Section VI.

II. SYNCHROPHASORS MODEL AND PRINCIPLE OF MPM 

A. SSO Model with Supersynchronous Component

The instantaneous data x(t) during SSO consists of funda‐
mental, subsynchronous, and supersynchronous components, 
i.e.,

x(t)= x0cos(2πf0t + ϕ0 )+ xsubcos(2πfsubt + ϕsub )+
xsupcos(2πfsupt + ϕsup ) (1)

where ( f0x0ϕ0 ), ( fsubxsubϕsub ), and ( fsupxsupϕsup ) are the 
frequencies, amplitudes, and phases of the fundamental, sub‐
synchronous, and supersynchronous components of SSO, re‐
spectively. The frequencies of subsynchronous and supersyn‐
chronous components satisfy fsub + fsup = 2fN, and fN is the 
nominal frequency.

Synchrophasors are obtained by applying the DFT syn‐
chrophasor algorithm [24] on x(t), similar to the derivations 
in [20], [23]. Let Ẋ0 (k), Ẋsub (k), and Ẋsup (k) denote the spec‐
trum of the fundamental, subsynchronous, and supersynchro‐
nous components of the k th synchrophasor, respectively. 
Each component is composed of a positive spectrum and a 
negative spectrum, as shown in (2)-(4).

ì
í
î

ïï
ïï

Ẋ +
0 ( )k =Q* ( f01)x0e-jϕ0ejαk

Ẋ -
0 ( )k =Q( f0-1)x0ejϕ0e-jαk

(2)

ì
í
î

ïï
ïï

Ẋ +
sub (k)=Q* ( fsub1)xsube-jϕsubejβk

Ẋ -
sub (k)=Q( fsub-1)xsubejϕsube-jβk

(3)

ì
í
î

ïï
ïï

Ẋ +
sup (k)=Q( fsup-1)xsupejϕsupejβk

Ẋ -
sup (k)=Q* ( fsup1)xsupe-jϕsupe-jβk

(4)
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where the subscripts “+” and “-” represent the positive and 
negative spectra, respectively; the superscript “*” represents 
the conjugation; α and β are the angular frequencies of f0 
and fsub as shown in (5), respectively; and Q( fl) is illustrat‐
ed in (6).

ì

í

î

ï
ïï
ï

ï
ïï
ï

α = 2π
fN - f0

fS

β = 2π
fN - fsub

fS

(5)

Q( fl)=
1
N∑n = 0

N - 1

e( )j
2πf
fN N

+ j
2π
N

l n
(6)

where N is the number of instantaneous data in the DFT al‐
gorithm; and fS is the reporting rate of synchrophasor, and 
fS = 2fN.

Due to the coupling frequency of the subsynchronous com‐
ponents and the supersynchronous components, the frequen‐
cies of positive and negative spectra of Ẋsub (k) and Ẋsup (k) 
are the same. Thus, (3) and (4) can be sumed to positive and 
negative spectra of oscillation component, respectively, as 
shown in (7).

ì
í
î

ïï
ïï

Ẋ +
S (k)= Ẋ +

sub (k)+ Ẋ +
sup (k)

Ẋ -
S (k)= Ẋ -

sub (k)+ Ẋ -
sup (k)

(7)

where Ẋ +
S (k) and Ẋ -

S (k) are the positive and negative spectra 
of oscillation components, respectively.

Consequently, the synchrophasor Ẋ (k) consists of four 
parts, as expressed in (8): the positive and negative spectra 
of fundamental components vary at angular frequencies α 
and -α, and the positive and negative spectra of oscillation 
components vary at angular frequencies β and -β.

Ẋ (k)= Ẋ +
0 (k)+ Ẋ -

0 (k)+ Ẋ +
S (k)+ Ẋ -

S (k) (8)

Based on the MPE algorithm, Ẋ (k) can be transformed in‐
to a modal model consisting of four modes as shown in 
(9)-(11).

Ẋ (k)=∑
m = 1

4

Rm ewmk (9)
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ïï
ï
ï
ï

ï

ïï
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R1 =Q* ( f01)x0e-jϕ0

R2 =Q( f0-1)x0ejϕ0

R3 =Q* ( fsub1)xsube-jϕsub +Q( fsup-1)xsupejϕsup

R4 =Q( fsub-1)xsubejϕsub +Q* ( fsup1)xsupe-jϕsup

(10)

ì

í

î

ï
ïï
ï

ï
ïï
ï
ï
ï

w1 = jα

w2 =-jα

w3 = jβ

w4 =-jβ

(11)

where Rm and wm (m = 1234) are the amplitude and angu‐
lar frequency of mode m, respectively; and R1ew1 and R2ew2 
correspond to fundamental modes, and R3ew3 and R4ew4 corre‐
spond to oscillation modes.

Note that only k is a variable in (9) representing the fea‐
tures of angular frequency changes with time. As shown in 
Fig. 1, the difference between adjacent synchrophasors is sig‐

nificant, which is formed by the superposition of the angular 
frequency of four modes. It is difficult to extract the features 
of angular frequency directly.

B. Process of MPM

The basic idea of MPM is shown in Fig. 2. 

The first step is to construct a Hankel matrix Y based on 
synchrophasors as:

Y =

é

ë

ê

ê

ê

ê
êê
ê

ê

ê

ê ù

û

ú

ú

ú

ú
úú
ú

ú

ú

úẊ (1) Ẋ (2)  Ẋ (L + 1)

Ẋ (2) Ẋ (3)  Ẋ (L + 2)

  
Ẋ (K - L) Ẋ (K - L + 1)  Ẋ (K)

(L + 1)´(K - L)

(12)

where K is the number of synchrophasors; L + 1 is the num‐
ber of columns of the Hankel matrix; and Y can be rewritten 
as:

Y =Z1 RZ2 (13)

Z1 =

é

ë

ê

ê

ê
êê
ê

ê

ê ù

û

ú

ú

ú
úú
ú

ú

ú
1 1 1 1

ew1 ew2 ew3 ew4

   
ew1 (K - L - 1) ew2 (K - L - 1) ew3 (K - L - 1) ew4 (K - L - 1)

(14)
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Fig. 2.　Basic idea of MPM.
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Fig. 1.　Single-phase current synchrophasors.
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Z2 =

é

ë

ê

ê
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êê
ê

ê

ê

ê ù

û
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ú
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ú
úú
ú

ú

ú

ú1 ew1  ew1 L

1 ew2  ew2 L

1 ew3  ew3 L

1 ew4  ew4 L

(15)

R = diag(R1R2R3R4 ) (16)

where matrix Z1 represents the time continuity of each col‐
umn in Y; matrix Z2 represents the time continuity of each 
row in Y; and matrix R represents the amplitude of the four 
modes. Then, Y can be decomposed into two submatrices Y1 
and Y2 as:

ì
í
î

Y1 =Y (:1:L)=Z1 RZ2 (:1:L)

Y2 =Y (:2:L + 1)=Z1 RZ2 (:2:L + 1)
(17)

As illustrated in Fig. 2, Y1 denotes K - L phasors shifted 
forward by 1 to L - 1 steps, and each row and column in Y1 
has the features of temporal continuity, so does Y2 (see part 
①). As the difference between the K - L phasors correspond‐
ing to Y1 and Y2 is one step, each point in Y2 -Y1 denotes 
temporal continuity between two adjacent synchrophasors 
(see part ②), which is equal to the superposition of changes 
after the angular frequencies of each phasor in Y1 increase 
by w1, w2, w3, and w4, reflecting the features of the angular 
frequencies of the four modes (see part ③). Thus, by per‐
forming feature extraction to average the temporal continuity 
of each point in Y2 -Y1, the angular frequencies of the four 
modes can be obtained. Therefore, the matrix pencil Y2 - λY1 
can be constructed based on Y1 and Y2 as:

Y2 - λY1 =Z1 R(Z0 - λI)Z2 (:1:L) (18)

where Z0 = diag(ew1ew2ew3ew4 ); and I is a 4 ´ 4 unit matrix.
When λ is equal to any one of the exponential of the angu‐

lar frequency among the four modes, the order of Y2 - λY1 
can be reduced, and the characteristic polynomial of Y2 - λY1 
is equal to 0 as:

||Y2 - λY1 = 0 (19)

Finally, by solving (19), the generalized eigenvalues of 
Y2 - λY1, i.e., wm can be obtained, and Rm can be further cal‐
culated based on wm and (9).

III. IMPROVED SSO PARAMETER IDENTIFICATION 
BASED ON MPM 

A. Deficiencies in Solving Matrix Pencil

In [20], the angular frequencies of the four modes were 
calculated by solving the generalized eigenvalues of the ma‐
trix pencil. Since solving the eigenvalues transforms the ma‐
trix pencil into a set of nonlinear correlated basis vectors, 
each eigenvalue denotes the projected lengths of the matrix 
pencil on the basis vector, and the angular frequency conju‐
gation constraints of the two fundamental modes and two os‐
cillation modes as (11) are ignored. The previous derivation 
is based on an ideal model, so there is a one-to-one corre‐
spondence between the eigenvalues of the matrix pencil and 
the angular frequencies of the four modes. However, in prac‐
tical applications, in the presence of model errors, w1 and w2 
obtained by solving the eigenvalues of the matrix pencil do 

not meet the ±jα conjugate constraint, and w3 and w4 do not 
meet the ±jβ conjugate constraint either. Therefore, the accu‐
racy of α and β is difficult to guarantee and will cause addi‐
tional errors for parameter identification of each component 
in SSO.

Furthermore, as f0 is close to nominal frequency, the value 
of |Q* ( f01)| is quietly small, and even tends to zero when f0 
tends to 50 Hz, as shown in Fig. 3. The fundamental mode 
R1ew1 corresponding to Q* ( f01) is highly sensitive to model 
errors. Not only w1 and w2 do not meet the conjugate con‐
straint, but the calculation error of w1 is significant. It is dif‐
ficult to distinguish which eigenvalue corresponds to α, and 
the parameters of the fundamental component identified by α 
suffer from low accuracy.

The fitness of MPM is checked by the coefficient of deter‐
mination in [20], which reflects the difference between origi‐
nal synchrophasors and reconstructed synchrophasors based 
on the identified parameters. However, even if the fitness is 
successful, it just means the original and reconstructed syn‐
chrophasors are close to each other and does not mean α is 
solved accurately, because the amplitude of the fundamental 
mode R1ew1 tends to zero and has little effect on the overall 
synchrophasors.

B. Basic Idea of Improved SSO Parameter Identification 
Based on MPM

The basic idea of the proposed improved MPM is to estab‐
lish the angular frequency fitting equations corresponding to 
fundamental and oscillation frequencies based on the charac‐
teristic polynomial coefficients of the matrix pencil, in 
which the angular frequency conjugation constraints of the 
two fundamental modes and two oscillation modes are con‐
sidered, thus guaranteeing the accuracy of calculated α and β.

Based on the properties of the matrix characteristic poly‐
nomial, (19) can be derived as:

∑
i = 0

4

ai λ
i = 0 (20)

where ai is the characteristic polynomial coefficient of the 
matrix pencil.

Since ai can be obtained based on the eigenvalues λ of the 
matrix pencil, the characteristic polynomial coefficients are 

0

|Q*(f,1)|,|Q(f,�1)|

50 100 150-50-100-150

fsub

fsup

f0

Related to |Q*(f0,1)|; Related to |Q*(fsub,1)|; Related to |Q*(fsup,1)|

Related to |Q(f0,�1)|; Related to |Q(fsub,�1)|; Related to |Q(fsup,�1)|

Frequency

 (Hz)

|Q(f,�1)|
|Q*(f,1)|

Fig. 3.　|Q* ( f1)| and |Q( f - 1)| varing with frequency.
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equivalent to eigenvalues. In the presence of model errors, ai 
calculated by λ suffers from calculation errors; the value on 
the left side of (20) is no longer zero when the correct α or 
β is substituted, and residuals appear instead. By searching α 
or β that minimizes the residuals, α or β can be solved exact‐
ly.

Therefore, after constructing the matrix pencil, the charac‐
teristic polynomial coefficients of the matrix pencil are calcu‐
lated first, and then the fitting equations of α and β are estab‐
lished based on the characteristic polynomial coefficients of 
the matrix pencil as:

é

ë

ê

ê

ê

ê
êê
ê

ê

ê

ê ù

û

ú

ú

ú

ú
úú
ú

ú

ú

ú∑
i = 0

4

ai e
jαi

∑
i = 0

4

ai e
-jαi

+
é

ë
ê
êê
ê ù

û
ú
úú
úε(α)

-ε(α)
= é

ë
êêêê ù

û
úúúú0

0
(21)
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ú∑
i = 0

4

ai e
jβi

∑
i = 0

4

ai e
-jβi

+
é

ë
ê
êê
ê ù

û
ú
úú
úε(β)

-ε(β)
= é

ë
êêêê ù

û
úúúú0

0
(22)

where ε(α), ε(-α), ε(β), and ε(-β) are the residuals of the fit‐
ting equations.

On the one hand, the fitting equations of α and β replace 
the eigenvalues of the matrix pencil with the characteristic 
polynomial coefficients, which can approximately character‐
ize the features of the angular frequencies of the four modes. 
On the other hand, the conjugate constraints of ±jα and ±jβ 
are considered. Solving the minimum residuals correspond‐
ing to α and β will eliminate α and β with more significant 
errors. The obtained α and β can satisfy the conjugate con‐
straints of ±jα and ±jβ, and they are closest to the eigenval‐
ues of the matrix pencil.

The numerical solution of (21) and (22) can be obtained 
as α and β by minimizing the residuals  ε(α)

2
+  ε(-α)

2
 

and  ε(β)
2
+  ε(-β)

2
, respectively. Then, the amplitude of 

each mode Rm can be obtained based on (9), and the parame‐
ters of the fundamental, subsynchronous, and supersynchro‐
nous components can be obtained based on (10).

C. Angle Frequency Fitting Equations Based on Multi-order 
Matrix Pencil

In the existing studies, Hankel matrix Y is decomposed in‐
to two submatrices to construct the matrix pencil, which con‐
tains model errors corresponding to K phasors in solving the 
eigenvalues of the matrix pencil. The multi-order matrix pen‐
cil is proposed to reduce the impact of the randomness of 
model errors in this subsection. Y is decomposed into multi‐
ple submatrices so that the matrix pencil can be extended to 
multiple orders. Based on the mean value of the characteris‐
tic polynomial coefficients of the multi-order matrix pencil, 
the angle frequency fitting equations of α and β can be con‐
structed. Hence, the model errors are smoothed to further im‐
prove the accuracy of α and β.

First, Y is decomposed into multiple submatrices as:

Yp =

é

ë

ê

ê

ê

ê

ê
êê
ê

ê

ê

ê

ê ù

û

ú

ú

ú

ú

ú
úú
ú

ú

ú

ú

úẊ (p) Ẋ (p + 1)  Ẋ (l + p)

Ẋ (p + 1) Ẋ (p + 2)  Ẋ (l + p + 1)

  

Ẋ (K -P + p - l) Ẋ (K -P + p - l + 1)  Ẋ (K -P + p)

(23)

where l + 1 is the number of columns of the submatrix Yp 
and l < L; and P is the number of submatrices, p = 12...P.

The multi-order matrix pencil is constructed as:

Yp + 1 - λ
(p)Yp (24)

where the superscript (p) indicates the pth matrix pencil, p =
12P - 1.

Multiple sets of characteristic polynomial equations can 
be obtained by substituting λ(1)-λ(p - 1) into (20). Since α and β 
are solutions of all characteristic polynomial equations, by 
superimposing these characteristic equations directly, the an‐
gle frequency fitting equations of α and β based on the 
multi-order matrix pencil can be constructed as:
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The solutions of (25) and (26) are the same as that of (21) 
and (22), respectively.

D. Data Window

For identification of SSO based on the synchrophasors, 
the shorter the data window is, the less low-frequency infor‐
mation in the synchrophasors is, and it is more difficult to 
identify SSO when the subsynchronous frequency fsub is 
close to the fundamental frequency f0.

Since the DFT-based algorithm performs an approximation 
calculation in the process of identification, the errors of iden‐
tification results are still significant when fsub is close to f0, 
even with a 2-s data window [16], [23]. On the contrary, the 
MPM does not perform any approximation calculation in the 
modeling process and can accurately identify SSO when fsub 
is below 45 Hz with a shorter data window.

The existing studies of MPM ignore the angular frequency 
conjugation constraints of the two fundamental modes and 
two oscillation modes when solving the eigenvalues of the 
matrix pencil directly, so it has to use a 1-s data window to 
ensure the accuracy of parameter identification. It is precise 
because the proposed improved MPM compensates for this 
deficiency that the advantage of not performing the approxi‐
mation calculation of the MPM can be fully utilized, and the 
data window for identifying SSO can be shortened to 200 
ms.
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IV. IDENTIFICATION AND RECOVERY OF BAD DATA 

A. Noise Reduction

Noise is one of the factors leading to model errors and 
will affect the accuracy of parameter identification based on 
MPM. Before implementing the MPM, singular value decom‐
position (SVD) based rank reduction is usually applied to 
the Hankel matrix Y [20] as:

Y =UDV T (27)

where D is a diagonal matrix with singular values of Y; and 
U and V are two unitary matrices. As the first four singular 
values in D correspond to each of the four modes, by inter‐
cepting the first four singular values as D' =D(1:41:4) and 
the corresponding singular phase quantities as U' =U(:1:4) 
and V' =V (:1:4), the noise that is less significant than the 
four modes can be removed. In turn, the noise reduction is 
realized, and the Hankel matrix after noise reduction Y' is 
given as:

Y' =U'D'V'T (28)

As only the first four singular values are retained after the 
noise reduction, the larger the dimension of the matrix D is, 
the better the noise reduction performance is. For a fixed 
number of synchrophasors, the dimension of D is the largest 
when the Hankel matrix is a square matrix, so the Hankel 
matrix will be constructed as a square matrix in this paper to 
maximize the noise elimination.

The reason why SVD can still retain the features of four 
modes despite the error of w1 is significant is that the ampli‐
tude corresponding to w1 is small enough, thus weakening 
the effect of w1 on the whole fundamental mode R1ew1. As 
long as the noise is less significant to the four modes, noise 
can be reduced to some extent.

B. Identification of Bad Data

Although noise will cause deviations in all of the synchro‐
phasors, and bad data will cause deviation in a single data 
point, the effects of noise and bad data on the performance 
of the MPM are not substantially different, as these devia‐
tions are averaged to each row and column of the Hankel 
matrix during the feature extraction process. When the bad 
data deviates seriously, the temporal continuity of synchro‐
phasors in the Hankel matrix may be broken. Hence, the pa‐
rameters obtained by the MPM will be totally wrong, and it 
is difficult to eliminate the impact of bad data through noise 
reduction.

The process of noise reduction with single bad data is il‐
lustrated in Fig. 4. As the SVD will average the deviations 
of bad data to each row and column of the Hankel matrix, 
the singular values are all affected by bad data. Since only 
the temporal continuity at the position of bad data is broken, 
while the other phasors are not, the first four singular values 
can still retain the features of the four modes. After the rank 
reduction, the characteristics of bad data are weakened, and 
then the features of the four modes together with the weak‐
ened bad data are reconstructed into Y', so the breaking ex‐
tent of temporal continuity in each row and column of Y' is 
substantially reduced. After differentiating Y and Y', the dif‐

ference of the phasors where the temporal continuity is most 
severely broken is most significant, i.e., the bad data. There‐
fore, to evaluate the significance of bad data, the ratio of the 
maximum difference to the average difference of the syn‐
chrophasors before and after noise reduction is calculated in 
this paper.

By defining |E| = |Y -Y' |, the points in E are as:

εij = || Ẋij - Ẋ 'ij  ẊijÎY  Ẋ 'ijÎY' (29)

where E denotes the difference of Y and Y'; εij is the point 
of the ith row and j th column in E; and Ẋij and Ẋ 'ij are the 
points in Y and Y', respectively.

The difference of the k th synchrophasors before and after 
taking the noise reduction ε(k) is calculated as:

ε(k)= ε̄ij    i + j = k + 1 (30)

Then, the ratio of the maximum difference to the average 
difference of the synchrophasors before and after taking 
noise reduction r is:

r =
max(ε(k))
1
K∑k = 1

K

ε(k) (31)

The value of r reflects the prominence of the difference in 
bad data compared with the average difference. Hence, the 
significance of bad data can be evaluated by comparing the 
calculated r with a threshold value. When the calculated r is 
less than the threshold value, the significance of bad data is 
relatively low, and the impact of bad data is minimal, which 
can be treated as noise. The calculated error of parameter 
identification can be decreased to an acceptable range by 
noise reduction. In contrast, when the calculated r is greater 
than the threshold value, the difference in bad data is signifi‐
cant enough to be identified by locating max(ε(k)). In addi‐
tion, the presence of bad data may yield obvious errors for 
parameter identification, the effect of which is difficult to 
eliminate by noise reduction, so the recovery of the bad data 
is necessary.

Note that the threshold value of r proposed in this paper 
is not an indicator to distinguish bad data and non-bad data, 
but a robustness indicator to reduce the impact of bad data 
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Fig. 4.　Process of noise reduction with single bad data.
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on the performance of the MPM. From this perspective, the 
threshold value does not need to be solved precisely, while it 
is necessary to ensure that the impact of bad data is minimal 
enough when the calculated r is close to the threshold value. 
Although the misclassification or omission of bad data may 
occur under these circumstances, performing either noise re‐
duction or the recovery of bad data can eliminate the impact 
of bad data.

C. Recovery of Bad Data

The basic idea of the recovery of bad data is to correct 
bad data by performing iterative SVD-based rank reduction 
of Y, and replacing the points related to bad data in Y with 
the points related to bad data in Y' until the difference of 
bad data satisfies the recovery accuracy criterion. The pro‐
cess of the recovery of bad data is as follows.

Step 1: begin with the nth SVD-based rank reduction of ex‐
isting Hankel matrix Y(n), and obtain reconstruction matrix 
Y ′(n), where the subscript (n) indicates the number of itera‐
tions, and set n = 1.

Step 2: calculate the difference between Y(n) and Y ′(n), ob‐
tain εij (n), and then calculate the difference of bad data 
ε(kerror )(n) based on εij (n) as:

ε(kerror )(n)= ε̄ij(n)    i + j = kerror + 1 (32)

where kerror is the position of bad data, and it is obtained pre‐
viously as introduced in Section IV-B.

Step 3: determine if ε(kerror )(n) meets the recovery accuracy 
criterion. If ε(kerror )(n) is less than the recovery accuracy crite‐
rion, the current Y ′(n) is sufficiently accurate, and the recovery 
of bad data is unnecessary. If not, obtain the position of the 
point with the minimum difference of bad data as 
min(εij(n)i + j = kerror + 1), and then search the point Ẋ 'ijmin (n) cor‐

responding to the bad data with the minimum difference in 
the same position from Y ′(n). Set the existing Hankel matrix 
in the next iteration as Y(n+ 1)=Y(n), and replace the point cor‐
responding to bad data in Y(n+ 1) with Ẋ 'ijmin (n) as:

Ẋij(n+ 1)    i + j = kerror + 1 = Ẋ 'ijmin (n) (33)

Finally, continue to the next iteration with n = n + 1, until 
ε(kerror )(n) satisfies the recovery accuracy criterion.

D. Missing Data

Actual measurements may have missing data in addition 
to bad data. Since the synchrophasors provided by PMU 
have unified time stamps, if the synchrophasor corresponds 
to any time is missing, the position of missing data can be 
determined based on the unified time stamps.

After determining the position of missing data, when as‐
signing an extremely large or small value compared to other 
synchrophasors to the position of missing data, it is equiva‐
lent to the presence of bad data in the synchrophasors and 
the recovery of the missing data can be addressed based on 
the identification and recovery of the bad data, as shown in 
Fig. 4.

V. VERIFICATION 

The overall characteristics of the proposed improved 
MPM is verified with synthetic and simulated PMU data in 

Section V-A and V-B, respectively. Meanwhile, the perfor‐
mance of the proposed identification and recovery of bad da‐
ta are verified based on the synthetic PMU data in Section 
V-C.

A. Verification I: Synthetic PMU Data

The synthetic PMU data are modeled as (1), and the fun‐
damental frequency f0 is set as [49 49.5 49.7 50 50.5 
5151.5]Hz. Other parameters of fundamental, subsynchro‐
nous, and supersynchronous components are set as (x0ϕ0 )=
(100π/3), ( fsubxsubϕsub )= (2020π/2), and ( fsupxsupϕsup )=
(8010π/4), respectively.

The sampling frequency of the instantaneous data is 1.6 
kHz, and the reporting rate of PMU is 100 Hz. Performing 
the DFT algorithm on the instantaneous data can obtain the 
synthetic PMU data. Then, the improved SSO parameter 
identification based on MPM is implemented with a 200-ms 
data window, i.e., 21 synchrophasor data.

The primary research [23] indicated that identification ac‐
curacy is most affected by f0 and fsub. Therefore, two sets of 
tests are conducted in this subsection with fsub varies in the 
range of [545]Hz, and xsub varies in the range of [5100], 
with one parameter changing under various conditions while 
other parameters keep the above settings.

As the measurement signal to noise ratio (SNR) of PMUs 
is around 45 dB [16], to study the characteristics of identifi‐
cation accuracy under noise interference, the noise condi‐
tions with 40 dB SNR and 30 dB SNR are considered. The 
function of SNR is SNR= 10lg((x2

0 + x2
sub + x2

sup )/(2σ2 )), and σ 
is variance of noise. Furthermore, the results of the existing 
MPM [20] and the proposed improved MPM are compared. 
Since the data window length in [20] is 1 s, a 200-ms data 
window and a 1-s data window are used on the existing 
MPM for further comparison. The relative errors of both the 
improved and existing MPMs under ideal and noisy condi‐
tions are shown in Table I, in which “IMPM” represent the 
proposed improved MPM.
1) Relative Errors Under Ideal Conditions

The relative errors of parameters of each component in 
SSO obtained by the improved MPM are on the order of 
10-16 - 10-13, which is closer to the accuracy of the existing 
MPM with the 1-s data window and superior to that of the 
existing MPM with the 200-ms data window.
2) Relative Errors Under Noise Conditions

Whether using a 200-ms data window or a 1-s data win‐
dow, the relative errors of x0 and ϕ0 obtained by the existing 
MPM are approximately 10%, and the main reason is stated 
in Section III-A. As the conjugate constraints of ±jα are con‐
sidered in the fitting equations of α, the relative errors of the 
fundamental components obtained by the improved MPM 
are below the order of 10-2.

According to the theory of spectral analysis, the shorter 
the data window is, the lower the spectrum resolution ratio 
is, and the interaction between the fundamental component 
and the oscillation component is severe. Therefore, under the 
noise condition, corrupted by the low identification accuracy 
of the fundamental components, the relative error of the os‐
cillation components obtained by the existing MPM with the 
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200-ms data window is significant, among which the relative 
error of the amplitude and phase reaches 15% and 40%, re‐
spectively. In contrast, as the 1-s data window is long 
enough, the interaction between the fundamental component 
and the oscillation component is insignificant, and the rela‐
tive error of the oscillation components obtained by the exist‐

ing MPM with the 1-s data window is approximately 5%. 
Since the improved MPM can identify the fundamental com‐
ponent parameters with high accuracy, the relative error of 
the oscillation components obtained by the improved MPM 
with the 200-ms data window is still below 5%.

Consequently, compared with the existing MPM, the pro‐
posed improved MPM can accurately identify the parameters 
for the fundamental, subsynchronous, and supersynchronous 
components with a 200-ms data window under both frequen‐
cy-varying conditions and noisy conditions, which signifi‐
cantly improves the real-time performance.

B. Verification II: Simulated PMU Data and Actual Mea‐
sured PMU Data

To further verify the effectiveness of the proposed im‐
proved MPM, cases with both simulated PMU data and actu‐
al measured PMU data are conducted. The simulated PMU 
data are generated in the PSCAD platform based on the mod‐
el in [1], as shown in Fig. 5, and the details of the model 
and the simulation parameters are the same with those in 
[1]. The simulation system is wind farm with doubly-fed in‐
duction generator (DFIG) connected to series-compensated 
system. The system operates in a stable state by setting suit‐
able parameters, and the SSO occurs as the wind speed de‐
creases. The actual measured PMU data come from [23], 
which are recorded in an actual SSO incident that occurred 
in the North China power grid. The current instantaneous da‐
ta and synchrophasors are illustrated in Fig. 6 and Fig. 7 for 
simulated PMU data and actual measured PMU data, respec‐
tively.

The simulated PMU data with a 6-s data window are ana‐
lyzed as in Fig. 6. In order to ensure the reliability of the in‐
terpolated DFT as a reference and make a reasonable com‐
parison to verify the accuracy of the proposed improved 
MPM, the data window is selected at a stabilization stage of 
SSO. The actual measured PMU data with a 10-s data win‐
dow are analyzed as in Fig. 7, which is at a fast-changing 
stage of SSO. The proposed improved MPM is performed 
on a 200-ms data window. Also, the existing MPM [20] with 
1-s data window and the interpolated DFT [16] with 2-s data 
window are employed for comparison and reference, respec‐
tively. The identified results of simulated PMU data case 
and actual measured PMU data case are illustrated in Fig. 8 
and Fig. 9, respectively.

TABLE I
RELATIVE ERRORS OF IDENTIFICATION BASED ON IMPROVED MPM AND EXISTING MPM UNDER IDEAL AND NOISY CONDITIONS

Test set

fsub ∈[5, 55]Hz

xsub ∈[5, 100]

Method

IMPM (200 ms)

MPM (200 ms)

MPM (1 s)

IMPM (200 ms)

MPM (200 ms)

MPM (1 s)

SNR 
(dB)

¥
40

30

¥
40

30

¥
40

30

¥
40

30

¥
40

30

¥
40

30

lg
|f ̂0 - f0|

f0

-16

-3

-3

-10

-2

-2

-14

-3

-3

-16

-3

-3

-13

-2

-2

-15

-3

-2

lg
|x̂0 - x0|

x0

-14

-2

-2

-10

-1

-1

-12

-1

-1

-15

-2

-2

-12

-1

-1

-13

-1

-1

lg
|f ̂sub - fsub|

fsub

-15.0

-3.0

-2.0

-12.0

-2.0

-1.3

-15.0

-4.0

-3.0

-16.0

-3.0

-3.0

-14.0

-3.0

-3.0

-15.0

-4.0

-4.0

lg
|x̂sub - xsub|

xsub

-13.0

-2.0

-1.3

-10.0

-1.0

-1.0

-13.0

-2.0

-1.3

-14.0

-2.0

-1.3

-12

-1.0

-1.0

-14.0

-2.0

-1.3

lg
|x̂sup - xsup|

xsup

-13.0

-2.0

-1.3

-9.0

-1.0

-1.0

-13.0

-2.0

-1.3

-14.0

-2.0

-1.3

-12.0

-1.0

-1.0

-13.0

-2.0

-1.3

lg
|ϕ̂sup - ϕsup|

ϕsup

-13.0

-2.0

-1.3

-10.0

-1.3

-1.0

-13.0

-2.0

-1.3

-14.0

-2.0

-2.0

-13

-1.3

-1.3

-14.0

-2.0

-2.0

lg
|x̂sup - xsup|

xsup

-14.0

-1.3

-1.3

-10.0

-1.0

-0.5

-13.0

-1.3

-1.3

-14.0

-2.0

-2.0

-12.0

-1.3

-1.3

-13.0

-2.0

-2.0

Note: ① the bolded number means the relative errors are beyond 10-1.3 » 5%. ② SNR =¥ means the ideal condition. ③ The relative errors of |ϕ̂0 - ϕ0|/ϕ0 

and |f ̂sup - fsup|/fsup are similar to |x̂0 - x0|/x0 and |f ̂sub - fsub|/fsub, respectively, so both of them are not listed here.
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Fig. 5.　Diagram of simulation model.
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1)　Fundamental Component
In the simulated PMU data case, the results of f0 obtained 

by the improved MPM fluctuate at approximately 49.47 Hz 
to 49.57 Hz, and those of interpolated DFT are around 49.50 
Hz. However, f0 in the 5th calculation of the existing MPM is 
49.90 Hz, which deviates from the improved MPM and the 
interpolated DFT. The results of x0 obtained by the improved 
MPM are similar to those of the interpolated DFT. Affected 
by the deviation of f0, the results of x0 in the 5th calculation 
of the existing MPM are inaccurate. In the actual measured 
PMU data case, the variation ranges of f0 and x0 obtained by 
the improved MPM are similar to those of the existing 
MPM and interpolated DFT but with more details. There‐
fore, compared with the existing MPM, the proposed im‐

proved MPM can identify the frequency and amplitude of 
fundamental component more accurately.
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Fig. 6.　 Instantaneous data and synchrophasors for simulated PMU data 
case. (a) Instantaneous data. (b) Amplitude of synchrophasor.
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Fig. 7.　 Instantaneous data and synchrophasors for actual measured PMU 
data case. (a) Instantaneous data. (b) Amplitude of synchrophasor.
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2)　Oscillation Component
The results of the supersynchronous component have simi‐

lar characteristics to the subsynchronous one, so only the re‐
sults of the subsynchronous component are analyzed here. In 
the simulated PMU data case, the results of fsub obtained by 
the improved MPM fluctuate at approximately 8.13 Hz to 
8.25 Hz, and those obtained by the existing MPM and inter‐
polated DFT are around 8.19 Hz; the results of xsub obtained 
by the improved MPM fluctuate at approximately 2.95 p.u. 
to 3.04 p. u., and those obtained by the existing MPM and 
IDF are around 3.0 p.u.. The proposed improved MPM can 
identify the frequency and amplitude of oscillation compo‐
nent accurately.

In the actual measured PMU data case, the results of fsub 
obtained by the improved MPM fluctuate between approxi‐
mately 8.14 Hz to 8.52 Hz, and those obtained by the exist‐
ing MPM and interpolated DFT fluctuate around 8.24 Hz to 
8.28 Hz; the variation range of the results of xsub obtained by 
the improved MPM are similar to those obtained by the ex‐
isting MPM and interpolated DFT, but fsub and xsub obtained 
by improved MPM change rapidly with time. Since the iden‐
tified results of the existing MPM and interpolated DFT are 
the average of dynamics in 1-s and 2-s data windows and 
cannot reflect the actual characteristics of SSO at a particu‐
lar moment, especially during the fast-changing stage of 
SSO, owing to the 200-ms data window, the improved MPM 
can intuitively monitor the dynamics of the frequency and 
amplitude of each component in the process of SSO.

C. Verification III: Performance of Identification and Recov‐
ery of Bad Data

This subsection verifies the performance of identification 
and recovery of bad data with synthetic PMU data. The pa‐
rameters of fundamental, subsynchronous, and supersynchro‐
nous components are ( f0x0ϕ0 )= (5050π/3), ( fsubxsubϕsub )=
(10100π/6), and ( fsupxsupϕsup )= (90100π/4), respectively; 
the other parameters are the same as those in Section V-A; 
and the noise with 45 dB SNR is added.

As the improved MPM is performed on 200-ms data win‐
dows and contains 21 synchrophasor data for each calcula‐
tion, the constructed Hankel matrix is an 11 ´ 11 symmetric 
matrix in this paper, and the 4th, 7th, and 10th points of the 
synchrophasor are selected as bad data to perform three tests.

To analyze the effect of bad data, the total vector error 
(TVE) εTVE defined by IEEE standard [24] is used to gener‐
ate multiple bad data with εTVE ranging from 0% to 500% as:

εTVE =



 


Ẋ̂ - Ẋ

2

 Ẋ
2

´ 100% (34)

where Ẋ̂ and Ẋ are the bad data and initial phasor data, re‐
spectively.
1)　Ratio r

The ratio of the maximum difference to the average differ‐
ence r with bad data under different εTVE is illustrated in Fig. 
10. Note that when bad data is at the 10th point, as the εTVE 
of bad data increases, r gradually increases from approxi‐
mately 1 to 5. Meanwhile, the trend of r at the 4th and 7th 

points are similar to that of at the 10th point. Only for points 
at different locations, due to the fact that the magnitudes of 
the initial phase data are different, r changes at different 
rates. Thus, the value of r can reflect the significance of bad 
data.

2)　Identification of Bad Data
The position of bad data identified by locating max(ε(k)) 

with bad data under different εTVE is also shown in Fig. 10. 
For the test with bad data at the 4th point, bad data can be 
identified when εTVE is greater than 2.2%, and the corre‐
sponding value of r is approximately 2.0. For the test with 
bad data at the 7th point, bad data can be identified when 
εTVE is greater than 10%, and the corresponding value of r is 
approximately 2.3. Also, for the test with bad data at the 10th 
point, bad data can be identified when εTVE is greater than 
1.8%, and the corresponding value of r is approximately 1.9. 
It is feasible to evaluate the significance of bad data by com‐
paring the calculated r with a threshold value, and 2.5 can 
be chosen as the threshold value by integrating the result of 
the three tests.
3)　Recovery of Bad Data

The maximum relative errors of the identified results 
based on the improved MPM before and after the recovery 
of bad data are illustrated in Fig. 11. For the three tests, be‐
fore the recovery of bad data, the relative errors are below 
4% when r is less than the threshold value of 2.5. In con‐
trast, the relative error reaches more than 400% when r is 
much greater than 2.5. Then, the recovery of bad data is im‐
plemented for those whose r is more significant than 2.5. 
The recovery accuracy criterion is set to be r < 2 or 
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Fig. 10.　Value of r and identified position of bad data under different εTVE. 
(a) εTVEÎ[010%]. (b) εTVEÎ[10%500%].
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max(ε(k))< 0.5 for the balance between the recovery accura‐
cy and the convergence of algorithms. After the recovery of 
bad data, the relative errors are all below 5%, which demon‐
strates that the threshold value of 2.5 is reasonable in the 
above three tests, and the bad data can be solved by noise re‐
duction when r is smaller than the threshold value and can 
be identified and recovered when r is greater than the thresh‐
old value.

The characteristics of r may vary slightly in other scenari‐
os such as different parameters of PMU data or different po‐
sitions of bad data, in which misclassification or omission of 
bad data may occur when r is close to the threshold value. 
However, as stated in Section V-B, the threshold value does 
not need to be solved exactly. The threshold value of 2.5 is 
robust enough to ensure that the bad data can be solved by 
either noise reduction or recovery when r is close to 2.5 and 
thus can also be utilized in other scenarios.

Consequently, the proposed identification and recovery of 
bad data can significantly reduce the impact of bad data and 
guarantee the performance of the MPM effectively.

VI. CONCLUSION 

An improved SSO parameter identification based on 
MPM is proposed by utilizing the high computing efficiency 
and noise-resilient features of MPM to realize the dynamic 
monitoring of SSO. The MPM is enhanced by the angular 
frequency fitting equations based on the characteristic poly‐
nomial coefficients of the matrix pencil to ensure the accura‐
cy of the identified parameters, since the existing eigenvalue 
estimation of MPM ignores the angular frequency conjuga‐

tion constraints of the two fundamental modes and two oscil‐
lation modes. Then, the MPM is enhanced by the identifica‐
tion and recovery of bad data by utilizing the difference in 
temporal continuity of the synchrophasors before and after 
noise reduction. The proposed improved MPM is verified 
with synthetic, simulated, and actual measured PMU data. 
Compared with the existing MPM, the improved MPM 
achieves better accuracy for parameter identification of fun‐
damental, subsynchronous, and supersynchronous compo‐
nents with a 200-ms data window. The improvements in the 
identification and recovery of bad data can significantly re‐
duce the impact of bad data, thus enhancing the practicabili‐
ty of MPM.
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