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Abstract——A three-phase to single-phase modular multilevel 
converter based advanced co-phase traction power supply 
(MMC-ACTPS) system is an effective structure to address the 
concerns of phase splitting and poor power quality of the con‐
ventional electrified railway. Due to the large number of MMC-
ACTPS system modules, I/O resources and computing speed 
have high requirements on processors. Moreover, the module ca‐
pacitor balance is challenging because the sorting time is too 
long when the traditional sorting algorithm for voltage balance 
is used. To solve the above issues, a digital implementation 
scheme of flexible power control strategy for three-phase to sin‐
gle-phase MMC-ACTPS system based on field programmable 
gate array (FPGA), which has sufficient I/O resources, has been 
proposed. Due to the parallel execution characteristics of the 
FPGA, the execution time of the controller and the modulator 
can be greatly reduced compared with a digital signal processor 
(DSP) + FPGA or DSpace. In addition, an improved sorting al‐
gorithm is proposed to reduce the sorting time and the imple‐
mentation steps are analyzed. Finally, simulation and experi‐
mental results are presented to demonstrate the effectiveness 
and correctness of the proposed control strategy.

Index Terms——Advanced co-phase power traction supply 
(ACTPS) system, modular multilevel converter (MMC), digital 
implementation, flexible power transmission, circulating current 
mitigation.

I. INTRODUCTION 

MULTILEVEL converters are worthy assets in the area 
for the power transmission of electrified railway. Tra‐

ditional traction power supply system usually works in the 
heterogeneous power supply mode with multiple neutral sec‐
tions (NSs), with respect to the substation (SS), as shown in 
Fig. 1(a) [1]. Some critical issues are resulted, such as pow‐
er interruption, voltage sag, distortion, unbalance, reactive 
power, and harmonic [2]-[4]. To address the aforementioned 
issue hereinbefore, an active power compensator (APC) [5], 
[6] is applied as shown in Fig. 1(b). However, the voltage 
frequency, phase, and amplitude of two SSs in this system 
are uncontrollable. Hence, NSs are not totally canceled and 
the terminals of two adjacent catenaries could not be con‐
nected directly.

In order to connect through all catenary wires in a single-
phase traction catenary grid, an advanced co-phase traction 
power supply (ACTPS) system based on three-phase to sin‐
gle-phase converters is introduced [7], [8], as shown in Fig. 1
(c). In it, power electronics technology based SS No. 3 and 
SS No. 4 are used to replace the traditional traction trans‐
formers, then to flexibly control voltage and power flow. 
Any NS in the traction grid can be removed along with com‐
pensating reactive power and harmonics.

The voltage of a three-phase grid is 110 kV or 220 kV, 
and the voltage of a single-phase traction grid is 25 kV. The 
voltage levels are too high, which makes the two-level con‐
verter unsuitable. Several modular multilevel converter based 
ACTPS (MMC-ACTPS) systems are proposed [9]-[12]. This 
kind of system is famous for its superior performance, such 
as its simple structure, easy control, and lower switching 
loss. What’s more, switching devices in each bridge arm 
can output more voltage levels under different switching 
combinations [13] - [15]. In the ACTPS system, the traction 
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loads need to obtain active power and reactive power from 
the three-phase grid. However, this will reduce the power 
factor of the three-phase grid. To address this issue, [16] and 
[17] propose a transient current control strategy to ensure 
the running of the converter in unit power factor mode. This 
strategy cannot provide reactive power to the traction load. 

Based on this strategy, in order to flexibly decouple the ac‐
tive and reactive power, a nonlinear control strategy is pre‐
sented in [17]. But for the nonlinear control, it is hard to im‐
plement in the digital controller. Hence, exploring a flexible 
power transmission control strategy is crucial.

The existence of circulating current is an another problem 
in the MMC topology. The AC circulating current increases 
the switching device losses and the leg current of an MMC 
is distorted. Regarding the AC circulating current mitigation, 
a voltage balance model based strategy and a virtual imped‐
ance sliding mode based strategy [18] - [20] are proposed to 
mitigate AC circulating current for DC-DC MMC. Further‐
more, a space vector modulation based strategy [21] is pro‐
posed to mitigate the circulating current and achieve the opti‐
mized power transmission as well. Strategies hereinbefore in‐
volve massive complex nonlinear calculations, which are dif‐
ficult in digital implementation. In addition, [22] introduces 
a nearest level modulation based strategy to address this con‐
cern. But this strategy is only applicable for the application 
with large numbers of sub-modules (SMs). The quasi propor‐
tional-resonant (PR) controller can accurately suppress the 
circulation at a specific frequency, but it affects the stability 
of the system [23].

Although the MMC-ACTPS system can cancel all NSs, 
its application has been restricted. On the one hand, since 
the number of SMs is often dozens or even hundreds under 
high voltage [24], [25], the traditional sorting algorithm for 
capacitor voltage balance takes too long time to compute, re‐
sulting in poor control effect and even system instability. 
The traditional sorting algorithm for capacitor voltage bal‐
ance is to compare the SM capacitor voltage of each bridge 
arm. This algorithm compares two capacitor voltages at a 
time until all capacitor voltages are compared [26], [27]. On 
the other hand, the control algorithm is digitally implement‐
ed with digital signal processor + field programmable gate 
array (DSP + FPGA) in most literature such as [10], [28] -

[32]. DSPs have limitations regarding the concurrence of op‐
erations, i. e., computational simultaneity and parallelism of 
the calculations. The communication between DSP and FP‐
GA is required, which increases the system complexity and 
decreases the reliability. DSPACE is adopted to implement 
control algorithms in [33]- [36]. This is a simulation system 
with high cost and poor practicability. Instead, in a full FP‐
GA implementation, the parallelism of operations permits to 
perform the calculations of the control technique with faster 
processing speed. FPGA is used as the only processor in the 
MMC system [11], but the program design is not analyzed.

From the above discussions, the power control and circu‐
lating current suppression are two important issues for MMC 
systems. In addition, an algorithm to reduce the sorting time 
and a digital implementation scheme based on FPGA which 
can reduce the operation time are required. To address these 
issues, the main contributions of this paper are enumerated 
as follows.

1) A flexible power transmission control strategy and a 
negative sequence based AC frequency-double circulating 
current mitigation scheme are designed to effectively control 
power and circulating current.

2) A digital implementation scheme based on the FPGA of 
the above-mentioned control algorithm is proposed, which re‐
duces the resource occupation and operation time. Wherein 
the folding structure is used to reduce the number of adders 
and multipliers.

3) An improved sorting algorithm is proposed, which can 
reduce the sorting time especially when there are many SMs 
and can be easily extended to N SMs.

The rest of this paper is organized as follows. The topolo‐
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Fig. 1.　Traction power supply systems. (a) Traditional traction power supply system. (b) Co-phase traction power supply system. (c) MMC-ACTPS sys‐
tem. (d) Circuit schematic of MMC-ACTPS system.
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gies and control strategy of three-phase and single-phase 
MMCs are analyzed in Section II. Then, the negative se‐
quence based AC frequency-double circulating current miti‐
gation scheme and SM capacitor voltage balancing are ana‐
lyzed in Section III. A digital implementation scheme based 
on FPGA and an improved sorting algorithm is proposed in 
Section IV. Simulation and experimental results are exhibited 
in Section V. Finally, Section VI concludes this paper.

II. TOPOLOGIES AND CONTROL STRATEGIES OF THREE-
PHASE AND SINGLE-PHASE MMCS

The circuit schematic of MMC-ACTPS system is shown 
in Fig. 1(d). It consists of a three-phase grid, a multilevel 
rectifier, a multilevel inverter, and a traction network, where 
usφ (φ = abc) denotes three-phase voltages; us is the single-
phase voltage; is is the single-phase current; Lsφ (φ = abc) 
denotes the three-phase filtering inductors; Rsφ (φ = abc) de‐
notes the three-phase line resistors; Lo is the arm filter induc‐
tor; Rs is the single-phase line resistor; L1 and L2 are the sin‐
gle-phase filtering inductors; C2 is the single-phase filtering 
capacitor; Utdc is the intermediate DC capacitor voltage; and 
itdc is the intermediate DC current. The LC filter which in‐
cludes an inductor L and a capacitor C on the DC side is 
used to filter the secondary ripple of the intermediate DC ca‐
pacitor C1 to avoid the impact of the secondary ripple on the 
three-phase and single-phase power grids. To facilitate the 
analysis, four half-bridge SMs are installed in each arm of 
one phase leg. SMφ1 to SMφ4 (φ = abc) are in the upper 
arm; and SMφ5 to SMφ8 are in the lower arm. Each SM is 
comprised of two switching devices Sφx1, Sφx2 (x = 128) 
and one capacitor. uCφx denotes the voltages of eight capacitors.

To each SM, there are two types of two-level voltage out‐
put.

1) Sφx1 = 1 and Sφx2 = 0, SM is on.
2) Sφx1 = 0 and Sφx2 = 1, SM is off.
To guarantee the basic operation of the three-phase MMC, 

the DC-side voltage should be controlled to be stable by pro‐
viding the active power. In addition, the reactive power 
should be controlled to be zero in order to block any reac‐
tive power injected back into the three-phase grid and ensure 
that the ACTPS system can be operated under the unity pow‐
er factor condition. The equivalent circuit and the control 
block diagram are shown in Fig. 2 [37]. This part of control 
is relatively mature and the specific derivation is shown in 
the Supplementary Materials. In addition, the definitions of 
variables in Fig. 2 are give in the Supplementary Materials. 
Hence, in this paper, the main characteristic of the ACTPS 
system focuses on its grid-connected single-phase MMC 
side. In order to remove NSs among all SSs and connect di‐
rectly the electrical lines between two different SSs, the volt‐
age outputs by different SSs should be controlled to be iden‐
tical. What’s more, for the sake of compensating reactive 
and harmonic power and feeding the locomotive traction 
loads, different kinds of power should be provided flexibly 
from the single-phase MMC to the locomotive traction loads.

As discussed hereinbefore, two tasks should be finished.
1) Obtain controlled amplitude, phase angle, and frequen‐

cy of output voltage.

2) Provide the arbitrary amount of reactive and active 
power to traction locomotives.

Figure 3(a) shows the equivalent circuit of single-phase 
MMC connected to the traction network [15], where Usdc 
and isdc are the single-phase DC-side voltage and DC-side 
current in single-phase MMC, respectively; iPj and iNj are the 
upper-arm and lower-arm currents in single-phase MMC, re‐
spectively; uj is the leg voltage in single-phase MMC; iszj is 
the single-phase circulating current; and j = lr is the index 
of leg. With respect to Fig. 3(a), four half-bridge SMs are in‐
stalled in each arm of one phase leg either, where SMj1 to 
SMj4 are installed in the upper arm; and SMj5 to SMj8 are 
installed in the lower arm. With respect to Fig. 3(a), the sin‐
gle-phase voltage source, single-phase AC current, and leg 
port voltage are defined as:

ì
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î

ïïïï

ïïïï

us (t)=Us sinωst

is (t)= Id sinωst + Iq cosωst

ulr (t)=Ud sinωst +Uq cosωst

(1)

where ulr = ul - ur is the port voltage in single-phase MMC, 
and Ud and Uq are its DC components in d and q axes, re‐
spectively; Us is the amplitude of single-phase voltage; Id 
and Iq are the amplitudes of the active and reactive instanta‐
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Fig. 2.　Equivalent circuit and relevant control block of three-phase MMC. 
(a) Equivalent circuit. (b) Three-phase decoupling control strategy. (c) Volt‐
age stabilization control strategy.

2017



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 11, NO. 6, November 2023

neous currents, respectively; and ωs is the single-phase angu‐
lar frequency. Furthermore, to make sure the normal opera‐
tion of the single-phase inverter, the following two steps are 
included.

1)　Step 1: Establishing Optimized d-q Decoupled Mathemati‐
cal Model

Applying Kirchhoff voltage law (KVL) to the topology in 
Fig. 3(a), it is obtained that

ulr (t)= us (t)-Rsis (t)- Lsdis (t)/dt (2)

where Ls is the equivalent filter inductance defined as 
L1 + L2. The d-q mathematical mode of this topology is ob‐
tained by substituting (1) into (2).

ì
í
î

Ud =Us -ωs Ls Iq - (Rs - Ls p)Id

Uq =ωs Ls Id - (Rs - Ls p)Iq

(3)

where p is the differential factor.
Based on (3), Ud and Uq consist of three components and 

two components, respectively. The feedforward decoupling 
method is adopted to enable Id and Iq to be controlled inde‐
pendently [38]. Formula (3) is rewritten as:

ì

í

î

ï
ïï
ï

ï
ïï
ï

Ud =Us -ωs Ls Iq + ( )kp +
ki

s
(Idref - Id )

Uq =ωs Ls Id + ( )kp +
ki

s
(Iqref - Iq )

(4)

where kp and ki are the gains of proportional-integral (PI) 
controller; and Idref and Iqref are the reference values of Id and 
Iq, respectively. The design and stability analysis of the cur‐
rent controller are included in the Supplementary Materials.
2)　Step 2: Detecting Different Types of Currents

Assuming that AC current is comprised of three compo‐
nents, i.e.,

is (t)= id (t)+ iq (t)+ ih (t)= Id sinωst +

Iq cosωst +∑
n = 2

¥

Ih sin(ωst + ϕn ) (5)

where id (t) and iq (t) are the instantaneous active and reactive 
currents, respectively; ih (t) is the harmonic component of 
is (t), and Ih and ϕn are its amplitude and initial angle, respec‐
tively; and n is the harmonic order. In order to obtain the ac‐
tive current, a new variable iα (t) is defined as:

iα (t)= is (t)sinωst =
Id

2
(1 - cos 2ωst)+

Iq

2
sin 2ωst +

∑
n = 2

¥ In

2
(cos((n - 1)ωst + ϕn )- cos((n + 1)ωst + ϕn ))=

Id

2
+ ipj

(6)

where In and ipj are the nth harmonic current and the AC 
component of iα (t), respectively.

Subsequently, iα (t) is passed through a low-pass filter 
(LPF) with a cut-off frequency of ωs /(2π) to obtain Id /2. 
Hence, the active instantaneous current id (t) can be generat‐
ed by Id multiplying by sinωst.

Similar to the aforementioned condition, the reactive cur‐
rent can be obtained by introducing a new variable iβ (t) de‐
fined as:

iβ (t)= is (t)cosωst =
Iq

2
(1 + cos 2ωst)+

Id

2
sin 2ωst +

∑
n = 2

¥ In

2
(cos((n - 1)ωst + ϕn )- cos((n + 1)ωst + ϕn ))=

Iq

2
+ iqj

(7)

where iqj is the AC component of iβ (t).
Similarly, iβ (t) is passed through an LPF with a cut-off fre‐

quency of ωs /(2π) to obtain Iq /2. Therefore, the reactive in‐
stantaneous component iq (t) is obtained by Iq multiplying by 
cosωst.

Finally, the nth harmonic current component inth (t) can be 
derived by:

inth (t)= is (t)- id (t)- iq (t) (8)

Based on (1) - (8), the overall control diagram of single-
phase inverter is given in Fig. 3(b), where ush is the voltage 
reference for harmonic current suppression; uref

r  is the total 
voltage reference for power control; and ud and uq are the ac‐
tive and reactive components of uref

r , respectively. To achieve 
the independent control of the active power and reactive 
power, an optimized control strategy including two control 
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loops, i. e., active and reactive power control loops, is pro‐
posed. Based on the proposed control strategy, the single-
phase current is is multiplied by cosωst and sinωst from the 
phase-locked loop (PLL) to obtain active current and reac‐
tive current id (t) and iq (t), respectively. Subsequently, two 
LPFs are utilized to filter high-frequency components. The 
DC active and reactive current components Id and Iq remain. 
According to (4), Ud and Uq are derived from the output of 
PI controllers. The harmonic component inth is obtained 
from (8) and regulated to zero by PI controller. Obviously, 
an arbitrary amount of active power and reactive power can 
be provided by the proposed control strategy.

III. AC FREQUENCY-DOUBLE CIRCULATING CURRENT 
MINIMIZATION AND SM CAPACITOR VOLTAGE BALANCING 

A. AC Circulating Current Minimization

The three-phase circulating current minimization is mature 
and the derivation is shown in the Supplementary Materials. 
Similar to the three-phase system, there is also a frequency-
doubled circulating current on the single-phase MMC. As‐
suming that the path and direction of the circulating current 
are shown in Fig. 3(a). According to KVL, we have

ì

í

î

ï
ïï
ï

ï
ïï
ï

Usdc

2
= uPj + L0

diPj

dt
+ uj

Usdc

2
= uNj + L0

diNj

dt
- uj

(9)

where uPj and uNj are the upper-arm and lower-arm voltages 
in single-phase MMC, respectively.

The flowing direction of the common-mode current is 
shown in the equivalent circuit in Fig. 3(c). We assume that

ì
í
î

ïïïï

ïïïï

uszj = L0

diszj (t)

dt
is (t)= Is sin(ωst + φs )

(10)

where uszj is the common-mode voltage in single-phase 
MMC; and Is and φs are the amplitude and the initial angle 
of is (t), respectively. Subsequently, in the single-phase 
MMC, iszj (t) can be expressed as:

iszj (t)=
Isdc

2
+ i2sfj (t)=

Isdc

2
+ I2sfj sin(2ωst + θ2sfj ) (11)

where Isdc is the DC component of isdc; and i2sfj (t) is the fre‐
quency-double circulating current of single-phase MMC, and 
I2sfj and θ2sfj are its amplitude and initial angle, respectively.

Based on Fig. 3, we have

ì

í

î

ïïïï

ï
ïï
ï

uPl = uNr

uPr = uNl

iPl = iNr

iPr = iNl

(12)

According to (10)-(12), the instantaneous upper- and low‐
er-arm currents in single-phase MMC are obtained as:

ì

í

î

ïïïï

ï
ïï
ï

iPl (t)= iNr (t)=
Isdc

2
-

Is

2
sin(ωst + φ)+ I2sfl sin(2ωst + θ2sfl )

iNl (t)= iPr (t)=
Isdc

2
+

Is

2
sin(ωst + φ)+ I2sfl sin(2ωst + θ2sfl )

   (13)

Hence, the DC-link instantaneous power Psdc (t) can be ex‐
pressed as:

Psdc (t)=Usdcisdc =Usdc Isdc + 2Usdc I2sfl sin(2ωt + θ2sfl ) (14)

Based on (13) and (14), the characteristic of the single-
phase MMC is concluded as follows. 

1) AC frequency-double circulating current just flows 
through the DC-link voltage to form a loop, as shown in 
Fig. 3(d), where u2fsj is the frequency-double component of 
two arm voltages. 

2) The arm current and DC-link instantaneous power will 
be distorted by the instantaneous AC frequency-double circu‐
lating current.

Conducting static coordinate transform to (28) in [15] and 
taking leg l as an example, we have

ì

í

î

ï
ïï
ï

ï
ïï
ï

uszα = L0

di2sflα

dt

uszβ = L0

di2sflβ

dt

(15)

where uszk and i2sflk (k = αβ) are the α- and β-axis values cor‐
responding to uszl and i2sfl, respectively.

Furthermore, (15) can be transformed into d-q coordinate 
system to obtain the DC common-mode voltage components 
of frequency-double currents, which are expressed as:

ì

í

î

ï
ïï
ï

ï
ïï
ï

uszd = L0

di2sfd

dt
- 2ωs L0i2sfd

uszq = L0

di2sfq

dt
+ 2ωs L0i2sfq

(16)

where uszv and i2sfv (v = dq) are the d- and q-axis values cor‐
responding to uszl and i2sfl, respectively.

As aforementioned, i2sfl can be obtained from the common-
mode current iszl through the band-pass filter (BPF) as well. 
In order to finish the coordinate transformer, a virtual com‐
ponent iszβ lagging 90° with respect to iszα is introduced to 
achieve the following expression.

i2sflα = I2sfl sin(2ωst + θ2sf )i2sflβ = i2sflαe
-jπ/2 =

I2sfl sin ( )2ωst + θ2sf -
π
2

(17)

Similarly, i2sflα and i2sflβ will be transformed to be the DC 
variables, and i2sfd and i2sfq are regulated to approximate their 
reference values, i.e., i2sfdr and i2sfqr, by PI controllers.

The overall AC frequency-double circulating current miti‐
gation control scheme of three-phase MMC and single-phase 
MMC is shown in Fig. 4, where uref

tzφ (φ = abc) and uref
szk (k =

αβ) are the voltage references of three-phase circulating cur‐
rent controller and single-phase circulating current controller, 
respectively. In addition, the definitions of variables in Fig. 4
(a) are shown in the Supplementary Materials. In Fig. 4, the 
three-phase AC frequency-double circulating currents i2tfa, 
i2tfb, and i2tfc are measured and transformed by a negative-se‐
quence matrix to derive the DC circulating current compo‐
nents, i.e., i2tfd and i2tfq. The obtained DC circulating current 
components are regulated by PI controllers to approximate 
the reference values. A similar conclusion holds for single-
phase AC frequency-double circulating currents.
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B. SM Capacitor Voltage Balancing Algorithm

The aspect of SM capacitor voltage balancing of MMC is 
not the focus of this paper. Hence, combined with the sine 
wave pulse width modulation (SPWM) method that deter‐
mines the level number of the MMC, a strategy that sorts 
and selects SMs to be bypassed or inserted according to arm 
current direction is adopted in this paper [19], [37].

As aforementioned, the overall control strategy of the 
MMC-ACTPS system is comprised of three-phase closed-
loop control, voltage stabilization, strategy for three-phase 
and single-phase AC frequency-double circulating current 
mitigation, SM voltage balance sorting algorithm, and single-
phase optimized grid-connected control strategy.

IV. DIGITAL IMPLEMENTATION OF CONTROL SYSTEM 

A. Overall Architecture of Control System

The overall architecture of the control system is depicted 
in Fig. 5, where the definition of the variables are attached 
in the Supplementary Materials.

The ADC SM collects voltage and current analog signals 
and converts them into 12-bit digital signals, ranging from 
-2048 to 2047. The digital signals of these voltages and cur‐
rents enter the three-phase controller and the single-phase 
controller, and the output signals are modulated waves. 
When the amplitude is 2047, the corresponding modulation 
index is 1. The driving signal of the switch can be obtained 
through the modulation SM. In addition, an SysFSM SM is 
a state machine that can control the start and stop of the sys‐
tem. The implementation of the state machine is shown in 
the Supplementary Materials. The protection SM can block 
the driving signal in time in case of abnormal voltage or cur‐
rent to avoid system damage.

B. Three-phase Controller

The corresponding hardware architecture of three-phase 
controller in the register transfer level is designed, as shown 
in Fig. 6(a), where the definition of the variables are at‐
tached in the Supplementary Materials. The multiplier is ob‐
tained by shifting to the right. The integral term of the PI 
controller adopts the method of expanding the bit width. Fig‐
ure 6(b) shows the Verilog code of the PI controller and the 
final output of the PI controller, where the larger the 
KI_WIDTH, the smaller the value after intercepting the up‐
per 13 bits. The D flip-flop is used to delay the signal to en‐
sure the synchronization of each operand.

A time division multiplexing method called the folding 
technique is used, where multiple algorithm operations (such 
as multiplication and addition operations) are arranged to 
share a single functional hardware unit (such as a pipelined 
multiplier and adder). By executing multiple operations on a 
single functional unit, the number of hardware implementa‐
tions is reduced significantly.

The structure of three-phase circulating current suppres‐
sion is shown in Fig. 7. The program design process is the 
same as that in Fig. 6(a), and it will not be analyzed here. 
The bandwidth of the BPF is 40 Hz and can retain signals 
from 80 Hz to 120 Hz. The 100 Hz component in iszl can be 
obtained through this BPF.

C. Single-phase Controller

The architecture-based implementation of single-phase 
controller is shown in Fig. 8(a). An LPF is used to filter out 
the pulsation signal in the product of is and 2sin ωst, as 
shown in (6). A second-order filter is used, and the Verilog 
code is shown in Fig. 8(b). The filter is equivalent to a pro‐
cess of multiplication and accumulation.

The architecture-based implementation of single-phase cir‐
culating current suppression is shown in Fig. 9.

Compared with three-phase circulating current suppres‐
sion, a long time delay needs to be used to obtain the active 
and reactive components of single-phase circulating current. 
In Fig. 9, the number of delayed clock cycles nc can be ob‐
tained as:
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nc =
g_clk
0.25fc

=
30 ´ 106

400
= 75000 (18)

wire error <= TARGET-{iData[11], iData};

wire [KI_WIDTH-1:0] error_KI;

assign error_KI = {{(KI_WIDTH-13){error[12]}}, error};

always @ (posedge g_clk or negedge rst ) 

begin

if (rst == 1'b0) 

begin

Ki_reg <= {(KI_WIDTH-1){1'b0}};

Kp_result <= {13{1'b0}};

PI_output <= {13{1'b0}};

end

else 

begin

Kp_result <= {{KP_RS_BIT{error[12]}}, error[12:KP_RS_BIT]};

if ( ( !error_KI[KI_WIDTH-1] && !Ki_reg[KI_WIDTH-1] ) )

Ki_reg <= Ki_reg; 

end

else  

Ki_reg <= Ki_reg + error_KI; 

PI_output <= Kp_result + Ki_reg[KI_WIDTH-1:KI_WIDTH-13];

end
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Fig. 6.　Architecture and Verilog code of three-phase controller. (a) Folding 
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always @ (posedge clk or negedge rst_n) begin

if (rst_n == 1'b0) begin

din_r1 <= 0; din_r2 <= 0; din_r3 <= 0;

end

else begin

din_r1 <= din; din_r2 <= din_r1; din_r3 <= din_r2;

end

end

always @ (posedge clk or negedge rst_n) begin

if (rst_n == 1'b0) begin

mul_data1 <= 0; mul_data2 <= 0;

end

else begin

mul_data1 <= (din_r1 + din_r3) >> COEFF1;

mul_data2 <= din_r2 >> COEFF2;

end 

end

assign dout = mul_data1 + mul_data2;
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where g_clk is the system clock frequency; and fc is the cir‐
culating current frequency.

D. Modulation

The carrier disposition pulse width modulation (CDPWM) 
is adopted in this paper. The architecture-based implementa‐
tion of CDPWM is shown in Fig. 10(a). The input of this 
part is the modulated wave which is represented as data in 
Fig. 10(a), and the output is represented as PWM which 
means the number of SMs that need to be turned on for 
each bridge arm, i. e., PWMi is the comparison result be‐
tween data and carrieri (i = 1234). The Verilog code that 
generates four carriers is shown in Fig. 10(b). Since the car‐
rier signal (trig_data_wire) is 12 bits, its range is -2048 to 
2047. Each bridge arm has four SMs, so four carriers need 
to be generated as trig_datai (i = 1234), which corresponds 
to carrieri (i = 1234) in Fig. 10(a). The range of trig_data 
is -512 to 512, and the normalized value is -0.25 to 0.25. 
trig_data1 is the uppermost carrier, ranging from 1024 to 
2047, and the normalized value is 0.5 to 1.

The traditional sorting algorithms sort all SM voltages in 
one sorting cycle. Hundreds of SMs are needed in practical 
application. The traditional sorting algorithms take a long 
time and are computationally intensive. If the sorting time is 
too long, the voltage of each SM will be unbalanced, result‐
ing in system instability. When each arm has N SMs, the 
number of comparison times is expressed as:

nsort =
N(N - 1)

2
(19)

To reduce the sorting time, an improved sorting algorithm 
is proposed. The steps are as follows.

1) N SMs are divided into k groups, defined as Uii =
12k. The number of SMs per group is t and N = kt.

2) The ith sorting cycle sorts the ith group of SMs, and the 
sorting result is defined as Vi, and all group sorting results 
are considered as Vi.

3) The number of conducting SMs per arm is defined as 
ns, as shown in Fig. 11(a). The number of conducting SMs 
in each group meets (20).

{n1 ³ n2 ³ ³ nk

n1 + n2 + + nk = ns

(20)

where ni (i = 12k) is the number of conducting SMs in 
the ith group.

4) The method of dividing the number of SMs in each 
group is shown in Fig. 11(b).
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Fig. 11.　Improved sorting algorithm. (a) Flowchart for improved sorting al‐
gorithm. (b) Number of SMs per group.

wire [11:0] trig_data_wire, trig_data; //-2048-2047

assign trig_data = {{trig_data_wire[11]}, {trig_data_wire[11]},

                   {trig_data_wire[11:2]}};

reg [11:0] trig_data1, trig_data2, trig_data3, trig_data4;

always @ (posedge g_clk) begin

if (rst_n == 1'b0) begin

trig_data1 <= 12'b0; trig_data2 <= 12'b0;

trig_data3 <= 12'b0; trig_data4 <= 12'b0;

end

else begin

trig_data1 <= trig_data + 12'd1536; //1024-2047

trig_data2 <= trig_data + 12'd512; //0-1023

trig_data3 <= trig_data - 12'd512; //-1024-1

trig_data4 <= trig_data - 12'd1536; //-2048-1025

end

end
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Fig. 10.　Architecture and Verilog code of CDPWM. (a) Architecture-based 
implementation of CDPWM. (b) Verilog code of carrier generator.
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After these four steps, the sorting can be completed in a 
shorter time. The number of comparison times is shown as:

nsort =
N
2 ( N - k

k 2 ) (21)

Assuming N = 40, the relationship between the number of 
groups k and the number of comparisons nsort is shown in Ta‐
ble I. As can be observed in Table I, the more groups there 
are, the fewer comparisons are required. When k = 1, the 
number of comparisons is consistent with the traditional sort‐
ing algorithm. Compared with the traditional sorting algo‐
rithm, the improved sorting algorithm can reduce the compu‐
tational burden by more than 90% when k = 5.

V. SIMULATION AND EXPERIMENTAL RESULTS 

The simulation results and the description of experimental 
prototype are included in the Supplementary Materials, and 
the parameters are shown in Table II. The proposed algo‐
rithms are totally coded using Verilog-HDL, synthesized us‐
ing Quartus II, and programmed onto the FPGA controller 
EP3C55F484C8, and the modulating signals are transferred 
through the I/O board to fibers and drive the switching de‐
vices.

To further verify the capability in regulating any kind of 
power for the proposed algorithm in Fig. 3(b), the power 
transfer experimental verification of the MMC-ACTPS sys‐
tem at a steady state has been performed. In Fig. 12(a), 
when the active power command is not enabled, it still out‐
puts a little amount of currents isa and is in the three-phase 
MMC and single-phase MMC to compensate for the power 
loss of phase legs, respectively. Once the active power com‐
mand is given, the currents isa and is are generated and they 
are in phase with the voltages usa and us, which reflect the 
minimization of the AC circulating currents, as shown in 
Fig. 12(b). 
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Fig. 12.　Experimental verification in power delivery capability. (a) Wave‐
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TABLE I
NUMBER OF COMPARISON TIMES WITH DIFFERENT k

k

1 (traditional)

2

4

5

nsort

780

190

45

28

TABLE II
EXPERIMENTAL PARAMETERS

Parameter

N1

Us

N2

Utdc

LsaLsbLsc

L1, L2

Value

65 V/65 V

60 V

60 V/60 V

120 V

5 mH

15 mH

Parameter

L0

C1

C2

fz

IGBT model

FPGA model

Value

0.5 mH

470 μF

2.2 mF

5 kHz

IHW20N120R

EP3C55F484C8

Note: N1 and N2 are the ratios of primary and secondary transformers, re‐
spectively.
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An inductive reactive power delivery mode and a capaci‐
tive reactive power delivery mode when reactive power com‐
mand is enabled are shown in Fig. 12(c) and (d), respective‐
ly. In the inductive mode, AC current lags the AC voltage 
by 90° . Besides, AC voltage lags the AC current by 90° 
when the capacitive mode is operated. Figure 12 confirms 
the capability of the proposed strategy in regulating any kind 
of power.

Figure 13 demonstrates the proposed strategy for handling 
a sharp load change of the ACTPS system. With respect to 
Fig. 13(a), the ACTPS system is operated normally within 
the time interval [0, 1]s. After 1 s, a sharp load is removed 
and the system can still be operated stably. Similarly, as 
shown in Fig. 13(b), within the time interval [0, 2.5]s, the 
ACTPS system is operated under a no-load condition. After 
2.5 s, a sharp load is enabled, and the system experiences a 
short period to the adjusted process and then to be a stable 
state by the proposed control strategy.

The AC frequency-double circulating current mitigation 
scenarios are shown in Fig. 14(a) and (b). With respect to 
Fig. 14(a), the amplitude of AC frequency-double circulating 
current will be reduced once the proposed circulating current 
mitigation strategy is enabled. Similarly, the opposite pro‐
cess is presented in Fig. 14(b). The total loss of the ACTPS 

system includes the conduction losses and switching losses 
of IGBTs, the conduction losses and switching losses of free‐
wheeling diodes, the core losses and winding losses of induc‐
tors, and the losses of capacitors. The power loss analysis of 
the ACTPS system is included in the Supplementary Materials.

Table III presents FPGA resource utilization, where the 
numbers of logic elements (LEs), look-up-table (LUT), regis‐
ter LCs, and LUT/Reg LCs on chips are tabulated by enti‐
ties. The entire control system requires 5463 LEs, around 
10% of total LEs of one medium density FPGA device 
EP3C55F484C8.
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Fig. 13.　Experimental verification in dynamic power delivery capability. 
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out circulating current mitigation strategy to with circulating current mitiga‐
tion strategy. (b) Circulating current from with circulating current mitigation 
strategy to without circulating current mitigation strategy.

TABLE III
FPGA RESOURCE UTILIZATION

SM

ADC

Single-phase controller

Three-phase controller

Modulation

SysFSM

Protection

Total

Number

LE

476

2480

1850

574

157

356

5463

LUT

160

0

694

283

60

127

1324

Register 
LCs

98

0

453

3

1

24

479

LUT/Reg 
LCs

218

19

703

286

96

205

1267
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As shown in Fig. 5, the control system consists of six 
SMs. The time delay of the proposed strategy is shown in 
Fig. 15. The system clock frequency is 30 MHz, the ADC 
sampling frequency is 35 kHz, the PWM frequency is 10 
kHz, and the switching frequency is 5 kHz. 

The ADC SM needs 376 clock cycles to collect the grid 
voltage, capacitor voltage, and grid current, which depend 
on the ADC sampling frequency. If the high-speed AD chip 
is used, the time delay of the ADC SM will be greatly re‐
duced. The voltage and current signals are transmitted to the 
protection SM and the state machine SM, and the time delay 
is 7 clock cycles and 5 clock cycles, respectively. Then, the 
time delays of the three-phase controller and single-phase 
controller are both 8 clock cycles. Finally, the time delay of 

the modulation SM is 6 clock cycles. The overall time delay 
is 397 clock cycles, i.e., 13 μs, which is applicable to switch‐
ing frequencies below 75 kHz. From the perspective of time 
delay, only 14 clock cycles are required for the controller 
and modulation, i.e., 0.46 μs. If the ADC sampling frequen‐
cy is high enough, the switching frequency can be MHz the‐
oretically.

The comparison of the proposed strategy and existing 
ones is shown in Table IV. In [10], [30]-[32], DSP + FPGA 
is used as the processor, resulting in a complex system be‐
cause the communication between DSP and FPGA is re‐
quired. And the current totoal harmonic distortion (THD) is 
higher than the proposed strategy. References [33], [35], and 
[36] use DSpace as the processor, which is expensive (about ¥20000) and not suitable for practical applications. From the 
point of view of the sorting algorithm, the grouping sorting 
algorithm is only used in this paper. Other studies use tradi‐
tional sorting algorithms, which take a long time to sort and 
cannot be applied when there are many SMs. From the per‐
spective of time delay, the operation time of the proposed 
strategy is only 13 μs, while that of [31] is 62.5 μs, and that 
of [35] is 78 μs. A shorter operation time can accommodate 
scenarios with more SMs. On the other hand, EP3C55F484C
8 has 327 I/Os, which can meet the application requirements 
of dozens of SMs under high-voltage conditions. In general, 
the proposed strategy has low cost, less resource utilization 
and time delay, and low current THD, and it is suitable for 
practical application.

VI. CONCLUSION 

In this paper, a flexible energy transmission control strate‐
gy is analyzed for the MMC-ACTPS system based on the 
mathematical model of the single-phase MMC. Moreover, a 
negative sequence based AC frequency-double circulating 
current mitigation strategy is designed to effectively sup‐
press the AC frequency-double circulating currents. To re‐
duce resource occupation and operation time, a digital imple‐
mentation scheme based on the FPGA of the proposed strate‐
gy is proposed. The program design of the controller and the 
modulation are presented. Aiming at the problem of long 
sorting time when the number of SMs is large, an improved 
sorting algorithm is proposed. Finally, the effectiveness of 
the proposed control strategy is confirmed by the simulation 

and experimental results. The conducted studies are summa‐
rized as follows.

1) The proposed strategy can flexibly regulate the active 
and reactive power transferred from the single-phase traction 
grid to the traction loads through the ACTPS system without 
affecting the three-phase MMC.

2) The operation time of the proposed strategy in this pa‐
per is only 13 μs which is about one-fifth of the existing 
methods. The THD of power grid current is less than 3.8%, 
suitable for grid connection applications.

3) An improved sorting algorithm is proposed, which can 
reduce the sorting time especially when there are many SMs. 
By grouping comparison, the sorting time can be reduced 
more than 90%, and it is easy to expand to more SMs.

ADC

SysFSM

7 cycles

5 cycles

376

cycles

Protection

8 cycles

Three-phase

controller

Single-phase

controller

6 cycles

Modulation

3760 383 391 397 Clock

cycles

8 cycles

Module

~ ~

Fig. 15.　Time delay analysis of proposed strategy.

TABLE IV
COMPREHENSIVE COMPARISON OF PROPOSED STRATEGY AND EXISTING ONES

Reference

[31]

[32]

[30]

[10]

[33]

[35]

[36]

Proposed

Current THD (%)

£ 5.86

£ 4.2

£ 4.8

£ 7.8

-

£ 2.37

-

£ 3.8

Switching frequency (kHz)

19.55

0.45

2.50

10.00

1.50

5.00

10.00

5.00

Comparison times

N(N - 1)/2

N(N - 1)/2

N(N - 1)/2

N(N - 1)/2

N(N - 1)/2

N(N - 1)/2

N(N - 1)/2

N(N - k)/(2k2 )

Circulation mitigation

√
√
√
√
-

√
√
√

Processor

DSP + FPGA

DSP + FPGA

DSP + FPGA

DSP + FPGA

DSPACE

DSPACE

DSPACE

FPGA

Time delay (μs)

62.5

-

-

-

-

78.0

-

13.0

I/O

138

-

232

-

-

-

-

327

Note： “-” represents “not provided”.
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