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Abstract——This paper proposes a distribution locational mar‐
ginal pricing (DLMP) based bi-level Stackelberg game frame‐
work between the internet service company (ISC) and distribu‐
tion system operator (DSO) in the data center park. To mini‐
mize electricity costs, the ISC at the upper level dispatches the 
interactive workloads (IWs) across different data center build‐
ings spatially and schedules the battery energy storage system 
temporally in response to DLMP. Photovoltaic generation and 
static var generation provide extra active and reactive power. 
At the lower level, DSO calculates the DLMP by minimizing the 
total electricity cost under the two-part tariff policy and en‐
sures that the distribution network is uncongested and bus volt‐
age is within the limit. The equilibrium solution is obtained by 
converting the bi-level optimization into a single-level mixed-in‐
teger second-order cone programming optimization using the 
strong duality theorem and the binary expansion method. Case 
studies verify that the proposed method benefits both the DSO 
and ISC while preserving the privacy of the ISC. By taking in‐
to account the uncertainties in IWs and photovoltaic genera‐
tion, the flexibility of distribution networks is enhanced, which 
further facilitates the accommodation of more demand-side re‐
sources.

Index Terms——Bi-level optimization, congestion management, 
data center, demand response, distribution locational marginal 
pricing (DLMP), robust optimization.

NOMENCLATURE

A. Indices and Sets

πP Strategy set of distribution system operator 
(DSO)

Θj Set of receiving buses of branch lines with the 
same sending bus j

B Set of all branch lines in distribution network

D Set of locations of data centers (DÍN)

h Index of binary extension method slice

i, j, k Indices of buses in distribution network

N Set of all buses in distribution network

Pnet Strategy set of player internet service compa‐
ny (ISC)

t Index of time slots

T Set of time slots

B. Variables

π P
jt Dual variable of nodal active power balance 

constraint as well as distribution locational 
marginal pricing

π Q
jt Dual variable of nodal reactive power balance 

constraint

π v
jt Dual variable of voltage drop constraint of 

each branch

λP
ijt, λ

Q
ijt, λ

lv1
ijt, λ

lv2
ijt Dual variables of second-order cone program‐

ming relaxation constraint

δφ -t , δφ +t Dual variables of lower/upper grid power fac‐
tor limitation constraints

δv -
jt , δ

v +
jt Dual variables of bus voltage magnitudes con‐

straints

δl -
jt, δ

l +
jt Dual variables of branch current magnitudes 

constraints

δmd
t Dual variable of the maximum power demand 

constraint

Ajt Number of active servers in data center build‐
ing (DCB)

E B
jt Stored electric energy of bettary energy stor‐

age system (BESS)

F UL Payoff function of upper level

F LL Payoff function of lower level

lijt Squared current magnitude of branch (i, j)
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LDC
jt Total arriving workloads in DCB

mDC
t , nDC

t , mPV
jt , Dual variables

nPV
jt

P DC
jt Total active power load of DCB

P PV
jt , QPV

jt Active and reactive power outputs of photo‐
voltaic (PV)

P BC
jt , P BD

jt Charging and discharging active power of 
BESS

P net
jt , Qnet

jt Active and reactive net electric power

P md The maximum demand for electric power

Pijt, Qijt Active and reactive power on branch (i, j)

P grid
t , Qgrid

t Provided active and reactive power of data 
center park (DCP) by independent system op‐
erator (ISO)

QSVG
jt Reactive power output of static var generation 

(SVG)

uBC
jt , uBD

jt Binary variables indicating charging and dis‐
charging states of BESS

vjt Squared voltage magnitude
yDC

t , yPV
jt Auxiliary variables

C. Parameters

Γ DC
t , Γ PV

jt Nonnegative control parameters between 0 
and 1

Dt Time slot
ηBC

j , ηBD
j Charging and discharging efficiencies of BESS

ξ front, ξ PV Uncertainties of parameters L͂front
t  and T͂ PV

t

ρ Number of days to settle the maximum de‐
mand price

φgrid Power factor of DCP

Ajmax The maximum number of servers
cgrid

t Purchased electricity price of DSO
cmd The maximum demand price of DSO
C PUE

j Designed power usage efficiency (PUE) of a 
DCB

C DT The maximum delay time
E RB

j Rated energy of BESS
H A non-negative integer
Iijmax Upper bound of current magnitude of branch 

(i, j)
Lrate

j Service rate of a server

Lfront
t , L͂front

t Predicted and uncertain workloads in front-
end server

Mj Big positive constant
P idle

j , P peak
j Idle and peak active power of a server

P BL
jt , QBL

jt Basic active and reactive power loads

P B
jmax The maximum active charging or discharging 

power of BESS
P net

jmax The maximum net electric power
QSVG

jmax Reactive power capacity of SVG

rij, xij Resistance and reactance of branch (i, j)
S PV

jmax Apparent power capacity of PV

SOCjmin, The minimum and maximum states-of-charge 
SOCjmax (SOCs) of BESS

T PV
t , T͂ PV

t Day-ahead predicted and uncertain active 
power output curves of PV

Vjmin, Vjmax Lower and upper voltage bounds

I. INTRODUCTION

CLOUD computing is gaining momentum, driven by the 
development of social networks, big data, and the Inter‐

net of Things. To effectively process these massive work‐
loads and provide reliable computing services, major internet 
service companies (ISCs) have built extensive data centers. 
With the expansion of data centers, their energy consump‐
tion has grown rapidly, most of which are used for process‐
ing workloads and corresponding cooling systems. On a 
global scale, the annual electric power consumption of data 
centers reached around 3% in 2016 [1], and the rates have 
increased steadily in the recent few years [2]. To make full 
use of the infrastructure resources, several data center build‐
ings (DCBs) are usually centrally placed in an industrial 
park. For example, Amazon has built many data centers all 
over the world, most of which are placed in the same park 
with multiple DCBs [3]. A leading communication company 
StarHub also has seven data centers across Singapore, some 
of which are built in the same park [4]. These DCBs are 
powered by the park distribution network and distributed in 
different buses. In some countries, these industrial parks 
with multiple DCBs are named data center parks (DCPs) 
[5]. For some newly built DCPs, the line capacities of the 
distribution network are usually matched with all DCBs at 
full loads. However, for some existing DCPs, the high pene‐
tration of electrical loads (ELs) of DCBs may cause network 
congestion and voltage off-limit [6], which endangers the 
systems’  security.

The traditional methods to block out network congestion 
are expanding the power capacity or network reconfiguration 
[7], but the costs are relatively high. To avoid changing the 
distribution network structure, the pricing control method is 
a novel method to incentivize demand-side resources, e. g., 
photovoltaic (PV) [8], battery energy storage systems 
(BESSs) [9], thermal loads [6], and electric vehicle charging 
stations [10], to proactively respond to the grid demand. De‐
rived from the locational marginal pricing method in the 
power transmission market, the distribution locational mar‐
ginal pricing (DLMP) method is developed in recent years 
as a pricing method to address network congestion and volt‐
age issues in the distribution networks [8]-[10]. The DLMPs, 
including the marginal electric power price, marginal loss 
price, marginal voltage support price, and marginal conges‐
tion price, can promote end-users to manage the demand-
side resources to reduce electricity costs. However, to make 
the problem easy to solve, many studies use direct current 
optimal power flow (DCOPF) and power transfer distribu‐
tion factor to calculate DLMP [11], [12], which carries great 
errors because line reactance cannot be ignored in the distri‐
bution network.

The thermal loads, BESSs, and electric vehicle charging 
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stations are temporal demand-side resources, which can be 
dispatched in different time slots for congestion manage‐
ment. Different from temporal demand-side resources, the ar‐
riving workloads at the front-end server can be dispatched 
both temporally and spatially through the data network. Ac‐
cording to the processing deadlines, the arriving workloads 
mainly include the delay-tolerant batch workloads (BWs) 
and delay-sensitive interactive workloads (IWs) [13]. Delay-
torrent BWs in a DCB can be scheduled to any time slot to 
process within the deadline temporally, while delay-sensitive 
IWs can be dispatched to any DCB in the DCP within a 
time slot spatially. To this end, the net power of DCBs is 
scheduled to change the power flow of the distribution net‐
work thus supporting voltages and alleviating congestion is‐
sues. In addition, to improve the demand response potential 
of each DCB, auxiliary energy systems such as PV, static 
var generator (SVG), and BESS can be utilized.

In reality, data centers had participated in demand re‐
sponse in history. For example, on July 22, 2011, hundreds 
of data centers cut power demands for emergency demand 
response and helped avoid a wide-area blackout throughout 
North America [14]. Distribution network congestions and 
voltage issues typically occur in developed regions with 
heavy electricity loads, so some countries such as China 
have channeled more BWs from developed regions to less 
developed regions with more renewable energies [15]. As a 
result, the remaining IWs such as online trading and web 
browsing workloads, make up a significant portion of the de‐
mand-side resources in developed regions. Despite their flex‐
ibility, most existing studies only focus on minimizing ener‐
gy costs for data centers, neglecting their potential contribu‐
tions to supporting grid voltages and managing congestion 
[16], which would adversely affect power system securi‐
ty [17].

In the electricity market, the distribution networks for gen‐
eral industrial and commercial users are usually managed by 
the distribution system operators (DSOs), which are powered 
by the electricity utilities, e.g., independent system operators 
(ISOs). In terms of the DSO, the most effective method is 
scheduling all the available demand-side resources in a cen‐
tralized manner. However, it is unrealistic for the DSO to 
gain access and control of all devices in the distribution net‐
work, particularly considering users’  data privacy. To ad‐
dress this challenge, researchers have explored the use of the 
non-cooperative Stackelberg game theory, which models in‐
teractions between energy suppliers and consumers as lead‐
ers and followers [18]. This can protect users’  privacy by re‐
quiring less information exchange such as device-specific in‐
formation [19]. In [20], an equilibrium model involving a 
DSO, a supplying utility, prosumers, and conventional con‐
sumers is solved by the strong duality theorem. Hence, the 
optimization of follower DSO in the lower level should be 
either linear or convex such as with DistFlow. However, lin‐
earized DistFlow models with simplified power flow assump‐
tions assume a fixed bus voltage of 1.0 p.u., which may not 
provide an accurate outer approximation of the original Dist‐
Flow model. This can result in the loss of feasible solutions 
or generate additional infeasible regions [21].

These studies seldom consider security issues such as net‐
work congestion and voltage issues in distribution networks. 
In [22], the Stackelberg game concept is employed to devel‐
op an incentive-based mechanism to involve flexible resourc‐
es in the congestion management of the distribution net‐
work. However, only temporal flexible resources are consid‐
ered in this paper. Motivating all temporal demand-side re‐
sources to operate in the same time slot may still result in 
distribution network congestion and voltage issues. There‐
fore, the spatial demand response is considered to further 
cope with the distribution network security issues.

Multiple uncertainties such as those in renewable genera‐
tion and workloads can lead to uncontrollable distribution 
network congestion and other security issues that increase 
system risk and operation costs. It is crucial to incorporate 
such uncertainties into operation models to enhance the ap‐
plicability of the proposed method in motivating DCBs to 
support grid security. Stochastic optimization (SO) [23], 
[24], robust optimization (RO) [25], [26], and distributional‐
ly robust optimization (DRO) [27], [28] are three widely 
used techniques for optimization under uncertainties. Since 
both SO and DRO rely on a large number of historical data, 
which may be difficult to obtain for interactive workloads, 
this paper adopts an RO method. Further, the RO problem is 
usually solved by Benders decomposition and column-and-
constraint generation algorithm, which is rather complicated. 
Therefore, this paper takes an equivalent linear formulation 
of RO derived from [29] to tackle uncertainties in workloads 
and PV generation.

Compared with previous works, this paper proposes a 
DLMP-based equilibrium optimization strategy for DCP with 
spatial-temporal demand-side resources. The contributions of 
this paper are as follows.

1) A bi-level Stackelberg game framework is proposed to 
motivate multiple DCBs with demand-side resources to sup‐
port the grid security, where the ISC with multiple DCBs is 
seen as a leader and DSO is seen as a follower.

2) Both the temporal and spatial demand-side resources of 
multiple DCBs are considered to be scheduled in the game 
strategy. The uncertainties in arriving workload and PV gen‐
erations are modeled into RO format to verify the applicabili‐
ty of the proposed strategy in motivating DCBs to support 
grid security.

3) The radial distribution network is modeled by Disflow 
equations with the second-order cone programming (SOCP) 
formulation. To solve the bi-level operation problem, the 
strong duality equation of the SOCP problem is derived. The 
bilinear terms are addressed by the binary expansion method, 
thus converting the bi-level operation problem to a single-lev‐
el mixed-integer second-order cone programming (MISOCP) 
problem, which can be solved by commercial solvers.

The rest of this paper is organized as follows. Section II 
presents the problem formulation, including the framework 
of DLMP-based equilibrium optimization strategy and the 
upper-level and lower-level dispatching models. Section III 
presents the model reformulation and solution method. Sec‐
tion IV presents the case studies on a modified IEEE 33-bus 
system. Conclusions are drawn in Section V.
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II. PROBLEM FORMULATION

A. Framework of DLMP-based Equilibrium Optimization 
Strategy

The basic structure of the problem in this paper includes 
three stakeholders: ISC, DSO, and ISO, as shown in Fig. 1. 
The participants in the Stackelberg game in DCP are the ISC 
and DSO. In this game, the ISC with multiple DCBs at dif‐
ferent buses of the distribution network serves as the leader, 
while the DSO is the follower. The leader at the upper level 
optimizes the operation of demand-side resources, e.g., IWs, 
BESS, PV, SVG, to minimize the total electricity cost and 
send the net electric power demand to the DSO. Based on 
the net power at all buses and time slots, the DSO optimizes 
the security-constrained power flow of the distribution net‐
work and provides DLMPs to each consumer. In addition to 
ensuring grid security, minimizing the total electricity cost is 
also a concern for DSO. The DSO is assumed to be a price 
taker receiving the industrial two-part tariff (TPT) from ISO 
and providing the electric power demands to ISO [30]. More‐
over, another two assumptions are summarized as follows.

1) Only DCBs are seen as the flexible loads in the distri‐
bution network of DCP. Other loads are seen to be fixed, 
and there are no distributed generations except PV genera‐
tion in DCBs.

2) The coupling of multiple energy systems, e.g., electric 
power and natural gas, is neglected in the DCP.

To this end, the bi-level Stackelberg game model is formu‐
lated as:

Ω = {ISCDSOP netπ PF ULF LL} (1)

where Pnet = { |P net
jt jÎDtÎ T}; and π P = { |π P

jt jÎDtÎ T}. 
Let (×)* be the optimal strategies of each player, the equilibri‐
um solution can be solved by:

ì

í

î

ïïïï

ïïïï

( )P net *
= arg min F UL{ }P net( )π P *

s.t.  ( )π P *
= arg min F LL{ }( )P net *

π P
(2)

Remark 1: this paper assumes that multiple DCBs are 
managed by a single ISC. Therefore, the proposed bilevel 
problem is indeed a one-leader and one-follower Stackelberg 
game, where the equilibrium solution remains the same re‐
gardless of who serves as the leader or follower. Additional‐

ly, since the optimization of multiple DCBs with integer vari‐
ables is non-convex, the ISC is set as the leader while the 
DSO is the follower for computational tractability.

B. Upper-level Dispatching Models

As the leader at the upper level, ISC manages several 
DCBs. The electric power load (EL) of these DCBs consists 
of IT energy consumption, e.g., servers, memory, communi‐
cation, and storage devices, as well as other ancillary energy 
consumption, e.g., air conditioning, lighting. Power usage ef‐
ficiency (PUE) is generally used to illustrate the relationship 
between IT energy consumption and ancillary energy con‐
sumption, which is defined as the ratio of total energy con‐
sumption to IT energy consumption [16]. In addition, to sat‐
isfy the reactive power loads of DCBs, the SVG and reac‐
tive capacity of PV are considered at the upper level. BESS 
also provides the temporal demand response potential of 
each DCB. As a rational game player, ISC would pursue the 
minimization of electric power costs. To this end, the upper-
level model is formulated as:

min F UL =∑
tÎ T
∑
jÎD

π P
jt P

net
jt Dt (3a)

s.t.

P DC
jt = é

ëP idle
j + (C PUE

j - 1) P peak
j

ù
û Ajt +

P peak
j -P idle

j

Lrate
j

LDC
jt

                                                          "jÎD"tÎ T (3b)

0 £Ajt £Ajmax    "jÎD"tÎ T (3c)

1
Lrate

j Ajt - LDC
jt

£C DT    "jÎD"tÎ T (3d)

LDC
jt ³ 0    "jÎD"tÎ T (3e)

∑
jÎD

LDC
jt ³ L͂front

t     "tÎ T (3f)

0 £P PV
jt £ S PV

jmaxT͂
PV
t     "jÎD"tÎ T (3g)

|QPV
jt | £ S PV

jmax 1 - ( )T PV
t

2
    "jÎD"tÎ T (3h)

|QSVG
jt | £QSVG

jmax    "jÎD"tÎ T (3i)

E B
jt =E B

jt - 1 + (ηBC
j P BC

jt -
P BD

jt

ηBD
j )Dt    "jÎD"tÎ T \{1} (3j)

E B
j1 = SOCj1 E RB

j     "jÎD (3k)

E B
j1 =E B

j ||T     "jÎD (3l)

SOCjmin E RB
j £E B

jt £ SOCjmax E RB
j     "jÎD"tÎ T (3m)

0 £ ηBC
j P BC

jt £P B
jmaxuBC

jt     "jÎD"tÎ T (3n)

0 £
P BD

jt

ηBD
j

£P B
jmaxuBD

jt     "jÎD"tÎ T (3o)

uBC
jt + uBD

jt £ 1    "jÎD"tÎ T (3p)

0 £P net
jt £P net

jmax    "jÎD"tÎ T (3q)

P net
jt +P PV

jt +P BD
jt =P BC

jt +P DC
jt +P BL

jt     "jÎD"tÎ T (3r)

DLMPs

ISO

Electric power demand TPT

Upper-level leader ISC

Minimize total electricity cost of all DCBs

s.t. Constraints of workloads scheduling in DCBs

       Constraints of BESS, PV, and SVG
Net

electric

power

demand
Minimize total electricity cost of the grid

s.t. Constraints of power flow

Constraints of voltages and currents

Lower-level follower DSO

Fig. 1.　Operation framework for ISC, DSO, and ISO.
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Qnet
jt +QSVG

jt +QPV
jt =QBL

jt     "jÎD"tÎ T (3s)

Equation (3a) is the objective function of the upper level, 
where π P

jt is derived by the dual variable of the nodal active 
power balance constraint in the lower-level problem [8]. 
Constraint (3b) denotes the EL consumptions of DCBs on 
the bus j, which is determined by the number of active serv‐
ers Ajt and arriving workload LDC

jt . Constraint (3c) limits the 
total number of on-service active servers. Constraint (3d) de‐
notes the quality-of-service (QoS) requirement, in which 
waiting time is mainly considered based on the M/M/1 theo‐
ry [31]. Constraints (3e) and (3f) indicate that the arriving 
IWs at the front-end server should be allocated to all DCBs 
without omission. Constraints (3g) and (3h) represent the ac‐
tive and reactive output power of PV generations, which 
take into account the minor differences between the natural 
conditions of DCBs within the same DCP. Each PV genera‐
tion follows the same output trace but may vary in capacity. 
Constraint (3i) limits the output reactive power of SVG [30]. 
Constraints (3j) - (3p) are the BESS model [20]. Constraint 
(3q) determines the interactive net power between each DCB 
and the distribution network. Constraints (3r) and (3s) de‐
scribe the active and reactive power balance with all de‐
mand-side resources.

If the uncertainties of PV generations and arriving IWs in 
the front-end servers are not considered, then L͂front

t = Lfront
t , 

T͂ PV
t = T PV

t . However, their uncertainties would affect the deci‐
sion-making of ISC. The detailed robust models are provid‐
ed in Appendix A.

C. Lower-level Dispatching Models

As the follower in the bi-level framework, DSO receives 
the net power from the upper-level model and optimizes the 
power flow to ensure the economic and secure energy sup‐
ply under the TPT policy. It is assumed that the cost of the 
maximum demand in a settlement cycle such as a month is 
decided by a typical day. The distribution network is typical‐
ly considered a radial network to be modeled by DistFlow 
[21] and converted to a convex problem with SOCP [30]. To 
this end, the lower-level model is:

min F LL =∑
tÎ T

cgrid
t P grid

t Dt +
1
ρ

cmd P md
(4a)

s.t.

Pijt = rijlijt + ∑
kÎΘj

Pjkt +P net
jt     "jÎD"tÎ T   (π P

jt ) (4b)

Pijt = rijlijt + ∑
kÎΘj

Pjkt +P BL
jt     "jÎN\{1} \D"tÎ T   (π P

jt ) (4c)

P grid
t = ∑

kÎΘ1

P1kt    "tÎ T   (π P
1t ) (4d)

Qijt = xijlijt + ∑
kÎΘj

Qjkt +QBL
jt     "jÎN\{ }1 "tÎ T   (π Q

jt )  (4e)

Qgrid
t = ∑

kÎΘ1

Q1kt    "tÎ T   (π Q
1t ) (4f)

vjt = vit - 2 (rij Pijt + xijQijt ) + (r 2
ij + x2

ij ) lijt

" (ij ) ÎB"tÎ T   (π v
ijt ) (4g)













 











2Pijt

2Qijt

lijt - vit

£ lijt + vit    " (ij ) ÎB"tÎ T   

æ

è

ç

ç

ç

ç
ççç
ç

ç

ç
é

ë

ê

ê

ê
êê
ê

ê

ê ù

û

ú

ú

ú
úú
ú

ú

úλP
ijt

λQ
ijt

λlv1
ijt

λlv2
ijt

ö

ø

÷

÷

÷

÷
÷÷÷
÷

÷

÷
   (4h)

-P grid
t tan φgrid £Qgrid

t £P grid
t tan φgrid    "tÎ T   (δφ -t δφ +t )   (4i)

V 2
jmin £ vjt £V 2

jmax    "jÎN"tÎ T   (δv -
jt δ

v +
jt ) (4j)

0 £ lijt £ I 2
ijmax    " (ij ) ÎB"tÎ T   (δl -

ijtδ
l +
ijt ) (4k)

P grid
t £P md    "tÎ T   (δmd

t ) (4l)

Note that the variables in the brackets are dual variables 
of constraints. The objective function (4a) aims at minimiz‐
ing the total electricity cost of the DCP. Constraints (4b)-(4f) 
state the nodal active and reactive power balance. Constraint 
(4g) formulates the voltage drop of each branch. Constraint 
(4h) indicates SOCP relaxation. Constraint (4i) represents 
the limitation of grid power factors by ISO. Constraints (4j) 
and (4k) limit the magnitudes of bus voltages and branch 
currents, respectively. Constraint (4) indicates the maximum 
demand for grid power.

III. MODEL REFORMULATION AND SOLUTION METHOD

Based on the framework proposed in Section II, DLMPs 
derived from the dual multipliers of the lower-level distribu‐
tion system operation model should be provided for consum‐
ers including all DCBs. According to the dual theorem of 
the convex SOCP problem [32], the dual form of the lower-
level model in (4) is reformulated as:

max∑
tÎ T
∑
jÎD

π P
jt P

net
jt +∑

tÎ T
∑

jÎN\{ }1 \D

π P
jt P

BL
jt +∑

tÎ T
∑

jÎN\{ }1

π Q
jtQ

BL
jt +

∑
tÎ T
∑
jÎN

( )V 2
jminδ

v -
jt -V 2

jmaxδ
v +
jt -∑

tÎ T
∑

( )ij ÎB

I 2
ijmaxδ

l +
ijt (5a)

s.t.

-π P
it + π

P
jt + 2rijπ

v
ijt + 2λP

ijt = 0    " (ij ) ÎB"tÎ T   ( )Pijt (5b)

-π Q
it + π

Q
jt + 2xijπ

v
ijt + 2λQ

ijt = 0    " (ij ) ÎB"tÎ T   ( )Qijt (5c)

π P
1t + ( )δφ -t + δφ +t tan φgrid - δmd

t = cgrid
t Dt    "tÎ T   ( )P grid

t (5d)

π Q
1t + δ

φ -
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t (5e)

∑
tÎ T

δmd
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1
ρ
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(5f)
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P
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Q
jt - (r 2

ij + x2
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lv2
ijt + δ
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      " (ij ) ÎB"tÎ T   ( )lijt (5g)
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δmd
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δl +
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    " (ij ) ÎB"tÎ T (5m)

Equations (5b) - (5i) are dual constraints associated with 
the primal variables in the brackets. Constraint (5j) is the du‐
al counterpart of the primal SOCP constraint (4h), which is 
also a SOCP constraint. Constraints (5k)-(5m) limit the val‐
ues of dual multipliers.

Since the primal problem and the dual problem of the low‐
er level are both convex, the strong duality equality holds:

(4a)= (5a) (6)

Then, the bi-level problem (2) can be equivalently trans‐
formed into the following single-level problem:

ì

í

î

ï
ïï
ï

ï
ïï
ï

min∑
tÎ T
∑
jÎD

π P
jt P

net
jt Dt

s.t.  Upper - level constraints: (3b)-(3s)

        Lower - level constraints: (4b)-(4l) (5b)-(5m) (6)

(7)

Note that the above single-level problem has the bilinear 
terms π P

jt P
net
jt , which cannot be solved directly by commer‐

cial solvers such as CPLEX and GUROBI. To deal with the 
bilinear terms, a binary expansion (BE) scheme is used to 
discretize one of the continuous variables and convert the 
non-linear problem into an MILP problem [33].

The basic idea of BE method in this paper is to approxi‐
mate the continuous decision values P net

jt  by a set of discrete 

values { |P net
jth h = 01Ξ}, where Ξ = 2H is a non-negative 

integer that decides the number of slices. As P net
jt  satisfies 

the constraint (3q), the discrete approximation can be ex‐
pressed as:

P net
jt =P BL

jt +
P net

jmax -P BL
jt

2H ∑
h = 0

H

2huPnet
jth    "jÎD"tÎ T (8)

where uPnet
jth is a binary variable. Multiplying both sides of (8) 

by π P
jt, and defining z Pnet

jth = uPnet
jthπ

P
jt, we can obtain:

π P
jt P

net
jt = π

P
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where Mj is large enough for constraint (10) and constraint 
(11) to be relaxed when uPnet

jth = 0 and uPnet
jth = 1, respectively, 

e.g., Mj =P net
jmax. Then, (6) becomes:
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Finally, the single-level problem (7) is approximately 
equivalent to the following MISOCP problem, which can be 
solved by commercial solvers.
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min∑
tÎ T
∑
jÎD( )π P
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BL
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jmax -P BL

jt

2H ∑
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H

2h z Pnet
jth Dt

s.t.  Upper - level constraints: (3b)-(3s)

       Lower - level constraints: (4b)-(4l) (5b)-(5m) (6) (8)-(12)

(13)

IV. CASE STUDIES AND RESULT ANALYSIS 

This section uses a modified IEEE 33-bus radial distribu‐
tion network with four DCBs located at buses 18, 22, 25, 
and 33 in four regions with different colors to illustrate the 
DCP power system, as shown in Fig. 2. In this test, each 
DCB contains EL, BESS, SVG, and PV. The front-end serv‐
er of ISC is responsible for allocating the arriving IWs to 
the four DCBs. DSO manages the DCP distribution power 
system and purchases electric power from ISO. The code is 
implemented in MATLAB R2016a with the YALMIP plat‐
form on a desktop with an Intel Core i9 CPU clocked at 3.0 
GHz and 64 GB RAM. The optimization model is solved us‐
ing Gurobi 9.5 solver.

A. System Data and Case Description

To make the expression more concise, some indices of 
variables and constants are neglected in this subsection. The 
base voltage and base apparent power are considered to be 
12.66 kV and 10 MVA, respectively. The power factor φgrid 
is limited to 0.8. The voltage limits at each bus are 0.9 p.u. 
and 1.1 p.u., respectively [34]. The substation voltage is as‐
sumed to be 1.0 p.u.. The current limits in four regions are 
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Fig. 2.　Structure of DCP power system with four DCBs.
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set to be [595, 120, 120, 120]A. Figure 3 shows the daily ba‐
sic EL curve without DCBs, the front-end IW curve, and the 
PV curve. The number of basic arriving IWs is set to be 
1.5 ´ 104 requests per second. The electricity prices in Fig. 4 
refer to the industrial TPT prices in Shanghai, China [35]. 
The charge as per the maximum demand is 34.02 CNY/kW 
each month. Detailed parameters are provided in Table 
I [36].

In an electricity market where information is completely 
private, every entity has to make the strategy individually, 
which could adversely affect the profits of others. On the 
contrary, in a completely public electricity market, it needs 
to collect all entities’  information in the centralized optimi‐
zation, making it easy to be attacked when the information 
is leaked. To illustrate the advantages of the proposed equi‐
librium optimization in benefiting both DSO and ISC in 

terms of economy and privacy protection, three cases and 
their subcases are set for comparison, as summarized in Ta‐
ble II.

1)　Case 1: Individual Optimization
Subcase 1.1: DSO optimizes the power flow without con‐

sidering the net power of all DCBs.
Subcase 1.2: ISC optimizes all DCBs without considering 

the park distribution network power flow, then DSO takes 
the net power of all DCBs and optimizes the power flow.
2)　Case 2: Centralized Optimization

Subcase 2.1: DSO optimizes the power flow considering 
demand-side resources except for IWs in DCBs.

Subcase 2.2: DSO optimizes the power flow considering 
all demand-side resources in DCBs.

Subcase 2.3: ISC optimizes all demand-side resources in 
DCBs considering the park distribution network power flow.
3)　Case 3: Equilibrium Optimization

Subcase 3.1: ISC games with DSO using the proposed 
strategy by the electricity prices from ISO. All demand-side 
resources are considered.

Subcase 3.2: ISC games with DSO using the proposed 
strategy by DLMPs. All demand-side resources are consid‐
ered.

Subcase 3.3: ISC games with DSO using the proposed 
strategy by DLMPs. BESS is not considered a flexible re‐
source.

Subcase 3.4: ISC games with DSO using the proposed 
strategy by DLMPs. IWs are not considered flexible resourc‐
es.

B. Impact of Demand-side Resources on Voltage and Power 
Flow

In Case 1, the ISC optimizes four DCBs based on electric‐
ity prices from ISO. As shown in Fig. 3, the basic EL and 
the total front-end IWs are relatively heavy at time slot 18, 
which might trigger voltage issues and power flow conges‐
tion. Taking time slot 18 as an example, the bus voltages are 
decreasing sharply away from the substation bus due to line 
losses, as shown in Fig. 5. Hence, the voltage is the lowest 
at bus 18 connected with DCB1. As shown in Fig. 6, most 
of the IWs are motivated to be dispatched to DCB1 and 
DCB4 because their PUE is smaller than that of DCB2 and 
DCB3. Hence, the currents of branches 25-29 in Fig. 7 are 

TABLE II
SUMMARY OF ALL CASES AND SUBCASES

Case

Case 1

Case 2

Case 3

Subcase

Subcase 1.1

Subcase 1.2

Subcase 2.1

Subcase 2.2

Subcase 2.3

Subcase 3.1

Subcase 3.2

Subcase 3.3

Subcase 3.4

Entity

DSO

ISC

DSO

DSO

ISC

Both

Both

Both

Both

Price

TPT

TPT

TPT

TPT

TPT

TPT

DLMPs

DLMPs

DLMPs

Demand-side resource

None

All

Without IW

All

All

All

All

Without BESS

Without IW
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Fig. 3.　Daily basic EL curve, front-end IW curve, and PV curve.
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Fig. 4.　Daily electricity prices.

TABLE I
PARAMETERS OF EL, BESS, SVG, AND PV

Compo‐
nent

EL

PV

Parameter

Amax

Lrate

P idle

Ppeak

CPUE

CDT

P net
max

S PV
max

Value

[4000, 4000, 
3000, 3000]

[4, 4, 4, 4] 
requests per 

second

[100, 100, 
100, 100]W

[200, 200, 
200, 200]W

[1.35, 1.4, 
1.4, 1.35]

0.5 s

[1.2, 1.2, 1.2, 
1.2]MW

[150, 120, 
120, 150]kVA

Compo‐
nent

BESS

SVG

Parameter

ηBC

ηBD

SOCmin

SOCmax

SOC1

P B
max

ERB

QSVG
max

Value

[0.95, 0.95, 
0.95, 0.95]

[0.95, 0.95, 
0.95, 0.95]

[0.1, 0.1, 
0.1, 0.1]

[0.9, 0.9, 
0.9, 0.9]

[0.5, 0.5, 
0.5, 0.5]

[100, 80, 80, 
100]kW

[250, 200, 
200, 250]kWh

[50, 50, 50, 
50]kvar
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over-limit Imax due to more EL at bus 18 and bus 33.

To ensure the distribution network security, i. e., without 
off-limit of voltages or congestion, the temporal and spatial 
demand responses are considered in Case 2 with centralized 
optimization. In terms of DSO, Subcase 2.1 mainly utilizes 
BESS as the temporal demand-side resource together with 
PV and SVG to support voltage and manage congestion, 
while Subcase 2.2 adds the IWs as flexible EL to provide 
spatial flexibility. In terms of ISC, Subcase 2.3 utilizes all 
the demand-side resources to minimize the electricity cost. 
Taking time slot 18 as an example, given the different objec‐
tive functions compared with Subcases 2.1 and 2.2, ISC in 
Subcase 2.3 seeks less cost only if the bus voltages and 
branch currents are within the limit as shown in Fig. 8 and 
Fig. 9. It can be observed that the temporal demand re‐
sponse in Subcase 2.1 cannot effectively support voltages or 
manage congestion because BESS at each DCB is only the 
auxiliary equipment with a small capacity. By contrast, the 
EL caused by processing IWs in DCBs takes a large amount 
of net power, which significantly affects the power flow dis‐
tribution. Under this condition, both strategies in Subcases 
2.2 and 2.3 can satisfy the power flow constraints by dis‐
patching IWs over four DCBs. However, the voltage at bus 
18 and the current of branch 25 in Subcase 2.3 reach their 
limits, respectively, leading to voltage over-limit and power 
flow congestions in this area.

To protect the privacy of DCBs and alleviate the conges‐
tion, the proposed strategy is used in Case 3.

As shown in Fig. 10(a) and Fig. 11(a), the bus voltages 
and branch currents can both satisfy the constraints in Sub‐
cases 3.1 and 3.2. However, in Subcase 3.1, with the electric‐
ity prices from ISO directly taken in the ISC’s strategy, the 
ISC does not have enough motivation to further implement 
demand response to support voltages and manage power 
flow congestion. In comparison, the DLMPs vary in differ‐
ent buses, as shown in Fig. 12. As all buses are power con‐
sumers, the DLMP at each bus is always larger than the elec‐
tricity prices from ISO. When the bus voltages and branch 
currents are going to exceed the limits, the extra network 
loss costs, voltage support costs, and branch congestion 
costs would be added, and DLMPs increase. It incentivizes 
DCBs to further dispatch demand-side resources, e.g., BESSs 
and IWs. Hence, in Fig. 10(b), the gap between the voltages 
at bus 18 and the lower voltage limits in Subcase 3.2 is larg‐
er than that in Subcase 3.1. Similar results are revealed with 
the branch current, as shown in Fig. 11(b). Compared with 
centralized optimization in Subcase 2.2, the regulating ef‐
fects of the proposed strategy on bus voltages and branch 
currents in Subcase 3.2 are slightly inferior due to the differ‐
ences between DLMPs and electricity prices from ISO. How‐
ever, the differences are marginal because the peak and val‐
ley periods of DLMPs and electricity prices from ISO are 
the same, as shown in Fig. 12. Nevertheless, DCBs’  priva‐
cies are well protected since less private information is ex‐
changed using the bi-level framework in Subcase 3.2.

C. Cost Analysis

The ISC with four DCBs needs to pay additional costs for 
network loss, voltage support, and branch congestion to 
DSO when being powered with the electricity prices from 
ISO in Case 1, Case 2, and Subcase 3.1. These additional 
costs can be shared equally with basic EL on other buses. In 
contrast, these additional costs are already added to the 
DLMPs in Subcase 3.2, i.e., the shared extra cost is zero.
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In terms of DSO, it is a precondition to keep all bus volt‐
ages within a safe level and make branches uncongested. 
The electric power costs of ISC and DSO with centralized 

optimization (Subcase 2.2) and equilibrium optimization 
(Subcases 3.1 and 3.2) are compared in Table III. The cen‐
tralized optimization in Subcase 2.2 is the most economical 
strategy for DSO, of which the cost is 6.970% less than that 
in Subcase 3.1 and 0.372% less than that in Subcase 3.2. 
The cost difference between centralized optimization (Sub‐
case 2.2) and DLMP-based equilibrium optimization (Sub‐
case 3.2) is marginal. More importantly, due to the need for 
privacy protection for ISC, centralized optimization is al‐
most impossible. Therefore, the proposed DLMP-based equi‐
librium optimization strategy provides a promising and cost-
effective option.

In terms of ISC, the centralized optimization in Subcase 
2.2 is also the most economic strategy, of which the cost is 
4.497% less than that in Subcase 3.1 and 1.205% less than 
that in Subcase 3.2, respectively. Compared with the in‐
crease in energy costs in Subcase 3.2, privacy is much more 
important for ISC. Take time slot 18 as an example, where 
the DLMP at time slot 18 is relatively higher than in other 
time slots due to the peak of EL, as shown in Fig. 12. The 
net power of four DCBs in three subcases is compared in 
Fig. 13. The lower DLMPs at bus 22 and bus 25 motivate 
the ISC to dispatch more IWs to DCB2 and DCB3. In addi‐
tion, the comparison of grid power of the distribution net‐
work in Subcases 2.2, 3.1, and 3.2 shown in Fig. 14 illus‐
trate that the centralized optimization and the DLMP-based 
equilibrium optimization have similar dispatching results and 
power demand profiles due to the same objective function 
and constraints of DSO and ISC, thus indicating the effec‐
tiveness of the proposed DLMP-based equilibrium optimiza‐
tion strategy. However, compared with the increase in elec‐
tricity costs in Subcase 3.2, privacy is much more important 
for ISC, making the proposed DLMP-based equilibrium opti‐
mization strategy the most suitable one. While in Subcase 
3.1 with the same electricity prices for each bus, the ISC 
does not have enough economic incentive to further dispatch 
IWs to support grid security. Therefore, the grid power de‐
mand of the distribution system from the main grid in Sub‐
case 3.1 is more than that in Subcase 2.2 and that in Sub‐
case 3.2 as a whole.

In addition, although with the same TPT prices, the in‐
creased cost of ISC in Subcase 3.1 than that in Subcase 2.2 
mainly results from the shared extra cost coming from the 
grid loss. However, the DLMP-based equilibrium game elim‐
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Fig. 10.　Bus voltages in comparison with Subcases 2.2, 3.1, and 3.2. (a) 
Bus voltages in a day. (b) Bus voltages at time slot 18.

TABLE III
COMPARISON OF ELECTRIC POWER COSTS WITH DIFFERENT STRATEGIES

Stake‐
holder

DSO

ISC

Cost type

Grid power cost

Capacity cost

Total cost

Extra cost

Net power cost

Shared extra cost

Total cost

Cost (104 CNY)

Subcase 2.2

5.1047

0.5248

5.6295

0.7606

2.0671

0.2541

2.3212

Subcase 3.1

5.4874

0.5639

6.0513

1.2211

2.0284

0.4021

2.4305

Subcase 3.2

5.1223
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Fig. 11.　Branch currents in comparison with Subcases 2.2, 3.1, and 3.2. 
(a) Branch currents in a day. (b) Branch currents at time slot 18.
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inates such drawbacks both for DSO and ISC. Compared 
with Subcase 3.1 without DLMPs, the proposed strategy in 
Subcase 3.2 saves 6.62% and 3.33% cost for DSO and ISC, 
respectively. In other words, the proposed strategy can incen‐
tivize more flexible users in the park to interact with the 
grid while preserving users’  privacy, to enhance the cost-ef‐
fectiveness and operational security of the distribution net‐
work.

In equilibrium optimization, the types of demand-side re‐
sources can also affect the economy of both DSO and ISC. 
It should be noted that the capacity of BESS is not very 
large in practice in these case studies with economic consid‐
eration. In this modified distribution network, random dis‐
patching of IWs would render the optimization infeasible. 
The proportion of arriving IWs is taken as 20%, 30%, 30%, 
and 20% of the base loads in four DCBs in Subcase 3.4, re‐
spectively. The comparison of electric power costs with dif‐
ferent resources in Subcases 3.2, 3.3, and 3.4 are provided 
in Table IV.

As shown in Table IV, the total cost of ISC in Subcase 
3.4 is remarkably higher than that in Subcase 3.2 and that in 
Subcase 3.3, by 6.07% and 4.04%, respectively, due to the 
small capacity of BESS. It denotes that the dispatching IWs 

across different DCBs is much more economical in the equi‐
librium optimization considering DLMPs.

D. Uncertainty Analysis

The net power of DCBs is influenced by the arrival of 
IWs and PV generations, which are inherently uncertain in 
reality. According to the robust model in Appendix A, the pa‐
rameters Γ DC

t  and Γ PV
jt  control the robustness of the problem. 

For the sake of simplicity, it is assumed that Γ DC
t  and Γ PV

jt  
are taken as the same value Γ. In addition, the uncertain pa‐
rameter ξ front and parameter ξ PV are seen as the same in this 
subsection. As shown in Table V, three uncertainty sets are 
listed with 5%, 8%, and 10% of the predicted values of the 
uncertainty variables [10]. Under any given value Γ, the in‐
crease of uncertainty also enlarges the cost of DSO and ISC 
except for Γ = 0, where uncertainty makes no sense. Take Γ =
1, t = 18 as an example. As shown in Fig. 15(a) and (b), the 
DLMPs increase along with the uncertainty level. This is be‐
cause with a higher level of uncertainty, the worst-case sce‐
nario results in an increase in the system’s net power. With 
a smaller PUE indicator, more IWs with 10% uncertainty are 
dispatched to IDC4, thus slightly decreasing the number of 
IWs at IDC2 and IDC3. Thus, the differences in DLMPs 
vary slightly with an increase in uncertainty, primarily due 
to the impact of the net power of IDC2, IDC3, and IDC4.
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TABLE V
COMPARISON OF ELECTRIC POWER COSTS OF DSO AND ISC UNDER 

DIFFERENT UNCERTAINTIES

Uncertainty 
(%)

5

8

10

Cost of DSO (104 CNY)

Γ = 0

5.6505

5.6505

5.6505

Γ = 0.5

5.7099

5.7323

5.7682

Γ = 1

5.7682

5.8224

5.9123

Cost of ISC (104 CNY)

Γ = 0

2.3495

2.3495

2.3495

Γ = 0.5

2.4326

2.4556

2.4692

Γ = 1

2.4692

2.5454

2.6378

TABLE IV
COMPARISON OF ELECTRIC POWER COSTS WITH DIFFERENT RESOURCES

Stake‐
holder

DSO

ISC

Cost type

Grid power cost

Capacity cost

Total cost

Extra cost

Net power cost

Shared extra cost

Total cost

Cost (104 CNY)

Subcase 3.2

5.1223

0.5282

5.6505

0.7711

2.3495

0.0000

2.3495

Subcase 3.3

5.1415

0.5311

5.6726

0.8079

2.3954

0.0000

2.3954

Subcase 3.4

5.2100

0.5599

5.7699

0.8080

2.4921

0.0000

2.4921
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Under the same uncertainty, the increased value of the ro‐
bustness control parameter Γ means the solution is more con‐
servative, thus worsening the scenario with a higher cost. 
Taking 10% uncertainty at t = 18 as an example, as shown in 
Fig. 15(c) and (d), the DLMPs also increase along with the 
parameter Γ as a whole due to a more conservative scenario 
with more IWs being dispatched to IDC4.

It is worth noting that if the level of uncertainty continues 
to increase, there may be no feasible solutions in the equilib‐
rium optimization because some constraints of DSO may not 
be satisfied. For example, when uncertainty is 40% and 
Γ = 1, the optimization is infeasible. Under this circumstance, 
the price-incentivized demand response of DCBs is not suit‐
able for the system.

E. Computational Performance

The problem in the Subcase 3.2 consists of 21073 continu‐
ous variables and 864 binary variables. Massive binary vari‐
ables might lead to computational difficulties. To demon‐
strate the scalability and computational performance of the 
proposed strategy, two additional test cases on the modified 
IEEE 69-bus system and 123-bus system are implemented. 
Detailed data can be found in [36]. In addition, the increas‐
ing number of DCBs also affects the number of binary vari‐
ables. Another two cases with different numbers of DCBs in 
the modified IEEE 33-bus system presented in Section IV-A 
are compared in this subsection as well. The optimality gap 
tolerances are all set to be 1%.

The number of continuous and binary variables and the 
computational time with the proposed strategy are provided 
in Table VI. When applied to a larger-scale system, the com‐
putational time increases. However, the computation time al‐
so satisfies the computation demand for day-ahead schedul‐
ing. In practice, the distribution network is not very large in 
a data center park, and DCBs in adjacent locations can also 
be aggregated to a united DCB. This can reduce the number 
of binary variables and accelerate the computation process.

V. CONCLUSION

The paper develops a DLMP-based bi-level Stackelberg 
game framework between ISC and DSO in the DCP. At the 
upper level, ISC minimizes the electricity cost of all DCBs 
by dispatching IWs, BESS, SVG, and PV both temporally 
and spatially. The uncertainties of arriving IWs and PV gen‐
erations for DCBs are considered and modeled using uncer‐
tainty sets. At the lower level, DSO minimizes the total elec‐
tricity cost while satisfying the security-constrained opera‐

tion of the distribution network. The model of proposed 
DLMP-based equilibrium optimization strategy is converted 
to a single-level MISOCP model using the strong duality the‐
orem and binary expansion method.

A few numerical cases are studied on a modified IEEE 33-
bus radial distribution network with four DCBs. Regarding 
DSO, the proposed strategy can stimulate the use of more 
flexible resources to support voltages and alleviate the distri‐
bution network congestion. Compared with centralized opti‐
mization, the DLMP-based equilibrium optimization strategy 
also reduces the cost of ISC by scheduling spatial and tem‐
poral demand-side resources with less exchanged informa‐
tion, which protects the privacy of the ISC. In addition, the 
proposed strategy can effectively accommodate the load-
source uncertainties. Computational performance analysis 
has validated the scalability of the proposed strategy. The 
simulation results demonstrate that the proposed strategy of‐
fers a mutually beneficial solution for both DSO and ISC.

In future research, the cooperative game with an incentive-
compatible mechanism among multiple ISCs in the distribu‐
tion network will be an interesting topic.

APPENDIX A

Appendix A presents robust optimization. ξ front and ξ PV, 
which are the uncertainties of parameters L͂front

t  and T͂ PV
t , are 

limited in the uncertainty set [ ]( )1 - ξ front Lfront
t ( )1 + ξ front Lfront

t  

and [ ]( )1 - ξ PV T PV
t ( )1 + ξ PV T PV

t , respectively. According to 

the robust theorem presented in [29], the equivalent linear 
formulation of the robust problem in this paper can be mod‐
eled as:
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mPV
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where Γ DC
t  and Γ PV

jt  are to control the robustness against the 
uncertainty of L͂front

t  and T͂ PV
t , respectively.
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