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Abstract—This paper proposes a distribution locational mar-
ginal pricing (DLMP) based bi-level Stackelberg game frame-
work between the internet service company (ISC) and distribu-
tion system operator (DSO) in the data center park. To mini-
mize electricity costs, the ISC at the upper level dispatches the
interactive workloads (IWs) across different data center build-
ings spatially and schedules the battery energy storage system
temporally in response to DLMP. Photovoltaic generation and
static var generation provide extra active and reactive power.
At the lower level, DSO calculates the DLMP by minimizing the
total electricity cost under the two-part tariff policy and en-
sures that the distribution network is uncongested and bus volt-
age is within the limit. The equilibrium solution is obtained by
converting the bi-level optimization into a single-level mixed-in-
teger second-order cone programming optimization using the
strong duality theorem and the binary expansion method. Case
studies verify that the proposed method benefits both the DSO
and ISC while preserving the privacy of the ISC. By taking in-
to account the uncertainties in IWs and photovoltaic genera-
tion, the flexibility of distribution networks is enhanced, which
further facilitates the accommodation of more demand-side re-
sources.

Index Terms—Bi-level optimization, congestion management,
data center, demand response, distribution locational marginal
pricing (DLMP), robust optimization.
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O, Set of receiving buses of branch lines with the
same sending bus j

B Set of all branch lines in distribution network

D Set of locations of data centers (D < N)

h Index of binary extension method slice

i,j, k Indices of buses in distribution network

N Set of all buses in distribution network

P Strategy set of player internet service compa-
ny (ISC)

t Index of time slots

T Set of time slots

B. Variables

P

T, Dual variable of nodal active power balance
constraint as well as distribution locational
marginal pricing

T Dual variable of nodal reactive power balance
constraint

T, Dual variable of voltage drop constraint of

each branch

A wAQ w41, 207 Dual variables of second-order cone program-

ming relaxation constraint

077,077 Dual variables of lower/upper grid power fac-
tor limitation constraints

0;,,0;; Dual variables of bus voltage magnitudes con-
straints

500 Dual variables of branch current magnitudes
constraints

om Dual variable of the maximum power demand
constraint

4;, Number of active servers in data center build-
ing (DCB)

Eft Stored electric energy of bettary energy stor-
age system (BESS)

F Payoff function of upper level

F™ Payoff function of lower level

Ly, Squared current magnitude of branch (i, j)
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Total arriving workloads in DCB
Dual variables

Total active power load of DCB
Active and reactive power outputs of photo-
voltaic (PV)

Charging and discharging active power of
BESS

Active and reactive net electric power

The maximum demand for electric power
Active and reactive power on branch (i, j)
Provided active and reactive power of data

center park (DCP) by independent system op-
erator (ISO)

Reactive power output of static var generation
(SVG)

Binary variables indicating charging and dis-
charging states of BESS

Squared voltage magnitude
Aucxiliary variables

Nonnegative control parameters between 0
and 1

Time slot
Charging and discharging efficiencies of BESS
Uncertainties of parameters ™" and 7"

Number of days to settle the maximum de-
mand price

Power factor of DCP

The maximum number of servers
Purchased electricity price of DSO
The maximum demand price of DSO

Designed power usage efficiency (PUE) of a
DCB

The maximum delay time

Rated energy of BESS

A non-negative integer

Upper bound of current magnitude of branch
()

Service rate of a server

Predicted and uncertain workloads in front-
end server

Big positive constant
Idle and peak active power of a server
Basic active and reactive power loads

The maximum active charging or discharging
power of BESS

The maximum net electric power
Reactive power capacity of SVG
Resistance and reactance of branch (7, j)
Apparent power capacity of PV

soc The minimum and maximum states-of-charge

j. min®
SOC; (SOCs) of BESS
T, T Day-ahead predicted and uncertain active
power output curves of PV
Vi mino Vi max ~ LOwer and upper voltage bounds

1. INTRODUCTION

LOUD computing is gaining momentum, driven by the

development of social networks, big data, and the Inter-
net of Things. To effectively process these massive work-
loads and provide reliable computing services, major internet
service companies (ISCs) have built extensive data centers.
With the expansion of data centers, their energy consump-
tion has grown rapidly, most of which are used for process-
ing workloads and corresponding cooling systems. On a
global scale, the annual electric power consumption of data
centers reached around 3% in 2016 [1], and the rates have
increased steadily in the recent few years [2]. To make full
use of the infrastructure resources, several data center build-
ings (DCBs) are usually centrally placed in an industrial
park. For example, Amazon has built many data centers all
over the world, most of which are placed in the same park
with multiple DCBs [3]. A leading communication company
StarHub also has seven data centers across Singapore, some
of which are built in the same park [4]. These DCBs are
powered by the park distribution network and distributed in
different buses. In some countries, these industrial parks
with multiple DCBs are named data center parks (DCPs)
[5]. For some newly built DCPs, the line capacities of the
distribution network are usually matched with all DCBs at
full loads. However, for some existing DCPs, the high pene-
tration of electrical loads (ELs) of DCBs may cause network
congestion and voltage off-limit [6], which endangers the
systems’ security.

The traditional methods to block out network congestion
are expanding the power capacity or network reconfiguration
[7], but the costs are relatively high. To avoid changing the
distribution network structure, the pricing control method is
a novel method to incentivize demand-side resources, e.g.,
photovoltaic (PV) [8], battery energy storage systems
(BESSs) [9], thermal loads [6], and electric vehicle charging
stations [10], to proactively respond to the grid demand. De-
rived from the locational marginal pricing method in the
power transmission market, the distribution locational mar-
ginal pricing (DLMP) method is developed in recent years
as a pricing method to address network congestion and volt-
age issues in the distribution networks [8]-[10]. The DLMPs,
including the marginal electric power price, marginal loss
price, marginal voltage support price, and marginal conges-
tion price, can promote end-users to manage the demand-
side resources to reduce electricity costs. However, to make
the problem easy to solve, many studies use direct current
optimal power flow (DCOPF) and power transfer distribu-
tion factor to calculate DLMP [11], [12], which carries great
errors because line reactance cannot be ignored in the distri-
bution network.

The thermal loads, BESSs, and electric vehicle charging
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stations are temporal demand-side resources, which can be
dispatched in different time slots for congestion manage-
ment. Different from temporal demand-side resources, the ar-
riving workloads at the front-end server can be dispatched
both temporally and spatially through the data network. Ac-
cording to the processing deadlines, the arriving workloads
mainly include the delay-tolerant batch workloads (BWs)
and delay-sensitive interactive workloads (IWs) [13]. Delay-
torrent BWs in a DCB can be scheduled to any time slot to
process within the deadline temporally, while delay-sensitive
IWs can be dispatched to any DCB in the DCP within a
time slot spatially. To this end, the net power of DCBs is
scheduled to change the power flow of the distribution net-
work thus supporting voltages and alleviating congestion is-
sues. In addition, to improve the demand response potential
of each DCB, auxiliary energy systems such as PV, static
var generator (SVQG), and BESS can be utilized.

In reality, data centers had participated in demand re-
sponse in history. For example, on July 22, 2011, hundreds
of data centers cut power demands for emergency demand
response and helped avoid a wide-area blackout throughout
North America [14]. Distribution network congestions and
voltage issues typically occur in developed regions with
heavy electricity loads, so some countries such as China
have channeled more BWs from developed regions to less
developed regions with more renewable energies [15]. As a
result, the remaining IWs such as online trading and web
browsing workloads, make up a significant portion of the de-
mand-side resources in developed regions. Despite their flex-
ibility, most existing studies only focus on minimizing ener-
gy costs for data centers, neglecting their potential contribu-
tions to supporting grid voltages and managing congestion
[16], which would adversely affect power system securi-
ty [17].

In the electricity market, the distribution networks for gen-
eral industrial and commercial users are usually managed by
the distribution system operators (DSOs), which are powered
by the electricity utilities, e.g., independent system operators
(ISOs). In terms of the DSO, the most effective method is
scheduling all the available demand-side resources in a cen-
tralized manner. However, it is unrealistic for the DSO to
gain access and control of all devices in the distribution net-
work, particularly considering users’ data privacy. To ad-
dress this challenge, researchers have explored the use of the
non-cooperative Stackelberg game theory, which models in-
teractions between energy suppliers and consumers as lead-
ers and followers [18]. This can protect users’ privacy by re-
quiring less information exchange such as device-specific in-
formation [19]. In [20], an equilibrium model involving a
DSO, a supplying utility, prosumers, and conventional con-
sumers is solved by the strong duality theorem. Hence, the
optimization of follower DSO in the lower level should be
either linear or convex such as with DistFlow. However, lin-
earized DistFlow models with simplified power flow assump-
tions assume a fixed bus voltage of 1.0 p.u., which may not
provide an accurate outer approximation of the original Dist-
Flow model. This can result in the loss of feasible solutions
or generate additional infeasible regions [21].

1961

These studies seldom consider security issues such as net-
work congestion and voltage issues in distribution networks.
In [22], the Stackelberg game concept is employed to devel-
op an incentive-based mechanism to involve flexible resourc-
es in the congestion management of the distribution net-
work. However, only temporal flexible resources are consid-
ered in this paper. Motivating all temporal demand-side re-
sources to operate in the same time slot may still result in
distribution network congestion and voltage issues. There-
fore, the spatial demand response is considered to further
cope with the distribution network security issues.

Multiple uncertainties such as those in renewable genera-
tion and workloads can lead to uncontrollable distribution
network congestion and other security issues that increase
system risk and operation costs. It is crucial to incorporate
such uncertainties into operation models to enhance the ap-
plicability of the proposed method in motivating DCBs to
support grid security. Stochastic optimization (SO) [23],
[24], robust optimization (RO) [25], [26], and distributional-
ly robust optimization (DRO) [27], [28] are three widely
used techniques for optimization under uncertainties. Since
both SO and DRO rely on a large number of historical data,
which may be difficult to obtain for interactive workloads,
this paper adopts an RO method. Further, the RO problem is
usually solved by Benders decomposition and column-and-
constraint generation algorithm, which is rather complicated.
Therefore, this paper takes an equivalent linear formulation
of RO derived from [29] to tackle uncertainties in workloads
and PV generation.

Compared with previous works, this paper proposes a
DLMP-based equilibrium optimization strategy for DCP with
spatial-temporal demand-side resources. The contributions of
this paper are as follows.

1) A bi-level Stackelberg game framework is proposed to
motivate multiple DCBs with demand-side resources to sup-
port the grid security, where the ISC with multiple DCBs is
seen as a leader and DSO is seen as a follower.

2) Both the temporal and spatial demand-side resources of
multiple DCBs are considered to be scheduled in the game
strategy. The uncertainties in arriving workload and PV gen-
erations are modeled into RO format to verify the applicabili-
ty of the proposed strategy in motivating DCBs to support
grid security.

3) The radial distribution network is modeled by Disflow
equations with the second-order cone programming (SOCP)
formulation. To solve the bi-level operation problem, the
strong duality equation of the SOCP problem is derived. The
bilinear terms are addressed by the binary expansion method,
thus converting the bi-level operation problem to a single-lev-
el mixed-integer second-order cone programming (MISOCP)
problem, which can be solved by commercial solvers.

The rest of this paper is organized as follows. Section II
presents the problem formulation, including the framework
of DLMP-based equilibrium optimization strategy and the
upper-level and lower-level dispatching models. Section III
presents the model reformulation and solution method. Sec-
tion IV presents the case studies on a modified IEEE 33-bus
system. Conclusions are drawn in Section V.
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II. PROBLEM FORMULATION

A. Framework of DLMP-based Equilibrium Optimization
Strategy

The basic structure of the problem in this paper includes
three stakeholders: ISC, DSO, and ISO, as shown in Fig. 1.
The participants in the Stackelberg game in DCP are the ISC
and DSO. In this game, the ISC with multiple DCBs at dif-
ferent buses of the distribution network serves as the leader,
while the DSO is the follower. The leader at the upper level
optimizes the operation of demand-side resources, ¢.g., IWs,
BESS, PV, SVG, to minimize the total electricity cost and
send the net electric power demand to the DSO. Based on
the net power at all buses and time slots, the DSO optimizes
the security-constrained power flow of the distribution net-
work and provides DLMPs to each consumer. In addition to
ensuring grid security, minimizing the total electricity cost is
also a concern for DSO. The DSO is assumed to be a price
taker receiving the industrial two-part tariff (TPT) from ISO
and providing the electric power demands to ISO [30]. More-
over, another two assumptions are summarized as follows.

4{ Upper-level leader ISC %7

Minimize total electricity cost of all DCBs

Net |8t Constraints of workloads scheduling in DCBs
: Constraints of BESS, PV, and SVG
electric ! DLMPs
power Minimize total electricity cost of the grid
demand

s.t. Constraints of power flow
Constraints of voltages and currents

—>‘ Lower-level follower DSO }7

TPT

Electric power demand

ISO

Fig. 1. Operation framework for ISC, DSO, and ISO.

1) Only DCBs are seen as the flexible loads in the distri-
bution network of DCP. Other loads are seen to be fixed,
and there are no distributed generations except PV genera-
tion in DCBs.

2) The coupling of multiple energy systems, e.g., electric
power and natural gas, is neglected in the DCP.

To this end, the bi-level Stackelberg game model is formu-
lated as:

(1)
where P™'= {P“e‘ jeD,te T} and nP:{zp/f, }

Let ()" be the optimal strategies of each player, the equilibri-
um solution can be solved by:

= {ISCUDSO, P™,z", F**, F*}

(Pnet)*:argminFUL{Pnet’(nP)*}
. (2)

st. (") :argminFLL{(P“e‘)*, nP}

Remark 1: this paper assumes that multiple DCBs are
managed by a single ISC. Therefore, the proposed bilevel
problem is indeed a one-leader and one-follower Stackelberg
game, where the equilibrium solution remains the same re-
gardless of who serves as the leader or follower. Additional-
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ly, since the optimization of multiple DCBs with integer vari-
ables is non-convex, the ISC is set as the leader while the
DSO is the follower for computational tractability.

B. Upper-level Dispatching Models

As the leader at the upper level, ISC manages several
DCBs. The electric power load (EL) of these DCBs consists
of IT energy consumption, e.g., servers, memory, communi-
cation, and storage devices, as well as other ancillary energy
consumption, e.g., air conditioning, lighting. Power usage ef-
ficiency (PUE) is generally used to illustrate the relationship
between IT energy consumption and ancillary energy con-
sumption, which is defined as the ratio of total energy con-
sumption to IT energy consumption [16]. In addition, to sat-
isfy the reactive power loads of DCBs, the SVG and reac-
tive capacity of PV are considered at the upper level. BESS
also provides the temporal demand response potential of
each DCB. As a rational game player, ISC would pursue the
minimization of electric power costs. To this end, the upper-
level model is formulated as:

min FU= >} P At

teTjeD (33)
s.t.
) Ppea.k_P§dle
P.fe])’C: |:P;dle+ (C/’PUE_ I)Pj?eak:| A,ivl+ ’ L‘fatc ’ jDIC

VieD,VteT (3b)
0<4,,<A4;,., VjeDVieT (3c)

1 DT
W_C VjeD,VteT (3d)
LYX>0 VjeDVteT (e)

DC> T front
jZ)LJ, > VteT 39
0<P}y< Sj’anTPV VieD,VteT 3g)
on| st 1= (1Y) vieDvieT (W)
05| <o, vjeDvieT (3i)

BD
EP=EP | +|n“Pif— —5 |At VjeD,VieT\{1} (3j)

J
Efl =SOC/;1EJBB VjeD (k)
E}\=E}, VjeD €))
SOC, ., Ef*<E},<SOC,  E® VjeD\NteT (3m)
0<n*P<P?  u’y VjeDVteT (3n)
PBD
0< —o <PP u} VjeDVtel (30)
j

uyy+u’<1 VjeD,VieT (3p)
0<P<P!y., VjeD\VteT (39

P +PlY+PPP =P +P +P> VjeD,VteT (3r)
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Qnet"‘ sVG Q Q/B} VjeD,VteT (3s)

Equation (3a) is the objective function of the upper level,
where 7, is derived by the dual variable of the nodal active
power balance constraint in the lower-level problem [8].
Constraint (3b) denotes the EL consumptions of DCBs on
the bus j, which is determined by the number of active serv-
ers 4,, and arriving workload L?. Constraint (3c) limits the
total number of on-service active servers. Constraint (3d) de-
notes the quality-of-service (QoS) requirement, in which
waiting time is mainly considered based on the M/M/1 theo-
ry [31]. Constraints (3e) and (3f) indicate that the arriving
IWs at the front-end server should be allocated to all DCBs
without omission. Constraints (3g) and (3h) represent the ac-
tive and reactive output power of PV generations, which
take into account the minor differences between the natural
conditions of DCBs within the same DCP. Each PV genera-
tion follows the same output trace but may vary in capacity.
Constraint (3i) limits the output reactive power of SVG [30].
Constraints (3j)-(3p) are the BESS model [20]. Constraint
(3q) determines the interactive net power between each DCB
and the distribution network. Constraints (3r) and (3s) de-
scribe the active and reactive power balance with all de-
mand-side resources.

If the uncertainties of PV generations and arriving IWs in
the front-end servers are not considered, then L= [fom
TV =T". However, their uncertainties would affect the deci-
sion-making of ISC. The detailed robust models are provid-
ed in Appendix A.

C. Lower-level Dispatching Models

As the follower in the bi-level framework, DSO receives
the net power from the upper-level model and optimizes the
power flow to ensure the economic and secure energy sup-
ply under the TPT policy. It is assumed that the cost of the
maximum demand in a settlement cycle such as a month is
decided by a typical day. The distribution network is typical-
ly considered a radial network to be modeled by DistFlow
[21] and converted to a convex problem with SOCP [30]. To
this end, the lower-level model is:

minFLL: zctgridptgridAt_i_ lcmdpmd (4.’:1)
teT p
s.t.
r zjt z ij’t_f_Pnet VjeD,VteT (71';),) (4b)
Pyt D Py AP Ve M{I)\D,Vie T (7;/{’,)(40)
keo,

pe= NP, vieTl (af))

ke o,

(4d)
0, =%+ EQW+Q]I VieM{l}.vieT (z2) (4e)

>0, vieT (z2)

keo®,

o= (4D
V=V, Z(r,jPljt+xijQ,.j_,t) + (rijz.+x§.)lw
v(ij) eBVteT (x},) (dg)

it

1963
P
2P, i
20;, | <l +v,, V(ij)eBNVteT ||45,[.AX2| (4h)
Zz'j,t_ Vi j'}/vi

—PE tan g < QFUS PEY tan o= Wee T (007,00%)  (4i)

i<y, <Vl VjeNVieT (8,.07)  (4)
01, <12, V(ij) eBYteT (05,.6) (4
PEI<P™ VieT (o™) (41)

Note that the variables in the brackets are dual variables
of constraints. The objective function (4a) aims at minimiz-
ing the total electricity cost of the DCP. Constraints (4b)-(4f)
state the nodal active and reactive power balance. Constraint
(4g) formulates the voltage drop of each branch. Constraint
(4h) indicates SOCP relaxation. Constraint (4i) represents
the limitation of grid power factors by ISO. Constraints (4j)
and (4k) limit the magnitudes of bus voltages and branch
currents, respectively. Constraint (4) indicates the maximum
demand for grid power.

III. MODEL REFORMULATION AND SOLUTION METHOD

Based on the framework proposed in Section II, DLMPs
derived from the dual multipliers of the lower-level distribu-
tion system operation model should be provided for consum-
ers including all DCBs. According to the dual theorem of
the convex SOCP problem [32], the dual form of the lower-
level model in (4) is reformulated as:

maxzzy;/f,P/{’e‘+ 2 2 Py + Z 2 Tl +

teTjeD teTje N\{1}\D teTjeN{1}

v— v+ 1+
z 2( J mlnéjt jmaxéjt ) 2 z Ijmaxatjt (5a)
teTjeN teT(ij)eB

S.t.
-}, +7r 2, 7[1”+2/1P =0 V(,j)eB,VteT ( ,,,) (5b)

ij.t

—rS+md+2x,my +240,=0 V(ij) eBVteT (QU_,,) (5¢)

ij.t it

2l o+ (00 +07" tan g4 - 5™ = ¢ AL Ve T (PEY) (5d)

”8t+5?7_5?+:0 vt eT (Q‘;”rid) (56)
zamd cmd Pmd) (Sf)
teT

R G )n,,,wwzw:,,—51;,—0

V(z,]) eB,VteT ( U,) (5g)

= D@l A= AR) +01,-07=0 VieT (vi,) (s

keo,

v vl v2 v — v+ _
nzy',t_ 2( /kt A’jk! )*Ikt) 5j¢r_5/,t_0

keo,

VieN{LVieT (v,) (i)
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/'{P
,113: <ip? v(ij)eBVteT (5))
j'z;,t 2
57720
>0 VieT (5k)
oM>0
81,20
- VieN,VteT (51)
87=0
o >0
.t ..
Ss V(ij) eBVteT (5m)
t/t—

Equations (5b) - (51) are dual constraints associated with
the primal variables in the brackets. Constraint (5j) is the du-
al counterpart of the primal SOCP constraint (4h), which is
also a SOCP constraint. Constraints (5k)-(5m) limit the val-
ues of dual multipliers.

Since the primal problem and the dual problem of the low-
er level are both convex, the strong duality equality holds:

(4a)=(52) (6)
Then, the bi-level problem (2) can be equivalently trans-
formed into the following single-level problem:

min > > xf, P At

teTjeD

s.t. Upper - level constraints: (3b)-(3s) ™)

Lower - level constraints: (4b)-(41), (5b)-(5m), (6)

Note that the above single-level problem has the bilinear
terms z;, P, which cannot be solved directly by commer-
cial solvers such as CPLEX and GUROBI. To deal with the
bilinear terms, a binary expansion (BE) scheme is used to
discretize one of the continuous variables and convert the
non-linear problem into an MILP problem [33].

The basic idea of BE method in this paper is to approxi-

mate the continuous decision values P} by a set of discrete

net
values {PJ o

h=0,1, ...,E}, where Z=2" is a non-negative

integer that decides the number of slices. As P} satisfies
the constraint (3q), the discrete approximation can be ex-
pressed as:

P.nel _PBL H
Pr=pP+ 7*"‘“211 LN VjeDVteT ()
h=0
where u;"5 is a binary variable. Multiplying both sides of (8)

Pnet P
j 1, W7 .t

Pnet __

Zieh= we can obtain:

by x; r, and defining z

Pnet _PBL
! P =n PPl + —m L 22’1 i VjeD,VteT (9)
0<nf,—z /Pj’ifg(l u )M, VjeDVteT  (10)
0<z//<uoM, VjeDNteT (11)

where M is large enough for constraint (10) and constraint
(11) to be relaxed when u;ts =0 and u;5 =1, respectively,

j.t.h
e.g., M;=P},.. Then, (6) becomes:

J» max*
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id i 1
zc;grldP?rIdAt+ 7Cmded —
teT p
net
P BL Zpmax 7t max lf h _ Pnet
PO 22 Zjuh
teljeD
BL
> 2 mPi+ 3 3
teTje Nl teTje Nl
v— v+ 1+
22( jmmajt J maxéjt) z z ljmaxaljt (12)
teljeN teT(,’ﬁj)EB

Finally, the single-level problem (7) is approximately
equivalent to the following MISOCP problem, which can be
solved by commercial solvers.

Pnel
: P BL
min >, >\ %/, Ply +

jmax
teTjeD

Pnet
Zi o | A

/ f z 2h
s.t. Upper - level constraints: (3b)-(3s)

Lower - level constraints: (4b)-(41), (5b)-(5m), (6), (8)-(12)
(13)

IV. CASE STUDIES AND RESULT ANALYSIS

This section uses a modified IEEE 33-bus radial distribu-
tion network with four DCBs located at buses 18, 22, 25,
and 33 in four regions with different colors to illustrate the
DCP power system, as shown in Fig. 2. In this test, each
DCB contains EL, BESS, SVG, and PV. The front-end serv-
er of ISC is responsible for allocating the arriving IWs to
the four DCBs. DSO manages the DCP distribution power
system and purchases electric power from ISO. The code is
implemented in MATLAB R2016a with the YALMIP plat-
form on a desktop with an Intel Core 19 CPU clocked at 3.0
GHz and 64 GB RAM. The optimization model is solved us-
ing Gurobi 9.5 solver.

A DCB3 L a ..,
i |EL BESS SVG PV DCB4 | ;
@ % 9z 'EL BESS SVG PV ;
3 | ! IO ] .9-':-'.-"1"; !
| B s i |
| 24 2627 2829 30 31 32 35 i ISC
2 012 14 16 18 1! é |
A 1N 3456789 11_71737”175”717”“; !
S0 | 19 20 21 %% Lo Front-end !
; a )l B3 v agc  Server |
28 B % (ELBESSSVGPV. |
! |EL BESSSVGPV._ _______ DCBL
DCB2
' DSO. !
Fig. 2. Structure of DCP power system with four DCBs.

A. System Data and Case Description

To make the expression more concise, some indices of
variables and constants are neglected in this subsection. The
base voltage and base apparent power are considered to be
12.66 kV and 10 MVA, respectively. The power factor g
is limited to 0.8. The voltage limits at each bus are 0.9 p.u.
and 1.1 p.u., respectively [34]. The substation voltage is as-
sumed to be 1.0 p.u.. The current limits in four regions are
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set to be [595, 120, 120, 120]A. Figure 3 shows the daily ba-
sic EL curve without DCBs, the front-end IW curve, and the
PV curve. The number of basic arriving IWs is set to be
1.5x 10" requests per second. The electricity prices in Fig. 4
refer to the industrial TPT prices in Shanghai, China [35].
The charge as per the maximum demand is 34.02 CNY/kW
each month. Detailed parameters are provided in Table
1 [36].

1.0r Basic EL
——Front-end ITW
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206}
E
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Fig. 3. Daily basic EL curve, front-end IW curve, and PV curve.
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Fig. 4. Daily electricity prices.

TABLE I
PARAMETERS OF EL, BESS, SVG, AND PV

Compo- Parameter Value Compo- Parameter Value
nent nent
y [4000, 4000, ’/IBC [0.95, 0.95,
max 3000, 3000] 0.95, 0.95]
[4,4,4,4]
L™ requests per 7" [g'gg’ gggj
second R
e [100, 100, [0.1,0.1,
P 100, 100]W SOCmn 01 0.1]
EL peak [200, 200, BESS [0.9, 0.9,
s 200, 200]W SOCas 09 0.9]
PUE [1.35, 1.4, [0.5, 0.5,
¢ 1.4, 1.35] soc, 0.5, 0.5]
DT B [100, 80, 80,
c 0.5 PE ot
pre [12.12,12, . [250, 200,
12]MW 200, 250]kWh
oy [150, 120, we  [50, 50, 50,
PV Swx 120, 150pkvA | SYE O 50]kvar

In an electricity market where information is completely
private, every entity has to make the strategy individually,
which could adversely affect the profits of others. On the
contrary, in a completely public electricity market, it needs
to collect all entities’ information in the centralized optimi-
zation, making it easy to be attacked when the information
is leaked. To illustrate the advantages of the proposed equi-
librium optimization in benefiting both DSO and ISC in
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terms of economy and privacy protection, three cases and
their subcases are set for comparison, as summarized in Ta-
ble II.

TABLE 11
SUMMARY OF ALL CASES AND SUBCASES

Case Subcase Entity Price Demand-side resource

Subcase 1.1 DSO TPT None

Case 1
Subcase 1.2 ISC TPT All
Subcase 2.1 DSO TPT Without IW

Case 2 Subcase 2.2 DSO TPT All
Subcase 2.3 ISC TPT All
Subcase 3.1 Both TPT All
Subcase 3.2 Both DLMPs All

Case 3
Subcase 3.3 Both DLMPs Without BESS
Subcase 3.4 Both DLMPs Without IW

1) Case 1: Individual Optimization

Subcase 1.1: DSO optimizes the power flow without con-
sidering the net power of all DCBs.

Subcase 1.2: ISC optimizes all DCBs without considering
the park distribution network power flow, then DSO takes
the net power of all DCBs and optimizes the power flow.

2) Case 2: Centralized Optimization

Subcase 2.1: DSO optimizes the power flow considering
demand-side resources except for IWs in DCBs.

Subcase 2.2: DSO optimizes the power flow considering
all demand-side resources in DCBs.

Subcase 2.3: ISC optimizes all demand-side resources in
DCBs considering the park distribution network power flow.
3) Case 3: Equilibrium Optimization

Subcase 3.1: ISC games with DSO using the proposed
strategy by the electricity prices from ISO. All demand-side
resources are considered.

Subcase 3.2: ISC games with DSO using the proposed
strategy by DLMPs. All demand-side resources are consid-
ered.

Subcase 3.3: ISC games with DSO using the proposed
strategy by DLMPs. BESS is not considered a flexible re-
source.

Subcase 3.4: ISC games with DSO using the proposed
strategy by DLMPs. IWs are not considered flexible resourc-
es.

B. Impact of Demand-side Resources on Voltage and Power
Flow

In Case 1, the ISC optimizes four DCBs based on electric-
ity prices from ISO. As shown in Fig. 3, the basic EL and
the total front-end IWs are relatively heavy at time slot 18,
which might trigger voltage issues and power flow conges-
tion. Taking time slot 18 as an example, the bus voltages are
decreasing sharply away from the substation bus due to line
losses, as shown in Fig. 5. Hence, the voltage is the lowest
at bus 18 connected with DCBI1. As shown in Fig. 6, most
of the IWs are motivated to be dispatched to DCBI1 and
DCB4 because their PUE is smaller than that of DCB2 and
DCB3. Hence, the currents of branches 25-29 in Fig. 7 are
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over-limit / _due to more EL at bus 18 and bus 33.
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Fig. 5. Bus voltages in Case 1 at time slot 18.
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Fig. 6.  Arriving IWs of DCBs in Case 1.
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Fig. 7. Branch currents in Case 1 at time slot 18.

To ensure the distribution network security, i.e., without
off-limit of voltages or congestion, the temporal and spatial
demand responses are considered in Case 2 with centralized
optimization. In terms of DSO, Subcase 2.1 mainly utilizes
BESS as the temporal demand-side resource together with
PV and SVG to support voltage and manage congestion,
while Subcase 2.2 adds the IWs as flexible EL to provide
spatial flexibility. In terms of ISC, Subcase 2.3 utilizes all
the demand-side resources to minimize the electricity cost.
Taking time slot 18 as an example, given the different objec-
tive functions compared with Subcases 2.1 and 2.2, ISC in
Subcase 2.3 seeks less cost only if the bus voltages and
branch currents are within the limit as shown in Fig. 8 and
Fig. 9. It can be observed that the temporal demand re-
sponse in Subcase 2.1 cannot effectively support voltages or
manage congestion because BESS at each DCB is only the
auxiliary equipment with a small capacity. By contrast, the
EL caused by processing IWs in DCBs takes a large amount
of net power, which significantly affects the power flow dis-
tribution. Under this condition, both strategies in Subcases
2.2 and 2.3 can satisfy the power flow constraints by dis-
patching IWs over four DCBs. However, the voltage at bus
18 and the current of branch 25 in Subcase 2.3 reach their
limits, respectively, leading to voltage over-limit and power
flow congestions in this area.
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Fig. 8. Bus voltages in Case 2 at time slot 18.
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Fig. 9. Branch currents in Case 2 at time slot 18.

To protect the privacy of DCBs and alleviate the conges-
tion, the proposed strategy is used in Case 3.

As shown in Fig. 10(a) and Fig. 11(a), the bus voltages
and branch currents can both satisfy the constraints in Sub-
cases 3.1 and 3.2. However, in Subcase 3.1, with the electric-
ity prices from ISO directly taken in the ISC’s strategy, the
ISC does not have enough motivation to further implement
demand response to support voltages and manage power
flow congestion. In comparison, the DLMPs vary in differ-
ent buses, as shown in Fig. 12. As all buses are power con-
sumers, the DLMP at each bus is always larger than the elec-
tricity prices from ISO. When the bus voltages and branch
currents are going to exceed the limits, the extra network
loss costs, voltage support costs, and branch congestion
costs would be added, and DLMPs increase. It incentivizes
DCBs to further dispatch demand-side resources, e.g., BESSs
and IWs. Hence, in Fig. 10(b), the gap between the voltages
at bus 18 and the lower voltage limits in Subcase 3.2 is larg-
er than that in Subcase 3.1. Similar results are revealed with
the branch current, as shown in Fig. 11(b). Compared with
centralized optimization in Subcase 2.2, the regulating ef-
fects of the proposed strategy on bus voltages and branch
currents in Subcase 3.2 are slightly inferior due to the differ-
ences between DLMPs and electricity prices from ISO. How-
ever, the differences are marginal because the peak and val-
ley periods of DLMPs and electricity prices from ISO are
the same, as shown in Fig. 12. Nevertheless, DCBs’ priva-
cies are well protected since less private information is ex-
changed using the bi-level framework in Subcase 3.2.

C. Cost Analysis

The ISC with four DCBs needs to pay additional costs for
network loss, voltage support, and branch congestion to
DSO when being powered with the electricity prices from
ISO in Case 1, Case 2, and Subcase 3.1. These additional
costs can be shared equally with basic EL on other buses. In
contrast, these additional costs are already added to the
DLMPs in Subcase 3.2, i.e., the shared extra cost is zero.
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Fig. 12. DLMPs of active power in a day.
In terms of DSO, it is a precondition to keep all bus volt-

ages within a safe level and make branches uncongested.
The electric power costs of ISC and DSO with centralized
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optimization (Subcase 2.2) and equilibrium optimization
(Subcases 3.1 and 3.2) are compared in Table III. The cen-
tralized optimization in Subcase 2.2 is the most economical
strategy for DSO, of which the cost is 6.970% less than that
in Subcase 3.1 and 0.372% less than that in Subcase 3.2.
The cost difference between centralized optimization (Sub-
case 2.2) and DLMP-based equilibrium optimization (Sub-
case 3.2) is marginal. More importantly, due to the need for
privacy protection for ISC, centralized optimization is al-
most impossible. Therefore, the proposed DLMP-based equi-
librium optimization strategy provides a promising and cost-
effective option.

TABLE 111
COMPARISON OF ELECTRIC POWER COSTS WITH DIFFERENT STRATEGIES

Stake- Cost (10* CNY)
holder Cost type
Subcase 2.2 Subcase 3.1  Subcase 3.2
Grid power cost 5.1047 5.4874 5.1223
bSO Capacity cost 0.5248 0.5639 0.5282
Total cost 5.6295 6.0513 5.6505
Extra cost 0.7606 1.2211 0.7711
Net power cost 2.0671 2.0284 2.3495
ISC Shared extra cost 0.2541 0.4021 0.0000
Total cost 2.3212 2.4305 2.3495

In terms of ISC, the centralized optimization in Subcase
2.2 is also the most economic strategy, of which the cost is
4.497% less than that in Subcase 3.1 and 1.205% less than
that in Subcase 3.2, respectively. Compared with the in-
crease in energy costs in Subcase 3.2, privacy is much more
important for ISC. Take time slot 18 as an example, where
the DLMP at time slot 18 is relatively higher than in other
time slots due to the peak of EL, as shown in Fig. 12. The
net power of four DCBs in three subcases is compared in
Fig. 13. The lower DLMPs at bus 22 and bus 25 motivate
the ISC to dispatch more IWs to DCB2 and DCB3. In addi-
tion, the comparison of grid power of the distribution net-
work in Subcases 2.2, 3.1, and 3.2 shown in Fig. 14 illus-
trate that the centralized optimization and the DLMP-based
equilibrium optimization have similar dispatching results and
power demand profiles due to the same objective function
and constraints of DSO and ISC, thus indicating the effec-
tiveness of the proposed DLMP-based equilibrium optimiza-
tion strategy. However, compared with the increase in elec-
tricity costs in Subcase 3.2, privacy is much more important
for ISC, making the proposed DLMP-based equilibrium opti-
mization strategy the most suitable one. While in Subcase
3.1 with the same electricity prices for each bus, the ISC
does not have enough economic incentive to further dispatch
IWs to support grid security. Therefore, the grid power de-
mand of the distribution system from the main grid in Sub-
case 3.1 is more than that in Subcase 2.2 and that in Sub-
case 3.2 as a whole.

In addition, although with the same TPT prices, the in-
creased cost of ISC in Subcase 3.1 than that in Subcase 2.2
mainly results from the shared extra cost coming from the
grid loss. However, the DLMP-based equilibrium game elim-
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inates such drawbacks both for DSO and ISC. Compared
with Subcase 3.1 without DLMPs, the proposed strategy in
Subcase 3.2 saves 6.62% and 3.33% cost for DSO and ISC,
respectively. In other words, the proposed strategy can incen-
tivize more flexible users in the park to interact with the
grid while preserving users’ privacy, to enhance the cost-ef-
fectiveness and operational security of the distribution net-
work.
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Fig. 14. Grid power of distribution network in three subcases.

In equilibrium optimization, the types of demand-side re-
sources can also affect the economy of both DSO and ISC.
It should be noted that the capacity of BESS is not very
large in practice in these case studies with economic consid-
eration. In this modified distribution network, random dis-
patching of IWs would render the optimization infeasible.
The proportion of arriving IWs is taken as 20%, 30%, 30%,
and 20% of the base loads in four DCBs in Subcase 3.4, re-
spectively. The comparison of electric power costs with dif-
ferent resources in Subcases 3.2, 3.3, and 3.4 are provided
in Table IV.

TABLE IV
COMPARISON OF ELECTRIC POWER COSTS WITH DIFFERENT RESOURCES

Stake- Cost (10* CNY)
holder Cost type
Subcase 3.2 Subcase 3.3  Subcase 3.4
Grid power cost 5.1223 5.1415 5.2100
DSO Capacity cost 0.5282 0.5311 0.5599
Total cost 5.6505 5.6726 5.7699
Extra cost 0.7711 0.8079 0.8080
Net power cost 2.3495 2.3954 2.4921
ISC Shared extra cost 0.0000 0.0000 0.0000
Total cost 2.3495 2.3954 2.4921

As shown in Table IV, the total cost of ISC in Subcase
3.4 is remarkably higher than that in Subcase 3.2 and that in
Subcase 3.3, by 6.07% and 4.04%, respectively, due to the
small capacity of BESS. It denotes that the dispatching IWs
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across different DCBs is much more economical in the equi-
librium optimization considering DLMPs.

D. Uncertainty Analysis

The net power of DCBs is influenced by the arrival of
IWs and PV generations, which are inherently uncertain in
reality. According to the robust model in Appendix A, the pa-
rameters /'° and I'}\ control the robustness of the problem.
For the sake of simplicity, it is assumed that °° and "
are taken as the same value 7" In addition, the uncertain pa-
rameter ¢™" and parameter ¢"V are seen as the same in this
subsection. As shown in Table V, three uncertainty sets are
listed with 5%, 8%, and 10% of the predicted values of the
uncertainty variables [10]. Under any given value I, the in-
crease of uncertainty also enlarges the cost of DSO and ISC
except for /'=0, where uncertainty makes no sense. Take /"=
1, t=18 as an example. As shown in Fig. 15(a) and (b), the
DLMPs increase along with the uncertainty level. This is be-
cause with a higher level of uncertainty, the worst-case sce-
nario results in an increase in the system’s net power. With
a smaller PUE indicator, more IWs with 10% uncertainty are
dispatched to IDC4, thus slightly decreasing the number of
IWs at IDC2 and IDC3. Thus, the differences in DLMPs
vary slightly with an increase in uncertainty, primarily due
to the impact of the net power of IDC2, IDC3, and IDC4.

TABLE V
COMPARISON OF ELECTRIC POWER COSTS OF DSO AND ISC UNDER
DIFFERENT UNCERTAINTIES

Uncertainty Cost of DSO (10* CNY) Cost of ISC (10* CNY)
(%) r=0 r=0s r=1 =0 [=05 [I=1
5 5.6505 5.7099  5.7682  2.3495 24326 2.4692
8 5.6505 57323  5.8224 23495 24556 2.5454
10 5.6505 57682 59123 23495 24692 2.6378
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Fig. 15. Analysis of DLMPs and net power at time slot 18. (a) DLMPs

with different uncertainties and /"= 1. (b) Net power with different uncertain-
ties and /'=1. (¢) DLMPs with different /" and 10% uncertainty. (d) Net
power with different /" and 10% uncertainty.



YANG et al.: DISTRIBUTION LOCATIONAL MARGINAL PRICING BASED EQUILIBRIUM OPTIMIZATION STRATEGY FOR DATA CENTER...

Under the same uncertainty, the increased value of the ro-
bustness control parameter /" means the solution is more con-
servative, thus worsening the scenario with a higher cost.
Taking 10% uncertainty at /=18 as an example, as shown in
Fig. 15(c) and (d), the DLMPs also increase along with the
parameter /” as a whole due to a more conservative scenario
with more IWs being dispatched to IDC4.

It is worth noting that if the level of uncertainty continues
to increase, there may be no feasible solutions in the equilib-
rium optimization because some constraints of DSO may not
be satisfied. For example, when uncertainty is 40% and
I'=1, the optimization is infeasible. Under this circumstance,
the price-incentivized demand response of DCBs is not suit-
able for the system.

E. Computational Performance

The problem in the Subcase 3.2 consists of 21073 continu-
ous variables and 864 binary variables. Massive binary vari-
ables might lead to computational difficulties. To demon-
strate the scalability and computational performance of the
proposed strategy, two additional test cases on the modified
IEEE 69-bus system and 123-bus system are implemented.
Detailed data can be found in [36]. In addition, the increas-
ing number of DCBs also affects the number of binary vari-
ables. Another two cases with different numbers of DCBs in
the modified IEEE 33-bus system presented in Section IV-A
are compared in this subsection as well. The optimality gap
tolerances are all set to be 1%.

The number of continuous and binary variables and the
computational time with the proposed strategy are provided
in Table VI. When applied to a larger-scale system, the com-
putational time increases. However, the computation time al-
so satisfies the computation demand for day-ahead schedul-
ing. In practice, the distribution network is not very large in
a data center park, and DCBs in adjacent locations can also
be aggregated to a united DCB. This can reduce the number
of binary variables and accelerate the computation process.

TABLE VI
SCALABILITY ANALYSIS OF PROPOSED EQUILIBRIUM OPTIMIZATION
STRATEGY
System Number Number of con-  Number of bi- Time (s)
ysie of DCBs tinuous variables nary variables els
IEEE 33-bus 4 21073 864 3444.7
IEEE 69-bus 4 42673 864 12790.5
IEEE 123-bus 4 69673 864 14477.6
IEEE 33-bus 5 21481 1080 4905.7
IEEE 33-bus 6 26636 1296 6085.5

V. CONCLUSION

The paper develops a DLMP-based bi-level Stackelberg
game framework between ISC and DSO in the DCP. At the
upper level, ISC minimizes the electricity cost of all DCBs
by dispatching IWs, BESS, SVG, and PV both temporally
and spatially. The uncertainties of arriving IWs and PV gen-
erations for DCBs are considered and modeled using uncer-
tainty sets. At the lower level, DSO minimizes the total elec-
tricity cost while satisfying the security-constrained opera-
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tion of the distribution network. The model of proposed
DLMP-based equilibrium optimization strategy is converted
to a single-level MISOCP model using the strong duality the-
orem and binary expansion method.

A few numerical cases are studied on a modified IEEE 33-
bus radial distribution network with four DCBs. Regarding
DSO, the proposed strategy can stimulate the use of more
flexible resources to support voltages and alleviate the distri-
bution network congestion. Compared with centralized opti-
mization, the DLMP-based equilibrium optimization strategy
also reduces the cost of ISC by scheduling spatial and tem-
poral demand-side resources with less exchanged informa-
tion, which protects the privacy of the ISC. In addition, the
proposed strategy can effectively accommodate the load-
source uncertainties. Computational performance analysis
has validated the scalability of the proposed strategy. The
simulation results demonstrate that the proposed strategy of-
fers a mutually beneficial solution for both DSO and ISC.

In future research, the cooperative game with an incentive-
compatible mechanism among multiple ISCs in the distribu-
tion network will be an interesting topic.

APPENDIX A

Appendix A presents robust optimization. ¢™ and &'V,
which are the uncertainties of parameters L/ and 7", are
limited in the uncertainty set [(1 - f“’“‘)Lf""",(l +& f“’“‘)Lfmm}
and |:(l—fPV)TtPV,(1+§PV)TtPV], respectively. According to
the robust theorem presented in [29], the equivalent linear

formulation of the robust problem in this paper can be mod-
eled as:
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where I7°¢ and I/’ are to control the robustness against the
uncertainty of L™ and TV, respectively.
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