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Abstract——Energy storage devices can effectively balance the 
uncertain load and significantly reduce electricity costs in the 
community microgrids (C-MGs) integrated with renewable ener‐
gy sources. Scheduling of energy storage is a multi-stage deci‐
sion problem in which the decisions must be guaranteed to be 
nonanticipative and multi-stage robust (all-scenario-feasible). To 
satisfy these two requirements, this paper proposes a method 
based on a necessary and sufficient feasibility condition of 
scheduling decisions under the polyhedral uncertainty set. Un‐
like the most popular affine decision rule (ADR) based multi-
stage robust optimization (MSRO) method, the method pro‐
posed in this paper does not require the affine decision assump‐
tion, and the feasible regions (the set of all feasible solutions) 
are not reduced, nor is the solution quality affected. A simple il‐
lustrative example and real-scale scheduling cases demonstrate 
that the proposed method can find feasible solutions when the 
ADR-based MSRO fails, and that it finds better solutions when 
both methods succeed. Comprehensive case studies for a real 
system are performed and the results validate the effectiveness 
and efficiency of the proposed method.

Index Terms——Community microgrids, short-term scheduling, 
energy storage, nonanticipativity, polyhedral uncertainty set.
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Ē true, -E
true

g

p

F. Functions

h(x)

h-1 (y)

Realized uncertain net load up to time period t

Optimal solution of a quantity

Energy storage level of energy storage system

Safe upper and lower bounds of energy stor‐
age level. It should be noted that the safe 
bounds are variables and are different from 
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I. INTRODUCTION 

PROMOTION to community microgrids (C-MGs) pro‐
vides new opportunities for existing community net‐

works such that the penetration ratio of renewable energy 
sources (RESs) can be increased to reduce carbon emissions 
[1]-[3]. However, the uncertainty of RESs and load demand 
still challenges the operation safety of C-MGs [4]. To deal 
with the uncertainties and to improve the stability of C-
MGs, energy storage systems (ESSs) have drawn great atten‐
tion, which can be used to balance/reduce the uncertainties 
arising from load demand and RESs so as to reduce the elec‐
tricity cost [5]-[7].

The scheduling of energy storage is a typical multi-stage 
decision process. In the real application, it is found that non‐
anticipativity and multi-stage robustness should be consid‐
ered for multi-stage scheduling problems in recent years and 
relevant literatures have given some examples to illustrate 
the serious consequences if these two requirements are not 
satisfied [8] - [10]. To better explain the two concepts, we 
note that there is a salient feature in the multi-stage schedul‐
ing process that makes the problem completely different 
from the traditional deterministic optimization.

In the short-term scheduling of energy storage with uncer‐
tainties, the decision-making and the realization of uncertain‐
ties are repeated alternately and iteratively during the whole 
time horizon. For example, we must determine the charging/
discharging power level of the ESS at time period 1 immedi‐
ately after we know the net load information at this time pe‐
riod. Then, we must repeat this process at time periods 2, 
3, , T.

According to this feature of the scheduling process, the 
definitions of nonanticipativity and multi-stage robustness 
are naturally obtained.

At time period t, the decisions of this time period must be 
made based only on the unfolded (realized) random vari‐

ables up to time period t and the set of all possible realiza‐
tions at the future time periods (rather than any specific real‐
ization of the uncertainties at the future time periods). In oth‐
er words, the decisions made at time period t must be the 
same for all possible future realizations of the uncertainties. 
This also implies that the current decision must be formulat‐
ed as a function with respect to the unfolded (realized) ran‐
dom variables. This requirement is defined as nonanticipativi‐
ty.

According to the nonanticipativity, the decision made at 
time period t is independent of the specific uncertainty real‐
izations at the future time periods. Then, the subsequent 
question is whether the current decision is always feasible in 
the future when there are coupling constraints on the deci‐
sions at different time periods. For example, the energy stor‐
age levels at different time periods are coupled by charging/
discharging power limits and the energy storage dynamic 
equation. Then, the subsequent question is how to guarantee 
that a feasible solution will always be found in the future 
based on historical decisions. In other words, the current de‐
cision must be carefully chosen such that the feasible region 
at the future time periods is not empty. This is a very com‐
plicated requirement.

For the multi-stage scheduling process mentioned above, 
the definitions of nonanticipativity and multi-stage robust‐
ness accurately reflect the actual physical process and the ac‐
tual operation needs, respectively, and they are two key is‐
sues in the multi-stage scheduling problem. Moreover, we 
say that multi-stage robustness (all-scenario-feasibility) is 
guaranteed by a method if and only if the nonanticipativity 
is guaranteed and, at the same time, infeasibility at future 
time periods does not arise from inappropriate historical deci‐
sions. Here, it is seen that nonanticipativity is the prerequi‐
site of multi-stage robustness.

On the basis of the mentioned features, it is worthwhile to 
classify and give a brief overview of the existing methods 
for solving the scheduling problem in chronological order.

1) Methods without guaranteeing nonanticipativity or 
multi-stage robustness

A traditional deterministic optimization problem rather 
than the original stochastic program is solved in the chance-
constrained-based methods [11] - [13]. This is completed by 
formulation transformation of the original scheduling prob‐
lem based on the probability distribution information of the 
related random variables and the given confidence level. 
Nonanticipativity can be satisfied in chance-constrained-
based methods. However, multi-stage robustness is not guar‐
anteed because they allow the existence of violation within a 
certain confidence level (some possible future realizations 
will be excluded by the chance constraints).

Scenario-based methods [14]-[16] formulate the uncertain‐
ties by several representative scenarios and then a determinis‐
tic optimization problem is solved with all these scenarios 
considered in a unified formulation. Since the decision-mak‐
ing process does not conform to the sequential logic in sce‐
nario-based methods, nonanticipativity cannot be guaranteed. 
Further, multi-stage robustness cannot be satisfied too.

Similar to the scenario-based methods, scenario-tree-based 
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methods [17]-[19] also formulate the uncertainties by several 
scenarios. However, the scenarios are organized in a tree 
structure according to the time order. Coupling constraints 
among different scenarios are considered and then a unified 
formulation is established and solved. Nonanticipativity is 
guaranteed by the scenario-tree-based method (only for the 
scenarios included in the scenario tree) because it follows a 
time-causal policy. However, the multi-stage robustness is 
not guaranteed since some possible future realizations are 
not included in the tree structure.

In the two-stage robust optimization methods [20] - [23], 
all decision variables are separated into two groups. The opti‐
mal values of the first group variables are determined with‐
out any information on the realization of the random vari‐
ables while those of the second group variables are deter‐
mined based on full information about the realization of all 
the random variables. The second stage violates the sequen‐
tial logic that uncertainty realization and decision making 
are events that appeared alternatively and repeatedly. Conse‐
quently, nonanticipativity is not satisfied in two-stage robust 
optimization methods and counterexamples have been given 
in [24]. Meanwhile, multi-stage robustness cannot be satis‐
fied either.

2) Methods with nonanticipativity and multi-stage robust‐
ness guaranteed

To satisfy both the nonanticipativity and multi-stage ro‐
bustness requirements, new methods have been proposed in 
the literature. Among these, the affine decision rule (ADR) 
based multi-stage robust optimization (MSRO) methods [9], 
[25], [26], and the all-scenario-feasible (ASF) methods [27], 
[28] are the most successful.

The ADR-based MSRO method is an effective way to 
solve the general form of MSRO problems. In the ADR-
based MSRO methods, it is assumed that the decisions at 
time period t are affine functions with respect to the unfold‐
ed uncertainties up to time period t. In this way, nonanticipa‐
tivity is naturally satisfied. Then, all original constraints are 
transformed into constraints on affine coefficients and there‐
fore the multi-stage robustness is guaranteed when a group 
of feasible affine coefficients is found. However, ADR-based 
MSRO methods suffer from some serious limitations: for ex‐
ample, the affine function assumption may reduce the solu‐
tion space and there may be no feasible affine coefficients 
even if the original problem has feasible solutions.

A different idea is adopted in the ASF method. In this 
method, a scenario-based formulation is established based on 
several carefully chosen scenarios. Meanwhile, some auxilia‐
ry variables and constraints are introduced such that both the 
nonanticipativity and multi-stage robustness requirements 
can be satisfied by solving a single-level mixed-integer lin‐
ear programming (MILP) problem. The ASF method has 
been successfully used in solving security-constrained unit 
commitment [27], [28]. However, the auxiliary variables and 
constraints in this method are designed based on the special 
structures of the ramp-rate constraints.

The method in [27], [28] cannot be applied to solve the 
scheduling problem with ESS due to different constraint 
structures. For the unit commitment scheduling problem in 

[27], [28], the key variables are the power outputs of ther‐
mal units. The main complex time-coupling constraint is the 
ramp-rate constraint, which is a linear constraint. Differently, 
the key variables in the scheduling problem with ESS are 
the energy storage levels of the storage system. The main 
complex time-coupling constraints involve nonlinear con‐
straints, i. e., the relationship between the change of storage 
levels (at two continuous time periods) and the charging/dis‐
charging power. Consequently, it is noted the structure of 
constraints in the formulation of the energy storage schedul‐
ing problem is different from that of thermal units and is 
much more complicated. Therefore, the ASF method cannot 
be directly adopted.

It should be noted that the structure and formulation of 
the uncertainty set are also important factors in the schedul‐
ing of C-MGs with ESS. An interesting result given in [29] 
suggests that when the uncertain net loads at all time periods 
are formulated by a box region (box uncertainty set), a sim‐
ple necessary and sufficient feasibility condition for guaran‐
teeing the nonanticipativity and multi-stage robustness re‐
quirements of the decisions can be established. Then, an effi‐
cient solution method is proposed based on this condition. 
However, the box uncertainty set is too conservative and the 
method given in [29] may even fail to find a feasible solu‐
tion when the general uncertainty set with polyhedral con‐
straints is considered. It has been found that the economic 
performance of the scheduling solution will be greatly im‐
proved with the polyhedral uncertainty set introduced 
[30], [31].

With the definitions of nonanticipativity and multi-stage 
robustness, the current decisions should depend only on the 
realization of uncertainties up to the current time, mean‐
while, the current decisions should guarantee the feasibility 
of future decisions. It is very challenging, especially when 
there are time-coupling constraints in the problem formula‐
tion (e.g., the evolution equation of the energy storage lev‐
els).

Consequently, the problems are: how to solve the schedul‐
ing problem with the general uncertainty set (e.g., polyhedral 
uncertainty set), and whether is it possible to guarantee non‐
anticipativity and multi-stage robustness without the tradi‐
tional ADR assumption.

A method is proposed in this paper to address these prob‐
lems. The main contributions are as follows.

First, specific robust feasible regions (the maximum per‐
missible ranges) of the energy storage level are defined 
based on the analysis of constraints of the scheduling prob‐
lem (particularly the evolution equation of the energy stor‐
age level), so that the original problem can be decoupled at 
each time period. In fact, the result is a necessary and suffi‐
cient condition for ensuring the nonanticipativity and multi-
stage robustness of scheduling decisions under the general 
polyhedral uncertainty set.

Second, based on the necessary and sufficient condition 
mentioned above, an efficient method is established for solv‐
ing the scheduling problem without ADR assumption. More 
than that, the (approximated) expectation of the total cost 
rather than the worst-case cost is minimized and therefore 
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the solution is less conservative than the robust optimization-
based methods.

Moreover, an interesting example is given to show that 
ADR may fail due to the affine assumption on the decisions 
(the proposed method is still valid for this example). Exten‐
sive numerical testing is performed and the results suggest 
that the proposed method is promising.

The paper is organized as follows. Basic formulation of 
the scheduling problem is given in Section II. Then, Section 
III provides a simple example to emphasize the necessity of 
nonanticipativity and multi-stage robustness in scheduling C-
MGs with ESS. Next, another example is also given to show 
the limitations of the ADR-based MSRO method. To deal 
with the problem, in Section IV, the proposed method pro‐
vides the feasible regions for the decision variables such that 
the constraints can be decoupled at each time period and the 
solution quality will not be affected. Consequently, the origi‐
nal problem can be directly solved by using the proposed 
method, as given in Section V. Numerical results are analyzed 
in Section VI and the paper is concluded in Section VII.

II. BASIC FORMULATION OF SCHEDULING PROBLEM 

A. Formulation of Uncertainty Set

In robust optimization-based methods, uncertainty is mod‐
eled through an uncertainty set. Generally, for a robust opti‐
mization problem, the robustness of the solution is closely 
related to and mainly determined by the uncertainty set.

In this paper, uncertainties considered in C-MGs include 
the load demand and renewable power outputs. In robust op‐
timization, a direct uncertainty set of uncertainties can be 
given by the box uncertainty set. However, due to the tempo‐
ral correlations between the load demands (or renewable 
power outputs) in consecutive hours, the sample points will 
not spread everywhere in the box region. Therefore, if the 
whole box region is used as the uncertainty set, the robust 
scheduling solution obtained will be somewhat conservative 
since it includes many impossible scenarios.

Consequently, it is necessary to consider and exploit the 
historical correlations in the uncertainty set formulation to 
avoid impossible scenarios in practice and reduce the conser‐
vativeness of the solution. As an efficient way, budget con‐
straints can be included in the uncertainty set formulation to 
give a much tighter and better description of the uncertainty 
set by a set of linear/nonlinear constraints.

In this paper, the set of uncertain load demand can be de‐
scribed by:

-d t £ dt £ d̄t    t = 12T (1)

∑
t = 1

T

ait dt £ αi    i = 12I (2)

Formula (1) determines a box set, and (2) corresponds to 
the linear budget constraints on load demand.

Based on the budget constraint and the box uncertainty 
set, a new set containing all historical points of load demand 
can be constructed. And the new set can be controlled by ad‐
justing the budget constraint coefficients ai,t and αi.

Similarly, uncertainty set of renewable power outputs can 
be described as:

-r t £ rt £ r̄t     t = 12T (3)

∑
t = 1

T

bjt rt £ βj    j = 12J (4)

Formula (3) determines a box set and (4) is the budget 
constraint. And bj,t and βj can be obtained by the data-driven 
method based on historical data [32], [33].

To simplify the presentation, load demand and renewable 
power outputs are aggregated as net load d͂t = dt - rt. And a 
proposition is given here.

Proposition 1: all possible net loads can be represented by 
convex combinations of a finite number of vectors and there‐
fore the set can also be determined by a group of linear in‐
equalities based on basic linear algebra.

The proof of proposition 1 is given in the Appendix A.
Then, the uncertainty set of net load can also be formulat‐

ed as:

-d͂ t £ d͂t £ d͂̄ t     t = 12T (5)

∑
t = 1

T

cmt d͂t £ qm     m = 12M (6)

where d͂̄ t and -d͂ t are set as d̄t - -r t and -d t - r̄t, respectively.
The uncertainty set of the net load is denoted as:

Ω ={d͂ÎRT|(5) (6)} (7)

An important concept is the conditional uncertainty set. In 
time period t, when d͂1d͂2d͂t are known, the budget con‐
straints imply that a more accurate range of d͂t + 1d͂t + 2d͂T 
can be obtained as:

Ωt (d͂[t] )={(d͂t + 1d͂t + 2d͂T )|d͂ÎΩ} (8)

For simplicity, Ωt (d͂[t] ) is abbreviated as Ωt in the latter 
part of this paper. If the decisions at time period t are made 
based on this more accurate range of uncertainties, the eco‐
nomic performance of the decisions will be better and this is 
why the concept is introduced.

B. Model of Scheduling Problem

C-MGs can enhance the reliability and economics of the 
community power supply. As shown in Fig. 1, the typical 
structure of a C-MG often includes uncertain power genera‐
tions, uncertain load demands, and an ESS. Generally, C-
MGs are grid-connected and can have power exchange with 
the main grid.

ESS Uncertain load

demand

Uncertain power

generations

Grid

Fig. 1.　Typical structure of a C-MG.
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The scheduling of C-MGs with ESS under uncertainties is 
a multi-stage decision problem involving the decision vari‐
ables pt (charging/discharging power) and gt (transfer pow‐
er). The sequential decision-making process can be illustrat‐
ed in Fig. 2. In time period t, pt and gt are determined based 
on the realized decisions pt - 1 and gt - 1, and the observed in‐
formation (d͂1d͂2d͂t ), while (d͂t + 1d͂t + 2d͂T ) is unknown 
at this time.

Consequently, decisions in time period t must be formulat‐
ed as functions with respect to the unfolded uncertainties 
(net load) up to time period t, as shown in (9), and that is 
nonanticipativity as explained in Section I.

ì
í
î

ïï
ïï

pt = pt (d͂1d͂2d͂t )

gt = gt (d͂1d͂2d͂t )
(9)

Let d͂[t]= (d͂1d͂2d͂t ) be the row vector of net load up to 
time period t, then (9) can be rewritten as:

ì
í
î

ïï

ïï

pt = pt (d͂[t] )

gt = gt (d͂[t] )
(10)

With the above explanations, the formulation of the sched‐
uling problem can be established now. Without losing of any 
generality, we consider a scheduling problem from time peri‐
od t0 to time period T. Time period t0 is equal to 1 at the be‐
ginning and will increase by 1 after each stage is completed.

Conceptually, the complete formulation of the scheduling 
problem can be given as below.

The objective function of the scheduling problem during 
[t0, T] can be expressed as:

min∑
t = t0

T

τ(λbuy
t max{gt (d͂[t] )0}+ λsell

t min{gt (d͂[t] )0}) (11)

The constraints in the scheduling problem are listed as:

-E t £Et (d͂[t] )£ Ēt     "td͂ÎΩt0
(12)

-
g

t
£ gt (d͂[t] )£ ḡt    "td͂ÎΩt0

(13)

gt (d͂[t] )+ pt (d͂[t] )= d͂t     "td͂ÎΩt0
(14)

-p̄ch
t £ pt (d͂[t] )£ p̄dis

t     "td͂ÎΩt0
(15)

Et (d͂[t] )-Et - 1 (d͂[t - 1] )=
ì

í

î

ïïïï

ïïïï

-τηc pt (d͂[t] )    pt (d͂[t] )£ 0"td͂ÎΩt0

-
τ
ηd

pt (d͂[t] )    pt (d͂[t] )> 0"td͂ÎΩt0

 (16)

The objective function (11) in the scheduling problem is 
to minimize the total electricity cost under the time-of-use 

prices. Constraint (12) is the bound limit of energy storage 
level, and it is usually required that -E T = ĒT =E0 in real oper‐
ation. Constraint (13) is the power exchange limit [28], 
which limits the lower and upper bounds of the power ex‐
change between the C-MG and the main grid. Constraint 
(14) is the power balance constraint and it requires that the 
algebraic sum of the transfer power and the charging/dis‐
charging power must be equal to the uncertain net load. Con‐
straint (15) limits the bounds on discharging and charging 
power of the ESS. Constraint (16) describes the evolution 
equation of energy storage level.

Compared with the deterministic model, the variables in 
(11) - (16) are actually unknown decision functions. In addi‐
tion, the model in this paper follows the nonanticipativity re‐
quirement due to the introduction of (10). Then, we investi‐
gate the multi-stage robustness of the problem in the next 
section.

III. NECESSITY OF MULTI-STAGE ROBUSTNESS IN 
SCHEDULING WITH ESS AND DEFECTS OF AFFINE 

ASSUMPTION 

A. Necessity of Multi-stage Robustness

In Fig. 2, decisions pt and gt at time period t should guar‐
antee that there will always be feasible solutions ps and gs 
for any realization of d͂s (s = t + 1t + 2T) within the uncer‐
tainty set, as mentioned in the multi-stage robustness defini‐
tion. Consequently, scheduling C-MGs with ESS is to obtain 
a group of feasible/optimal functions defined in (10) such 
that the constraints in (12)-(16) are satisfied.

Multi-stage robustness is very important in scheduling 
problems with ESS [34]. To show the necessity of multi-
stage robustness, a 3-period case is given here, where the ini‐
tial state, upper and lower bounds of the energy storage lev‐
el are 6 MWh, 8 MWh, and 4 MWh, respectively. And other 
parameters are given in Table I.

The uncertainty sets of net load at each time period are 
[2.1, 3.1]MW, [2.8, 4.5]MW, and [2.2625, 4.3]MW, respec‐
tively. The solution regions with and without nonanticipativi‐
ty and multi-stage robustness are depicted in Fig. 3. It 
should be noted that only the feasible regions of the energy 
storage levels are shown in Fig. 3. The blue region corre‐
sponds to the solutions without the nonanticipativity and multi-
stage robustness, i. e., where the net load information of all 
time periods is known before making a decision. For example, 
p =[p1p2p3 ]=[-0.1 - 0.4 - 0.9]MW and g =[g1g2g3 ]=
[3.23.23.2]MW are the optimal solutions for the scenario 
d͂ =[d͂1d͂2d͂3 ]=[3.12.82.3]MW. 

However, only the observed d͂1 is available for g1 and p1 
at t = 1, while d͂2 and d͂3 are unknown. Consequently, if g1 
and p1 are decided under the above presumption (g1 = 3.2 

0 1 t t+1

Net load of the 1st  

period (realized) 

Net load of the tth

period (realized)

Net load of the (t+1)th

period (unknown)

Make decision ofInitial state

and ( )1d1
p ɶ ( )1d1

g ɶ

Make decision of

and( )…1dt
p ɶ , 2d

ɶ , td
ɶ,

( )…1dt
g ɶ , 2d

ɶ , td
ɶ,

…

Fig. 2.　Sequential decision-making process.

TABLE I
PARAMETERS OF C-MGS

T (hour)

3

τ (hour)

1

[
-
g ḡ] (MW)

[3.2, 3.5]

p̄dis (MW)

1

p̄ch (MW)

2.2

ηd (%)

80

ηc (%)

80
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MW, p1 =-0.1 MW), there will be no feasible solutions for 
d͂2 = 4.5 MW and d͂3 = 4.3 MW.

The green region corresponds to the feasible solutions 
with the nonanticipativity and multi-stage robustness. If the 
decisions are within this region, any realization within the 
uncertainty set can be handled. For example, the optimal so‐
lution in the green region is p1 =-0.3125 MW, g1 = 3.4125 
MW for d͂1 = 3.1 MW and there will always be a feasible so‐
lution for any d͂2Î[2.84.5]MW and d͂3Î[2.26254.3]MW. 
Consequently, the green region can be applied in the actual 
operations.

B. Effects of Uncertainty Set and Limitations of Affine As‐
sumption

It is very challenging to guarantee the nonanticipativity 
and robustness of the solutions in the scheduling problem 
with ESS under polyhedral uncertainties because the optimal 
functions or the feasible regions of gt and pt are hard to be 
formulated. The inter-time coupling of uncertainties and the 
evolution equation of energy storage levels are among the 
main reasons for this difficulty.

To deal with the multi-stage scheduling problem, ADR-
based MSRO method is regarded as an available way. How‐
ever, some studies have pointed out that the solution region 
will be reduced under the affine assumption [8]. A general 
example is constructed in this subsection to illustrate the per‐
formance and the limitations of ADR.

In ADR-based MSRO, the unknown decision functions 
are assumed to be affine. For example, we can assume that

Et -Et - 1 =Atd͂t +Bt     "t (17)

Equation (17) is a simplified version of ADR usually ad‐
opted in literature, i. e., the decision is an affine function 
with respect to d͂t only [25]. Based on (17), the way to solve 
the original scheduling problem is to find a group of affine 
coefficients At and Bt with the minimal total electricity cost.

Now consider an example where E0 = 6 MWh, [-E 1Ē1 ]=
[3.757.74]MWh, and [-E 2Ē2 ]=[2.59.5]MWh. Other parame‐
ters are the same as those given in Table I. There are two 
time periods in this example, and two uncertainty sets of the 
net load are given as:

Ωbox ={(d͂1d͂2 )|d͂1 = 3.50.5 £ d͂2 £ 6.5} (18)

Ωpoly ={(d͂1d͂2 )|d͂1 = 3.50.5 £ d͂2 £ 6.54.5 £ d͂1 + d͂2 £ 8}  (19)

Though the two sets are given in two time periods, they 
are in fact interval (one-dimensional) uncertainty sets since 
the net load in time period 1 is constant. However, these two 
simple uncertainty sets are enough to show some important 
features of the existing methods and to investigate the perfor‐
mance of ADR.

For the box uncertainty set Ωbox, a possible scenario is 
(d͂1d͂2 )= (3.56.5)MW. Total electricity energy demand of 
this scenario is obtained as 3.5 MW × 1 hour + 6.5 MW ×
1 hour = 10 MWh . The maximum energy bought from the 
main grid is 2ḡτ = 7 MWh. The maximum energy can be ob‐
tained by discharging of the ESS, which is (E0 - -E 2 )ηd = 2.8 
MWh. It holds that 7 + 2.8 = 9.8 < 10 and this means no feasi‐
ble solution can be found under the box uncertainty set case.

For the polyhedral uncertainty set Ωpoly, it will be shown 
in Section VI that feasible solutions can be found by the 
method proposed in this paper. However, no feasible solu‐
tion can be found by ADR and this will be explained below.

Consider the problem in time period 2. We analyze the ex‐
act lower/upper bounds in which E2 -E1 must lie to keep the 
decision feasible. The analysis is based on (12)-(16).

(12)Û -E 2 -E1 £E2 -E1 £ Ē2 -E1 (20)

(13)Û
-
g £ g2 £ ḡ (21)

(14)Û g2 + p2 = d͂2 (22)

(15) (16)Û- τp̄dis ηd £E2 -E1 £ τηc p̄ch (23)

Substitute (22) into (21), then we can obtain that

-
g £ d͂2 - p2 £ ḡÛ   d͂2 - ḡ £ p2 £ d͂2 - -

g (24)

The energy balance equation of the ESS is as follows.

E2 -E1 =
ì

í

î

ïïïï

ïïïï

-τηc p2    p2 £ 0

-τ
p2

ηd

      p2 > 0
(25)

Equation (25) implies that E2 -E1 is uniquely determined 
by p2 and vice versa. Based on (24) and (25) we can obtain:

ì

í

î

ï
ïï
ï

ï
ïï
ï

- τ(d͂2 - -
g ) ηd £E2 -E1 £ -τ(d͂2 - ḡ) ηd     d͂2 ³ ḡ

-τηc (d͂2 - -
g )£E2 -E1 £-τηc (d͂2 - ḡ)          d͂2 £ -

g

- τ(d͂2 - -
g ) ηd £E2 -E1 £-τηc (d͂2 - ḡ)      

-
g < d͂2 < ḡ

(26)

In fact, (25) means that function E2 -E1 is positive/nega‐
tive when p2 is negative/positive. Therefore, if d͂2 ³ ḡ, the 
ESS must work in discharging state and, in this case, (24) 
and the second case in (25) together corresponds to the first 
case in (26). The case of d͂2 £ -

g in (26) is then obtained by 

(24) and the first case in (25). The third case in (26) can be 
obtained similarly.

The above analysis will be generalized in Section IV and 
it is one of the key steps in the proposed method.

Equations (20), (23), and (26) reveal the complicated rela‐
tionship between E2 -E1 and d͂2. It is depicted in Fig. 4 with 
the parameters given in Table I.
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Fig. 3.　Solution regions with and without nonanticipativity and multi-stage 
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As observed from Fig. 4, no feasible solutions can be 
found by ADR for this example. In fact, it can be observed 
that there exists only one feasible E2 -E1 for d͂2 = 1 and d͂2 =
4.5, respectively (the two red points). Then, the two points 
must be on the line determined by any feasible ADR. The 
line is therefore unique, but some points of the line are not 
in the feasible region, which means that ADR fails for this 
example. In Section VI, we will show that feasible solutions 
for this example can be found by the proposed method.

IV. ROBUST FEASIBLE REGIONS FOR SOLVING SCHEDULING 
PROBLEMS OF C-MGS WITH ESS 

In a completely different way, this paper explores an im‐
plicit method that defines specific robust feasible regions for 
the decision variables rather than restricts the explicit rela‐
tionship between uncertainties and decision variables like 
ADR-based methods. To this end, an auxiliary function is in‐
troduced first.

A. An Auxiliary Function and Formulation Transformation

Equation (16) can be simplified by introducing the follow‐
ing auxiliary function [29].

h(x)=-
τ
ηd

max{x0}- τηc min{x0} (27)

h-1 (y)=-
ηd

τ
min{y0}-

1
ηcτ

max{y0} (28)

It can be observed from Fig. 5 that auxiliary function h(x) 
and its inverse h-1(y) both are monotonous decreasing. Then, 
(16) can be replaced by:

Et -Et - 1 = h(pt ) (29)

Based on (14), (15), and (29), we can obtain:

pt = h-1 (Et -Et - 1 ) (30)

gt = d͂t - h-1 (Et -Et - 1 ) (31)

-p̄ch
t £ h-1 (Et -Et - 1 )£ p̄dis

t (32)

Based on (31), (13) is thus transformed into:

-
g

t
£ d͂t - h-1 (Et -Et - 1 )£ ḡt (33)

Equation (11) can also be rewritten based on (31). The 
original formulation is finally transformed into (11), (12), 
(32), and (33), which are closely related to the variable Et. 
In other words, we can use Et as the only variable and all 
other variables are eliminated.

B. Robust Feasible Regions in One Time Period

A proposition is given below to determine the feasible re‐
gions of the decision variables in each time period.

Proposition 2: in one time period, if (34) is satisfied and 
[-E

true
t - 1Ē

true
t - 1 ] is non-empty, we can always find a feasible solu‐

tion for Et if and only if Et - 1Î[-E
true
t - 1Ē

true
t - 1 ].

ì
í
î

ïï

ïïïï

h(d͂̄ t - ḡt )³ h( p̄dis
t )

h(-p̄ch
t )³ h(-d͂ t - -

g
t
)

(34)

ì

í

î

ïïïï

ïïïï

-E
true
t - 1 = max

d͂t

{-E
true
t - f̄ t (d͂t )-E t - 1 }

Ē true
t - 1 = min

d͂t

{Ē true
t -

-
f

t
(d͂t )Ēt - 1 }

(35)

Proof: as has been explained by (10), the decisions are 
functions with respect to the uncertainties. Then, after the 
formulation transformation, the decision rule should be in 
the form as follows:

Et -Et - 1 = ft (d͂1d͂2d͂t ) (36)

Moreover, (12), (32), and (33) are in fact all bound limits 
and thus they can be aggregated to give a more compact 
bound limit formulation.

(12)Û -E t -Et - 1 £Et -Et - 1 £ Ēt -Et - 1 (37)

(32)Û h( p̄dis
t )£Et -Et - 1 £ h(-p̄ch

t ) (38)

(33)Û h(d͂t - -
g

t
)£Et -Et - 1 £ h(d͂t - ḡt ) (39)

In time period t, the decision on Et - 1 has been put into 
practice and cannot be changed. We must determine Et based 
on the realization information of d͂t. Formulas (37)-(39) im‐
ply that if the decision on Et - 1 is inappropriate, then no fea‐
sible Et can be found. Therefore, an important problem is, in 
time period t, in order to guarantee that there are feasible de‐
cisions on Et in its lower/upper bounds, how to determine 
the maximum permissible range of Et - 1. This problem is al‐
so very interesting since though the decision on Et is made 
after the decision on Et - 1, the permissible range of Et - 1 must 
be determined based on the permissible range of Et. The 
maximum permissible range of Et - 1 can be easily obtained 
based on (37)-(39).
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Fig. 4.　Relationship between E2 -E1 and d͂2.
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To simplify the presentation, two functions are defined as:

f̄ t (d͂t )=min{h(-p̄ch
t )h(d͂t - ḡt )} (40)

-
f

t
(d͂t )=max{h( p̄dis

t )h(d͂t - -
g

t
)} (41)

Equations (40) and (41) are related to the right-/left-hand 
sides of (38) and (39). Then, (38) and (39) can be replaced 
by:

-
f

t
(d͂t )£Et -Et - 1 £ f̄ t (d͂t ) (42)

It should be noted that, based on (42), there are feasible 
decisions on Et only when 

-
f

t
(d͂t )£ f̄ t (d͂t ) holds. This is a nec‐

essary condition and will be used later.
Formulas (37) and (42) are both interval constraints on 

Et -Et - 1. There are feasible decisions if and only if the inter‐
section of the two intervals is nonempty, i.e.,

max{
-
f

t
(d͂t )-E t -Et - 1 }£min{ f̄ t (d͂t )Ēt -Et - 1 } (43)

When 
-
f

t
(d͂t )£ f̄ t (d͂t ) is satisfied, (43) holds if and only if

ì
í
î

ïï

ïïïï

-E t -Et - 1 £ f̄ t (d͂t )

-
f

t
(d͂t )£ Ēt -Et - 1

(44)

Formula (44) is equivalent to

Et - 1Î[-E t - f̄ t (d͂t )Ēt - -
f

t
(d͂t )] (45)

Therefore, the permissible range of Et - 1 (to guarantee 
there are feasible decisions on Et) can be obtained based on 
(45) and the original lower and upper bounds on Et - 1 are as 
follows:

ì
í
î

ïï

ïïïï

-E
true
t - 1 =max{-E t - f̄ t (d͂t )-E t - 1 }

Ē true
t - 1 =min{Ēt - -

f
t
(d͂t )Ēt - 1 }

(46)

Equation (46) is still not the final result for two reasons. 
Firstly, (46) is an equation related to time periods t - 1 and t 
and the same argument still holds for time periods t and t+1. 
Therefore, -E t and Ēt in (46) should be replaced by -E

true
t  and 

Ē true
t , and thus a recursive equation is established. Secondly, 

according to the nonanticipativity, d͂t is unknown when we 
make a decision on Et - 1, which means that (46) must hold 
for all possible d͂t. Therefore, the lower bound -E

true
t - 1 must be 

the maximum of all lower bounds and Ē true
t - 1 must be the mini‐

mum of all upper bounds.

ì

í

î

ïïïï

ïïïï

-E
true
t - 1 =max max

d͂t

{-E
true
t - f̄ t (d͂t )-E t - 1 }

Ē true
t - 1 =min min

d͂t

{Ē true
t -

-
f

t
(d͂t )Ēt - 1 }

(47)

The final recursive equation of the exact lower and upper 
bounds is then obtained as:

ì

í

î

ïïïï

ïïïï

-E
true
t - 1 = max

d͂t

{-E
true
t - f̄ t (d͂t )-E t - 1 }

Ē true
t - 1 = min

d͂t

{Ē true
t -

-
f

t
(d͂t )Ēt - 1 }

(48)

Based on the analysis, (48) gives the exact lower and up‐
per bounds on Et - 1. In other words, we can always find a 
feasible Et if and only if Et - 1Î[-E

true
t - 1Ē

true
t - 1 ].

Moreover, it has been pointed out (see the discussion after 
(42)) that 

-
f

t
(d͂t )£ f̄ t (d͂t ) is a necessary condition for the 

above analysis. Based on (40) and (41), we know this in‐
equality holds if and only if (49) holds for all d͂t.

ì
í
î

ïï

ïï

h(d͂t - ḡt )³ h( p̄dis
t )

h(-p̄ch
t )³ h(d͂t - -

g
t
)

(49)

Together with the fact that h(⸱) is monotonous decreasing, 
this implies that

ì
í
î

ïï

ïïïï

h(d͂̄ t - ḡt )³ h( p̄dis
t )

h(-p̄ch
t )³ h(-d͂ t - -

g
t
)
    t = 12T (50)

The proposition is related to one time period and it will 
be further extended to the whole time period as follows.

C. Calculation of -E
true
t0

 and Ē true
t0

The scheduling problem of C-MGs with ESS is a typical 
multi-stage process and the decision process has a natural 
rolling horizon framework. Consequently, in each current 
time period t0, only -E

true
t0

 and Ē true
t0

 are needed. The details of 

the method will be given in the next section and here we on‐
ly explain the method for calculating -E

true
t0

 and Ē true
t0

.

For t = T, it is clear that -E
true
T = -E T and Ē true

T = ĒT. For t = T -
1, based on (35) we can obtain:

-E
true
T - 1 = max

d͂T

{-E
true
T - f̄T (d͂T )-E T - 1 }= max

d͂T

{-E T - f̄T (d͂T )-E T - 1 }

(51)

Similarly, for t = T - 2, we can obtain:

-E
true
T - 2 = max

d͂T - 1

{-E
true
T - 1 -f̄T - 1 (d͂T - 1 )-E T - 2 }=

max
d͂T - 1

{ }max
d͂T

{-E T -f̄T (d͂T )-E T - 1 }-f̄T - 1 (d͂T - 1 )-E T - 2 } =

max
d͂T - 1

{ }max
d͂T

{-E T -f̄T (d͂T )-f̄T - 1 (d͂T - 1 )-E T - 1 -f̄T - 1 (d͂T - 1 )-E T - 2 } =

max
d͂T - 1d͂T

{-E T -f̄T (d͂T )-f̄T - 1 (d͂T - 1 )-E T - 1 -f̄T - 1 (d͂T - 1 )-E T - 2 } (52)

Through derivation, for j = T - 1T - 2t0, it holds that

-E
true
j = max

d͂j + 1d͂j + 2d͂T

ì
í
î

ïï ü
ý
þ

ïï
-E T - ∑

i = j + 1

T

f̄i (d͂i ) -E m - ∑
i = j + 1

m

f̄i (d͂i ) -E j

(53)

The optimization problem defined by (53) can be trans‐
formed into a group of simpler optimization problems.

-E
true
j = max

j £m £ T

ì
í
î

ïï
ïï

ü
ý
þ

ïïïï
ïï

max
d͂j + 1d͂j + 2d͂T

ì
í
î

ïï ü
ý
þ

ïï
-E m - ∑

i = j + 1

m

f̄i (d͂i ) (54)

Equation (54) means that we only need to solve T - j + 1 
problems and, then we can obtain -E

true
j  as the maximum of 

the T - j + 1 optimal objective values. The subproblem with 
index m in (54) can be further transformed as:

max
(d͂j + 1d͂j + 2d͂T )ÎΩj

ì
í
î

ïï ü
ý
þ

ïï
-E m - ∑

i = j + 1

m

f̄i (d͂i ) Û min
(d͂j + 1d͂j + 2d͂T )ÎΩj

∑
i = j + 1

m

f̄i (d͂i )

(55)

1930



TANG et al.: MULTI-STAGE ROBUST SCHEDULING FOR COMMUNITY MICROGRID WITH ENERGY STORAGE

According to (27) and (40), f̄ i (d͂i ) is a piecewise linear 
and nonconvex function with only one variable. By using 
the standard and well-known formulation skills in MILP 
[35], (55) can be transformed into a simple MILP and thus 
be solved very efficiently by commercial solvers.

The upper bound Ē true
j  can be calculated by using a similar 

procedure and the details are omitted due to the length limit.

V. SOLUTION METHODOLOGY 

The scheduling problem has a typical multi-stage decision 
process structure. In this process, the decisions in time peri‐
od 1 are made and put into effect immediately when the un‐
certainties in time period 1 are known (unfold). At this mo‐
ment, the specific decisions in time period 2 are still not de‐
termined (the ADR only gives the function relationship be‐
tween decisions and the realization of uncertainties, and the 
specific decisions can only be determined when the uncer‐
tainties are realized). Then, in time period 2, the decisions in 
this time period are made and put into effect and the future 
decisions are still not determined.

The above analysis suggests that the decision process has 
a natural rolling horizon framework, i. e., in each current 
time period t0, we only need to determine the specific deci‐
sions that must be made in this time period. However, non‐
anticipativity and multi-stage robustness must be guaranteed 
for future periods. Since the maximum permissible range of 
the ESS storage level has been obtained by solving (54) and 
(55) for j = t0, the decisions in time period t0 can be obtained 
by solving the problem given by (54).

ì

í

î

ï

ï

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï

ï

ï

ï

ï
ïï
ï
ï

ï

ï

ï

min
Etgt

∑
t = t0

T

τ(λbuy
t max{gt0}+ λsell

t min{gt0})

s.t. -E
true
t0
£Et0

£ Ē true
t0

      -E t £Et £ Ēt    "t ³ t0 + 1

      
-
g

t
£ gt £ ḡt     "t ³ t0

       gt0
= d͂t0

- h-1 (Et0
-Et0 - 1 )

       gt = d͂ exp
t - h-1 (Et -Et - 1 )    "t ³ t0 + 1

       -p̄ch
t £ h-1 (Et -Et - 1 )£ p̄dis

t     "t ³ t0

(56)

The following comments on (56) are important and neces‐
sary.

1) Formula (56) is a traditional deterministic single-level 
optimization problem rather than a stochastic/robust program‐
ming problem. In other words, no uncertainties are included 
in (56).

2) The formulation transformation proposed in Section IV 
is used in (56) and some variables are eliminated (for exam‐
ple, the charging/discharging power of the ESS).

3) The expected uncertain net loads d͂ exp
t  are considered in 

(56) (for t ³ t0 + 1) to improve the economic performance of 
the solution (approximate the expectation of the cost).

4) When the optimal solution to (56) (E *
t  and g *

t ) is ob‐
tained, only E *

t0
 and g *

t0
 are used in time period t0. For all t ³

t0 + 1, E *
t  and g *

t  are discarded.
5) Formula (56) will be solved iteratively for t0 = 12T 

and the conditional uncertainty set  Ωt0
 (in solving (54) and 

(55)) is updated each time when t0 increases. In this way, the 
realization information of the uncertainties is fully utilized 
and therefore the solution obtained is less conservative.

6) Nonanticipativity is naturally guaranteed for decisions 
on E *

t0
 and g *

t0
 since no uncertainty realization information in 

future time periods is used. Multi-stage robustness is also 
guaranteed since -E

true
t0
£E *

t0
£ Ē true

t0
.

7) The proposed method is different from ADR-based 
methods. Firstly, the lower/upper bounds (feasible region) of 
the decision variables given in Section IV are nonlinear func‐
tions of the uncertainties. Theoretically, this means the deci‐
sion rule is not a linear expression. Secondly, it is proved 
that no linear decision rule based solution exists for the sim‐
ple example given in Section III. However, for this example, 
a solution is found by using the proposed method. This 
means (by numerical testing) that the proposed method is 
not based on the linear decision rule. Thirdly, it is proved in 
Section IV that the feasible region given in this paper is the 
necessary and sufficient condition for a feasible solution. 
Therefore, any feasible solution obtained based on the linear 
decision rule must be included in this region. This means the 
feasible region is enlarged (compared with the linear deci‐
sion rule based solutions).

VI. NUMERICAL SIMULATIONS 

The proposed method is implemented with MATLAB 
R2020b environment using Gurobi 9.0.2.

A. System Parameters

A C-MG scheduling problem with 24 periods (1 hour per 
period) is tested. The parameters are given in Table II and 
Table III. The batteries are aggregated as one large battery.

The uncertainty set of the net load is a polyhedral uncer‐
tainty set as defined by:

(d͂ exp
t - d͂ exp

t - 1 )- ε £ d͂t - d͂t - 1 £(d͂ exp
t - d͂ exp

t - 1 )+ ε (57)

-d͂ t £ d͂t £
-
d͂ t (58)

Formula (57) is the linear budget constraint as suggested 
in [36]. The positive parameter ε denotes the tightness of the 

TABLE II
PARAMETERS OF C-MG

T (hour)

24

p̄dis (MW)

8

τ (hour)

1

p̄ch (MW)

8

[-E Ē] (MWh)

[12.5, 47.5]

ηd (%)

90

E0 (MWh)

30

ηc (%)

90

[
-
g ḡ] (MW)

[15, 28.5]

TABLE Ⅲ
TIME-OF-USE PRICES

Time period

01:00-07:00

08:00-12:00, 18:00-22:00

13:00-17:00, 23:00-24:00

λbuy ($/MWh)

50.8

181.6

109.0

λsell ($/MWh)

21.7

173.3

86.6
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budget constraint and a smaller ε means the budget con‐
straint is tighter.

The lower and upper bounds on the net loads are given in 
(58). The lower and upper bounds and the expected net load 
are also shown in Fig. 6.

B. Solutions in Expected Net Load Scenario

The solutions in the expected net load scenario are depict‐
ed in Fig. 7, which shows the performance of the proposed 
method. Based on Fig. 7 and Table II, it can be observed 
that the power exchange level gt, energy storage level Et, 
and charging/discharging power level pt are all within their 
bound limits. Therefore, (12), (13), and (15) are satisfied. 
Equation (14) is also satisfied as shown in Fig. 7 (the value 
of d͂t  coincides with the sum of pt and gt). The purple bars 
and the curve of Et in Fig. 7 suggest that (16) is satisfied.

Meanwhile, it can be observed that the battery is charged 
in time periods of 1-5, 23-24, and 13-17 hours and is dis‐
charged in time periods of 8-12 and 18-21 hours. The charg‐
ing/discharging decisions are reasonable according to the 
price levels given in Table III.

C. Effects of Uncertainty Sets

The uncertainty set has an important influence on the solu‐
tion of the scheduling problem and the influence is analyzed 
in this subsection. Solutions under different uncertainty sets 
are shown in Table IV.

In Table IV, the average cost of 500 scenarios generated 
by Monte Carlo simulation is calculated. It is observed that 
the cost increases when ε increases and this is reasonable 
since a larger ε means a larger uncertainty set.

The box uncertainty set in Table IV means only (58) is ad‐
opted to define the uncertainty set ((57) is omitted). In this 
case, the uncertainty set is still large and is nearly equal to 
the case of ε= 10 MW.

To further illustrate the influence of the uncertainty set, 
the feasible regions of energy storage levels under different 
uncertainty sets are shown in Fig. 8. As shown in Fig. 8, the 
purple shade region is a subset of the blue region, which 
means the more exact the uncertainty set, the larger the feasi‐
ble region. Thus, the solution under polyhedral uncertainty 
set with ε= 1 MW will be less conservative than that under 
box uncertainty set. It suggests that more efforts should be 
made to establish a more exact uncertainty set.

In addition, it can be observed from Fig. 8 that though the 
solution profiles of the energy storage levels under the two 
uncertainty sets are similar, the charging (discharging) power 
levels in time periods of 11-17 hours under the polyhedral 
uncertainty set with ε= 1 MW are much larger than those un‐
der the box uncertainty set. According to the time-of-use 
electricity prices in these time periods, a more economic 
scheduling solution is obtained under the polyhedral uncer‐
tainty set with ε= 1 MW.

D. Comparison with ADR-based MSRO Method

The proposed method is also compared with the ADR-based 
MSRO method. It is noted that the objective of ADR-based 
MSRO method is settled to minimize the operation cost in the 
expected net load scenario so as to make the comparison fair.

The solutions obtained by the ADR-based MSRO method 
and the proposed method are shown in Fig. 9. It can be ob‐
served that both the solutions imply that the battery is 
charged in low price periods and is discharged in high price 
periods. However, the optimal cost obtained by the proposed 
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TABLE Ⅳ
SOLUTIONS UNDER DIFFERENT UNCERTAINTY SETS

Uncertainty set

Polyhedral uncertainty 
set with linear budget 

constraint

Box uncertainty set

Tightness 
(MW)

0.1

1.0

10.0

Cost in expected net 
load scenario ($)

63138

63277

63563

63524

Average 
cost ($)

63647

63763

63933

63946

t (hour)
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 Feasible region under polyhedral uncertainty set with ε = 1 MW
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 Solution under polyhedral uncertainty set with ε = 1 MW

 Solution under box uncertainty set 

Fig. 8.　Feasible regions and solutions of energy storage levels under differ‐
ent uncertainty sets.
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method ($63277) is smaller than that obtained by the ADR-
based MSRO method ($63892). This is because the feasible 
region is reduced by the affine assumption.

Except for the economic performance of the solutions, it 
is also found that in numerical testing the proposed method 
successfully finds the optimal solutions when the ADR-
based MSRO method fails in some cases.

Again, consider the example given in Section III. It has 
been pointed out that no feasible solution can be found by 
the ADR-based MSRO method for this example. However, it 
can be found that (59) is the feasible solutions with the guar‐
anteed nonanticipativity and multi-stage robustness.

ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïï
ï

ï

E1 = 6 MWh 

p1 = 0 MW 

g1 = 3.5 MW

E2 £ 6 +min{1.762.8 - 0.8d͂24.375 - 1.25d͂2 }MWh

E2 ³ 6 +max{-1.252.56 - 0.8d͂24 - 1.25d͂2 }MWh

(59)

All other variables such as p2 and g2 can be obtained by 
(30) and (31) if the specific value of E2 is determined. A re‐
al scale example is also found and the main parameters of 
this example are given in Table V. The performance of the 
proposed method in this real scale example is shown in Fig. 10 
and the optimal cost is $64147. However, there is still no feasi‐
ble solution in the ADR-based MSRO method in this example.

TABLE V
PARAMETERS OF A REAL SCALE EXAMPLE

T (hour)

24

p̄dis (MW)

8

τ (hour)

1

p̄ch (MW)

2

[-E Ē] (MWh)

[25, 95]

ηd (%)

90

E0 (MWh)

60

ηc (%)

90

[
-
g ḡ] (MW)

[17, 29]

It is concluded that the proposed method performs well in 
finding feasible solutions for cases where the ADR-based 
MSRO method fails. Meanwhile, when both these two meth‐
ods succeed, the proposed method can get a better solution.

VII. CONCLUSION 

Nonanticipativity and multi-stage robustness must be guar‐
anteed in the scheduling problem of C-MGs with ESS.

The maximum permissible range of the energy storage lev‐
els in each time period is obtained based on analysis of the 
constraints’  structure of the scheduling problem (particularly 
the energy storage level evolution equation), which is a nec‐
essary and sufficient condition for guaranteeing nonanticipa‐
tivity and multi-stage robustness. That is, if the current deci‐
sion is within this range, a feasible decision can always be 
obtained for any future realizations of uncertainty. Based on 
this condition, an efficient method is established, and the ap‐
proximated expectation of the total cost is minimized. Real-
world scheduling examples are provided to compare the pro‐
posed method with the most successful ADR-based MSRO 
method. The results show that the proposed method can find 
feasible solutions when the ADR-based MSRO method fails, 
and it finds better solutions when both methods succeed. Fu‐
ture work will generalize the proposed method and use it for 
solving the security-constrained unit commitment problem 
with energy storage.

APPENDIX A 

Equations (1) and (2) or (3) and (4) imply that there exist a 
finite number of load demand scenarios d (1)d (2)d (K1 ) (the 
vertices of the convex uncertainty set of load demands) and re‐
newable power output scenarios r(1)r(2)r(K2 ) (the vertices of 
the convex uncertainty set of renewable power outputs) such 
that for any possible d and r, (A1) and (A2) hold.

d =∑
k1 = 1

K1

λk1
d (k1 ) (A1)

r =∑
k2 = 1

K2

λk2
r(k2 ) (A2)

where λk1
³ 0; λk2

³ 0; ∑
k1 = 1

K1

λk1
= 1; and ∑

k2 = 1

K2

λk2
= 1.

Therefore, d͂ can be rewritten as:

d͂ = d - r =∑
k1 = 1

K1

λk1
d (k1 )-∑

k2 = 1

K2

λk2
r(k2 )=∑

k1 = 1

K1 ( )∑
k2 = 1

K2

λk2
λk1

d (k1 )-

∑
k2 = 1

K2 ( )∑
k1 = 1

K1

λk1
λk2

r(k2 )=∑
k1 = 1

K1 ∑
k2 = 1

K2

λk1
λk2

(d (k1 )- r(k2 ) ) (A3)
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