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A Hybrid Compression Method for Compound 
Power Quality Disturbance Signals in Active 

Distribution Networks
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Abstract——In the compression of massive compound power 
quality disturbance (PQD) signals in active distribution net‐
works, the compression ratio (CR) and reconstruction error 
(RE) act as a pair of contradictory indicators, and traditional 
compression algorithms have difficulties in simultaneously satis‐
fying a high CR and low RE. To improve the CR and reduce 
the RE, a hybrid compression method that combines a strong 
tracking Kalman filter (STKF), sparse decomposition, Huffman 
coding, and run-length coding is proposed in this study. This 
study first uses a sparse decomposition algorithm based on a 
joint dictionary to separate the transient component (TC) and 
the steady-state component (SSC) in the PQD. The TC is then 
compressed by wavelet analysis and by Huffman and run-
length coding algorithms. For the SSC, values that are greater 
than the threshold are reserved, and the compression is finally 
completed. In addition, the threshold of the wavelet depends on 
the fading factor of the STKF to obtain a high CR. Experimen‐
tal results of real-life signals measured by fault recorders in a 
dynamic simulation laboratory show that the CR of the pro‐
posed method reaches as high as 50 and the RE is approximate‐
ly 1.6%, which are better than those of competing methods. 
These results demonstrate the immunity of the proposed meth‐
od to the interference of Gaussian noise and sampling frequen‐
cy.

Index Terms——Signal compression, power quality disturbance, 
Huffman coding, run-length coding, wavelet analysis, sparse de‐
composition.

I. INTRODUCTION 

POWER quality disturbance (PQD) data are useful for ac‐
tive distribution networks (ADNs), where different PQD 

waveforms in ADNs generally correspond to different ADN 
operations. For example, the transient oscillation signal is 

caused by load switching [1], and the voltage notch origi‐
nates from the phase commutation of new energy resources 
embedded with power electronic devices in an ADN [2]. In 
addition, voltage sag or interruption occurs because of short-
circuit faults [3], and the impulse signal derives from thun‐
der strikes on the lines in ADNs [4]. These operations in 
ADNs severely distort waveforms. In addition, PQD wave‐
forms can be used to locate disturbances in distribution net‐
works [5]. However, as the scale of ADN increases, PQD 
events inevitably become more frequent. If many power grid 
monitoring devices are used in a distribution network, the 
Ethernet bandwidth will be enormous for transmitting and re‐
ceiving uncompressed PQD data [6], and the disk space for 
storage will also be considerable, thus incurring high ex‐
pense. Therefore, a highly efficient compression method for 
PQD data is urgently needed [7].

The main compression methods can be divided into two 
types: lossy and lossless. Lossless compression reduces the 
redundancy of PQD data by encoding methods such as Huff‐
man coding [8] and Lempel-Ziv-Welch (LZW) coding [9]. 
The advantage of lossless compression is that the data can 
be completely restored without loss after signal recovery. Un‐
fortunately, the redundancy of PQD data is generally low, 
and it is difficult to obtain a high compression ratio (CR) by 
encoding. Typically, engineers focus on overall PQD events 
instead of their details. Therefore, discarding certain details 
of PQD signals during compression processing is considered 
acceptable. Many researchers have thus developed lossy 
compression methods for PQD signals.

The lossy method consists of two types of compression, 
namely, direct and indirect compressions. Direct compres‐
sion uses a wavelet to compress the PQD signals directly. 
Reference [10] utilized 1D wavelet analysis and improved 
wavelet-based methods [11] - [13] to compress 1D signals. 
The study obtained higher CR and lower waveform distor‐
tion than with the discrete cosine transform.

2D discrete wavelet transform (DWT) based algorithms are 
often applied to PQD signal compression. First, the PQD sig‐
nal is reshaped into a 2D grayscale image, and the reshaped 
“image” is compressed through 2D DWT [14] - [16]. Al‐
though the reconstruction error is less than that of the 1D 
DWT under the same CR, a long data frame is necessary for 
data reshaping with DWT-based algorithms. In addition, sin‐
gular value decomposition (SVD), which is a major image 
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compression technique, has been used in PQD signal com‐
pression [17], [18]. The purpose of SVD-based compression 
is to discard several small values of the “image” decomposi‐
tion results. Its advantage is its simplicity; its disadvantage 
is the long data frame required for the 1D signal to trans‐
form into a 2D image.

The goal of indirect compression is to first separate the 
transient component (TC) and steady-state component (SSC) 
in the PQD signals and then compress the TC and SSC us‐
ing different schemes. Reference [19] used a Butterworth fil‐
ter bank to separate the TC and SSC. The study then calcu‐
lated the amplitude and angle of the SSC using interpolated 
FFT and compressed the TC using DWT (db4 basis). Al‐
though the high CR and low percentage of root-mean-square 
difference (PRD) verified the effectiveness of the algorithm, 
the algorithm failed to consider noise in PQD signals. Simi‐
lar to [19], [20] used a Kalman filter (KF) and PQD signal 
compression dynamics to obtain a high CR.

Another mathematical approach for separating the TC and 
SSC is sparse decomposition (SD), which is based on an 
overcomplete hybrid dictionary (OHD) and consists of identi‐
ty matrix I, cosine transform matrix C, and sine transform 
matrix S [21], [22]. Reference [23] combined I and the iden‐
tity Fourier transform matrix F, and [24] combined I and the 
identity Hartley transform matrix H. In [22], the OHD [I, C, 
S] was used instead of compression for PQD event classifica‐
tion. The number of columns in [I, C, S] is typically large, 
and the solution is time-consuming. In [23], an OHD [I, F] 
was used for PQD signal compression. However, if the PQD 
signals contain white Gaussian noise, the CR declines signifi‐
cantly according to the principle of the SD approach. In ad‐
dition, some orthogonal matching pursuit (OMP) based im‐
proved solutions of SD have been reported, such as regular‐
ized OMP [25], sparsity adaptive correntropy OMP [26], and 
adaptive group OMP [27]. However, the computation speed 
is limited. Therefore, in this study, the classic OMP was cho‐
sen as the solution for convex optimization.

Although various methods for PQD signal compression 
have been proposed in previous studies, several remaining 
problems require further investigation. Despite the high CR 
and low PRD values were achieved in [19], no Gaussian 
noise is apparent in the synthetic PQD signals for compres‐
sion. The characteristics of synthetic PQD signals in [19] 
does not match the characteristics of real-life signals. When  
the method in [19] is applied to compress the real-life sig‐
nals with Gaussian noise, the CR declines significantly. Ref‐
erence [23] simply divided the number of points of PQD da‐
ta by the number of non-zero values to compute CR. Al‐
though the study claimed that the CR was 10.08 when the 
signal-to-noise ratio (SNR) was 40 dB, the CR was actually 
less than 2 when the method was reproduced. Moreover, it 
did not compress the results using the lossless encoding 
method. Therefore, the results in [23] are dubious.

In [19], a wavelet was used to decompose the signals into 
three levels, and then the detail coefficients d3, d2, and d1 
were suppressed by the wavelet threshold and compressed. 
However, the study did not compress the approximation coef‐
ficients a3, which resulted in a relatively low CR. If a3 had 

been compressed, the CR would have been much higher.
During our experiments, we observed that CR and PRD 

depended on multiple wavelet thresholds. If the wavelet 
threshold was large, the CR would increase and the PRD 
would worsen, and vice versa. Thus, the parameter is signifi‐
cant. To the best of our knowledge, no study has been con‐
ducted on how to choose the multiple of the wavelet thresh‐
old.

Our study was conducted to overcome these shortcom‐
ings, where the main contributions are as follows.

1) Some existing studies such as [19] failed to consider 
noise. Although their algorithm achieved a high CR for 
noiseless PQD signals, it deteriorated in the presence of 
noisy PQD signals. In this study, PQD signals are imposed 
with 30, 40, and 50 dB of Gaussian noise to enable the PQD 
signals to match the characteristics of real-life signals in a 
power grid, and the PQD signals with Gaussian noise are 
compressed and recovered.

2) We design a novel technique for determining the wave‐
let threshold. Specifically, we use the fading factor (FF) of 
the strong tracking Kalman filter (STKF). If the FF is great‐
er than 1, the multiple of the threshold is set to be a high 
value, and the CR will be high without a significant decline 
in the PRD. If FF is equal to 1, the multiple of the threshold 
is set to be a small value, and the CR will be slightly lower 
without a significant increase in the PRD. Thus, the CR can 
be automatically adjusted by the FF.

3) The TC is decomposed into detail coefficients d3, d2, d1 
and approximation coefficients a3, which are compressed 
through the run-length and Huffman encoding methods, re‐
spectively. Because Huffman coding compresses a floating-
point number that occupies 16 bits into a binary code that 
occupies only 3-7 bits, a3 can be further compressed by 
Huffman coding. As a result, a larger CR can be obtained.

4) Small absolute values in the frequency domain, which 
are generally less than 0.05, correspond to the white Gauss‐
ian noise in the time domain. Therefore, all absolute values 
less than 0.05 are set to be zero. Only the non-zero values 
and positions are saved, and the sparse SSC is compressed.

The remainder of this paper is organized as follows. In 
Section II, the proposed method based on STKF, OHD [I, 
H], Huffman coding, and run-length coding is described in 
detail. Section III presents case studies, which describe how 
the three types of synthetic compound PQD signals in MAT‐
LAB are compressed and reconstructed. Section IV gives the 
experiment results based on real PQD signals. Finally, Sec‐
tion V draws conclusions.

II. PROPOSED METHOD 

Several existing indirect compression methods perform 
well on PQD signals without noise, but the CR worsens 
when the signals contain TCs and noise. To obtain a high 
CR and low PRD, a novel PQD signal compression method 
is proposed in this study, and the flow is shown in Fig. 1.

The process flow of the proposed method shown in Fig. 1 
is explained in the following three subsections. First, the 
PQD signal is decomposed into the TC and SSC by SD. The 
principle of SD is first introduced.
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A. SD

The SD technique is employed to separate the TC and 
SSC in the PQD signal for further compression.

Let x be the PQD signal of white Gaussian noise of 
length N. The TC and SSC can be separated by:

x =Ay (1)

where A is an overcomplete dictionary with size N ´M, in 
which M > N; and y is the key to (1) with size M ´ 1.

In this study, OHD [IH] is used for SD because of its ad‐
vantages. The disadvantage of dictionary [IF] is that it is a 
complex matrix demanding double the amount of space for 
storage. Therefore, the storage space of [IH] is less than 
that of [IF]. The disadvantage of [ICS] is that the frequen‐
cy domain portion of the decomposition result usually has 
sidelobes, which impair the CR, whereas the results of [IH] 
have no sidelobes. Therefore, matrix H with size n ´ n can 
be expressed as:

H =
1
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where cas(·)= sin(·)+ cos(·). Thus, the joint dictionary A in (1) 
can be expressed as:

A = [ I H ] (3)

The solution to (1) is a convex optimization problem. Pop‐
ular convex optimization solutions include OMP [23] and 
OMP-based algorithms. For details about OMP, please refer 
to [23].

B. Huffman Coding and Run-length Coding

After the PQD signal is decomposed into TC and SSC, 
the following steps are performed to compress the TC and 
SSC. To improve the CR, Huffman coding is applied to code 
the approximation coefficients obtained from wavelet analy‐
sis. As a classic lossless coding method, the process steps of 
Huffman coding can be described as follows.

Step 1: sort the list in ascending order from the smallest 
to largest.

Step 2: choose the smallest and second smallest values to 
construct a 2-layer binary tree with two leaf nodes and one 
single root node, which is the sum of the two leaf nodes. 
Then, delete the two values in the two leaf nodes, and add 
the new value of the root node to the list.

Step 3: recursively repeat this process until a complete 
Huffman tree is constructed.

Step 4: finally, encode all paths from the root node to the 
leaf nodes, with all left and right paths of the tree set to be 
0 and 1, respectively.

For example, consider a list with elements 2, 3, 6, 7, 10, 
19, 21, and 32 in ascending order. The encoded Huffman val‐
ues of elements 2, 3, 6, 7, 10, 19, 21, and 32 are 00000, 
00001, 0001, 0010, 0011, 10, 11, and 01, respectively. The 
numbers of bits occupied by the eight integers and encoded 
values are 8 × 16 = 128 bits and 5 × 2 + 4 × 3 + 2 × 3 = 28 bits, 
respectively. Therefore, the CR of the list is 128/28 = 4.57.

Run-length coding is suitable for compressing sparse lists 
that contain many consecutive zeros. For example, consider 
a list with elements 0, 0, 0, 5, 0, 0, 3, 0, 0, 0, and 2, where 
the corresponding run-length coding result is (3, 5), (2, 3), 
and (3, 2). The first number in parentheses is the number of 
consecutive zeros, whereas the second number is the non-ze‐
ro value immediately following the string of zeros. Here, the 
11 integers in the list are represented by 6 integers, and the 
CR is 11/6 = 1.83. The higher the number of consecutive ze‐
ros in the sparse list is, the higher the CR is.

C. STKF

The wavelet threshold is a key parameter that determines 
the CR and PRD. The FF is used to determine the multiple 
of the wavelet threshold, and the STKF is described as fol‐
lows.

In the signal model, a typical sinusoidal waveform with 
harmonics y(t) can be described by:

y(t)=∑
k = 1

n

Ak sin(kωt + φk ) (4)

where ω is the fundamental angular frequency; and Ak and 
φk are the amplitude and angle of the kth harmonic, respec‐
tively.

The second step of STKF is establishing the state equa‐
tion of the signal to facilitate subsequent processing, i.e., to 
calculate the FF. Let the elements of the state vector x(k) be:

ì

í

î

ïïïï

ïïïï

x1 (k)=Asin(ωkT)

x2 (k)=Acos(ωkT)

x3 (k)=ω
(5)

where A is the amplitude; and T is the sampling interval. 
Thus, the nonlinear state equation is given as:

f (x(k))=
é
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(6)

Therefore, the state matrix F is the first-order Taylor ex‐
pansion of (6) and is expressed as:

Input PQD signal

Obtain TC Obtain SSC

Recovery signal

Execute SD

Execute DWT

Y

N

Compute fading

factor by STKF

Is FF smaller
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Set large
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Set small
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d3, d2, d1
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d3, d2, d1
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Obtain

a3

Segment

a3

 Encode by
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Fig. 1.　Flow of proposed method.
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where F1 = cos(x1 (k)T); and F2 = sin(x1 (k)T).
The measurement matrix H is:

H =[1 0 0] (8)

After the nonlinear state and linear measurement equa‐
tions are established, the parameter matrices Q and R are set 
to be 10-5 In and 10-4, respectively.

A discrete linear system can be described by state and 
measurement equations, which are given by (9) and (10), re‐
spectively.

x(k + 1)=Fx(k)+w(k) (9)

Y (k)=Hx(k)+ v(k) (10)

where x(k) is the state vector of the system at step k with 
size n × 1; Y (k) is the measurement vector of the system at 
step k with size m × 1; F is the state-transition matrix; H is 
the measurement matrix; and w(k) and v(k) are the process 
and measurement noises, respectively, in which both w(k) 
and v(k) have zero means, and the variance matrices are Q 
and R, respectively. For details about the STKF, please 
see [28].

III. CASE STUDY AND ANALYSIS 

To test the effectiveness of the proposed method, three 
types of compound PQD signals with 40 dB Gaussian noise 
are generated in MATLAB and then compressed and recon‐
structed. Because of the randomness of noise, compression 
and reconstruction are performed 10 times in this study, and 
the mean value is taken as the final result.

The sampling frequency of the PQD signal under a dura‐
tion of 0.1 s is 6.4 kHz, and 640 samples are used for each 
signal. The two indicators of CR and PRD are used to evalu‐
ate the proposed method and are expressed in (11) and (12), 
respectively.

CR =
Soriginal

Scompress
(11)

PRD =
∑
i = 1

N

(x(i)- x̂(i))2

∑
i = 1

N

x2 (i)
´ 100% (12)

where Soriginal and Scompress are the bits occupied by the origi‐
nal and compressed signals, respectively; and x(i) and x̂(i) 
are the original and recovered signals of the ith sampling 
point, respectively.

A. Impulse Signal

Impulse waveforms are a common phenomenon in ADNs. 
Thunder strikes of transmission lines are a unique cause, and 
the waveform appears as a unipolar transient pulse. The in‐
crease in time of the impulse signal is typically between 5 
ns and 0.1 ms, and the duration is longer than 1 ms [23]. 
Thus, a model of the impulse signal of the kth sampling 
point can be given as:

x(k)=
ì
í
î

sin(2π × 50k/fs )+ e-(k - 381)    381 £ k < 388

sin(2π × 50k/fs )+ noise          others
(13)

where fs is the sampling frequency, which is 6.4 kHz; and 
noise is the Gaussian noise. To simulate a real-life environ‐
ment, an impulse signal is imposed with 40 dB Gaussian 
noise.

The result decomposed by SD can be segmented into two 
parts in the frequency domain, i. e., a TC composed of the 
Gaussian noise and impulse signal and an SSC that derives 
from the Hartley transform, as shown in Fig. 2.

The TC is first decomposed by wavelet analysis (db4 ba‐
sis) into three levels to obtain the approximation coefficients 
a3 and detail coefficients d3, d2, and d1. Different strategies 
can then be used to compress the detail and approximate co‐
efficients. The detail coefficients are suppressed by the wave‐
let threshold, as shown by:

λi = α
median(abs(di ))

0.6475
2In N (14)

where iÎ{123}; di denotes the detail coefficients in which 
N is the length; abs(·) and median(·) are the operations for 
computing the absolute and median values, respectively; and 
α is the tunable multiple of the coefficient that determines 
the CR and PRD. If α is low, the threshold will be low, and 
numerous “burrs” in di will be retained, which is not condu‐
cive to a high CR. By contrast, if α is high, the “burrs” in di 
will be discarded, which leads to a relatively high CR.

The problem of choosing α must then be resolved. Be‐
cause FF reflects a sudden change in the PQD waveform, 
we use FF as an indicator to choose the parameter. If FF is 
greater than 1, α is set to be 2, and if FF is 1, α is set to 
be 1.

Figure 3 shows that the FF of the impulse signal is great‐
er than 1. This result indicates that a sudden change occurs 
in the waveform, and therefore α should be relatively high 
to avoid a low CR. The new detail coefficients of impulse 
signal suppressed according to (14) are shown in Fig. 4.

In Fig. 4, most of the values for d3, d2, and d1 are set to 
be 0, and the new coefficients d'3, d'2, and d'1 become sparse 
and can be compressed by run-length coding.
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Fig. 2.　Result decomposed by SD. (a) TC. (b) SSC.
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With the new detail coefficient d'1 taken as an example, 
the run-length encoding results are (90, 0.037), (99, 0.6226), 
(0, -0.1758), (0, 0.0863), and 129. Note that run-length cod‐
ing is previously explained in Section II. Nine floating-point 
numbers occupy 9 × 32 = 288 bits, whereas 323 numbers are 
included in the original detail coefficient d1, which require 
323 × 32 = 10336 bits. CR is thus 10336/288 = 35.89, and 
therefore d1 is efficiently compressed. Similarly, d2 and d3 
are efficiently compressed.

The next step is to compress the approximation coeffi‐
cients a3, which is difficult because of low redundancy. To 
make it suitable for Huffman coding, the processing of a3 is 
presented in Fig. 5.

After this processing, the new approximation coefficients 
a'3 have only 19 numbers. The error of a'3 and a3 does not ex‐
ceed 0.0015, whereas the redundancy is greatly improved. 
Huffman coding is then performed on a'3. As a result, the 
least frequent value in a'3 is -0.0224, which occurs only 
once, and the corresponding Huffman value is 100110; the 
most frequent value in a'3 is 0.0046, which occurs 13 times, 
and the corresponding Huffman encoding value is 011. The 
Huffman tree for a'3 is shown in Appendix A Fig. A1. The 
Huffman tree can be explained as follows. Nineteen leaf 
nodes exist, where each block has two subblocks. The num‐
ber in the lower block indicates the number in a'3, and the 
number in the upper block is the corresponding occurrence 
frequency of the number. For example, the numbers in the 
first block in the 4th layer indicate 11 -0.014 in a'3.

The space occupied by the coefficients a'3 represents the 
sum of products of the frequency of each value and the num‐
ber of bits of the encoded value, which is 1 × 6 + 1 × 6 + +
12 × 3 + 13 × 3 = 319 bits. The space occupied by the original 
approximation coefficients a3 is 86 × 32 = 2752 bits. There‐
fore, CR is 2752/319 = 8.63. The original approximation coef‐
ficients a3 are well compressed by Huffman coding after ap‐
proximation.

In summary, the new approximation coefficients a'3 and 
new detail coefficients d'3, d'2, and d'1 occupy 319, 384, 256, 
and 192 bits, respectively. In addition, only two non-zero val‐
ues exist at positions in the SSC, and they occupy 32 × 2 + 16 ×
2 = 96 bits. The original PQD signal has 640 × 32 = 20480 bits, 
and thus CR is 20480/(319 + 384 + 256 + 96)= 16.43.

Finally, the impulse signal is recovered, and the PRD is 
1.12% according to (10). The original impulse signal with 
40 dB Gaussian noise, recovered signal, and error of im‐
pulse signal are shown in Fig. 6.
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Considering the randomness of Gaussian noise, 10 Monte 
Carlo experiments are performed, where the PRD and CR 
values are listed in Table I.

Table I shows that CR is much improved under the pro‐
posed method as compared with that of the two competing 
methods. The CR declines significantly with the other meth‐
ods due to presence of Gaussian noise in the PQD signal.

B. Decaying Harmonics

Time-varying harmonics typically derive from the arcing 
load in a steel plant, and the model of the harmonics under 
decaying amplitude is given by:

x(k)= e-2πk/fs{sin(2π × 50k/fs )+ 0.5sin(2π × 150k/fs + π/4)+
0.3sin(2π × 250k/fs + π/3)}+ noise (15)

Because FF is 1, which suggests that no sudden change 
occurs in the signal, the TC and SSC can be separated by 
SD, as shown in Fig. 7.

The processing of the TC and SSC is identical to that de‐
scribed in Section III-A and is therefore not repeated here. 
The original decaying harmonic signal with 40 dB Gaussian 
noise, recovery signal, and error of decaying harmonic sig‐
nal are shown in Fig. 8.

Ten experiments are conducted in this study to reduce the 
number of random errors, and the mean values of the 10 
CRs and PRDs are 10.21 and 2.32%, respectively. The re‐
sults are compared with those of SD and are listed in Table II.

The CR is much higher under the proposed method than 

that under the other two methods, whereas the PRD approxi‐
mates that of SD, also indicating better performance by the 
proposed method. In addition, the CR of FFT + WT is higher 
than that of SD but lower than that of the proposed method be‐
cause the detail coefficients di are compressed. Note, however, 
that the approximation coefficients a3 are not compressed.

C. Sag with Transient Oscillation

A sag with a transient oscillation signal, which is a fre‐
quent type of PQD signals in distribution networks, is 
caused by heavy loads that connect to the city power grid 
and is often accompanied by transient oscillation when the 
sag begins. A model of sag with oscillations can be de‐
scribed by:

x(k)=

ì

í

î

ï
ïï
ï

ï
ïï
ï
ï
ï

0.5sin(2π × 50k/fs )+

    0.8e-0.4(k - 403) sin(2π × 50 × 18k/fs )    403 £ k < 473

0.5sin(2π × 50k/fs )                                  473 £ k < 881

sin(2π × 50k/fs )                                        others

(16)

Figure 9 shows that the FF of the sag signal is greater 
than 1, which suggests that two sudden changes occur in the 
waveform. Therefore, this waveform can be segmented into 
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TABLE II
COMPRESSION RESULTS OF DECAYING HARMONIC SIGNALS BY DIFFERENT 

METHODS

Method

Proposed

SD

FFT + WT

PRD (%)

2.32

2.09

2.20

CR

10.21

2.59

3.74
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Fig. 7.　FF, TC, and SSC results of decaying harmonics. (a) FF. (b) TC. (c) 
SSC.

TABLE I
COMPRESSION RESULTS OF IMPULSE SIGNALS BY DIFFERENT METHODS

Method

Proposed

SD

FFT + WT

PRD (%)

1.19

1.10

1.20

CR

18.86

1.59

5.93
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three sections: the period before sagging, the sagging dura‐
tion, and the period after sagging. The compression and re‐
construction processing of these sectional waveforms is iden‐
tical to that described in Section III-A. The three sectional 
waveforms are then connected, and the sag with the transient 
oscillation signal can be recovered. The waveforms of the 
original sag signal with 40 dB Gaussian noise, recovery sig‐
nal (detail), and error of sag signal are shown in Fig. 10.

The PRD and CR results are compared with those of the 
SD and FFT + WT, which are listed in Table III. The CR is 
27.29, which is much higher than that of the SD and FFT +
WT methods, whereas the PRD approximates that of SD and 
FFT + WT, indicating better performance by the proposed 
method as compared with the two competing methods.

D. Effects of Sampling Frequency

As previously indicated, the sampling frequency is set to 

be 6.4 kHz, and the number of sampling points is 640. How‐
ever, when high-frequency PQD signals are recorded, the 
sampling frequency may double to 12.8 kHz. If the sampling 
time remains at 0.1 s, the sampling points will increase to 
1280, which requires more storage space. To analyze the ef‐
fects of the sampling frequency in our evaluation of the pro‐
posed method, an indicator Dcf is used, which is given by:

Dcf = 1000
|

|

|
||
|
|
| CR1 -CR2

fs1
- fs2

|

|

|
||
|
|
|

(17)

where fs1
 and fs2

 are 12.8 and 6.4 kHz, respectively; and CR1 

and CR2 are the CRs under the two sampling frequencies fs1
 

and fs2
, respectively. A larger Dcf corresponds to a lower sen‐

sitivity to changes in fs.
With the impulse signal taken as an example, let fs and 

the total number of samples be 12.8 kHz and 1280, respec‐
tively. When the proposed method is applied to the impulse 
signal (α is set to be 2.3), the mean values of the CR and 
PRD are 29.08 and 1.20%, respectively. Thus, Dcf is 1.60 ac‐
cording to (17), which is higher than that of the competing 
methods, as shown in Table IV.

The results of Dcf reveal that the proposed method exhibits 
lower sensitivity to variations in fs as compared with SD and 
FFT + WT. In addition, α is 2.3 and 2 when fs is 12.8 and 
6.4 kHz, respectively. The results thus also show that a 
slight increase in α offsets the effect of increasing fs.

When fs is 3.2 kHz, the CR is 23.86 as compared with 
4.68 and 5.02 of SD and FFT+WT, respectively. Thus, 
whether fs increases or decreases, the CR of the proposed 
method is higher than those of the other methods.

E. Effects of Noise

The experimental results show that the proposed method 
performs well when the SNR of the PQD signals is 40 dB. 
However, whether the method is immune to noise must be 
further explored.

Three types of PQD signals are imposed under 30, 40, 
and 50 dB SNRs. The signals are then compressed and re‐
covered. The CR and PRD results under different SNRs are 
listed in Table V.

Table V indicates that the CR tends to increase, whereas 
PRD tends to decrease with an increase in the SNR. This 
can be explained as follows. When the SNR is 50 dB, the 
noise amplitude is relatively low, indicating that more signal 
details are retained during compression, and therefore CR in‐
creases while PRD decreases. However, when the SNR is 30 
dB, the noise amplitude is large, indicating that more signal 
details of the signal are discarded during compression, and 
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TABLE III
PRD AND CR RESULTS OF SAG SIGNALS WITH TRANSIENT OSCILLATION BY 

DIFFERENT METHODS

Method

Proposed

SD

FFT + WT

PRD (%)

2.02

1.95

1.53

CR

27.29

2.05

5.79

TABLE IV
CRS AND OVERALL EFFECTS OF DIFFERENT SAMPLING FREQUENCIES WITH 

DIFFERENT METHODS

Method

Proposed

SD

FFT + WT

CR1 (fs=12.8 kHz)

29.08

7.31

9.09

CR2 (fs=6.4 kHz)

18.86

5.05

5.93

Dcf

1.60

0.35

0.49
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therefore the changes in CR and PRD show inverse trends.

F. Computational Efficiency

The computational efficiency of methods is critical. A 
method that is too complex results in an excessively long op‐
erational time or requires considerable storage space, and 
thus the method cannot be applied in practice. Therefore, the 
computational time cost of the proposed method is compared 
with that of the other two competing methods. For the com‐
parison study, a computer is configured with 8 GB of memo‐
ry and an Intel i5 2.8 GHz CPU.

The time costs of different methods are shown in Table 
VI. The proposed method proves to be the most time-con‐
suming compression method. This can be explained by the 
fact that, in the proposed method, the coding methods (i. e., 
run-length and Huffman encodings) require more operational 
time but achieve higher CR and approximately equal errors. 
The added time required to achieve a higher CR is thus con‐
sidered a reasonable trade-off.

IV. EXPERIMENT ON REAL PQD SIGNALS 

To verify the feasibility of the proposed method on real-
life signals, a set of PQD signals is recorded from the Dy‐
namic Power System Simulation Laboratory at Huazhong 
University of Science and Technology, Wuhan, China.

The fs of the signal is 5000 Hz, and the duration is 0.12 s, 
meaning that each phase signal has 600 sampling points. Be‐
cause the sag is the most frequent PQD signal in a real pow‐
er system, we create a voltage sag in the laboratory and use 
this signal to test the performance of the proposed method 
on real-life signals. The real signal measurement system and 
recorded three-phase fault waveforms are shown in Figs. 11 
and 12, respectively.

The 210 V three-phase voltage signals are generated by an 
analog generator. They are transmitted through the transmis‐

sion line, transformed to 100 V by the analog transformer, 
and then transmitted to the recorded signals through commu‐
nication devices. Finally, the waveforms of phases A, B, and 
C are saved by fault recorder.

As Fig. 12 shows, the fault is set as a line-to-ground short 
circuit in phase B. Therefore, the recorded waveforms of 
phases A and C are ideal sine waves; a voltage sag occurs in 
phase B due to the line-to-ground short circuit. Note that the 
synthetic signals do not perfectly match the real-life signals, 
and therefore the absolute values of less than 0.005 are set 
to be zero to improve the CR.

The fault signals of phases A, B, and C are compressed 
and recovered. The CRs and PRDs of the proposed and oth‐
er methods are listed in Table VII.

Table VII shows that the CR of the three-phase real sig‐
nals with the proposed method is approximately 50, which is 

TABLE VI
TIME COSTS OF DIFFERENT METHODS

Method

Proposed

SD

FFT + WT

Time cost (s)

5.27

4.84

4.76
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Fig. 12.　Recorded fault waveforms of phases A, B, and C. (a) Phase A. 
(b) Phase B. (c) Phase C.

TABLE V
CR AND PRD RESULTS UNDER DIFFERENT SNRS

Signal type

Impulse signal

Sag with transient oscillation

Decaying Harmonic

SNR (dB)

30

40

50

30

40

50

30

40

50

CR

17.68

18.24

18.50

22.73

23.48

41.21

11.56

12.13

12.47

PRD (%)

3.76

1.19

0.38

3.31

2.08

1.83

5.47

3.11

2.66
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Fig. 11.　Real signal measurement system.
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much higher than that of SD and FFT + WT. The differences 
in PRD of the three methods are minimal.

It should be noted that the CR of the phase B signal de‐
creases slightly, whereas the PRD increases slightly, which 
explains why the error between the original and recovery sig‐
nals is relatively large near the time of sag occurrence.

V. CONCLUSION 

This study proposes a compression algorithm for PQD sig‐

nals using an STKF, SD, and Huffman and run-length cod‐
ings. The TC and SSC in the PQD signal are first separated 
by SD based on an overcomplete dictionary consisting of a 
unity matrix and a unity Hartley transform dictionary. Next, 
the TC is compressed by wavelet analysis, which is followed 
by compression of the approximation and detail coefficients 
by Huffman and run-length codings, respectively. The small 
values in the frequency domain of the SSC are then set to 
be zero, and the PQD signal compression is completed. Ex‐
perimental results of synthetic and real-life signals verify 
that the proposed method can achieve the high CR and the 
low percentage of the root-mean-square difference. In addi‐
tion, the proposed method is shown to be immune to the in‐
terference of variant sampling frequency and Gaussian noise, 
and the analytical results demonstrate its high robustness.

APPENDIX A 

The Huffman tree of the new approximation coefficients a'3 
is shown in Fig. A1.
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