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Abstract—With the booming of electric vehicles (EVs) across
the world, their increasing charging demands pose challenges to
urban distribution networks. Particularly, due to the further im-
plementation of time-of-use prices, the charging behaviors of
household EVs are concentrated on low-cost periods, thus gen-
erating new load peaks and affecting the secure operation of
the medium- and low-voltage grids. This problem is particular-
ly acute in many old communities with relatively poor electrici-
ty infrastructure. In this paper, a novel two-stage charging
scheduling scheme based on deep reinforcement learning is pro-
posed to improve the power quality and achieve optimal charg-
ing scheduling of household EVs simultaneously in active distri-
bution network (ADN) during valley period. In the first stage,
the optimal charging profiles of charging stations are deter-
mined by solving the optimal power flow with the objective of
eliminating peak-valley load differences. In the second stage, an
intelligent agent based on proximal policy optimization algo-
rithm is developed to dispatch the household EVs sequentially
within the low-cost period considering their discrete nature of
arrival. Through powerful approximation of neural network,
the challenge of imperfect knowledge is tackled effectively dur-
ing the charging scheduling process. Finally, numerical results
demonstrate that the proposed scheme exhibits great improve-
ment in relieving peak-valley differences as well as improving
voltage quality in the ADN.

Index Terms—Household electric vehicles, deep reinforcement
learning, proximal policy optimization, charging scheduling, ac-
tive distribution network, time-of-use prices.

[. INTRODUCTION

N recent years, electric vehicles (EVs) are widely used to
reduce air pollution and emissions of greenhouse gases
with the appeal for sustainable development goals [1]. Ac-
cording to the estimation of International Energy Agency,
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EV sales in China have reached 3.3 million in 2021 [2],
whose soring charging demands pose new challenges to the
reliable operation of the distribution network, i.e., dramatical
peak-valley load differences [3], power congestions [4], and
undervoltage [5]. The active distribution network (ADN) en-
ables a mass of flexible loads to deliver various regulation
services to solve the above problems, which puts forward ef-
ficient and economic solutions for power systems [6]. Con-
ventional flexible loads with promising regulation capacity,
such as air conditioners [7], have been fully investigated in-
to demand response for supporting system balancing. Howev-
er, limited response capacity and duration time of residential
loads restrict their further implementations on long-time-
scale dispatch considering users’ comforts.

EVs are regarded as ideal alternatives to provide various
regulation services in the ADN [8]. The significant regula-
tion potential of EVs has attracted lots of research interests,
and their prominent contributions to peak shaving, accommo-
dation of renewable energy resources (RESs), and voltage
regulations have been validated in [9], [10], and [11], respec-
tively. Charging scheduling is fundamental for the ADN to
utilize the flexibility of EVs due to the elasticity of depar-
ture time. A coordinated charging strategy for EVs in the dis-
tribution network is presented in [12] to manage power con-
gestion. An intelligent charging scheduling algorithm is pro-
posed in [13] to choose the suitable charging station (CS)
and charging period with the goal of minimizing charging
costs.

Private charging is currently the dominant charging mode
for household EVs in many countries [2]. However, lower
charging power and utilization rate as well as wide-area dis-
tributions make it uneconomic to retrofit household charging
piles to achieve flexible regulation used in commercial direct
current (DC) piles, such as the on/off charging control strate-
gy and continuous charging power adjustment mentioned in
[14] and [15]. As a result, time-of-use (TOU) prices are im-
plemented for household EVs to transfer charging demands
from peak period to valley period in some areas, e.g., Zheji-
ang Province of China. Household EVs possess competitive
charging flexibility without sharing charging piles with oth-
ers [16]. Considering the fixed electricity price during the
valley period, it is tricky for TOU prices to dispatch EVs ad-
equately with regard to the realistic operating characteristics
of the ADN, except for transferring charging loads from
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peak period to valley period. The fixed valley price means
that the charging costs are minimum as long as the whole
charging process is finished within the valley period. Conse-
quently, owners instinctively decide to start charging at the
beginning of valley period for convenience, which leads to
new congestions in the ADN [17]. The intensive charging de-
mands are likely to result in equipment failures and severely
threaten the secure operation of the ADN, accounting for the
large-scale integration of EVs. Therefore, developing a prom-
ising charging scheduling method for household EVs is of
great importance to tackle these challenges.

Apart from the above regulation obstacles under TOU
prices, previous approaches to solve the charging scheduling
problem are not suitable for household EVs with private
charging piles, accounting for their sequential arrivals and
uncertain charging demands. For instance, the offline and on-
line scheduling algorithms are proposed in [18] for EVs to
save the charging cost, which is formulated as a mixed inte-
ger programming (MIP) problem assuming full knowledge
of the charging demands. The bi-level optimal dispatching
model proposed in [19] is also solved by converting it into
an MIP problem. These studies assume that all charging de-
mands are collected before optimization so as to convert
them to solvable MIP problems. However, it is very difficult
or even impossible to acquire all charging information in ad-
vance. In reality, the EV arrives sequentially and the charg-
ing demands can only be obtained precisely after arrival.

Under these circumstances, the charging process of the
household EV can only be regarded as an uninterruptable
process and the charging demands cannot be obtained in ad-
vance. The charging scheduling problem of household EVs
can be formulated as a Markov decision process (MDP)
[20], which aims to dispatch EVs sequentially with finite in-
formation, and achieve the global optimum for all EVs in
the end. Therefore, how to determine the specific charging
start time of the EV when arriving is one of the key priori-
ties. On the basis of the charging reservation function, house-
hold EVs can be adopted appropriately in the charging
scheduling of the ADN without extra equipment investments.

With the rapid development of deep learning (DL) and re-
inforcement learning (RL), deep reinforcement learning
(DRL), which combines both advantages of DL and RL, is
proposed to overcome the dimensional curse and solve the
MDP problem with continuous action spaces [21]. Based on
the powerful function approximation of neural networks and
big data technology, DRL is emerged as an interesting alter-
native to address the sequential charging scheduling problem
without full knowledge of charging demands [22]. First of
all, the decision for the current EV only depends on the real-
time environment states, i.e., arrival time, charging power,
charging duration, and departure time, and it is notable for a
DRL agent to address such a problem due to the sequential
feature. Moreover, through interacting repeatedly with the dy-
namic environment, the agent can learn from the experience
and investigate an excellent control policy in the absence of
models, which is more appliable in uncertain environments.

In the field of charging scheduling problems, DRL has
been implemented in various optimizations. Reference [23]
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proposes a novel DRL method based on the prioritized deep
learning deterministic policy gradient method, so as to solve
the bi-level optimization of the examined EV pricing prob-
lem. For the EV CS, an energy management based on DRL
is proposed in [24] to tickle varying input data and reduce
the cumulated operation costs. However, the above litera-
tures mostly focus on minimizing the operation costs of CSs
by dispatching EVs, while the contributions to the improve-
ment of power quality in the ADN are not fully accounted
for. Under TOU prices, EVs can be further dispatched to re-
lieve the congestion and shorten the peak-valley differences
without extra charging costs.

To address the above problems and take full use of sub-
stantial household EVs during valley period under TOU pric-
es, this paper proposes a two-stage charging scheduling
scheme for household EVs in the ADN. In the first stage, to
relieve the power congestions and shorten the peak-valley
differences, the optimal power flow (OPF) of the ADN is
solved to determine the optimal charging profiles of CSs dur-
ing the valley period. In the second stage, DRL based on
proximal policy optimization (PPO) algorithm is employed
to dispatch the household EVs sequentially within the low-
cost period according to the optimal charging profiles. PPO
algorithm was proposed by OpenAl in 2017 [25], which
combines the advantages of trust region policy optimization
and advantage actors-critic, to prevent the performance col-
lapse caused by a large update of the policy. Besides, most
decisions are finished by the distributed agents in the pro-
posed scheme with lower communication requirements and
computational burden, which makes it appliable easily in
ADNSs with numerous EVs.

The main contributions of this paper are as follows.

1) A two-stage charging scheduling scheme for household
EVs is proposed to improve the power quality of the ADN
and achieve the optimal charging scheduling of EVs simulta-
neously during the valley period, which consists of the OPF
of the ADN and charging dispatch of EVs. On this basis, the
contributions of household EVs to power congestion manage-
ment and peak-valley difference elimination are further ex-
ploited.

2) The realistic characteristics of household EVs are taken
into consideration, including the limited controllability and
uncertain charging demands. The charging process of EV is
regarded as an uninterruptable procedure with constant pow-
er, and the charging scheduling process is modelled as a se-
quential MDP problem, thereby the owner can make a charg-
ing reservation to achieve charging scheduling without extra
equipment investments.

3) The intelligent DRL agent based on the PPO algorithm
is developed to schedule the charging process of EVs.
Through the remarkable approximation function of the neu-
ral network, the agent can accumulate rich experience when
interacting with various environments repeatedly to break
the limitations on imperfect information. Hence, numerous
household EVs are dispatched effectively to formulate the
optimal charging profile even when lacking full knowledge
of charging demands in advance.

The remainder of this paper is organized as follows. Sec-
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tion II establishes the two-stage charging scheduling scheme
of household EVs. Section III introduces the MDP model of
EV charging scheduling and the intelligent DRL agent based
on the PPO algorithm. Case studies are conducted in Section
IV using the real-world data of residential and EV loads,
which proves the effectiveness of the proposed scheme. Sec-
tion V concludes the remarks of this paper.

II. TWO-STAGE CHARGING SCHEDULING SCHEME OF
HOUSEHOLD EVs

In this section, an overview of the charging scheduling
scheme is introduced first to illustrate the coordination be-
tween the problems in the two stages. Then, the first-stage
problem which considers the mutual impacts of different
nodes is put forward to determine the optimal operation of
the ADN with household EVs. On the basis of the optimal
charging profiles provided by the first-stage problem, the de-
tailed sequential decision problem in the second stage is for-
mulated to describe the charging scheduling process.

A. Overview of Charging Scheduling Scheme

As important flexible loads of the ADN, household EVs
are not fully exploited for further regulation potential under
TOU prices. Generally, most charging durations of house-
hold EVs are much shorter than their sojourn time [26]. Sub-
stantial charging demands of EVs concentrate on the pro-
phase of the valley period lacking effective guidance, which
results in extra power congestions and wastes the regulation
potential of EVs to a large extent.

At the same time, the ADN is suffering from power quali-
ty issues including dramatic peak-valley differences, power
congestions, and voltage limit violations. Consequently, the
managers of the ADN, i.e., distribution network operator
(DSO) and energy supplier, are motivated to further dispatch
household EVs to improve the power quality under TOU
prices without extra equipment investments and charging
costs, even earning profits through delivering ancillary ser-
vices for power systems. Apart from the DSOs, estates or
community administrators are also encouraged to implement
such a charging scheduling, so as to satisfy increasing charg-
ing demands accounting for the limited carrying capacities
of ADNE.

The schematic diagram of two-stage charging scheduling
scheme of household EVs is shown in Fig. 1, assuming that
the ADN at the residential side is operated by the DSO and
consists of several residential loads and EV charging loads.
Considering the relatively centralized installations of private
charging piles, e. g., underground parking spaces, nearby
charging piles are aggregated as a CS and managed by the
aggregator. Assume that only EVs can provide flexible regu-
lation service while other residential loads are regarded as
fixed loads. To relieve the power congestion caused by inten-
sive charging demands and transfer them to appropriate time
periods, a two-stage problem is formulated.

In the first stage, determining the optimal charging pro-
files of CSs is the key point. Because of the various operat-
ing characteristics of different ADNs, it is of great impor-
tance for the DSO to choose favorable optimization objec-
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tives at first. In this paper, charging scheduling of household
EVs is employed to flatten the tie-line power to provide an-
cillary services to power systems. Considering the mutual
impacts between different nodes, the optimal charging pro-
files of CSs are not appropriate to be determined simply ac-
cording to their electricity sectors. Therefore, the OPF algo-
rithm is used to solve the problem with regard to the secure
and stable operation. The optimal charging power is calculat-
ed with the goal of shortening the peak-valley differences,
based on historical and forecasted load data during the val-
ley period.
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Fig. 1. Schematic diagram of two-stage charging scheduling scheme of
household EVs.

In the second stage, to overcome the obstacle of limited
charging information, the aggregator control center based on
DRL is used to make decisions with imperfect knowledge
and dispatch the charging processes of EVs in terms of the
determined charging profile. Before the valley period, when
the k" EV arrives home, the user needs to plug in the EV
and submit the charging demands to the control center, in-
cluding charging power, charging duration time, and depar-
ture time. Then, according to the optimal charging profile
and previously scheduled EV power, the aggregator will de-
termine the most suitable charging time period for the &" EV
immediately. At last, the owner makes a charging reservation
to realize the charging scheduling without extra charging
costs, and even gets some incentives for the contributions to
the operation of the ADN.

B. First-stage Problem: OPF Model of ADN

The first-stage problem aims to involve EVs participating
in shortening peak-valley differences and managing conges-
tions of the ADN. Considering the fact that an ADN typical-
ly features radial topology, as shown in Fig. 2, the complex
power flow at each node can be described by the classic
DistFlow model [27].

PHI:Pi_ri(Pi2+Q?)/Vi2_pi+l (D
Qi.i+l:Qi—l,i_xi(Pi2+Q?)/Viz_qﬂ—l 2)
Vi2+1: Vi2_2(riPi+xiQi)+(ri2+x? )(P12+Q12 )/Vi2 3)
pi=p;-pf
b . (4)
|9:=9; —4q;
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where P, and Q, are the active and reactive power flows
from node i to node i+ 1, respectively; p, and ¢, are the ac-
tive and reactive power demands at node i, respectively,
which are determined by the load demands (with superscript
D) and generator outputs (with superscript g); V; is the volt-
age at node 7; and r; and x; are the resistance and reactance
of the branch from node i to node i+ 1, respectively.

0 1 i i+1 n

— N ; P,j0,
P40, PHjQ; P 0
Pt Putid,

pitig, pitig;

—_—

P0+jQ0

Fig. 2. Diagram of ADN with radial topology.

The DistFlow equations above are nonlinear and difficult
to solve. Ignoring network losses, the DistFlow equations
can be converted to linearized power flow equations as (5),
which have been widely used in distribution network analy-
sis [28].

P, ,=P—-p,,

Qi+1:Qi_qi+1

Vg =V=(r;P;+x,0,)V, (5)

pi=p}=pi
a:=q; - 4

The OPF model proposed in this subsection aims to flat-
ten the tie-line power, as well as maintain the node voltage
within the acceptable range. The objective tie-line power
should be determined in advance and power profiles of all
nodes can be calculated using the OPF model with the goal
of minimizing differences between real tie-line power and
objective power. Considering the limited penetrations of EVs
in the ADN at present, it is difficult to eliminate the peak-
valley differences completely without abundant regulation ca-
pacity. Hence, the objective tie-line power which is related
to residential consumption and the charging electricity can
be computed as:

Ey

Pobj (t) :Pu (t) + Ed . (Pzt,lnax - Pu (t)) (6)
Ep= [ (PP, 0 ™
Eyp= [ Py ®)

where P, (¢) is the objective tie-line power of the ADN at
time #; P, (¢) and P, (¢) are the power of EVs and residential
loads at time ¢, respectively; P, ., is the maximum power of
residential loads during the valley period; E,, is the total
electricity consumption of EVs; E,,, is the electricity devia-
tion between the residential loads and that of the maximum
power; and ¢, and ¢, are the start time and end time of the
valley period, respectively.

Therefore, the objective function of the OPF model can be
represented by:
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(t)de ©)
where P, (¢) is the real tie-line power at time ¢. The OPF
problem aims to optimize the power profiles of all nodes to
minimize the differences between P, () and P, (7).

Assume F and R represent the set of EV nodes and the
set of residential nodes, respectively. Considering the contin-
uous characteristic of the charging process, it is difficult to
regulate the charging power of CS dramatically in a short pe-
riod, thereby the ramp rate of the CS needs to be limited
within 4.

obj

t,
min|aP|= [ 1P, 0-P

pit+D)=p, @O <ip;(1) VieF (10)

In addition, the constraints of the ADN mainly include the

nodal voltage and feeder ampacity as shown in (11) and
(12), respectively.

Viein <V, (OLV,

i, min

Pimin <P (<P,

i, max
and V,

i, max

Vie FUR telt,t,] (11)
Vie FUR telt,t,] (12)

where V, .. are the minimum and maximum nodal
voltages at node i, respectively; and P, . and P, . are the
minimum and maximum ampacities of the branch from node

i to node i+ 1, respectively.

, max

C. Second-stage Problem: Scheduling Model of Household
EVs

After calculating the OPF of the ADN, the optimal charg-
ing profiles of CSs are determined. Then, the agent based on
DRL will dispatch EVs to approach the optimal charging
power.

The charging process of EVs can be divided into three
parts, which are trickle charging, constant current charging,
and constant voltage charging, where the constant current
charging process accounts for 80% duration and has relative-
ly constant power [29]. On the other hand, considering the
actual situations where household charging piles are in-
stalled, it is difficult for charging piles to achieve continuous
power regulation due to the lack of communication condi-
tions. Therefore, the charging process of a household EV is
regarded as a continuous process with constant power [30],
and the charging demands of the A" EV CD, can be repre-
sented using a tuple as:

CDk:(turr,k7 Pz:,k’ tc.k’ tdep,k) (13)

where 7, is the arrival time of the k" EV; P,, and ¢, are
the constant charging power and charging time duration, re-
spectively; and ¢,,,, is the departure time, which means that
the charging process needs to be finished before the depar-
ture of EVs to satisfy the owner’s traveling energy require-
ments.

EVs arrive sequentially and the specific charging demands
can only be obtained precisely when an EV is plugged in.
The aggregator control center aims to transfer the charging
demands to formulate a redistribution scheme of charging de-
mands based on the objective charging power. Through the
charging scheduling of EVs, not only power congestions at
the prophase of valley period can be alleviated, but also the
ancillary service for shortening the peak-valley differences
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can be delivered to power systems.

EVs can be divided into adjustable groups and non-adjust-
able groups. The non-adjustable EV, whose charging time du-
ration is longer than its sojourn time, will not be regulated.
The start charging time of non-adjustable EVs needs to be
set as their arrival time to satisfy charging demands and
there is no need to involve them in the proposed charging
scheduling. Therefore, the following charging scheduling fo-
cuses on adjustable EVs. When dispatching EVs to formu-
late the optimal charging profile, the charging demands can
be described using a rectangle as demonstrated in Fig. 3,
whose length and height indicate the charging time duration
and charging power, respectively. The valley period is from
t, of day o to t, of day o+1. Once the A" EV arrives, the
charging demand CD, is submitted to the control center.
Then the control center determines the charging start time of
the k" EV according to its charging demands and the opti-
mal charging profile.

Valley period ——— >

/\ lek

> i
AR

D P, h

Lo J,J The k" EV

Larrie 1 Ly Te lapr Time

Day o Day ot1

Fig. 3. Diagram of charging scheduling process.

Denoting #,, as the optimized charging start time of the k"
EV, the real-time charging power of the X" EV during the
valley period can be represented as:

0 t,<t<t,,

Prpi@= 1P, t,,St<ty +t., (14)
0 t,,+1,,<t<t,
C,,.(SOC.,~SOC.,)

 Cpp K sk (15)

ok ™ ;,IP

where C,,, is the rated battery capacity of the k" EV;
SOC,, and SOC,, are the expected SOC and the starting
SOC of the k" EV, respectively; and 7 is the charging effi-
ciency and regarded as a fixed value.

These adjustable EVs have already decided to charge dur-
ing the valley period with lower electricity price though they
have arrived earlier, and most of them instinctively choose
to start charging at the beginning of valley period ¢, due to
the lack of effective guidance. Therefore, the range of action-
able space is set from ¢, to ¢,, which aims to determine their
optimal charging periods. Besides, to satisfy the charging de-
mands and save charging costs of EVs, #,, is also con-
strained as:

ok

tx < tbfk < min(te’ tdepfk)_ tc,k

(16)
After dispatching the £" EV, the control center will update
the scheduled charging power of the first £ EVs as follow:

Pli®= > Pry(0) telt,t,] (17)

where PEV  (¢) is the scheduled power of the first £ EVs at

sum, k
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time .

III. MDP MODEL OF EV CHARGING SCHEDULING AND
INTELLIGENT DRL AGENT BASED ON PPO ALGORITHM

In this section, the MDP model of EV charging schedul-
ing is developed at first. Then, the intelligent DRL agent
based on the PPO algorithm is introduced, followed by the
training workflow of the PPO algorithm.

A. MDP of EV Charging Scheduling Process

The charging scheduling of household EVs can be mod-
elled as an MDP due to the discrete arrivals of EVs and the
randomness of charging demands, which can be appropriate-
ly solved using the DRL algorithm. An MDP can be repre-
sented as a tuple (S,4,R, T) [31], where § is the state space;
A is the action space; R is the reward function; and T is the
state transition function, which is determined by (14) and
(17). The specific illustrations of the MDP are follows.

1) The state space observed by the agent is represented as:

S=(CDp P -1 (1) (18)

Pdev.k—l (t):Papt,i(t)_PSEuZz.kfl (t) (19)
where CD, is the charging demand of the A" EV, including
the arrival time ¢,,,, the charging power P_,, the charging
time duration ¢,,, and the departure time ,,,,; and P, ()
is the deviation between the optimal charging power of node
i P,, (1) and the scheduled charging power Py, , ,(¢) of the
first k—1 EVs. The state space S contains all knowledge of
the current environment which can be obtained by the agent
when scheduling the k" EV at time . The properties of MDP
have decided that the future state only depends on the pres-
ent state and the action taken by the agent. To be specific,
the agent can only determine the charging start time of the
current k" EV and the scheduled charging power only de-
pends on the scheduling result of the k" EV.

2) The action space is represented as 4=(t, ) because the
actions are taken sequentially, which determines the specific
charging profile of the k" EV combining its charging de-
mands. In other words, the agent needs to make a decision
when an EV arrives instead of scheduling all EVs together
in the end. Due to the fixed electricity price, the feasible
charging start time should be limited within the valley peri-
od to prevent extra charging costs. Considering the discrete
feature for charging reservations, the action space is set as a
discrete space with 1-min interval.

3) Every action taken by the agent will obtain a reward,
which describes the performance of this action and contrib-
utes to improving the agent to achieve the maximum cumula-
tive rewards. The reward function is defined as:

ri=p(Dev,_,—Dev,) (20)
t,
Dev,= [ 1P~ L, () @1)

where 7, is the reward gained by the agent after taking the
action a,; Dev, is the deviation between the optimal charg-
ing power and the scheduled charging power of k& EVs;
P, (?) is the optimal power of node i at time # and p is the
coefficient of reward, which is used to normalize the reward
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between different nodes with various EVs.

Moreover, the reward function can also reveal how much
the charging demand is not satisfied or the charging costs
have increased. Figure 4 illustrates the specific penalty when
charging demands are satisfied or not. If the charging pro-
cess of the k" EV is beyond the boundary of valley period,
the power deviation Dev!” will be smaller than Dev\® after
dispatching the k" EV, and the agent will obtain a smaller re-
ward r,.

Power Valley period Power Valley period
Dev{® The k' EV Dev®  The k" EV
EV EV
P, sum,k—1 P, sum,k—1
Time Time
(a) (b)

Scheduled charging power; Power deviation

Charging process of the k™ EV

Fig. 4. Specific penalty when charging demands are satisfied or not satis-
fied. (a) Demands are satisfied. (b) Demands are not satisfied.

Theoretically, the total reward with optimal charging
scheduling can be represented as:

maxE(zrk) = frePup,.i(t)dt

R

norm

max E ( zrk)
where R

om 18 @ constant value for normalizing the reward.

From the perspective of the whole scheduling process, the
agent will schedule all EVs to approach the optimal charg-
ing profiles so as to maximize the total reward. Neverthe-
less, considering the indivisibility of EV charging processes,
it is tricky to realize the global optimum through the optimal
decision of every single step. To be specific, the present de-
cision has durable effects on the later charging scheduling

(22)

P= (23)
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processes, which are difficult to be involved into the optimi-
zation problem and solved using conventional methods.
Based on the outstanding approximation ability of the neural
network, DRL can take the subsequent effects into consider-
ation. For example, the DRL agent may take an action that
cannot gain the maximum reward at present, but it contrib-
utes to obtaining more rewards in the future and achieving
the maximum total reward.

B. PPO Algorithm

Policy gradient is an essential method for training the
DRL agent to maximize the cumulative reward, which works
by computing an estimator of the policy gradient and plug-
ging it into a stochastic gradient ascent algorithm [25]. The
most commonly used gradient estimator ¢ can be represent-
ed as:

ézEt(V(y lgné)(at‘st)At) (24)
where 7, is the stochastic policy function with parameter 6,
/I, is the estimator of the advantage function at time ¢ a, and
s, are the action and state, respectively; and E, is the empiri-

cal average with finite samples.
As a result, the loss function is defined as:

Lo (@ =E,(Igz,(als,)4,) (25)

However, traditional policy gradient methods have low uti-
lization efficiency of sampling data and have to spend too
much time on sampling new data once the policy is updated.
Besides, it is difficult to determine appropriate steps for up-
dating policy so as to prevent resulting in large differences
between the new policy and the old policy.

Therefore, the PPO algorithm was proposed in 2017 to ad-
dress the above shortcomings. The detailed training work-
flow of the DRL agent with PPO algorithm is demonstrated
in Fig. 5. PPO algorithm consists of three networks, includ-
ing two actor networks with the new policy 7, and the old
policy m, (parameterized by 6 and 6’, respectively) and a
critic network ¥, (parameterized by ¢).
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States trajectory
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Fig. 5. Training workflow of DRL agent with PPO algorithm.

To increase the sample efficiency, 7, is used to interact

trained according to the demonstrations of z,. Utilizing im-

with environments and sample N trajectory sets with 7 portance sampling technology, the same trajectory sets can

timesteps, while x, is the actual network that needs to be

be used multiple times although there are differences be-
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tween 7, and 7,  The probability ratio of new policy and old
policy can be expressed as:
Ty (atlst)
wy(als,)
Another point of PPO algorithm is that the new policy
should avoid significant evolution from the old policy after
every update, so as to maintain the accuracy of importance
sampling and avoid accident performance collapse. Hence, a
clipped surrogate function is used to remove the incentive
for moving r,(0) outside of the interval [l —¢,1+¢], so the
loss function of PPO algorithm can be represented as [25]:

L(O)=E (min(r,(0)A,. clip(r,(0). 1 —e. 1 +€)4,))  (27)

where ¢ is the clipping parameter, which aims to clip the
probability ratio. For instance, the objective will increase if
the advantage function A, is positive, but the increase is
maintained within 1+e€ by a limit set by the clipping func-
tion.

Consequently, the network parameters 6 of the new policy
are updated using:

r(0)= (26)

E (Ks,a,0'.0)

Spd~ Ty

fO=arg max (28)

Apart from the actor network, a critic network is used to
estimate the state value function and the advantage function.
The advantage function describes how much an action is bet-
ter than other actions on average, which is defined as:

4,=0,(s,a)-V,(s,) (29)

Q,(S,, az):E(zykrz+k’SzSna:at)
k=0

Vt(s/):E(iyerkS:St) (31)

where y is the discounting factor, which aims to balance the
importance between immediate and future rewards; and V,
and Q, are the value function and the action-value function,
respectively. Therefore, V,(s,) is the expected value on aver-
age at state s, which contains all optional actions. Q,(s,,a,)
is the expected value at state s, when taking action a,.

The critic network ¥, is updated using regression to mini-
mize a mean-squared-error objective [22]:

p=argmin (V,(s,) - R,

(30)

(32)

T
R,= zrt(st’7at"sr'+l) (33)
t'=t
where Ié, is the reward-to-go, which is the sum of rewards
after a point in the trajectory.

The DRL agent with PPO algorithm is trying to schedule
the EV charging process according to the optimal charging
profile, with the goal of maximizing the total expected re-
wards. The training workflow of PPO algorithm is summa-
rized in Algorithm 1. The corresponding parameters are
shown in Table I, where /r is the learning rate; and MB is
the minibatch size.

The discounting factor y and the clipping parameter ¢ are
important hyperparameters that influence the performance
agent observably. The importance of current action depends
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on the discounting factor y, and a larger y means that an
agent is more long-sight so as to take full consideration of
future uncertainties to achieve the maximum cumulative re-
wards. Thus, y is set to be 0.99 [14].

Algorithm 1: training workflow of PPO algorithm

1: Initialize policy network 7z, and value function network ¥

2: for i=0;i<N;i++ do

3: Run policy 7, to interact with the environment for 7" timesteps and ob-
tains the trajectory samples (s,a,,7,,s,,,)

4: Calculate the reward-to-go Ié,

5: Use V to estimate the advantage function 4,

6: Compute the loss function L(#) with regard to 6 with K epochs of gradi-
ent decent

Ty V=V,

8: end for
TABLE I
PARAMETERS OF PPO ALGORITHM

Parameter Value Parameter Value
A 0.15 N 2048
€ 0.2 K 10
y 0.99 R0 1000
Ir 3x107* MB 64

Both the convergence speed and performance stability de-
pend on ¢ [22], hence ¢ is set to be 0.2 to balance the train-
ing speed and total reward of the agent [25], [32]. The multi-
layer perceptrons of the policy network are composed of two
hidden layers and the neurons of each layer are 64. The num-
ber of training episodes is set to be 250.

IV. CASE STUDY

To evaluate the performance of the proposed two-stage
DRL-based charging scheduling scheme, case studies are
conducted in this section.

A. Parameter Setting of ADN

An ADN for simulation is established based on the IEEE
14-node test feeder, as shown in Fig. 6, where 10 nodes are
set as residential loads without regulation flexibility and 3
nodes are set as CSs. The ADN is operated by the DSO,
with the goal of relieving the power congestion and shorten-
ing the peak-valley differences of tie-line power.

B & B i

Power grid 4

Tie-line

Hcs

ﬂl\. Residential load

Fig. 6. ADN based on IEEE 14-node test feeder.
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In accordance with the realistic situations in Zhejiang, Chi-
na, the valley period of TOU is set from 22:00 to 08:00 of
the next day. Meanwhile, the residential load data during the
valley period are obtained from a housing estate in Hang-
zhou, Zhejiang, as shown in Fig. 7. Most residential loads
have similar features, and the summits of the electricity con-
sumption appear at 22:00 around. Then, the power demands
continue to decline and reach the nadir at 03:00 of the next
day. Finally, the electricity demands recover gradually as res-
idents wake up. Therefore, there are significant peak-valley
differences in residential distribution networks.

257

207

Power (MW)
5

<
9

0 I I I I 1
22:00 00:00 02:00 04:00 06:00 08:00
Time
—— Node 2; Node 3; Node 4; Node 6; Node 7
rrrrrr Node 8; Node 10; -----Node 11; —— Node 12; - - -Node 14

Fig. 7. Residential load data profiles during valley period.

B. OPF Results in First-stage Problem

The original and optimal charging profiles of EVs at dif-
ferent CSs are shown in Fig. 8.

- = N
N0 N
: T

1.0F
0.6}

Power (MW)

Original power (Node 5); ----- Original power (Node 9)
Original power (Node 13); — Optimal power (Node 5)

——Optimal power (Node 9); Optimal power (Node 13)

Fig. 8. Original and optimal charging profiles of EVs at different CSs.

The numbers of household EVs are set to be 179, 225,
and 146 at node 5, node 9, and node 13, respectively. It is
assumed that the charging power obeys the uniform distribu-
tion and the starting SOC obeys the normal distribution [16],
whose parameters can be found in Table II. Moreover, the
charging efficiency and battery capacity are set to be 90%
and 50 kWh, respectively. Detailed charging data of house-
hold EVs are obtained from 550 individual meters which are
equipped for household EVs. To simplify the charging
scheduling, the arrival time distributes uniformly from 16:00
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to 22:00, and the departure time is set consistently at 08:00
of the next day.

TABLE 11
PARAMETERS OF EVS AT DIFFERENT NODES

Parameter Description Value
P, (kW) Charging power U(5.25)
n (%) Charging efficiency 90

Cpy i (kWh) Battery capacity 50
SOC, , (%) Starting SOC N(50,20)
SOC, (%) Expected SOC 100

Loy (hour) Arrival time U(16:00,22:00)
 4ep, (hour) Departure time 08:00

Note: normal distribution with the mean value of x and the standard devia-
tion of ¢ is abbreviated to N(u, o?); uniform distribution with the minimum
and maximum values of a and b, respectively, is abbreviated to U(a, b).

TOU prices make great contributions to transferring charg-
ing demands from peak period to valley period. However,
the charging processes cannot be dispatched effectively due
to TOU prices are unable to describe the various demands of
the ADN precisely during different time periods. Therefore,
EV owners instinctively decide to start charging at the begin-
ning of the valley period. As shown in Fig. 8, most charging
processes start at 22:00, but the charging durations are much
shorter than the valley period. The charging demands over-
lap with the residential peak, resulting in new power conges-
tions at the beginning of the valley period, which threatens
the secure and stable operation of the ADN.

To alleviate the power congestions and schedule the charg-
ing demands according to distribution network operations,
the DSO needs to determine the optimal charging profiles of
EV CSs by solving the OPF. Utilizing the DistFlow model
introduced in Section II, the OPF of the ADN is calculated
with the goal of flattening tie-line power, and the optimal
charging profiles are shown in Fig. 8.

It can be observed that the main charging demands are
transferred to 01: 00-05: 00, during which other electricity
consumptions are the lowest. Moreover, the regulation tar-
gets are not allocated simply according to the total electrici-
ty demands of CSs; nodal voltages and impacts from other
nodes are also taken into account to realize the multidimen-
sional optimum. Therefore, the CSs are coordinated and the
optimal charging profiles at different nodes are various, as
shown in Fig. 8. For example, the charging summit of node
9 appears at 01:00 while that of node 13 appears at 03:00.

C. Charging Scheduling Results in Second-stage Problem

On the basis of optimal charging profiles calculated in the
first stage, the DRL agent needs to schedule the charging
processes of EVs sequentially to approach the optimal pro-
files. The charging scheduling results of household EVs at
different nodes are shown in Fig. 9, where the deviation rep-
resents its absolute value. During the scheduling process, the
agent makes decisions based on probability, which is calcu-
lated through massive pieces of training. All feasible actions
are possible to be taken by the agent, although the probabili-
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ty of making a bad decision is very low. Therefore, it is in-
evitable for the agent to take bad actions that will cause de-
viations in a series of decision processes. It can be observed
that the real power profiles are very close to the optimal
power profiles except for some points, which proves the ef-
fectiveness of the DRL agent with PPO algorithm on charg-
ing scheduling.
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Fig. 9. Charging scheduling results of household EVs at different nodes.

(a) Node 5. (b) Node 9. (c) Node 13.

As shown in Table III, the average deviations of node 5,
node 9, and node 13 are 0.101 MW, 0.067 MW, and 0.044
MW, respectively, which are restricted at a relatively low lev-
el. Besides, it should be noted that significant deviations are
likely to appear at the turning points of the optimal charging
profile, e.g., the deviation of node 5 at 04:30 reaches 0.246 MW.

TABLE III
PERFORMANCE OF CHARGING SCHEDULING

Node No. devgrizrr?%\/IW) ;}Lia?zgzlr(rll\bll\r;) Total reward
0.101 0.246 939.5
0.067 0.277 923.1
13 0.044 0.127 946.6
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During the whole charging scheduling processes, the DRL
agent makes efforts to maximize the reward and obtains a to-
tal reward of 939.5, 923.1, and 946.6 for node 5, node 9,
and node 13 in the end, respectively. Similar to the indexes
of average deviation and the maximum deviation, the total
reward indicates that the agent performs better with a
smoother objective charging profile.

Moreover, the average SOC and median SOC at specific
hours are further analyzed, as shown in Fig. 10. The median
SOC reflects the charging completion result of every EVs. It
can be observed that more than 50% EVs have finished their
charging before 03:00 in the original charging scheduling,
even though only half of valley period has passed. The re-
sults also indicate there is a significant regulation potential
to be exploited for household EVs. The average SOC repre-
sents the overall charging progress of all EVs. It can be ob-
served that the charging speed of the original charging is
much faster than that of the proposed charging scheduling in
the first half of the valley period, when the electricity de-
mand is decreasing towards the nadir. Hence, the original
charging scheduling cannot match the regulation demand of
the ADN. On the contrary, the proposed charging scheduling
takes full use of the shiftability of charging demands to re-
shape the charging curve with the goal of eliminating peak-
valley differences in the ADN.
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Fig. 10. Average SOC and median SOC during valley period.

D. Performance of PPO Algorithm

To verify the advantages of PPO algorithm, advantage ac-
tor critic (A2C) and deep Q-network (DQN) algorithms are
implemented as the benchmarks. All training timesteps are
set to be 512200 to analyze the total reward and the conver-
gence speed. The cumulative reward is regarded as an index
to evaluate the performance of the agents trained by differ-
ent algorithms. Figure 11 illustrates the reward evolution
curves of the PPO, A2C, and DQN algorithms during the
training process.

The number of start points of the reward curve is regard-
ed as the performance of the random policy, which is around
600. The PPO algorithm achieves the highest reward about
937. The PPO algorithm reaches a relatively stable state af-
ter 50 episodes (102400 timesteps). In the following 250 epi-
sodes, the PPO algorithm keeps exploring the optimal strate-
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gy and stabilizes its policy networks. Finally, the agent com-
prehensively reaches convergence with lower reward varianc-
es.

The A2C algorithm has a sharp increase at the beginning
of the training process, which appears much faster than that
of the PPO algorithm. The results prove that the clipped
function of PPO algorithm has worked and limited the dras-
tic change of policy network, so as to effectively avoid per-
formance collapse and local optimum. As illustrated in Fig.
11, the A2C algorithm experiences an oscillation period after
aggressive policy update and performance improvement,
then it converges to the total reward around 908.
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Fig. 11. Reward evolution curves of PPO, A2C, and DQN algorithms.

The DQN algorithm converges to the total reward around
825 and the PPO algorithm outperforms it by more than
13%, which proves the advantages of actor-critic networks.
Besides, DQN spends much time collecting abundant sam-
ples and filling up its replay buffer, so there is no improve-
ment at the beginning of the training process.

It takes a total time of 782.75 s, 586.83 s, and 542.21 s
for PPO, A2C, and DQN algorithms in the entire training
process, respectively. Besides, the decision time of the pro-
posed DRL agent with PPO algorithm is also tested and the
results indicate that the average decision time per EV is
about 2.5 ms. These tests have been carried out using Py-
thon 3.7 on an Intel™ i7 12700kf, 32 GB RAM desktop.

In terms of test results, the PPO algorithm outperforms
the A2C algorithm, DQN algorithm, and random policy, al-
though the PPO algorithm has the lowest training speed with
the same timesteps. To be specific, the PPO algorithm can
obtain the total reward of 937 when scheduling EV charging
processes, which is 29, 112, and 337 more than that of the
A2C algorithm, DQN algorithm, and random policy, respec-
tively.

Then, the loss function performance of PPO algorithm is
presented, as shown in Fig. 12. The value loss and loss rep-
resent the performance of PPO algorithm on training sets
and test sets, respectively. It can be observed that the value
loss and loss share similar trends during the training process,
which demonstrate the remarkable adaptability on various da-
ta sets.

Hence, the PPO algorithm is suited for addressing the
charging scheduling problem and can be adopted to handle
the uncertainty of environment.

1899
80
% 60
2
2 40
S 20
0 50 100 150 200 250
Episode
(a)
80
60
& 40
20
0 50 100 150 200 250
Episode
(b)
Fig. 12. Loss function performance of PPO algorithm during training pro-

cess. (a) Value loss. (b) Loss.

E. Improvement for ADN

The original and optimized tie-line power profiles are
demonstrated in Fig. 13. At first, the power congestions
caused by intensive charging demands at the beginning of
the valley period are eliminated effectively. Moreover, these
charging demands are allocated to smooth the tie-line power.
Thus, the regulation potential of household EVs is further ex-
ploited by ADN without extra costs, which benefits both the
power system and EV owners. It can be observed that the
peak-valley differences of ADN are dramatically eliminated
from 6.61 MW to 2.76 MW, and the curtailment of peak
load will save remarkable investments in electric power facil-
ities. With further integrations of household EVs in the
ADN, the proposed scheme can also be used to formulate a
smooth tie-line power during the peak period under TOU
prices.
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Comparison between original and optimized tie-line power pro-

Different from the transmission network, the distribution
network possesses much higher resistance, and the active
power has more significant effects on voltages. As a result,
apart from great contributions to the elimination of peak-val-
ley differences, the voltage quality of the ADN is also im-
proved through scheduling household EVs during the valley
period. As shown in Fig. 14, due to the overlap of the peak
of residential electricity consumption and the intensive charg-
ing demands, some nodal voltages are extremely low at the
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beginning of the valley period, especially at node 9, whose
nadir has reached 0.969 p.u.. In the near future, with more
penetration of household EVs into the ADN, the voltage lim-
it violation problem will be more serious if no strategies are
taken.

Voltage (p.u.)
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Fig. 14. Original nodal voltages.
Utilizing the proposed two-stage charging scheduling

scheme, the voltage violation problem is addressed effective-
ly, as shown in Fig. 15.
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Fig. 15. Nodal voltages after charging scheduling.

Besides, the oscillations of nodal voltages are also limited
with smoother tie-line power, which is beneficial for reduc-
ing the operating times of voltage regulation equipment such
as on-load tap changers. For example, the voltage variations
of node 4 decrease from 0.0051 p.u. to 0.0028 p.u. during
the whole valley period. Meanwhile, the contributions to
voltage regulation are not restricted to the nodes of CSs. As
shown in Table IV, all nodal voltages have different degrees
of improvement.

Because OPF is involved in the first-stage optimization
problem, all nodal voltages are taken into consideration
when determining the optimal charging profiles of CSs. Spe-
cifically, the voltage nadir of node 8 has 0.39% improve-
ment. For these old communities with relatively poor elec-
tricity infrastructure, the proposed scheme can also satisfy
residential power consumption and charging demands simul-
taneously with limited carrying capacity.

Therefore, under the existing TOU price circumstances,
the proposed two-stage charging scheduling scheme can take
full use of the regulation potential of household EVs during
valley periods to improve the power quality of the ADN
without extra equipment investments and charging costs, in-
cluding peak-valley difference elimination, congestion man-
agement, and nodal voltage regulation.
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TABLE IV
NODAL VOLTAGE IMPROVEMENT IN ADN

Node No. O e i oy improvement (%)
2 0.982 0.984 0.17
3 0.979 0.981 0.19
4 0.981 0.983 0.14
5 0.973 0.975 0.26
6 0.975 0.976 0.11
7 0.971 0.974 0.28
8 0.972 0.976 0.39
9 0.969 0.973 0.35

10 0.974 0.976 0.21
11 0.976 0.978 0.23
12 0.976 0.978 0.23
13 0.974 0.977 0.29
14 0.973 0.975 0.28

V. CONCLUSION

In the context of taking full use of the regulation potential
of household EVs under TOU prices, this paper proposes a
two-stage charging scheduling scheme to dispatch household
EVs. The first-stage problem aims to involve the charging
scheduling of household EVs in operation and optimization
of the ADN, and the optimal charging power profiles of CSs
are determined by calculating the OPF so as to relieve the
power congestions and shorten the peak-valley differences.
Furthermore, a PPO-based DRL agent is developed to dis-
patch the charging processes of EVs in terms of the optimal
charging power. Case studies with realistic data are conduct-
ed to illustrate the multidimensional performance of the pro-
posed scheme. It is demonstrated that the PPO-based DRL
agent can be adopted in different CSs with various objective
charging profiles and EV amounts. Besides, the charging
scheduling of EVs contributes to significant improvement in
power quality, including decreasing the peak-valley differenc-
es and stabilizing the nodal voltages.

Moreover, the proposed scheme can be adopted properly
in substantial distributed communities with the combination
of edge computing technology. On this basis, numerous flexi-
ble loads, e.g., thermostatic loads, energy storage, RES, can
be involved into the proposed scheme to be managed effi-
ciently, so as to activate their flexibility and enhance the reg-
ulation capacity of ADNs in the near future.
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