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Abstract——With the booming of electric vehicles (EVs) across 
the world, their increasing charging demands pose challenges to 
urban distribution networks. Particularly, due to the further im‐
plementation of time-of-use prices, the charging behaviors of 
household EVs are concentrated on low-cost periods, thus gen‐
erating new load peaks and affecting the secure operation of 
the medium- and low-voltage grids. This problem is particular‐
ly acute in many old communities with relatively poor electrici‐
ty infrastructure. In this paper, a novel two-stage charging 
scheduling scheme based on deep reinforcement learning is pro‐
posed to improve the power quality and achieve optimal charg‐
ing scheduling of household EVs simultaneously in active distri‐
bution network (ADN) during valley period. In the first stage, 
the optimal charging profiles of charging stations are deter‐
mined by solving the optimal power flow with the objective of 
eliminating peak-valley load differences. In the second stage, an 
intelligent agent based on proximal policy optimization algo‐
rithm is developed to dispatch the household EVs sequentially 
within the low-cost period considering their discrete nature of 
arrival. Through powerful approximation of neural network, 
the challenge of imperfect knowledge is tackled effectively dur‐
ing the charging scheduling process. Finally, numerical results 
demonstrate that the proposed scheme exhibits great improve‐
ment in relieving peak-valley differences as well as improving 
voltage quality in the ADN.

Index Terms——Household electric vehicles, deep reinforcement 
learning, proximal policy optimization, charging scheduling, ac‐
tive distribution network, time-of-use prices.

I. INTRODUCTION 

IN recent years, electric vehicles (EVs) are widely used to 
reduce air pollution and emissions of greenhouse gases 

with the appeal for sustainable development goals [1]. Ac‐
cording to the estimation of International Energy Agency, 

EV sales in China have reached 3.3 million in 2021 [2], 
whose soring charging demands pose new challenges to the 
reliable operation of the distribution network, i.e., dramatical 
peak-valley load differences [3], power congestions [4], and 
undervoltage [5]. The active distribution network (ADN) en‐
ables a mass of flexible loads to deliver various regulation 
services to solve the above problems, which puts forward ef‐
ficient and economic solutions for power systems [6]. Con‐
ventional flexible loads with promising regulation capacity, 
such as air conditioners [7], have been fully investigated in‐
to demand response for supporting system balancing. Howev‐
er, limited response capacity and duration time of residential 
loads restrict their further implementations on long-time-
scale dispatch considering users’  comforts.

EVs are regarded as ideal alternatives to provide various 
regulation services in the ADN [8]. The significant regula‐
tion potential of EVs has attracted lots of research interests, 
and their prominent contributions to peak shaving, accommo‐
dation of renewable energy resources (RESs), and voltage 
regulations have been validated in [9], [10], and [11], respec‐
tively. Charging scheduling is fundamental for the ADN to 
utilize the flexibility of EVs due to the elasticity of depar‐
ture time. A coordinated charging strategy for EVs in the dis‐
tribution network is presented in [12] to manage power con‐
gestion. An intelligent charging scheduling algorithm is pro‐
posed in [13] to choose the suitable charging station (CS) 
and charging period with the goal of minimizing charging 
costs.

Private charging is currently the dominant charging mode 
for household EVs in many countries [2]. However, lower 
charging power and utilization rate as well as wide-area dis‐
tributions make it uneconomic to retrofit household charging 
piles to achieve flexible regulation used in commercial direct 
current (DC) piles, such as the on/off charging control strate‐
gy and continuous charging power adjustment mentioned in 
[14] and [15]. As a result, time-of-use (TOU) prices are im‐
plemented for household EVs to transfer charging demands 
from peak period to valley period in some areas, e.g., Zheji‐
ang Province of China. Household EVs possess competitive 
charging flexibility without sharing charging piles with oth‐
ers [16]. Considering the fixed electricity price during the 
valley period, it is tricky for TOU prices to dispatch EVs ad‐
equately with regard to the realistic operating characteristics 
of the ADN, except for transferring charging loads from 
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peak period to valley period. The fixed valley price means 
that the charging costs are minimum as long as the whole 
charging process is finished within the valley period. Conse‐
quently, owners instinctively decide to start charging at the 
beginning of valley period for convenience, which leads to 
new congestions in the ADN [17]. The intensive charging de‐
mands are likely to result in equipment failures and severely 
threaten the secure operation of the ADN, accounting for the 
large-scale integration of EVs. Therefore, developing a prom‐
ising charging scheduling method for household EVs is of 
great importance to tackle these challenges.

Apart from the above regulation obstacles under TOU 
prices, previous approaches to solve the charging scheduling 
problem are not suitable for household EVs with private 
charging piles, accounting for their sequential arrivals and 
uncertain charging demands. For instance, the offline and on‐
line scheduling algorithms are proposed in [18] for EVs to 
save the charging cost, which is formulated as a mixed inte‐
ger programming (MIP) problem assuming full knowledge 
of the charging demands. The bi-level optimal dispatching 
model proposed in [19] is also solved by converting it into 
an MIP problem. These studies assume that all charging de‐
mands are collected before optimization so as to convert 
them to solvable MIP problems. However, it is very difficult 
or even impossible to acquire all charging information in ad‐
vance. In reality, the EV arrives sequentially and the charg‐
ing demands can only be obtained precisely after arrival.

Under these circumstances, the charging process of the 
household EV can only be regarded as an uninterruptable 
process and the charging demands cannot be obtained in ad‐
vance. The charging scheduling problem of household EVs 
can be formulated as a Markov decision process (MDP) 
[20], which aims to dispatch EVs sequentially with finite in‐
formation, and achieve the global optimum for all EVs in 
the end. Therefore, how to determine the specific charging 
start time of the EV when arriving is one of the key priori‐
ties. On the basis of the charging reservation function, house‐
hold EVs can be adopted appropriately in the charging 
scheduling of the ADN without extra equipment investments.

With the rapid development of deep learning (DL) and re‐
inforcement learning (RL), deep reinforcement learning 
(DRL), which combines both advantages of DL and RL, is 
proposed to overcome the dimensional curse and solve the 
MDP problem with continuous action spaces [21]. Based on 
the powerful function approximation of neural networks and 
big data technology, DRL is emerged as an interesting alter‐
native to address the sequential charging scheduling problem 
without full knowledge of charging demands [22]. First of 
all, the decision for the current EV only depends on the real-
time environment states, i. e., arrival time, charging power, 
charging duration, and departure time, and it is notable for a 
DRL agent to address such a problem due to the sequential 
feature. Moreover, through interacting repeatedly with the dy‐
namic environment, the agent can learn from the experience 
and investigate an excellent control policy in the absence of 
models, which is more appliable in uncertain environments.

In the field of charging scheduling problems, DRL has 
been implemented in various optimizations. Reference [23] 

proposes a novel DRL method based on the prioritized deep 
learning deterministic policy gradient method, so as to solve 
the bi-level optimization of the examined EV pricing prob‐
lem. For the EV CS, an energy management based on DRL 
is proposed in [24] to tickle varying input data and reduce 
the cumulated operation costs. However, the above litera‐
tures mostly focus on minimizing the operation costs of CSs 
by dispatching EVs, while the contributions to the improve‐
ment of power quality in the ADN are not fully accounted 
for. Under TOU prices, EVs can be further dispatched to re‐
lieve the congestion and shorten the peak-valley differences 
without extra charging costs.

To address the above problems and take full use of sub‐
stantial household EVs during valley period under TOU pric‐
es, this paper proposes a two-stage charging scheduling 
scheme for household EVs in the ADN. In the first stage, to 
relieve the power congestions and shorten the peak-valley 
differences, the optimal power flow (OPF) of the ADN is 
solved to determine the optimal charging profiles of CSs dur‐
ing the valley period. In the second stage, DRL based on 
proximal policy optimization (PPO) algorithm is employed 
to dispatch the household EVs sequentially within the low-
cost period according to the optimal charging profiles. PPO 
algorithm was proposed by OpenAI in 2017 [25], which 
combines the advantages of trust region policy optimization 
and advantage actors-critic, to prevent the performance col‐
lapse caused by a large update of the policy. Besides, most 
decisions are finished by the distributed agents in the pro‐
posed scheme with lower communication requirements and 
computational burden, which makes it appliable easily in 
ADNs with numerous EVs.

The main contributions of this paper are as follows.
1) A two-stage charging scheduling scheme for household 

EVs is proposed to improve the power quality of the ADN 
and achieve the optimal charging scheduling of EVs simulta‐
neously during the valley period, which consists of the OPF 
of the ADN and charging dispatch of EVs. On this basis, the 
contributions of household EVs to power congestion manage‐
ment and peak-valley difference elimination are further ex‐
ploited.

2) The realistic characteristics of household EVs are taken 
into consideration, including the limited controllability and 
uncertain charging demands. The charging process of EV is 
regarded as an uninterruptable procedure with constant pow‐
er, and the charging scheduling process is modelled as a se‐
quential MDP problem, thereby the owner can make a charg‐
ing reservation to achieve charging scheduling without extra 
equipment investments.

3) The intelligent DRL agent based on the PPO algorithm 
is developed to schedule the charging process of EVs. 
Through the remarkable approximation function of the neu‐
ral network, the agent can accumulate rich experience when 
interacting with various environments repeatedly to break 
the limitations on imperfect information. Hence, numerous 
household EVs are dispatched effectively to formulate the 
optimal charging profile even when lacking full knowledge 
of charging demands in advance.

The remainder of this paper is organized as follows. Sec‐
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tion II establishes the two-stage charging scheduling scheme 
of household EVs. Section III introduces the MDP model of 
EV charging scheduling and the intelligent DRL agent based 
on the PPO algorithm. Case studies are conducted in Section 
IV using the real-world data of residential and EV loads, 
which proves the effectiveness of the proposed scheme. Sec‐
tion V concludes the remarks of this paper.

II. TWO-STAGE CHARGING SCHEDULING SCHEME OF 
HOUSEHOLD EVS 

In this section, an overview of the charging scheduling 
scheme is introduced first to illustrate the coordination be‐
tween the problems in the two stages. Then, the first-stage 
problem which considers the mutual impacts of different 
nodes is put forward to determine the optimal operation of 
the ADN with household EVs. On the basis of the optimal 
charging profiles provided by the first-stage problem, the de‐
tailed sequential decision problem in the second stage is for‐
mulated to describe the charging scheduling process.

A. Overview of Charging Scheduling Scheme

As important flexible loads of the ADN, household EVs 
are not fully exploited for further regulation potential under 
TOU prices. Generally, most charging durations of house‐
hold EVs are much shorter than their sojourn time [26]. Sub‐
stantial charging demands of EVs concentrate on the pro‐
phase of the valley period lacking effective guidance, which 
results in extra power congestions and wastes the regulation 
potential of EVs to a large extent.

At the same time, the ADN is suffering from power quali‐
ty issues including dramatic peak-valley differences, power 
congestions, and voltage limit violations. Consequently, the 
managers of the ADN, i. e., distribution network operator 
(DSO) and energy supplier, are motivated to further dispatch 
household EVs to improve the power quality under TOU 
prices without extra equipment investments and charging 
costs, even earning profits through delivering ancillary ser‐
vices for power systems. Apart from the DSOs, estates or 
community administrators are also encouraged to implement 
such a charging scheduling, so as to satisfy increasing charg‐
ing demands accounting for the limited carrying capacities 
of ADNs.

The schematic diagram of two-stage charging scheduling 
scheme of household EVs is shown in Fig. 1, assuming that 
the ADN at the residential side is operated by the DSO and 
consists of several residential loads and EV charging loads. 
Considering the relatively centralized installations of private 
charging piles, e. g., underground parking spaces, nearby 
charging piles are aggregated as a CS and managed by the 
aggregator. Assume that only EVs can provide flexible regu‐
lation service while other residential loads are regarded as 
fixed loads. To relieve the power congestion caused by inten‐
sive charging demands and transfer them to appropriate time 
periods, a two-stage problem is formulated.

In the first stage, determining the optimal charging pro‐
files of CSs is the key point. Because of the various operat‐
ing characteristics of different ADNs, it is of great impor‐
tance for the DSO to choose favorable optimization objec‐

tives at first. In this paper, charging scheduling of household 
EVs is employed to flatten the tie-line power to provide an‐
cillary services to power systems. Considering the mutual 
impacts between different nodes, the optimal charging pro‐
files of CSs are not appropriate to be determined simply ac‐
cording to their electricity sectors. Therefore, the OPF algo‐
rithm is used to solve the problem with regard to the secure 
and stable operation. The optimal charging power is calculat‐
ed with the goal of shortening the peak-valley differences, 
based on historical and forecasted load data during the val‐
ley period.

In the second stage, to overcome the obstacle of limited 
charging information, the aggregator control center based on 
DRL is used to make decisions with imperfect knowledge 
and dispatch the charging processes of EVs in terms of the 
determined charging profile. Before the valley period, when 
the kth EV arrives home, the user needs to plug in the EV 
and submit the charging demands to the control center, in‐
cluding charging power, charging duration time, and depar‐
ture time. Then, according to the optimal charging profile 
and previously scheduled EV power, the aggregator will de‐
termine the most suitable charging time period for the kth EV 
immediately. At last, the owner makes a charging reservation 
to realize the charging scheduling without extra charging 
costs, and even gets some incentives for the contributions to 
the operation of the ADN.

B. First-stage Problem: OPF Model of ADN

The first-stage problem aims to involve EVs participating 
in shortening peak-valley differences and managing conges‐
tions of the ADN. Considering the fact that an ADN typical‐
ly features radial topology, as shown in Fig. 2, the complex 
power flow at each node can be described by the classic 
DistFlow model [27].

Pi + 1 =Pi - ri (P
2
i +Q2

i )/V 2
i - pi + 1 (1)

Qii + 1 =Qi - 1i - xi (P
2
i +Q2

i )/V 2
i - qi + 1 (2)

V 2
i + 1 =V 2

i - 2(ri Pi + xiQi )+ (r 2
i + x2

i )(P 2
i +Q2

i )/V 2
i (3)

ì
í
î

ïï pi = pD
i - pg

i

 qi = qD
i - qg

i

(4)

Arrival Plug in

Valley periodPeak period

Departure

Scheduled EVs power

Optimal charging profile
Day σ  

Time

Power

EV owner

DSO

OPF

1

12

14134

72 5

11

6

9

3
8

10

The first stage

The second stage

wner

nd stageCharging time

Power Charging demand

Charging demand

CS

Submit

Peak-valley

difference

elimination

Tie-line

power

Aggregator control

center based on DRL

Scheduling
results

Charging
reservation

Day σ+1

Charging

scheduling

Power grid

Fig. 1.　 Schematic diagram of two-stage charging scheduling scheme of 
household EVs.
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where Pi and Qi are the active and reactive power flows 
from node i to node i + 1, respectively; pi and qi are the ac‐
tive and reactive power demands at node i, respectively, 
which are determined by the load demands (with superscript 
D) and generator outputs (with superscript g); Vi is the volt‐
age at node i; and ri and xi are the resistance and reactance 
of the branch from node i to node i + 1, respectively.

The DistFlow equations above are nonlinear and difficult 
to solve. Ignoring network losses, the DistFlow equations 
can be converted to linearized power flow equations as (5), 
which have been widely used in distribution network analy‐
sis [28].
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The OPF model proposed in this subsection aims to flat‐
ten the tie-line power, as well as maintain the node voltage 
within the acceptable range. The objective tie-line power 
should be determined in advance and power profiles of all 
nodes can be calculated using the OPF model with the goal 
of minimizing differences between real tie-line power and 
objective power. Considering the limited penetrations of EVs 
in the ADN at present, it is difficult to eliminate the peak-
valley differences completely without abundant regulation ca‐
pacity. Hence, the objective tie-line power which is related 
to residential consumption and the charging electricity can 
be computed as:

Pobj (t)=Pu (t)+
EEV

Edev

(Pumax -Pu (t)) (6)

Edev = ∫
ts

te

(Pumax -Pu (t))dt (7)

EEV = ∫
ts

te

PEV (t)dt (8)

where Pobj (t) is the objective tie-line power of the ADN at 
time t; PEV (t) and Pu (t) are the power of EVs and residential 
loads at time t, respectively; Pumax is the maximum power of 
residential loads during the valley period; EEV is the total 
electricity consumption of EVs; Edev is the electricity devia‐
tion between the residential loads and that of the maximum 
power; and ts and te are the start time and end time of the 
valley period, respectively.

Therefore, the objective function of the OPF model can be 
represented by:

min |DP | = ∫
ts

te

|Psub (t)-Pobj (t)|dt (9)

where Psub (t) is the real tie-line power at time t. The OPF 
problem aims to optimize the power profiles of all nodes to 
minimize the differences between Psub (t) and Pobj (t).

Assume F and R represent the set of EV nodes and the 
set of residential nodes, respectively. Considering the contin‐
uous characteristic of the charging process, it is difficult to 
regulate the charging power of CS dramatically in a short pe‐
riod, thereby the ramp rate of the CS needs to be limited 
within λ.

|pi (t + 1)- pi (t)| £ λpi (t)    "iÎF (10)

In addition, the constraints of the ADN mainly include the 
nodal voltage and feeder ampacity as shown in (11) and 
(12), respectively.

Vimin £Vi (t)£Vimax "iÎFRtÎ[tste ] (11)

Pimin £Pi (t)£Pimax "iÎFRtÎ[tste ] (12)

where Vimin and Vimax are the minimum and maximum nodal 
voltages at node i, respectively; and Pimin and Pimax are the 
minimum and maximum ampacities of the branch from node 
i to node i + 1, respectively.

C. Second-stage Problem: Scheduling Model of Household 
EVs

After calculating the OPF of the ADN, the optimal charg‐
ing profiles of CSs are determined. Then, the agent based on 
DRL will dispatch EVs to approach the optimal charging 
power.

The charging process of EVs can be divided into three 
parts, which are trickle charging, constant current charging, 
and constant voltage charging, where the constant current 
charging process accounts for 80% duration and has relative‐
ly constant power [29]. On the other hand, considering the 
actual situations where household charging piles are in‐
stalled, it is difficult for charging piles to achieve continuous 
power regulation due to the lack of communication condi‐
tions. Therefore, the charging process of a household EV is 
regarded as a continuous process with constant power [30], 
and the charging demands of the kth EV CDk can be repre‐
sented using a tuple as:

CDk = (tarrkPcktcktdepk ) (13)

where tarrk is the arrival time of the kth EV; Pck and tck are 
the constant charging power and charging time duration, re‐
spectively; and tdepk is the departure time, which means that 
the charging process needs to be finished before the depar‐
ture of EVs to satisfy the owner’s traveling energy require‐
ments.

EVs arrive sequentially and the specific charging demands 
can only be obtained precisely when an EV is plugged in. 
The aggregator control center aims to transfer the charging 
demands to formulate a redistribution scheme of charging de‐
mands based on the objective charging power. Through the 
charging scheduling of EVs, not only power congestions at 
the prophase of valley period can be alleviated, but also the 
ancillary service for shortening the peak-valley differences 

���� ��

0 1 i n

P0+jQ0 P1+jQ1 Pi+jQi Pi+1+jQi+1
Pn+jQn

p1+jq1 pi+jqi pi+1+jqi+1 pn+jqn

i+1

Fig. 2.　Diagram of ADN with radial topology.
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can be delivered to power systems.
EVs can be divided into adjustable groups and non-adjust‐

able groups. The non-adjustable EV, whose charging time du‐
ration is longer than its sojourn time, will not be regulated. 
The start charging time of non-adjustable EVs needs to be 
set as their arrival time to satisfy charging demands and 
there is no need to involve them in the proposed charging 
scheduling. Therefore, the following charging scheduling fo‐
cuses on adjustable EVs. When dispatching EVs to formu‐
late the optimal charging profile, the charging demands can 
be described using a rectangle as demonstrated in Fig. 3, 
whose length and height indicate the charging time duration 
and charging power, respectively. The valley period is from 
ts of day σ to te of day σ + 1. Once the kth EV arrives, the 
charging demand CDk is submitted to the control center. 
Then the control center determines the charging start time of 
the kth EV according to its charging demands and the opti‐
mal charging profile.

Denoting tbk as the optimized charging start time of the kth 
EV, the real-time charging power of the kth EV during the 
valley period can be represented as:

PEVk (t)=
ì
í
î

ïï

ïïïï

0 ts £ t < tbk

Pck tbk £ t < tbk + tck

0 tbk + tck £ t < te

(14)

tck =
CEVk (SOCek - SOCsk )

ηPck
(15)

where CEVk is the rated battery capacity of the kth EV; 
SOCek and SOCsk are the expected SOC and the starting 
SOC of the kth EV, respectively; and η is the charging effi‐
ciency and regarded as a fixed value.

These adjustable EVs have already decided to charge dur‐
ing the valley period with lower electricity price though they 
have arrived earlier, and most of them instinctively choose 
to start charging at the beginning of valley period ts due to 
the lack of effective guidance. Therefore, the range of action‐
able space is set from ts to te, which aims to determine their 
optimal charging periods. Besides, to satisfy the charging de‐
mands and save charging costs of EVs, tbk is also con‐
strained as:

ts £ tbk £min(tetdepk )- tck (16)

After dispatching the kth EV, the control center will update 
the scheduled charging power of the first k EVs as follow:

P EV
sumk (t)=∑

j = 1

k

PEVj (t)    tÎ[tste ] (17)

where P EV
sumk (t) is the scheduled power of the first k EVs at 

time t.

III. MDP MODEL OF EV CHARGING SCHEDULING AND 
INTELLIGENT DRL AGENT BASED ON PPO ALGORITHM 

In this section, the MDP model of EV charging schedul‐
ing is developed at first. Then, the intelligent DRL agent 
based on the PPO algorithm is introduced, followed by the 
training workflow of the PPO algorithm.

A. MDP of EV Charging Scheduling Process

The charging scheduling of household EVs can be mod‐
elled as an MDP due to the discrete arrivals of EVs and the 
randomness of charging demands, which can be appropriate‐
ly solved using the DRL algorithm. An MDP can be repre‐
sented as a tuple (SART) [31], where S is the state space; 
A is the action space; R is the reward function; and T is the 
state transition function, which is determined by (14) and 
(17). The specific illustrations of the MDP are follows.

1) The state space observed by the agent is represented as:
S = (CDkPdevk - 1 (t)) (18)

Pdevk - 1 (t)=Popti (t)-P EV
sumk - 1 (t) (19)

where CDk is the charging demand of the kth EV, including 
the arrival time tarrk, the charging power Pck, the charging 
time duration tck, and the departure time tdepk; and Pdevk - 1 (t) 
is the deviation between the optimal charging power of node 
i Popti (t) and the scheduled charging power P EV

sumk - 1 (t) of the 
first k - 1 EVs. The state space S contains all knowledge of 
the current environment which can be obtained by the agent 
when scheduling the kth EV at time t. The properties of MDP 
have decided that the future state only depends on the pres‐
ent state and the action taken by the agent. To be specific, 
the agent can only determine the charging start time of the 
current kth EV and the scheduled charging power only de‐
pends on the scheduling result of the kth EV.

2) The action space is represented as A = (tbk ) because the 
actions are taken sequentially, which determines the specific 
charging profile of the kth EV combining its charging de‐
mands. In other words, the agent needs to make a decision 
when an EV arrives instead of scheduling all EVs together 
in the end. Due to the fixed electricity price, the feasible 
charging start time should be limited within the valley peri‐
od to prevent extra charging costs. Considering the discrete 
feature for charging reservations, the action space is set as a 
discrete space with 1-min interval.

3) Every action taken by the agent will obtain a reward, 
which describes the performance of this action and contrib‐
utes to improving the agent to achieve the maximum cumula‐
tive rewards. The reward function is defined as:

rk = ρ(Devk - 1 -Devk ) (20)

Devk = ∫
ts

te

|Popti (t)-P EV
sumk (t)|dt (21)

where rk is the reward gained by the agent after taking the 
action ak; Devk is the deviation between the optimal charg‐
ing power and the scheduled charging power of k EVs; 
Popti (t) is the optimal power of node i at time t; and ρ is the 
coefficient of reward, which is used to normalize the reward 

Valley period

Time

Day σ
 

The kth EV

te tdep,ktb,ktstarr,k

Day σ+1

Pc,k

tc,k

Fig. 3.　Diagram of charging scheduling process.
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between different nodes with various EVs.
Moreover, the reward function can also reveal how much 

the charging demand is not satisfied or the charging costs 
have increased. Figure 4 illustrates the specific penalty when 
charging demands are satisfied or not. If the charging pro‐
cess of the kth EV is beyond the boundary of valley period, 
the power deviation Dev(b)

k  will be smaller than Dev(a)
k  after 

dispatching the kth EV, and the agent will obtain a smaller re‐
ward rk.

Theoretically, the total reward with optimal charging 
scheduling can be represented as:

max E (∑rk ) = ∫
ts

te

Popti (t)dt (22)

ρ =
Rnorm

max E ( )∑rk
(23)

where Rnorm is a constant value for normalizing the reward.
From the perspective of the whole scheduling process, the 

agent will schedule all EVs to approach the optimal charg‐
ing profiles so as to maximize the total reward. Neverthe‐
less, considering the indivisibility of EV charging processes, 
it is tricky to realize the global optimum through the optimal 
decision of every single step. To be specific, the present de‐
cision has durable effects on the later charging scheduling 

processes, which are difficult to be involved into the optimi‐
zation problem and solved using conventional methods. 
Based on the outstanding approximation ability of the neural 
network, DRL can take the subsequent effects into consider‐
ation. For example, the DRL agent may take an action that 
cannot gain the maximum reward at present, but it contrib‐
utes to obtaining more rewards in the future and achieving 
the maximum total reward.

B. PPO Algorithm

Policy gradient is an essential method for training the 
DRL agent to maximize the cumulative reward, which works 
by computing an estimator of the policy gradient and plug‐
ging it into a stochastic gradient ascent algorithm [25]. The 
most commonly used gradient estimator ĝ can be represent‐
ed as:

ĝ = Êt (Ñθ lg πθ (at|st )Ât ) (24)

where πθ is the stochastic policy function with parameter θ; 
Ât is the estimator of the advantage function at time t; at and 
st are the action and state, respectively; and Êt is the empiri‐
cal average with finite samples.

As a result, the loss function is defined as:

LPG (θ)= Êt (lg πθ (at|st )Ât ) (25)

However, traditional policy gradient methods have low uti‐
lization efficiency of sampling data and have to spend too 
much time on sampling new data once the policy is updated. 
Besides, it is difficult to determine appropriate steps for up‐
dating policy so as to prevent resulting in large differences 
between the new policy and the old policy.

Therefore, the PPO algorithm was proposed in 2017 to ad‐
dress the above shortcomings. The detailed training work‐
flow of the DRL agent with PPO algorithm is demonstrated 
in Fig. 5. PPO algorithm consists of three networks, includ‐
ing two actor networks with the new policy πθ and the old 
policy πθ′ (parameterized by θ and θ′, respectively) and a 
critic network Vϕ (parameterized by ϕ).

To increase the sample efficiency, πθ′ is used to interact 
with environments and sample N trajectory sets with T 
timesteps, while πθ is the actual network that needs to be 

trained according to the demonstrations of πθ′. Utilizing im‐
portance sampling technology, the same trajectory sets can 
be used multiple times although there are differences be‐
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Fig. 4.　Specific penalty when charging demands are satisfied or not satis‐
fied. (a) Demands are satisfied. (b) Demands are not satisfied.
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tween πθ′ and πθ. The probability ratio of new policy and old 
policy can be expressed as:

rt (θ)=
πθ (at|st )
πθ′ (at|st )

(26)

Another point of PPO algorithm is that the new policy 
should avoid significant evolution from the old policy after 
every update, so as to maintain the accuracy of importance 
sampling and avoid accident performance collapse. Hence, a 
clipped surrogate function is used to remove the incentive 
for moving rt (θ) outside of the interval [1 - є1 + є], so the 
loss function of PPO algorithm can be represented as [25]:

L(θ)= Êt (min(rt (θ)Âtclip(rt (θ)1 - є1 + є)Ât )) (27)

where є is the clipping parameter, which aims to clip the 
probability ratio. For instance, the objective will increase if 
the advantage function Ât is positive, but the increase is 
maintained within 1 + є by a limit set by the clipping func‐
tion.

Consequently, the network parameters θ of the new policy 
are updated using:

θ = arg max
θ

E
stat  πθ′

(L(statθ′θ)) (28)

Apart from the actor network, a critic network is used to 
estimate the state value function and the advantage function. 
The advantage function describes how much an action is bet‐
ter than other actions on average, which is defined as:

Ât =Qt (stat )-Vt (st ) (29)

Qt (stat )=E (∑k = 0

¥

γkrt + k| s = sta = at ) (30)

Vt (st )=E (∑k = 0

¥

γkrt + k| s = st ) (31)

where γ is the discounting factor, which aims to balance the 
importance between immediate and future rewards; and Vt 
and Qt are the value function and the action-value function, 
respectively. Therefore, Vt (st ) is the expected value on aver‐
age at state st, which contains all optional actions. Qt (stat ) 
is the expected value at state st when taking action at.

The critic network Vϕ is updated using regression to mini‐
mize a mean-squared-error objective [22]:

ϕ = arg min
ϕ

(Vϕ (st )- R̂t )
2

(32)

R̂t =∑
t′= t

T

rt (st′at′st′+ 1 ) (33)

where R̂t is the reward-to-go, which is the sum of rewards 
after a point in the trajectory.

The DRL agent with PPO algorithm is trying to schedule 
the EV charging process according to the optimal charging 
profile, with the goal of maximizing the total expected re‐
wards. The training workflow of PPO algorithm is summa‐
rized in Algorithm 1. The corresponding parameters are 
shown in Table I, where lr is the learning rate; and MB is 
the minibatch size.

The discounting factor γ and the clipping parameter є are 
important hyperparameters that influence the performance 
agent observably. The importance of current action depends 

on the discounting factor γ, and a larger γ means that an 
agent is more long-sight so as to take full consideration of 
future uncertainties to achieve the maximum cumulative re‐
wards. Thus, γ is set to be 0.99 [14].

Both the convergence speed and performance stability de‐
pend on є [22], hence є is set to be 0.2 to balance the train‐
ing speed and total reward of the agent [25], [32]. The multi-
layer perceptrons of the policy network are composed of two 
hidden layers and the neurons of each layer are 64. The num‐
ber of training episodes is set to be 250.

IV. CASE STUDY 

To evaluate the performance of the proposed two-stage 
DRL-based charging scheduling scheme, case studies are 
conducted in this section.

A. Parameter Setting of ADN

An ADN for simulation is established based on the IEEE 
14-node test feeder, as shown in Fig. 6, where 10 nodes are 
set as residential loads without regulation flexibility and 3 
nodes are set as CSs. The ADN is operated by the DSO, 
with the goal of relieving the power congestion and shorten‐
ing the peak-valley differences of tie-line power.

Algorithm 1: training workflow of PPO algorithm

1: Initialize policy network πθ′ and value function network Vϕ

2: for i = 0; i <N ; i ++ do

3: Run policy πθ′ to interact with the environment for T timesteps and ob‐
tains the trajectory samples (statrtst + 1 )

4: Calculate the reward-to-go R̂t

5: Use Vϕ to estimate the advantage function Ât

6: Compute the loss function L(θ) with regard to θ with K epochs of gradi‐
ent decent

7: πθ′¬ πθ ; Vϕ′¬Vϕ

8: end for

TABLE I
PARAMETERS OF PPO ALGORITHM

Parameter

λ

є

γ

lr

Value

0.15

0.2

0.99

3×10-4

Parameter

N

K

Rnorm

MB

Value

2048

10

1000

64

1

12

14134

72 5

11

3

6
9

8

10
Tie-line

Residential load

CS

Power grid

Fig. 6.　ADN based on IEEE 14-node test feeder.
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In accordance with the realistic situations in Zhejiang, Chi‐
na, the valley period of TOU is set from 22:00 to 08:00 of 
the next day. Meanwhile, the residential load data during the 
valley period are obtained from a housing estate in Hang‐
zhou, Zhejiang, as shown in Fig. 7. Most residential loads 
have similar features, and the summits of the electricity con‐
sumption appear at 22:00 around. Then, the power demands 
continue to decline and reach the nadir at 03:00 of the next 
day. Finally, the electricity demands recover gradually as res‐
idents wake up. Therefore, there are significant peak-valley 
differences in residential distribution networks.

B. OPF Results in First-stage Problem

The original and optimal charging profiles of EVs at dif‐
ferent CSs are shown in Fig. 8.

The numbers of household EVs are set to be 179, 225, 
and 146 at node 5, node 9, and node 13, respectively. It is 
assumed that the charging power obeys the uniform distribu‐
tion and the starting SOC obeys the normal distribution [16], 
whose parameters can be found in Table II. Moreover, the 
charging efficiency and battery capacity are set to be 90% 
and 50 kWh, respectively. Detailed charging data of house‐
hold EVs are obtained from 550 individual meters which are 
equipped for household EVs. To simplify the charging 
scheduling, the arrival time distributes uniformly from 16:00 

to 22:00, and the departure time is set consistently at 08:00 
of the next day.

TOU prices make great contributions to transferring charg‐
ing demands from peak period to valley period. However, 
the charging processes cannot be dispatched effectively due 
to TOU prices are unable to describe the various demands of 
the ADN precisely during different time periods. Therefore, 
EV owners instinctively decide to start charging at the begin‐
ning of the valley period. As shown in Fig. 8, most charging 
processes start at 22:00, but the charging durations are much 
shorter than the valley period. The charging demands over‐
lap with the residential peak, resulting in new power conges‐
tions at the beginning of the valley period, which threatens 
the secure and stable operation of the ADN.

To alleviate the power congestions and schedule the charg‐
ing demands according to distribution network operations, 
the DSO needs to determine the optimal charging profiles of 
EV CSs by solving the OPF. Utilizing the DistFlow model 
introduced in Section II, the OPF of the ADN is calculated 
with the goal of flattening tie-line power, and the optimal 
charging profiles are shown in Fig. 8.

It can be observed that the main charging demands are 
transferred to 01: 00-05: 00, during which other electricity 
consumptions are the lowest. Moreover, the regulation tar‐
gets are not allocated simply according to the total electrici‐
ty demands of CSs; nodal voltages and impacts from other 
nodes are also taken into account to realize the multidimen‐
sional optimum. Therefore, the CSs are coordinated and the 
optimal charging profiles at different nodes are various, as 
shown in Fig. 8. For example, the charging summit of node 
9 appears at 01:00 while that of node 13 appears at 03:00.

C. Charging Scheduling Results in Second-stage Problem

On the basis of optimal charging profiles calculated in the 
first stage, the DRL agent needs to schedule the charging 
processes of EVs sequentially to approach the optimal pro‐
files. The charging scheduling results of household EVs at 
different nodes are shown in Fig. 9, where the deviation rep‐
resents its absolute value. During the scheduling process, the 
agent makes decisions based on probability, which is calcu‐
lated through massive pieces of training. All feasible actions 
are possible to be taken by the agent, although the probabili‐
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Fig. 7.　Residential load data profiles during valley period.
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TABLE II
PARAMETERS OF EVS AT DIFFERENT NODES

Parameter

Pck (kW)

η (%)

CEVk (kWh)

SOCsk (%)

SOCek (%)

tarrk (hour)

tdepk (hour)

Description

Charging power

Charging efficiency

Battery capacity

Starting SOC

Expected SOC

Arrival time

Departure time

Value

U(525)

90

50

N(5020)

100

U(16:0022:00)

08:00

Note: normal distribution with the mean value of μ and the standard devia‐
tion of σ is abbreviated to N(μσ2 ); uniform distribution with the minimum 
and maximum values of a and b, respectively, is abbreviated to U(ab).
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ty of making a bad decision is very low. Therefore, it is in‐
evitable for the agent to take bad actions that will cause de‐
viations in a series of decision processes. It can be observed 
that the real power profiles are very close to the optimal 
power profiles except for some points, which proves the ef‐
fectiveness of the DRL agent with PPO algorithm on charg‐
ing scheduling.

As shown in Table III, the average deviations of node 5, 
node 9, and node 13 are 0.101 MW, 0.067 MW, and 0.044 
MW, respectively, which are restricted at a relatively low lev‐
el. Besides, it should be noted that significant deviations are 
likely to appear at the turning points of the optimal charging 
profile, e.g., the deviation of node 5 at 04:30 reaches 0.246 MW.

During the whole charging scheduling processes, the DRL 
agent makes efforts to maximize the reward and obtains a to‐
tal reward of 939.5, 923.1, and 946.6 for node 5, node 9, 
and node 13 in the end, respectively. Similar to the indexes 
of average deviation and the maximum deviation, the total 
reward indicates that the agent performs better with a 
smoother objective charging profile.

Moreover, the average SOC and median SOC at specific 
hours are further analyzed, as shown in Fig. 10. The median 
SOC reflects the charging completion result of every EVs. It 
can be observed that more than 50% EVs have finished their 
charging before 03: 00 in the original charging scheduling, 
even though only half of valley period has passed. The re‐
sults also indicate there is a significant regulation potential 
to be exploited for household EVs. The average SOC repre‐
sents the overall charging progress of all EVs. It can be ob‐
served that the charging speed of the original charging is 
much faster than that of the proposed charging scheduling in 
the first half of the valley period, when the electricity de‐
mand is decreasing towards the nadir. Hence, the original 
charging scheduling cannot match the regulation demand of 
the ADN. On the contrary, the proposed charging scheduling 
takes full use of the shiftability of charging demands to re‐
shape the charging curve with the goal of eliminating peak-
valley differences in the ADN.

D. Performance of PPO Algorithm

To verify the advantages of PPO algorithm, advantage ac‐
tor critic (A2C) and deep Q-network (DQN) algorithms are 
implemented as the benchmarks. All training timesteps are 
set to be 512200 to analyze the total reward and the conver‐
gence speed. The cumulative reward is regarded as an index 
to evaluate the performance of the agents trained by differ‐
ent algorithms. Figure 11 illustrates the reward evolution 
curves of the PPO, A2C, and DQN algorithms during the 
training process.

The number of start points of the reward curve is regard‐
ed as the performance of the random policy, which is around 
600. The PPO algorithm achieves the highest reward about 
937. The PPO algorithm reaches a relatively stable state af‐
ter 50 episodes (102400 timesteps). In the following 250 epi‐
sodes, the PPO algorithm keeps exploring the optimal strate‐

TABLE III
PERFORMANCE OF CHARGING SCHEDULING

Node No.

5

9

13

Average 
deviation (MW)

0.101

0.067

0.044

The maximum 
deviation (MW)

0.246

0.277

0.127

Total reward

939.5

923.1

946.6
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gy and stabilizes its policy networks. Finally, the agent com‐
prehensively reaches convergence with lower reward varianc‐
es.

The A2C algorithm has a sharp increase at the beginning 
of the training process, which appears much faster than that 
of the PPO algorithm. The results prove that the clipped 
function of PPO algorithm has worked and limited the dras‐
tic change of policy network, so as to effectively avoid per‐
formance collapse and local optimum. As illustrated in Fig. 
11, the A2C algorithm experiences an oscillation period after 
aggressive policy update and performance improvement, 
then it converges to the total reward around 908.

The DQN algorithm converges to the total reward around 
825 and the PPO algorithm outperforms it by more than 
13%, which proves the advantages of actor-critic networks. 
Besides, DQN spends much time collecting abundant sam‐
ples and filling up its replay buffer, so there is no improve‐
ment at the beginning of the training process.

It takes a total time of 782.75 s, 586.83 s, and 542.21 s 
for PPO, A2C, and DQN algorithms in the entire training 
process, respectively. Besides, the decision time of the pro‐
posed DRL agent with PPO algorithm is also tested and the 
results indicate that the average decision time per EV is 
about 2.5 ms. These tests have been carried out using Py‐
thon 3.7 on an Intel(R) i7 12700kf, 32 GB RAM desktop.

In terms of test results, the PPO algorithm outperforms 
the A2C algorithm, DQN algorithm, and random policy, al‐
though the PPO algorithm has the lowest training speed with 
the same timesteps. To be specific, the PPO algorithm can 
obtain the total reward of 937 when scheduling EV charging 
processes, which is 29, 112, and 337 more than that of the 
A2C algorithm, DQN algorithm, and random policy, respec‐
tively.

Then, the loss function performance of PPO algorithm is 
presented, as shown in Fig. 12. The value loss and loss rep‐
resent the performance of PPO algorithm on training sets 
and test sets, respectively. It can be observed that the value 
loss and loss share similar trends during the training process, 
which demonstrate the remarkable adaptability on various da‐
ta sets.

Hence, the PPO algorithm is suited for addressing the 
charging scheduling problem and can be adopted to handle 
the uncertainty of environment.

E. Improvement for ADN

The original and optimized tie-line power profiles are 
demonstrated in Fig. 13. At first, the power congestions 
caused by intensive charging demands at the beginning of 
the valley period are eliminated effectively. Moreover, these 
charging demands are allocated to smooth the tie-line power. 
Thus, the regulation potential of household EVs is further ex‐
ploited by ADN without extra costs, which benefits both the 
power system and EV owners. It can be observed that the 
peak-valley differences of ADN are dramatically eliminated 
from 6.61 MW to 2.76 MW, and the curtailment of peak 
load will save remarkable investments in electric power facil‐
ities. With further integrations of household EVs in the 
ADN, the proposed scheme can also be used to formulate a 
smooth tie-line power during the peak period under TOU 
prices.

Different from the transmission network, the distribution 
network possesses much higher resistance, and the active 
power has more significant effects on voltages. As a result, 
apart from great contributions to the elimination of peak-val‐
ley differences, the voltage quality of the ADN is also im‐
proved through scheduling household EVs during the valley 
period. As shown in Fig. 14, due to the overlap of the peak 
of residential electricity consumption and the intensive charg‐
ing demands, some nodal voltages are extremely low at the 
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beginning of the valley period, especially at node 9, whose 
nadir has reached 0.969 p.u.. In the near future, with more 
penetration of household EVs into the ADN, the voltage lim‐
it violation problem will be more serious if no strategies are 
taken.

Utilizing the proposed two-stage charging scheduling 
scheme, the voltage violation problem is addressed effective‐
ly, as shown in Fig. 15.

Besides, the oscillations of nodal voltages are also limited 
with smoother tie-line power, which is beneficial for reduc‐
ing the operating times of voltage regulation equipment such 
as on-load tap changers. For example, the voltage variations 
of node 4 decrease from 0.0051 p. u. to 0.0028 p. u. during 
the whole valley period. Meanwhile, the contributions to 
voltage regulation are not restricted to the nodes of CSs. As 
shown in Table IV, all nodal voltages have different degrees 
of improvement.

Because OPF is involved in the first-stage optimization 
problem, all nodal voltages are taken into consideration 
when determining the optimal charging profiles of CSs. Spe‐
cifically, the voltage nadir of node 8 has 0.39% improve‐
ment. For these old communities with relatively poor elec‐
tricity infrastructure, the proposed scheme can also satisfy 
residential power consumption and charging demands simul‐
taneously with limited carrying capacity.

Therefore, under the existing TOU price circumstances, 
the proposed two-stage charging scheduling scheme can take 
full use of the regulation potential of household EVs during 
valley periods to improve the power quality of the ADN 
without extra equipment investments and charging costs, in‐
cluding peak-valley difference elimination, congestion man‐
agement, and nodal voltage regulation.

V. CONCLUSION 

In the context of taking full use of the regulation potential 
of household EVs under TOU prices, this paper proposes a 
two-stage charging scheduling scheme to dispatch household 
EVs. The first-stage problem aims to involve the charging 
scheduling of household EVs in operation and optimization 
of the ADN, and the optimal charging power profiles of CSs 
are determined by calculating the OPF so as to relieve the 
power congestions and shorten the peak-valley differences. 
Furthermore, a PPO-based DRL agent is developed to dis‐
patch the charging processes of EVs in terms of the optimal 
charging power. Case studies with realistic data are conduct‐
ed to illustrate the multidimensional performance of the pro‐
posed scheme. It is demonstrated that the PPO-based DRL 
agent can be adopted in different CSs with various objective 
charging profiles and EV amounts. Besides, the charging 
scheduling of EVs contributes to significant improvement in 
power quality, including decreasing the peak-valley differenc‐
es and stabilizing the nodal voltages.

Moreover, the proposed scheme can be adopted properly 
in substantial distributed communities with the combination 
of edge computing technology. On this basis, numerous flexi‐
ble loads, e.g., thermostatic loads, energy storage, RES, can 
be involved into the proposed scheme to be managed effi‐
ciently, so as to activate their flexibility and enhance the reg‐
ulation capacity of ADNs in the near future.
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