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Abstract——Weather-related failures significantly challenge the 
reliability of distribution systems. To enhance the risk manage‐
ment of weather-related failures, an interpretable extra-trees 
based weather-related risk prediction model is proposed in this 
study. In the proposed model, the interpretability is successfully 
introduced to extra-trees by analyzing and processing the paths 
of decision trees in extra-trees. As a result, the interpretability 
of the proposed model is reflected in the following three re‐
spects: it can output the importance, contribution, and thresh‐
old of weather variables at high risk. The importance of weath‐
er variables can help in developing a long-term risk prevention 
plan. The contribution of weather variables provides targeted 
operation and maintenance advice for the next prediction peri‐
od. The threshold of weather variables at high risk is critical in 
further preventing high risks. Compared with the black-box ma‐
chine learning risk prediction models, the proposed model over‐
comes the application limitations. In addition to generating pre‐
dicted risk levels, it can also provide more guidance informa‐
tion for the risk management of weather-related failures.

Index Terms——Extra-tree, machine learning, interpretability, 
weather-related failure, distribution system.

I. INTRODUCTION

WEATHER-RELATED failures pose a significant chal‐
lenge to the reliability of distribution systems. Ser‐

vice interruptions often occur under unfavorable weather con‐
ditions [1]. Because weather-related failures are random, 
time-varying, and destructive, they can generate huge eco‐
nomic losses in distribution systems [2]. In addition, cascad‐
ing failures are often caused by initial weather-related fail‐
ures [3]. Therefore, managing weather-related risks in ad‐
vance and making reasonable decisions about crew arrange‐
ments, material reserves, and inspection plans are critical 
[4]. A risk management plan usually refers to the informa‐
tion produced by weather-related risk prediction models, 

which is mainly the predicted risk level for the next predic‐
tion period. The aim of this study is to develop an interpreta‐
ble machine learning (ML) weather-related risk prediction 
model to produce more guidance information for risk man‐
agement, enabling utility companies to better withstand 
weather-related risks.

Many studies have focused on improving the performance 
of weather-related risk prediction. Poisson regression models 
[1], negative binomial regression models [5], [6], generalized 
linear mixed models [7], linear regression models [8], and 
exponential regression models [9] have been used to model 
the risks in previous studies. These statistical models require 
the distribution of data to meet certain assumptions that actu‐
al data are difficult to meet, leading to weak prediction per‐
formance as compared with some ML methods. For exam‐
ple, [1] shows that the performance of a Bayesian network is 
better than that of a Poisson regression model. In [10], a pre‐
diction model using ensemble learning outperforms the sim‐
ple regression models. An artificial neural network is used in 
[11], and it is concluded that the performance is better than 
that of the statistical models presented in [8] and [9]. We 
propose a Bayesian neural-network-based risk prediction 
model in [12] that has an advanced risk prediction perfor‐
mance and can provide prediction confidence.

ML methods have always been a hot topic in risk predic‐
tion. However, ML methods currently in use do not provide 
thorough support for risk management because interpretabili‐
ty is sacrificed [13]. Interpretability is the degree to which a 
person can consistently predict the results of a model [14]. 
The lack of interpretability causes current ML methods to be‐
come black boxes [15], which means the methods are capa‐
ble of outputting the predicted risk but are unable to figure 
out the role of each variable in the prediction. Black-box 
ML methods are not satisfactory for risk managers. This is 
because risk management plans expect more guidance infor‐
mation from the risk-prediction model. The predicted risk 
level produced by these models is only part of a useful refer‐
ence. In addition, the action mechanism of variables, for ex‐
ample, the effect of the variable’s values on the severity of 
a risk, is significant. Therefore, ML methods currently in use 
are unable to help risk managers formulate effective plans.

To solve these problems, developing an interpretable ML 
model for weather-related risk prediction is necessary. Gener‐
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al ML models mine hidden rules from data, and, therefore, 
the source of knowledge is the data. Because the interpreta‐
ble ML model is not exactly a black-box model, the model 
itself can provide valuable information [16]. In this manner, 
the interpretable ML model can explain or present under‐
standable terms to humans [17], which means it can produce 
more interpretable guidance information for weather-related 
risk managers.

This study introduces an interpretable ML model for 
weather-related risk prediction and illustrates how interpret‐
ability can help in developing risk management plans.

An interpretable weather-related risk prediction model 
based on extra-trees is proposed. Extra-tree algorithm is an 
ensemble of decision trees in particular random patterns, 
which randomizes strongly in both attribute and cut-point 
choice while splitting a tree node [18]. This is suitable for 
prediction tasks because it pursues low variance in the trade-
off between bias and variance [19]. Through analysis and 
processing of the path of decision trees in extra-trees, com‐
bined with using a trick in the training phase, extra-trees can 
be defined in an interpretable manner rather than as a black 
box. Therefore, the proposed model can provide the guid‐
ance in developing risk management plans. This guidance is 
mainly reflected in the following three aspects.

1) Long-term Weather-related Risk Management Plan 
(Long-term Plan)

Regarding long-term plan for a region, effectively using 
limited investments to strengthen and update the weaknesses 
of power systems is critical. The task is how to determine 
which weather-induced risks are prioritized. The proposed 
model can derive the importance of weather variables, which 
represents the overall degree of impact of each weather vari‐
able on weather-related risk, helping in the formulation of a 
long-term plan.

2) Short-term Weather-related Risk Management Plan 
(Short-term Plan)

The short-term plan is intended to guide ex-ante resource 
preparation and formulate preventive measures by clarifying 
the source of risks in the next prediction period. The pro‐
posed model can meet this requirement because of its inter‐
pretability. The proposed model can derive the contributions 
of weather variables, which indicates each weather vari‐
able’s contribution to the predicted risk level in the next pre‐
diction period.

3) High-risk Prevention Plan
High risks require more attentions when preparing risk 

management plans. The interpretability of the proposed mod‐
el can derive the threshold of weather variables at high risk, 
which measures when weather variables promote the occur‐
rence of high risks. Therefore, it can be used as a guide to 
developing a quantified high-risk prevention plan.

The main contribution of this study is obtaining and har‐
nessing the valuable guidance information using the pro‐
posed model for weather-related risk management. This 
study represents a new perspective on weather-related risk 
management beyond merely pursuing prediction performance 
using previous black-box models, thus making the risk pre‐

diction model more practical. The obtained information can 
be a useful reference for making long-term, short-term, and 
high-risk prevention plans for weather-related risk manage‐
ment. In addition, the proposed model offers better predic‐
tion performance than other ML models that can provide the 
same degree of interpretability. Therefore, the proposed mod‐
el is an excellent choice for weather-related risk manage‐
ment, whether from the interpretability that brings sufficient 
guiding information or prediction performance.

The remainder of this study is organized as follows. Relat‐
ed works are described in Section II. Section III introduces 
the development of interpretable extra-trees. The interpreta‐
ble extra-tree based weather-related risk prediction model is 
described in Section IV. Section V presents the weather-relat‐
ed risk management with help of proposed interpretability. 
Section VI concludes this paper.

II. RELATED WORKS 

Interpretability is critical for weather-related risk predic‐
tion. Decision makers in high-risk fields do not make deci‐
sions easily based on the prediction results of the used mod‐
el without knowing the operating principle of the black-box 
model. When the interpretability of the used prediction mod‐
el can be revealed, the interpretability will facilitate the prac‐
tical application of the risk prediction model based on ML 
because it is more credible and can produce useful guiding 
information.

The research path of interpretable ML has two main direc‐
tions: intrinsic and post-hoc interpretability. The models with 
intrinsic interpretability, which include many statistical mod‐
els, have relatively simple structures and are already interpre‐
table when they are designed. The relationship between the 
model variables and outputs can be easily explained for sta‐
tistical models such as linear regressions. This is due to the 
availability of model parameters and their statistical signifi‐
cance. The coefficients of the linear regression model intui‐
tively reflect the degree of influence of the variables on the 
predicted results. For black-box models such as extra-trees, 
this information is hidden inside the model structure. For in‐
trinsic interpretable models, the model structure itself can ex‐
plain why the model makes a certain prediction. When the 
model is too complex to interpret based on its structure, its 
interpretability can be tested using post-hoc methods. Com‐
pared with post-hoc interpretable models, intrinsic interpreta‐
ble models are more intuitive and easier to understand for 
decision makers.

The relationship between prediction performance and mod‐
el interpretability is illustrated in Fig. 1 [20]. The ML mod‐
els (blue circles) perform better, whereas the traditional sta‐
tistical models (red circles) are usually more interpretable. 
Thus, a trade-off exists between the prediction performance 
and interpretability. In our studied scenario, for weather-relat‐
ed prediction, the prediction model is expected to be more 
interpretable (preferably intrinsically interpretable) while 
maintaining an acceptable prediction performance. There‐
fore, we propose an interpretable extra-tree based prediction 
model to predict weather-related risks.
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III. DEVELOPMENT OF INTERPRETABLE EXTRA-TREES 

A. Extra-trees

Extra-tree algorithm [18] is one of the ensemble algo‐
rithms, the goal of which is to combine the predictions of 
several base estimators to improve the generality and robust‐
ness of the algorithm. The averaging method is used in extra-
trees. Its base estimator is decision tree [21], which is 
named from using tree presentation. Each internal node of 
the tree corresponds to an attribute, and each leaf node corre‐
sponds to a class label. The pseudocode of the decision tree 
algorithm is shown in Algorithm 1.

The criterion like Gini index [22] can be used to select 
the attribute used in splitting the node, which represents the 
impurity or uncertainty of an attribute list. Gini index is 
more preferred due to its lower calculation complexity, 
which is a metric to measure how often a randomly chosen 
element would be incorrectly identified. It means that an at‐
tribute with a lower Gini index should be preferred. The for‐
mula is shown as:

Gini(D)= 1 -∑
i = 1

m

p2
i (1)

where m is the number of output labels; and pi is the proba‐
bility that a sample belongs to the ith output label in the data 
set D. Compared with other tree-based ensemble algorithms, 
the randomness of extra-trees is greater in attribute selection, 

as shown in Algorithm 2.

B. Interpretable Extra-trees

1) Interpretable Decision Trees
Due to the difficulty in interpreting and fully understand‐

ing decision trees, the decision trees often become black box‐
es. This derives from the fact that the extra-tree model con‐
sists of a large number of deep trees, and each tree is split 
with strong randomness. However, when the fundamentals of 
the extra-tree model are thoroughly analyzed, the model can 
be better understood, and its interpretability can be ex‐
pressed [23], [24]. First, we provide an explanation of the 
terms used.

1) Path: for a sample input to a decision tree, the path re‐
fers to the combination of all inference rules that the sample 
passes through from the root node to the leaf node such as 
path 1, as illustrated in Fig. 2, where v2 - v1 indicates the 
gain/loss from a; v4 - v2 indicates the gain/loss from c; and 
v8 - v4 indicates the gain/loss from b. Each sample passes 
through its corresponding path to reach the final leaf node. 
And a', b', c', b'', c'', b''', and c''' indicate related thresholds 
in the node.

2) Value: each node of the decision tree has a value repre‐
sented by vi (i = 1, 2, , 15), as shown in Fig. 3, which indi‐
cates the value of the predicted target.

3) Contribution: the contribution value is derived from the 
value of the current node minus that of the previous node 
and represents the contribution of the split attribute to the 
prediction path.

The paths of decision trees can be used to obtain more in‐

Algorithm 1: decision tree algorithm (attribute list A)

1. Create a node N
2. If all samples are of the same class C then label N with C; terminate
3. Select a ∈A, with the lowest Gini index; label N with a
4. For each value v of a:

1) Grow a branch from N with the condition a = v
2) Let Sv be the subset of samples in S with a = v
3) If Sv is empty then attach a leaf labeled with the most common         

         class in S
5. Repeat the above steps until leaf nodes are found

Algorithm 2: extra-tree splitting algorithm (attribute list A)

1. Select K attributes {a1a2aK } in A
2. Let ai,min and ai,max denote the minimal and maximal values of ai in A      
      "i = 12K
3. Draw a random cut-point a*

i  uniformly in [ai,min, ai,max]
4. Return the split si [a < a*

i ], where si represents a set smaller than a*
i  in A

5. Draw K splits {S1S2SK } 
6. Return a split s* such that Score (s*, S)= max

i = 12K
 Score (si, S)

Train set mean

Contribution of a Contribution of b Contribution of c

b≤b′′′

b≤b′

a≤a′

c≤c′

c≤c′′′

c≤c′′

b≤b′′

v8

v5

v6

v7

v4

v2

v3

v1

v9

v10

v11

v12

v13

v14

v15

Path 1

In path 1, v8=v1+   v2�v1   v4�v2  v8�v4  ++

Fig. 2.　Schematic of an interpretable decision tree.
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Fig. 1.　Relationship between prediction performance and model interpret‐
ability.
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formation. Each path of the tree is from the root of the tree 
and includes a series of decisions guarded by a particular at‐
tribute. The decision of paths either adds or subtracts from 
the value given in the parent node. All decision paths con‐
tribute to the final prediction results in decision trees. There‐
fore, the prediction process can be defined as the sum of the 
attribute contributions and the value of the root node, i. e., 
the mean value given by the topmost region that covers 
the entire training set. The prediction function can be writ‐
ten as (2). Vroot is the value at the root of the node and 
contribution(xk) is the contribution from the kth attribute 
and the attribute vector x.

f (x)=Vroot +∑
k = 1

K

(contribution(xk)) (2)

Note that the contribution of each attribute is not a single 
predetermined value. It depends on the rest of the attribute 
vector which determines the decision path that traverses the 
tree. In this way, it also determines the contributions passing 
along the way.

Figure 2 shows how to analyze the decision paths in a de‐
cision tree. A sample that follows the path 1 in the predic‐
tion is exhibited with green color. Each decision of a node is 
made by an attribute, and each decision either adds or sub‐
tracts from the value provided by the parent node. According 
to the attributes which split the nodes in path 1, the predic‐
tion function of the exampled sample can be written at the 
bottom of Fig. 3. It shows how the contributions of example 
attributes a, b, c are calculated. So far, the contribution of 
each attribute can be obtained in one prediction for decision 
tree. For extra-trees, the contribution of each attribute is the 
corresponding ensemble of the contained decision trees.

2) Pseudocode of Interpretable Extra-trees
As the ensemble of decision trees, the interpretable defini‐

tion of extra-trees is based on the interpretable extra-trees, 
the pseudocode for which is shown in Algorithm 3, where T 
is the number of trees in extra-trees.

Algorithm 3: interpretable extra-trees

1. Obtain the value croot at the root of the node in each tree of extra-trees
2. Calculate contribution(xk) 
3. The prediction function in a decision tree can be witten as:

  f (x)= Vroot +∑
k = 1

K

(contribution(xk))

4. The prediction of extra-trees is the average of the prediction of its trees:

  F(x)=
1
T∑t = 1

T

ft (x)

3) Three Aspects of Interpretability
As Fig. 3 shows, the importance of variables, contribution 

of variables, and threshold of variables can be produced 
when using interpretable extra-trees for risk prediction. Their 
meaning and specific production process are described as fol‐
lows.

1) Importance of variables: the importance of variables 
measures the degree of impact of variables on the overall 
prediction, which can be obtained by calculating the Gini in‐
dex in interpretable extra-trees. The importance ranking re‐
flects the extent to which each variable determines the pre‐
diction. For a decision tree, it is necessary to find the attri‐
bute that can best distinguish the data set as the prioritized 
inference condition. The Gini index can be used to select the 
best attribute when dividing nodes. The smaller the Gini in‐
dex of an attribute, the better its ability to divide nodes. The 
definition of the Gini index is given in (1). We first select a 
variable and then calculate the sum of the Gini index of all 
nodes split by this variable in each decision tree derived 
from the extra-trees. The variables can be ranked in the or‐
der of importance based on the sum of the Gini index of 
variables. The importance of variables is calculated during 
the training phase. Its source is the training data, i.e., the his‐
torical data, so it is a static index.

2) Contribution of variables: the importance of variables 
is used to evaluate those variables which are crucial for the 
overall prediction model, whereas the contribution of vari‐
ables can provide more information when we are interested 
in a particular variable. The contribution of variables is a dy‐
namic index of interpretability. It is used to evaluate the con‐
tribution of variables to a certain prediction. Therefore, the 
contribution of variables can be determined during each pre‐
diction period. The contribution value of variables on the 
prediction can be positive or negative. A positive or negative 
value indicates that the variable has a facilitating or hinder‐
ing effect on the prediction, respectively. For example, as 
shown in Fig. 2, the contribution values of a, b, and c can 
be positive or negative, representing their varying degrees of 
influence on the output.

3) Threshold of variables: managers may sometimes pay 
greater attention to specific classes of predicted outputs and 
their interpretability. For example, in the prediction of 
weather-related failure risks, risk managers are more vigilant 
against high risks. With respect to the prediction of the spe‐
cific class, the threshold of variables can measure when vari‐
ables will promote this prediction. For each variable, its con‐
tribution to the prediction of a specific class is related to its 
own value. In general, the larger the value of a variable, the 
larger its contribution to the high risk. Therefore, if we try 
to analyze the relationship between the contribution values 
of variables on the predicted output and their own values, 
the threshold of variables under different classes of predic‐
tion can be obtained, providing quantifiable guidance infor‐
mation.

IV. INTERPRETABLE EXTRA-TREE BASED WEATHER-
RELATED RISK PREDICTION MODEL 

An interpretable extra-tree based weather-related risk pre‐
diction model is developed in this study using an actual data 
set.

Training

Interpretability

Analyzing

decision paths 
Sample set

Calculating the sum of

Gini index of each variable

Interpretable

extra-trees 

Contribution

of variables

Threshold

of variables

Importance

of variables

Fig. 3.　Three aspects of interpretability in interpretable extra-trees.
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A. Weather-related Failure Data Source and Analysis

The data used in this study were collected from a city in 
eastern China. The utility company recorded weather-related 
failures from January 2011 to October 2018 that included 
failure information by date, time, location, and type, and a 
simple weather description. To quantify the effects of the 
weather, we obtained quantified weather parameters from the 
meteorological bureau in the studied city.

Figure 4 shows the distribution of the weekly weather-re‐
lated failure counts. The figure shows that no weather-relat‐
ed failures occur over the course of many days. In general, 
when we use a data-driven prediction model to predict 
weather-related risk, most samples belong to zero risk, 
which is common. For example, there are more than 1500 
zero-failure days from 1998 to 2003 in the data set of [1]. 
Because the number of failure samples is more than that of 
other failure counts, there is an unbalanced phenomenon in 
weather-related risk prediction problems, which will bring a 
negative effect on prediction performance [25]. More atten‐
tion will be paid to samples with zero risk in the prediction 
model, and the information on other failure counts is hard to 
be investigated [26]. This unbalanced phenomenon easily 
causes overfitting in the prediction algorithms, leading to a 
reduction in prediction performance.

Weather-related risk increases with the number of failures. 
The greater the number of failures in a given period, the 
higher the requirement for the coordination and preparation 
of manpower and material resources for power recovery. 
High weather-related failure counts indicate high risk, which 
imposes higher requirements on the risk management capa‐
bilities of utility companies. Therefore, accurately predicting 
the occurrence of high risk is critical. However, as Fig. 5 
shows, very few high-risk samples are available. Limited 
high-risk information poses a significant challenge to the ro‐
bustness of the prediction model. Table I presents an asset 
overview of the lines of the distribution system.

B. Weather-related Risk-level Classification

In order to reasonably characterize the risk caused by 
weather-related failure counts, the failure counts are classi‐
fied into three risk levels. The classification details are pre‐
sented in Table II. The occurrence frequency percentages for 
the three risk levels are 72.66%, 23.15%, and 4.19%, respec‐
tively. Zero failure is naturally classified as one class due to 
its percentage. 

The failure counts from 1 to 3 are classified as one class 
due to the high occurrence frequency, which can be thought 
of as the common risk level. However, when the failure 
counts are larger than 3, the failure occurrence frequency is 
reduced to 4.19%, which is beyond the 95% confidence lev‐
el [27]. These failures have low occurrence frequency, but 
have high risk.

It is reasonable for utility companies to classify the risk 
level into common and rare because a well-designed power 
grid should perform well under both conditions. In addition, 
the classification of failure counts helps utility companies in 
conducting risk management because different operation and 
maintenance plans correspond to different risk levels.

C. Weather Variables and Prediction Period

According to the investigation of historical failure data, 
weather-related failures are mainly caused by wind, rain, and 
thunder. There are various reasons specifically. For example, 
a strong wind will blow down trees, overhead lines, and 
equipment in a distribution system. Mild winds can also 
blow small objects up into the air such as plastic bags and 
branches, result in contacting with lines. Many failures occur 
in humid environments. When the rain is heavy, strong 
winds are also present, and when thunder occurs, the proba‐
bility of failure increases. In general, several weather sta‐
tions in cities produce different weather parameters. The de‐
gree of difference depends on the geography of the city un‐
der study. Due to the small area and single geographical en‐

TABLE II
FAILURE-COUNT RISK-LEVEL CLASSIFICATION

Failure level

0

1

2

Number of weather-related failures

0
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Fig. 5.　Importance of weather variables in studied city.

TABLE I
ASSET OVERVIEW OF LINES
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Fig. 4.　Distribution of weekly weather-related failure counts.
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vironment in a city, the difference between different weather 
stations is typically small. In this study, a weather station lo‐
cated in the center of the city is used to obtain weather pa‐
rameters. We chose the following six weather variables as at‐
tributes of the proposed model.

1) Feature 1: weekly average wind speed.
2) Feature 2: weekly maximum wind speed.
3) Feature 3: weekly average rainfall.
4) Feature 4: weekly maximum rainfall.
5) Feature 5: thunder days within a week.
6) Feature 6: weekly average humidity.
The prediction period should be reasonably determined. 

Daily and weekly predictions were used in previous studies. 
In [1] and [2], the daily weather-related failure counts are 
predicted. This means that the sample set consists of daily 
failure counts and related weather variables. The number of 
samples in the daily prediction is seven times that in the 
weekly prediction. However, because the area of the studied 
city is small, and the frequency of weather-related failure oc‐
currence is not high (as shown in Fig. 5), the distribution of 
failure counts is scattered. It is difficult to build a robust pre‐
diction model [28]. Therefore, weekly prediction is chosen 
in this study, as in [2] and [28]. In addition, weather fore‐
casts are typically accurate within one week.

D. Prediction Performance

1) Evaluation Metrics
Due to the unbalanced nature of the data in terms of risk 

levels, evaluating the prediction performance based on accu‐
racy is not reasonable, where accuracy is defined as the pro‐
portion of all correctly predicted samples to the total sam‐
ples in the test set. We introduced the F1 score to evaluate 
the performance of risk prediction, which is suitable for eval‐
uating ML methods under unbalanced sample sets [29]. A de‐
tailed definition of the F1 score can be found in [12]. The 
higher the F1 score, the better the performance of the predic‐
tion models under an unbalanced data set.

Underestimating weather-related risk may cause utility 
companies to neglect its prevention, leading to the inability 
to cope with the risk. Overestimating the risk results in an 
increase in risk prevention costs, including waste of work‐
force as well as material and financial resources. To better 
reflect the model’s prediction performance and the predic‐
tion propensity for risk, we define two evaluation metrics in 
this study: risk underestimation rate (RUR) and risk overesti‐
mation rate (ROR). The definitions of RUR and ROR are 
given in (3) and (4), respectively. In the test set, the num‐
bers of samples with underestimated and overestimated risk 
are denoted as u and o, respectively, and the total number of 
samples is denoted as t.

RUR =
u
t
´ 100% (3)

ROR =
o
t
´ 100% (4)

2) Experiments and Results
In our experiments, the weather-related risk data were di‐

vided into a training data set (from 2011 to 2016) and a test 
data set (from January 2017 to October 2018). The numbers 

of training and test samples were 312 and 94, respectively. 
Previously, we introduced the interpretable way of the pro‐
posed model, which was based on an interpretation of the de‐
cision tree through an analysis of decision paths. Therefore,  
decision tree (DT) and random forest (RF) [30] are chosen 
as the contrast models because they also have the same inter‐
pretability. Table III lists the prediction performances of com‐
parative models under optimal parameters.

In Table III, it can be observed that the extra-tree based 
prediction model has leading performance under all three dif‐
ferent evaluation metrics. It has the highest F1 score, and 
the lowest RUR and ROR, which indicates that the proposed 
model has the best prediction performance under an unbal‐
anced data set.

The solutions to the tasks with unbalanced data can be di‐
vided into two methods [31]. First, the distribution of sam‐
ples is changed by using various sampling methods and train‐
ing-set division methods. Second, modern algorithms can be 
developed or the existing ones can be upgraded. These are 
known as algorithm-centered methods, where “ensemble 
learning” is a typical representative. In our comparative ex‐
periment, the proposed model is based on the bagging meth‐
od to achieve ensemble. In random forest, several attributes 
are selected randomly from all attributes and then the opti‐
mal split node is selected to build decision trees. However, 
in extra-trees, it draws the random cutting points by uniform 
selection of attributes. The randomness is stronger in the 
node split process of trees than random forest [18], which 
means more unstable base learners in ensemble learning. Un‐
der this condition, the performance of ensemble will be bet‐
ter and so the generalization ability. Therefore, the proposed 
model performs better with small and unbalanced data, 
which has been verified the lowest RUR and the highest F1 
score of the proposed model.

The proposed model not only provides rich interpretability 
but also exhibits the best risk prediction performance among 
the models that have the same degree of interpretability. 
Thus, the proposed model is an excellent choice for utility 
companies in managing weather-related risk.
3) Experiments on Robustness

The weather data we used are the monitoring data from 
weather stations, which are similar to many studies [1], [10]. 
Obviously, a difference exists between monitoring and fore‐
casting weather data. To verify the robustness of the pro‐
posed model and to test the actual application effects of the 
model, this study performs robustness experiments within 
the range of ±10% of the error between the forecasting and 
monitoring weather data, thus simulating actual situations. 

TABLE III
PREDICTION PERFORMANCES OF COMPARATIVE MODELS UNDER OPTIMAL 

PARAMETERS

Model

Extra-trees

RF

DT

The maximum 
depth of trees

20

20

3

Number 
of trees

50

200

F1 score

0.939

0.918

0.877

RUR (%)

3.191

4.255

4.255

ROR (%)

3.191

4.255

7.446
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The experimental results are presented in Table IV. It can be 
observed that the proposed model predicts an average F1 
score of 0.908 with ±10% of the error. The performance is 
more robust than the contrast models. Therefore, in practical 
applications, although the forecasting weather data will have 
errors compared with the monitoring data used for training, 
the model still has acceptable and relatively better prediction 
performance.

V. WEATHER-RELATED RISK MANAGEMENT WITH HELP OF 
PROPOSED INTERPRETABILITY

Compared with the previous ML risk prediction models 
that output only risk levels, the proposed model can further 
reveal the relationship between weather variables, which con‐
siderably helps in developing risk management plans. In this 
section, we describe in detail how the proposed interpretabili‐
ty helps weather-related risk management.

Interpretability includes the “importance of weather vari‐
ables”, “contribution of weather variables”, and “threshold 
of weather variables”. As Fig. 6 shows, these three aspects 
of interpretability can help create weather-related risk man‐
agement plans from different perspectives. The “importance 
of weather variables” can help create a long-term plan, 
which aims to escalate weak points in distribution systems 
on long-term scales. The “contribution of weather variables” 
can provide guidance information for making short-term 
plan, which aims to take timely measures to mitigate risks in 
the next prediction period. The “threshold of weather vari‐

ables” can help develop high-risk prevention plans when the 
threshold is set for high risks.

A. Interpretation 1: Importance of Weather Variables

The importance of weather variables reflects the influence 
of each weather variable on the severity of risk, which helps 
inform the development of long-term plan for utility compa‐
nies. The calculated importance of the weather variables in 
the studied city is shown in Fig. 5. The maximum wind 
speed has the most critical effect on the risk level, followed 
by the average wind speed and number of thunder days with‐
in a week. Therefore, when developing the long-term plan in 
the studied city, attention should be paid to reinforcing the 
weaknesses in distribution systems related to the failures 
caused by wind and thunder. These include gradually increas‐
ing the cable rate and replacing old insulators in conjunction 
with outage plans.

B. Interpretation 2: Contribution of Weather Variables

For the development of short-term plans, the contribution 
of weather variables, which is produced dynamically during 
each prediction, is useful. The interpretation can provide dy‐
namic guidance information by creating a targeted operation 
and maintenance plan for the next prediction period.

As previously stated, a positive contribution value indi‐
cates that the weather variable has a facilitating effect on the 
predicted risk, whereas a negative value indicates a hinder‐
ing effect on the predicted risk. Under the attempts to pre‐
vent weather-related failure, more attention should be given 
to weather variables that contribute to the emergence of risk. 
Thus, decision makers can develop more specific prevention 
strategies based on the different contribution values of the 
variables. For example, in Fig. 7(a), the average and maxi‐
mum wind speeds have the leading positive contribution val‐
ues, which are actually the causes of risk. Based on this in‐
terpretability, utility companies can take precautionary opera‐
tion and maintenance measures against the wind such as 
checking the objects that could be blown by the wind and 
endanger the safety of lines.

It is worth mentioning that when the model misjudges the 
risk as risk-free, the contribution of weather variables can 
still help in risk prevention. Errors inevitably occur in predic‐
tion due to the randomness of weather-related failures. In 
this case, a negative contribution value of the weather vari‐
able would indicate that the weather variable hinders the 

TABLE IV
PREDICTION PERFORMANCES UNDER DIFFERENT ERRORS BETWEEN 

FORECASTING AND MONITORING WEATHER DATA

Error (%)

0

+1

-1

+2

-2

+3

-3

+4

-4

+5

-5

+6

-6

+7

-7

+8

-8

+9

-9

+10

-10

Mean

Prediction value

Extra-trees

0.939

0.929

0.907

0.927

0.890

0.930

0.876

0.930

0.859

0.930

0.868

0.942

0.900

0.950

0.855

0.950

0.864

0.950

0.873

0.930

0.861

0.908

RF

0.918

0.888

0.897

0.897

0.875

0.884

0.863

0.900

0.851

0.910

0.875

0.901

0.873

0.901

0.873

0.927

0.848

0.900

0.848

0.900

0.840

0.884

DT

0.877

0.877

0.877

0.877

0.877

0.802

0.837

0.809

0.845

0.802

0.861

0.879

0.869

0.884

0.869

0.884

0.857

0.876

0.857

0.876

0.845

0.859

Interpretability

Importance of

weather variables

Contribution of

weather variables 

Threshold of

weather variables 

Long-term plan

Short-term plan

High-risk

prevention plan

Provide guiding information for making

weather-related risk management plans

Fig. 6.　Different guidance functions of three aspects of interpretability.
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risk-free prediction results. Therefore, it is instructive to fo‐
cus on weather variables with large negative contribution val‐
ues for ex-ante operation and maintenance decisions when 
the risk is underestimated as risk-free, and they are most 
likely to be the causes of the risk. This means that when the 
prediction model indicates risk-free, utility companies have 
avenues to further stifle the risk by taking reasonable risk 
prevention measures with respect to weather variables with 
large negative contribution values. As an example, in Fig. 
7(b), the actual risk level is level 1 but is incorrectly predict‐
ed as risk-free. The contribution of the maximum wind 
speed has the largest negative value, which is consistent 
with the cause of failure. In this case, wind-prevention mea‐
sures may prevent failures.

Statistically, when the largest negative contribution value 
corresponds to the true cause of failure, and when we as‐
sume that taking measures in advance can effectively avoid 
failure, the RUR can be further reduced from 3.191% to 
2.128%. Therefore, this interpretability provides a targeted 
prevention direction for the situations underestimated as risk-
free, further improving the risk-management capabilities of 
distribution systems.

For the validity of the interpretability, it is crucial to real‐
ize that the results are not artifacts of one particular realiza‐
tion of an extra-tree model but that they convey actual infor‐
mation held by the data [24]. Therefore, we propose a meth‐
od for robustness analysis of variable contributions. We re‐
move this instance from the original data set to allow us to 
perform tests with an unseen instance. We generate 100 ex‐
tra-tree models with each model built using an independent 
randomly generated training set, where the number of sam‐
ples is 2/3 of the original training data set. For each generat‐
ed model, we collect the contribution values of weather fea‐
tures for this instance, which is shown in Fig. 8. These re‐
sults are qualitatively compared with those obtained in Fig. 
7(a). Hence, we can conclude that weather variable contribu‐
tions computed for an unseen instance provide reliable infor‐
mation.

C. Interpretation 3: Threshold of Weather Variables

In risk management, more attention should be given to 
high risk (level 2) because its lower frequency and insuffi‐
cient learning samples make the prediction difficult. Simulta‐
neously, it has a more severe effect on distribution systems. 

When the contribution value of weather variables to high 
risk is positive, the occurrence probability of high risk in‐
creases. When the contribution value changes from negative 
to positive, the transition point can be used as a warning 
threshold. The contribution is related to the values of weath‐
er variables. Therefore, we can analyze the patterns of contri‐
butions of weather variables at high risk and then obtain the 
threshold of weather variables that trigger high risk, thereby 
providing quantitative reference information for high-risk 
management.

When the value of a single weather variable exceeds the 
captured threshold, the weather variable begins to make a 
positive contribution to the occurrence of high risk. If the 
positive contribution accumulates to a certain level, a high 
risk will occur, and only a single variable exceeding the 
threshold will be insufficient to warn of high risk. However, 
when each weather variable exceeds the captured threshold 
simultaneously, it can be used as a quantitative early-warn‐
ing signal of high risk. When all weather variables begin to 
contribute positively to high risk, multiple weather factors fa‐
cilitate the occurrence of high risk, indicating a complex 
weather situation. The probability of high risk is greatly in‐
creased. The theoretical reasons are as follows.

After we endow the extra-tree prediction model with in‐
trinsic interpretability, the process of one prediction can be 
expressed by (2). Therefore, the proposed model can be ex‐
pressed by the following equation in our application.

f (x)=Vroot + c1 × feature1 + c2 × feature2 + c3 × feature3 +
c4 × feature4 + c5 × feature5 + c6 × feature6 (5)

where c1-c6 represent the contribution values of weather fea‐
tures feature1 - feature6 to a certain predicted risk level.

Considering that the values of feature1-feature6 are all 
greater than or equal to 0 and that the trained value of Vroot 
is also greater than 0, if the contribution value of each 
weather variable to high risk is also greater than 0 at this 
time, multiple weather factors will simultaneously contribute 
positively to the occurrence of high risk, and the occurrence 
probability of high risk will be high. Figure 9 shows the rela‐
tionship between the contribution value of weather variables 
to high risk and weather variable values. It is known that as 
the value of a weather variable increases, its contribution to 
high risk also increases. Therefore, we use Lowess interpola‐
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tion to depict this volatile linear trend [32]. We could then 
capture the corresponding threshold of the contribution value 
from negative to positive. The threshold values of weather 
variables at high risk are listed in Table V.

We test the effectiveness of the proposed threshold in the 
high-risk data set. We chose the precision metric to verify 
the effectiveness of the proposed threshold. The precision 
metric can measure the proportion of samples that meet the 
threshold criteria as high-risk samples, i.e., the probability of 
high-risk occurrence when exceeding the threshold. The pre‐
cision metrics calculated by the threshold of a weather vari‐
able and the threshold of all weather variables as criteria of 
high risk are named as precision_single and precision_all
(100%), respectively. We can find that for just a single 
weather variable meeting the threshold, there is no necessari‐

ly high risk. When the threshold of all weather variables is 
exceeded at the same time, the probability of the high-risk 
occurrence is 100%. Therefore, the proposed threshold can 
serve as a quantifiable early warning signal for high risk, 
guiding utility companies in making high-risk prevention ar‐
rangements.

VI. CONCLUSION 

Predicting weather-related failure risk can provide useful 
guidance information for utility companies to develop ex-an‐
te risk prevention plans. The interpretable extra-tree based 
weather-related risk prediction model is proposed, which has 
interpretability with three aspects to provide effective advice 
for risk prevention. Specifically, the importance of weather 
variables helps in making long-term operation and mainte‐
nance plans. The weather variables support the development 
of specific risk prevention plans prior to the next prediction 
period. The threshold of weather variables at high risk yields 
a quantitative high-risk prevention plan. The proposed model 
overcomes the limitations of black-box ML models, making 
the risk prediction model more practical, further improving 
the weather-related risk management capabilities of utility 
companies. In comparison with ML models that can provide 
the same degree of interpretability, the proposed model has 
the best weather-related risk prediction performance. In addi‐
tion, the proposed model can provide a way to guide deci‐
sions on other prediction issues in power systems.
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TABLE V
THRESHOLD VALUES OF WEATHER VARIABLES AT HIGH RISK

Feature

1

2

3

4

5

6

Threshold value

2.3 m/s

5.1 m/s

5.2 mm

8 mm

1 day

64 %rh

Precision_single

0.737 m/s

0.842 m/s

0.842 mm

0.895 mm

0.895 day

0.642 %rh
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