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Abstract——The optimal dispatch methods of integrated energy 
systems (IESs) currently struggle to address the uncertainties re‐
sulting from renewable energy generation and energy demand. 
Moreover, the increasing intensity of the greenhouse effect ren‐
ders the reduction of IES carbon emissions a priority. To ad‐
dress these issues, a deep reinforcement learning (DRL) -based 
method is proposed to optimize the low-carbon economic dis‐
patch model of an electricity-heat-gas IES. In the DRL frame‐
work, the optimal dispatch model of the IES is formulated as a 
Markov decision process (MDP). A reward function based on 
the reward-penalty ladder-type carbon trading mechanism 
(RPLT-CTM) is introduced to enable the DRL agents to learn 
more effective dispatch strategies. Moreover, a distributed proxi‐
mal policy optimization (DPPO) algorithm, which is a novel pol‐
icy-based DRL algorithm, is employed to train the DRL agents. 
The multithreaded architecture enhances the exploration ability 
of the DRL agents in complex environments. Experimental re‐
sults illustrate that the proposed DPPO-based IES dispatch 
method can mitigate carbon emissions and reduce the total eco‐
nomic cost. The RPLT-CTM-based reward function outper‐
forms the CTM-based methods, providing a 4.42% and 6.41% 
decrease in operating cost and carbon emission, respectively. 
Furthermore, the superiority and computational efficiency of 
DPPO compared with other DRL-based methods are demon‐
strated by a decrease of more than 1.53% and 3.23% in the op‐
erating cost and carbon emissions of the IES, respectively.

Index Terms——Integrated energy system (IES), carbon trad‐
ing, optimal dispatch, deep reinforcement learning (DRL), dis‐
tributed proximal policy optimization.

I. INTRODUCTION 

THE limitations of traditional energy sources and the di‐
versity of human needs pose considerable challenges to 

current energy structures [1]. Integrated energy systems 

(IESs) can optimize the overall energy utilization while ex‐
ploiting renewable energy sources. Therefore, IESs are con‐
sidered as key elements in the development of future human 
society [2], [3]. In contrast to traditional separated energy 
systems, IES enables the comprehensive management and 
economic dispatch (ED) of multiple energy resources, thus 
improving the complementary utilization of electricity, heat, 
gas, and transportation [4].

Recently, research work on the ED of IESs has received 
increasing attention. However, the fluctuation and random‐
ness of renewable energy and load represent a source of un‐
certainty, thus complicating the solution to the ED problem 
for IESs [5]. As an important branch of machine learning, 
deep reinforcement learning (DRL) has the advantage of self-
learning through interactive trial and error in a dynamic envi‐
ronment [6]. DRL has been applied to solve sequential deci‐
sion-making problems with uncertainties [7]. Hence, DRL 
appears to be suitable for renewable energy and electric sys‐
tem optimization problems, which involve complex nonlin‐
earities and uncertainties [8].

A relevant aspect to consider in the development of IESs 
is global warming, which is caused by the emission of green‐
house gases with CO2 as the main component [9]. Reducing 
CO2 emissions has become a major goal in the development 
of IESs. The carbon trading mechanism (CTM) is an essen‐
tial market mechanism that guides energy companies to meet 
emission targets. The CTM has attracted increasing interna‐
tional attention, leading to the development of a framework 
for an international carbon market, which was proposed at 
the 26th United Nations Climate Change Conference [10]. 
For example, the Hainan International Carbon Emission 
Trading Center in China completed its first cross-border car‐
bon emission trading in January 2023 [11]. The impact of 
the CTM on the optimal scheduling problem of low-carbon 
IESs requires further study and discussion.

Traditional dispatch methods are based on day-ahead fore‐
casting information. However, these methods do not consider 
uncertainties of load demand and renewable energy genera‐
tion. Mathematical programming-based methods have been 
developed to solve ED problems while considering these un‐
certainties. Reference [12] proposes a scenario-based stochas‐
tic optimization (SO) method for IESs to address the uncer‐
tainties in energy demand and renewable generation. Refer‐
ence [13] proposes a robust optimization (RO) -based day-
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ahead dispatch model that considers the effects of outdoor 
temperature uncertainty on thermal comfort. Reference [14] 
proposes an RO-based energy management framework for 
the optimal day-ahead dispatch of a multi-energy microgrid 
accounting for uncertainties of the power market price. Ref‐
erence [15] proposes a hybrid SO-RO method for the coordi‐
nate scheduling of a multi-energy system, in which erratic 
and high-risk wind power production is modeled by RO, 
whereas energy demands with a detectible probability distri‐
bution are modeled as stochastic scenarios. The hybrid RO-
SO method in [16] can model uncertain variables with differ‐
ent characteristics separately by combining the advantages of 
the SO and RO methods. However, this method requires the 
design of an optimal dispatch framework according to the 
specific properties of the random variables involved, while 
considering the operating cost and reliability of the system. 
The distributionally robust optimization (DRO) [17] method 
has gradually gained attention because it obtains decision re‐
sults by considering the worst probability distribution of un‐
certain parameters.

However, these dispatch methods have certain limitations. 
Scenario-based SO may require the generation of several sce‐
narios based on probability distributions, resulting in a se‐
vere increase in computational burden. More importantly, the 
optimal dispatch results may not satisfy the constraints of 

scenarios that are not considered [18]. As the RO-based 
method may attempt to avoid the impact of uncertainties on 
system operation, its results can be too conservative and are 
often not conducive to the economical operation of IESs 
[19]. The hybrid SO-RO method cannot overcome these dis‐
advantages. Although the DRO-based method combines the 
advantages of SO and RO, it requires complex modeling and 
solving processes.

Control theory-based methods such as model predictive 
control (MPC) have also been used to address uncertainties 
in the optimal operation problem. Reference [20] proposes 
an MPC-based bi-level optimal integration scheme for the 
space heating load of buildings to achieve the economical 
and reliable scheduling of the heating system in the presence 
of uncertainties. Information gap decision theory (IGDT) 
[21] is another method for addressing uncertainties. In [22], 
a multi-objective IGDT-based method is applied to handle 
the uncertainties associated with wind and photovoltaic (PV) 
power predictions. Although MPC-based methods use reced‐
ing horizon optimization to offset uncertainties, they still em‐
ploy renewable energy generation predictions. Furthermore, 
the selection of some parameters in the IGDT method is op‐
erator-dependent. A summary of the advantages and disad‐
vantages of the aforementioned methods for solving dispatch 
problems with uncertainties is presented in Table I.

In contrast to the aforementioned methods, the DRL agent 
collects data by interacting with the IES environment and 
learns a dispatch strategy from the data. In some studies, 
DRL algorithms have been applied in discrete action spaces 
to solve optimal dispatch problems that consider uncertain‐
ties in microgrids [23], home energy management [24], dis‐
tributed energy systems [25], and multi-energy microgrids 
[26]. However, such a discrete action space not only affects 
the accuracy of the dispatch results, but also causes the dis‐
patch strategy to lose flexibility. Some studies have applied 
DRL algorithms to solve optimal dispatch problems with a 
continuous action space. In [27], an online energy manage‐
ment system is built using policy gradient (PG) algorithm. 
Several other alternatives have been proposed to address the 
optimal scheduling problem of microgrids, including asyn‐
chronous advantage actor-critic (A3C) [28], deep determinis‐
tic policy gradient (DDPG) [29], and proximal policy optimi‐
zation (PPO) [30]. However, all these studies consider only 

the electrical network as the research object. Therefore, fur‐
ther research on the advantages of multi-energy network cou‐
pling for optimal dispatch should be conducted.

In [31], a PPO-based renewable energy conversion strate‐
gy is applied to reduce the operating costs of an IES. To 
solve the ED problem of a combined heat and power (CHP) 
system, [32] adopts a distributed PPO-based method. Refer‐
ence [33] proposes an improved DDPG algorithm for the op‐
timal scheduling of an electricity-heat IES. Reference [34] 
develops a real-time autonomous energy management strate‐
gy for a residential multi-energy system based on DDPG. 
Reference [35] proposes a PPO-based joint load scheduling 
strategy to reduce the energy costs of a household multi-en‐
ergy system. In [36], a DDPG-based dynamic energy conver‐
sion and management strategy is used to coordinate econom‐
ic costs and peak load shifting targets. Reference [37] devel‐
ops an optimal dispatch framework based on A3C to handle 
the dynamic changes on the supply and demand sides of an 

TABLE I
ADVANTAGES AND DISADVANTAGES OF METHODS FOR SOLVING DISPATCH PROBLEMS WITH UNCERTAINTIES

Reference

[12]

[13], [14]

[15], [16]

[17]

[20]

[21], [22]

[23]-[45]

Method

SO

RO

SO-RO

DRO

MPC

IGDT

DRL

Description

Many scenarios need to be generated. A severe computational burden may be incurred. The optimal dispatch results may 
not satisfy the constraints of scenarios that are not considered.

The results are conservative because the worst case of uncertainty is considered.

The operating cost and reliability of the system are considered. Appropriate scenarios are required.

The advantages of SO and RO are combined. The modeling and solving processes are complex.

Rolling optimization is applied to offset uncertainty. The process is complicated, and the optimization quality relies on 
the forecast accuracy of uncertain variables.

The choice of some coefficients is subjective.

Instead of relying on prior knowledge, the agent collects data by interacting with the environment and learning from da‐
ta. The agent can be applied to real-time dispatch after offline training.
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IES. However, these studies do not adequately discuss the 
methods for reducing the carbon emissions of the system; in 
fact, they only employ the operating cost of the system as 
the dispatching target.

To satisfy the energy demands of an IES and minimize op‐
erating costs and pollutant emissions, [38] proposes a DRL-
based intelligent energy management system. However, it 
can only be applied to discrete action space. Reference [39] 
employs the soft actor-critic (SAC) algorithm to solve the 
optimal dispatch problem of electricity-gas IES using eco‐
nomical operation and low carbon emissions as the objec‐
tives of the dispatch model. In [40], an SAC-based energy 
dispatch strategy is developed to optimize the multiple objec‐
tives of an IES, including minimizing operational costs and 
realizing economical low-carbon operation.

Reference [41] designs a multi-agent cooperative control 
framework for the energy management of a multi-energy 
hub using an attention mechanism based on multi-agent deep 
reinforcement learning (MADRL). Moreover, in [42], 
MADRL is employed to solve the optimal dispatch problem 
of an IES considering energy trading, and in [41] and [42], 
the carbon emission target is added to the reward function as 
a penalty term. However, the CTM is not considered. Thus, 
the IES cannot profit from the sale of carbon rights.

Several studies have attempted to introduce the CTM into 
DRL-based frameworks. Reference [43] proposes a model-
free safe DRL method for the real-time automatic optimal en‐
ergy management of a renewable-based energy hub with vari‐
ous energy components, in which both the system energy 
cost and carbon emissions are minimized. In [44], an IES co-
trading market that includes electricity, natural gas, and 
CTM is proposed. The coordinative optimization problem as‐
sociated to energy management is solved using an improved 

multi-agent DDPG algorithm. In [45], a joint peer-to-peer en‐
ergy and carbon allowance trading mechanism for a building 
community is proposed, considering both the flexibility of lo‐
cal trading and decarbonization of building multi-energy sys‐
tems. In these studies, the combination of the CTM and the 
low-carbon ED problem of IES or the integrated energy trad‐
ing market based on the CTM has demonstrated better re‐
sults in controlling and reducing carbon emissions. However, 
as DRL is applied to solve such problems, the effectiveness 
of the CTM in helping agents learn low-carbon dispatch 
strategies should be discussed in detail. The incentive and 
penalty mechanism of the CTM for companies to reduce 
emissions is similar to the idea of designing a reward func‐
tion for DRL. Therefore, this deserves to be discussed in 
depth, rather than being simply combined.

Most studies applying DRL methods to solve the optimal 
dispatch problem while accounting for uncertainties have not 
considered the carbon emissions of the system. Only a few 
studies have considered carbon emissions by introducing a 
traditional CTM-based reward function to obtain a low-car‐
bon ED model for the IES. However, as the reward function 
affects the effectiveness of the strategy learned by the agent, 
it should be carefully designed within the DRL framework. 
Moreover, the introduction of CTM increases the complexity 
of the DRL environment. Hence, a more efficient algorithm 
is required for the agent to learn low-carbon ED strategies.

To address the existing research gap, a DRL-based dynam‐
ic energy dispatch method is proposed for the low-carbon 
economic operation of an electricity-heat-gas IES. A compar‐
ison of the elements considered in the development of our 
model and those presented in the reviewed models is present‐
ed in Table II.

To achieve low-carbon operation of the system, a reward-
penalty ladder-type CTM (RPLT-CTM) is introduced into the 
DRL framework. The RPLT-CTM models the principles that 
guide enterprises to reduce emissions. For this reason, we de‐

cide to use the RPLT-CTM-based reward function with vari‐
able carbon trading prices to guide the agent more effective‐
ly in learning the low-carbon economic scheduling strategy 
for the IES. Moreover, to solve the optimal scheduling prob‐

TABLE II
COMPARISON BETWEEN PROPOSED MODEL AND REVIEWED MODELS

Reference

[23]-[25]

[26]

[27]-[30]

[31]-[34]

[35]

[36], [37]

[38]

[39]

[40]

[41]

[42]

[43]-[45]

Proposed model

Action space

Discrete

√
√

√

√

Continuous

√
√
√
√

√
√
√
√
√
√

Energy

Electricity

√
√
√
√
√
√
√
√
√
√
√
√
√

Heat

√

√

√
√

√

√
√
√

Gas

√
√

√
√
√

√

Dispatch

Economy

√
√
√
√
√
√
√
√
√
√
√
√
√

Emission

√
√
√
√
√
√
√

CTM

Traditional

√

Ladder-type

√
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lem, the distributed proximal policy gradient (DPPO) algo‐
rithm is introduced, which is a policy-based DRL algorithm 
that is less sensitive to hyperparameters and can avoid large 
policy updates with undesirable action selections.

The major contributions can be summarized as follows.
1) A DRL-based method for low-carbon ED of an electric‐

ity-heat-gas IES, which considers economics and carbon 
emissions, is established. The low-carbon ED is mathemati‐
cally modeled as a Markov decision process (MDP).

2) The RPLT-CTM is introduced into the DRL framework 
to realize low-carbon ED. Compared with the traditional 
CTM, the RPLT-CTM-based reward function has been prov‐
en to guide the DRL agent in formulating an improved low-
carbon ED strategy.

3) To address the increased complexity introduced by the 
low-carbon objective, the DPPO algorithm with a distributed 
architecture is introduced to train the DRL agent. A compara‐
tive analysis demonstrates the computational effectiveness 
and superiority of this algorithm.

The remainder of this paper is organized as follows. Sec‐
tion II presents the electricity-heat-gas IES, including the car‐
bon trading cost calculation model for the RPLT-CTM-based 
IES, and the mathematical model for IES optimal dispatch. 
In Section III, the optimal dispatch problem is formulated as 
an MDP, and the DPPO-based method for IES optimal dis‐
patch is described in detail. Simulation results and the corre‐
sponding analysis are presented in Section IV. Conclusions 
and future work are discussed in Section V.

II. ELECTRICITY-HEAT-GAS IES 

The primary goal of the optimal dispatch of the IES is to 
improve the economic benefits of the system, i. e., on the 
premise of satisfying the energy demand, the output of each 
piece of equipment at each time step is effectively arranged 
to achieve the optimal economic operation. Furthermore, to 
realize low-carbon operation of the system, the RPLT-CTM 
is introduced to incorporate carbon trading costs into the op‐
erating costs of the system. To this end, we establish a com‐
prehensive ED model that considers the RPLT-CTM. The 
structure of electricity-heat-gas IES is shown in Fig. 1.

The IES consists of energy suppliers, renewable energy 
generation devices, load demand, coupling devices, and ener‐
gy storage devices. Renewable energy generation devices in‐
clude wind turbines (WTs) and PV generators. The load de‐
mand includes electrical, heat, and gas loads. The coupling 
equipment includes a CHP, power-to-gas (PtG), and gas boil‐
er (GB). The energy storage equipment includes battery ener‐
gy storage (BES), gas storage tanks (GSTs), and thermal 
storage tanks (TSTs).

A. Carbon Trading Cost Calculation Model for RPLT-CTM-
based IES

The CTM can guide energy companies to reduce emis‐
sions, and its essence is to treat carbon credit allowances as 
freely tradable commodities [46]. The specific model is pre‐
sented as follows.
1)　Initial Carbon Credit Allocation Model

The allocation of initial carbon credits is a prerequisite for 
low-carbon power dispatch. The initial carbon emission al‐
lowance allocation is performed using the free allocation 
method.

In the IES model, the electricity purchased from the exter‐
nal grid is produced by coal-fired units. In addition to the 
equipment in the IES that generates carbon emissions, natu‐
ral gas loads are also considered. The CHP unit is consid‐
ered as heat supply equipment, and its carbon credits are al‐
located according to the equivalent total heat supply. Thus, 
the power generated by the CHP units needs to be converted 
into an equivalent heat supply. The model is expressed as:

ì

í

î

ï

ï

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï

ï

ï
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ï
ïï
ï

ï

ï

ï
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EIESc =Egridc +ECHPc +EGBc +Egloadc

Egridc = λe∑
t = 1

T

pgrid( )t Dt

ECHPc = λh∑
t = 1

T

( )φpCHP( )t + hCHP( )t Dt

EGBc = λh∑
t = 1

T

hGB( )t Dt

Egloadc = λgas∑
t = 1

T

qload( )t Dt

(1)

where EIES,c is the total carbon credit allowance of the IES; 
Egrid,c, ECHP,c, and EGB,c are the carbon credit allowances for 
coal-fired units, CHP, and GB, respectively; Egload,c is the car‐
bon credit allowance received by the user for the consump‐
tion of natural gas; Dt is the interval for each time step; 
pgrid( )t , pCHP( )t , hCHP( )t , and hGB( )t  are the output power of 

the coal-fired units, CHP, and GB at time step t, respective‐
ly; qload( )t  is the flow rate of the natural gas load at time 
step t; λe, λh, and λgas are the carbon credit allocation factors 
for the electricity supply equipment, heat supply equipment, 
and natural gas load, respectively; and φ is the conversion 
factor of power generation into heat supply, which is taken 
as 6 MJ/kWh.
2)　Carbon Emission Calculation Model

In the IES, the operation of the CHP units and GB gener‐
ates carbon emission. The electricity purchased from the ex‐

Power plant

Heating
network

Electrical
load

Heat load

TSTPtGEB

GB GST

Electricity flow; Heat flow; Natural gas flow

Renewable energy BES

Electricity
network

Natural gas
supplier

CHP

Natural gas
network

Natural gas
load

Fig. 1.　Structure of electricity-heat-gas IES.
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ternal grid comes from coal-fired units, the operation of 
which generates carbon emissions. The consumption of natu‐
ral gas loads, mainly through combustion, also generates car‐
bon emissions. The working process of the PtG unit involves 
the absorption of CO2. The carbon emission model of the 
IES is:
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EIESe =Egride +ECHPe +EGBe +Egloade -EPtGe

Egride = βe∑
t = 1

T

pgrid( )t Dt

ECHPe = βh∑
t = 1

T

( )φpCHP( )t + hCHP( )t Dt

EGBe = βh∑
t = 1

T

hGB( )t Dt

Egloade = βgas∑
t = 1

T

qload( )t Dt

EPtGe = βPtG∑
t = 1

T

pPtG( )t Dt

(2)

where EIES,e is the total carbon emission of the IES; Egrid,e, 
ECHP,e, EGB,e, and Egload,e are the carbon emissions generated 
the by coal-fired units, CHP, GB, and natural gas load, re‐
spectively; EPtG,e is the amount of CO2 absorbed in the ener‐
gy conversion process of the PtG unit; βe, βh, and βgas are 
the carbon emission factors for the electricity supply equip‐
ment, heat supply equipment, and natural gas load, respec‐
tively; pPtG( )t  is the electric power consumed by the PtG 
unit at time step t; and βPtG is the parameter for the absorp‐
tion of CO2 in the energy conversion of the PtG unit.
3)　Carbon Trading Model

The RPLT-CTM [47] divides several net carbon emission 
intervals and guides the system in reducing CO2 emissions 
through incentives and penalties. In addition, the carbon trad‐
ing price shows a stepwise increase with the cumulative car‐
bon trading volume, as shown in Fig. 2.

The mathematical model of the reward and penalty ladder-
type carbon trading is expressed as:

EIES(t ) =EIESe(t ) -EIESc(t ) (3)

EIES =EIESe -EIESc (4)

CCT(t ) =

ì

í

î

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

c ( )1 + 2σ EIES( )t     EIES £-δ

c ( )1 + σ EIES( )t       -δ <EIES £ 0

cEIES( )t                      0 <EIES £ δ

c ( )1 + α EIES( )t        0 <EIES £ δ

c ( )1 + 2α EIES( )t      δ <EIES £ 2δ

c ( )1 + 3α EIES( )t      3δ <EIES

(5)

where EIES( )t  is the amount of carbon trading at time step t; 
EIES is the cumulative carbon trading volume; CCT( )t  is the 
carbon trading cost of the IES at time step t; c is the carbon 
trading price; α is the penalty factor, which is taken as 0.2; 
σ is the reward factor, which is taken as 0.25; and δ is the 
length of the carbon trading range.

B. Mathematical Model for IES Optimal Dispatch

1)　Objective Function
The primary goal of the IES dynamic energy dispatch is 

to improve the economy and environmental friendliness of 
the system while meeting the constraints. The objective func‐
tion is mainly composed of energy purchase and carbon trad‐
ing costs. The objective function F of the optimal dispatch is 
defined as:

F =min∑
t = 1

T

( )CE( )t +CCT( )t (6)

where CE( )t  is the energy purchase cost at time step t.
2)　Cost of Energy Purchase

To satisfy the electricity-heat-gas load demand, the system 
purchases energy from energy suppliers as fuel for the opera‐
tion of the coupled equipment. The equipment that consumes 
electrical energy includes the PtG units and electric boiler 
(EB), and the equipment that consumes natural gas is the 
CHP units and GB. This cost is expressed as:

CE(t ) =Cpower(t ) +Cgas(t ) (7)

Cpower(t ) = εe(t ) pgrid(t )Dt (8)

Cgas(t ) = εgas(t )qgas(t )Dt (9)

where Cpower( )t  and Cgas( )t  are the costs of the purchased 

electricity and natural gas, respectively; qgas( )t  is the output 

flow rate of the natural gas supplier; εe( )t  is the electricity 
price; and εgas( )t  is the natural gas price.

3)　Constraints
The constraints of IES dynamic scheduling consist of ener‐

gy balance, equipment operation, and energy supplier con‐
straints.

1)　Energy balance constraints
To meet the electricity-heat-gas load demand at each time 

step, the energy balance constraints are:

pgrid(t ) + pRE(t ) + pCHP(t ) + pBES(t ) =
pload(t ) + pEB(t ) + pPtG(t ) (10)

hCHP(t ) + hEB(t ) + hGB(t ) + hTST(t ) = hload(t ) (11)

qgas(t ) + qPtG(t ) + qGST(t ) = qload(t ) + qCHP(t ) + qGB(t ) (12)

where pRE( )t  is the renewable energy generation; pBES( )t  is 
the charging/discharging power of the BES; pEB( )t  is the 

Sale

δ�δ�2δ 2δ 3δ

�c(1+σ)

c(1+α)

c(1+2α)

c(1+3α)

c

�c(1+2σ)

Carbon trading price

E
e
�E

c

Purchase

Fig. 2.　Relationship between carbon trading price and cumulative carbon 
trading volume.
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electric power consumed by the EB; hEB( )t  is the power out‐
put of the EB; hTST( )t  is the charging/discharging power of 
the TST; qPtG( )t  is the output flow rate of PtG; qGST( )t  is the 
charging/discharging power of the GST; qCHP( )t  is the flow 
rate of natural gas consumed by CHP; qGB( )t  is the flow rate 
of natural gas consumed by the GB; and pload( )t  and hload( )t  
are the electrical load and heat load, respectively.

2)　Equipment operation constraints
① Energy supply devices
a) CHP
The CHP unit provides heat and electricity to the system 

and acts as an energy provider in the electricity and heating 
networks. The mathematical model of the CHP unit is ex‐
pressed as:

pCHP(t ) = kCHPhCHP(t ) (13)

qCHP(t ) = pCHP( )t + hCHP( )t
ηCHP HGV

(14)

where kCHP is the thermoelectric ratio of CHP; ηCHP is the ef‐
ficiency of CHP; and HGV is the high calorific value of natu‐
ral gas, which is taken as 39 MJ/m3.

The power output and ramping rate constraints of the 
CHP unit are given by (15)-(18).

pmin
CHP £ pCHP(t ) £ pmax

CHP (15)

hmin
CHP £ hCHP(t ) £ hmax

CHP (16)

-Rdown
CHP Dt £ pCHP(t ) - pCHP(t - 1) £Rup

CHPDt (17)

-Rdown
CHP Dt £ hCHP(t ) - hCHP(t - 1) £Rup

CHPDt (18)

where pmin
CHP and pmax

CHP are the lower and upper bounds of the 
output electric power, respectively; hmin

CHP and hmax
CHP are the 

lower and upper bounds of the output heat power of CHP, re‐
spectively; pCHP( )t - 1  and hCHP( )t - 1  are the output electric 
and heat power of CHP at time step t - 1, respectively; and 
Rdown

CHP  and Rup
CHP are the ramping rates of CHP.

b) PtG
The PtG unit converts electric power into gas. The rela‐

tionship between the electric power consumption and the nat‐
ural gas supply is expressed as:

qPtG(t ) = ηPtG pPtG( )t
HGV

(19)

where ηPtG is the efficiency of PtG.
The power and ramping rate constraints of the PtG unit 

are shown in (20) and (21), respectively.

pmin
PtG £ pPtG(t ) £ pmax

PtG (20)

-Rdown
PtG Dt £ pPtG(t ) - pPtG(t - 1) £Rup

PtGDt (21)

where pmin
PtG and pmin

PtG are the lower and upper bounds of the 
consumed electric power, respectively; pPtG( )t - 1  is the elec‐
tric power consumed by PtG at time step t - 1; and Rdown

PtG  and 
Rup

PtG are the ramping rates of PtG.
c) EB
The EB converts electric power into heat to satisfy the 

heat load. The relationship between the electric power con‐
sumption and the heat supply is expressed as:

hEB(t ) = ηEB pEB(t ) (22)

where ηEB is the efficiency of the EB.
The power output and ramping rate constraints of the EB 

are shown in (23) and (24), respectively.

hmin
EB £ hEB(t ) £ hmax

EB (23)

-Rdown
EB Dt £ hEB(t ) - hEB(t - 1) £Rup

EBDt (24)

where hmin
EB  and hmax

EB  are the lower and upper bounds of the 
output heat power of the EB, respectively; hEB( )t - 1  is the 
power output of the EB at time step t - 1; and Rdown

EB  and Rup
EB 

are the ramping rates of the EB.
d) GB
The GB converts natural gas power into heat power, 

which is used to supplement the remaining heat load de‐
mand when the CHP heat supply is insufficient. The relation‐
ship between the natural gas power consumption and the 
heat supply is expressed as:

hGB(t ) = ηGBqGB(t ) HGV (25)

where ηGB is the efficiency of the GB.
The power output and ramping rate constraints of the GB 

are given by (26) and (27), respectively.

hmin
GB £ hGB(t ) £ hmax

GB (26)

-Rdown
GB Dt £ hGB(t ) - hGB(t - 1) £Rup

GBDt (27)

where hmin
GB  and hmax

GB  are the lower and upper bounds of the 
output heat power of the GB, respectively; hGB( )t - 1  is the 
power output of the GB at time step t - 1; and Rdown

GB  and Rup
GB 

are the ramping rates of the GB.② Energy storage equipment
a) BES
The BES can store excess energy in the system, which 

can be reasonably discharged to meet the electrical demand 
of customers in case of insufficient power supply. For the 
BES, the state of charge (SOC) is a key operational parame‐
ter that directly reflects the remaining energy of the device.

SOCmin £ SOC (t ) £ SOCmax (28)

SOC (t ) = SOC (t - 1) - ηBES

pBES( )t
QBES

Dt (29)

ηBES =
ì
í
î

ïï
ïï

ηch          pBES( )t < 0

1 ηdis      pBES( )t ³ 0
(30)

where SOC ( )t  and SOC ( )t - 1  are the SOCs of the BES at 
time steps t and t - 1, respectively; SOCmin and SOCmax are 
the lower and upper bounds of the SOC of the BES, respec‐
tively; QBES is the capacity of the BES; ηBES is the charging/
discharging efficiency of the BES; and ηch and ηdis are the 
charging and discharging coefficients, respectively.

b) TST
Similar to the BES, the TST can store excess heat and 

supply the heat needed for a heat load in the event of a heat‐
ing shortage. Similar to the definition of SOC, the heat stor‐
age degree (HSD) is defined to monitor the amount of heat 
energy that can be stored in the equipment.

HSDmin £HSD (t ) £HSDmax (31)

HSD (t ) =HSD (t - 1) - ηTST

hTST( )t
QTST

Dt (32)
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ηTST =
ì
í
î

ïï
ïï

ηch         hTST( )t < 0

1 ηdis     hTST( )t ³ 0
(33)

where HSD ( )t  and HSD ( )t - 1  are the HSDs of the TST at 
time steps t and t - 1, respectively; HSDmin and HSDmax are 
the lower and upper bounds of the HSD of the TST, respec‐
tively; QTST is the capacity of the TST; and ηTST is the charg‐
ing/discharging efficiency of the TST.

c) GST
The gas storage degree (GSD) of the GST is defined to 

monitor the amount of natural gas energy that can be stored 
in the equipment.

GSDmin £GSD (t ) £GSDmax (34)

GSD (t ) =GSD (t - 1) - ηGST

qGST( )t
QGST

Dt (35)

ηGST =
ì
í
î

ïï
ïï

ηch         qGST( )t < 0

1 ηdis     qGST( )t ³ 0
(36)

where GSD ( )t  and GSD ( )t - 1  are the GSDs of the GST at 
time steps t and t - 1, respectively; GSDmin and GSDmax are 
the lower and upper bounds of the GSD of the GST, respec‐
tively; QGST is the capacity of the GST; and ηGST is the charg‐
ing/discharging efficiency of the GST.③ Energy supplier constraints

In the dispatching model established in this paper, electric‐
ity and natural gas need to be purchased from external sourc‐
es to supply the equipment and meet the load demand. The 
energy supply device satisfies the following constraints.

pmin
grid £ pgrid(t ) £ pmax

grid (37)

qmin
gas £ qgas(t ) £ qmax

gas (38)

where pmin
grid and pmax

grid are the lower and upper bounds of the 
output electric power of the coal-fired units, respectively; 
and qmin

gas  and qmax
gas  are the lower and upper bounds of the out‐

put gas flow rate of the supplier, respectively.

III. DPPO-BASED METHOD FOR IES OPTIMAL DISPATCH

In this section, the IES optimal dispatch is formulated as 
an MDP, and the specific reinforcement learning algorithm 
is explained.

A. RL Framework

MDP is a mathematically idealized form of the RL prob‐
lem and a theoretical framework for achieving goals through 
interactive learning. An MDP consists of a state space S, ac‐
tion space A, state transition probability function P, reward 
function R, and discount coefficient γ.

An RL framework is built to solve the low-carbon ED 
problem for an IES, as shown in Fig. 3. In the RL environ‐
ment for the IES dispatch problem, the state space includes 
information on the electric load, heat load, natural gas load, 
predicted value of renewable energy output, and state of the 
energy storage equipment. The action space includes the out‐
put power of the CHP units, electricity-to-gas equipment, 
EBs, and GBs as well as the power of electricity and natural 
gas purchased from external suppliers. The rewards include 
the optimization targets defined above such as operating 

costs and carbon trading costs. During the training process, 
the dispatch agent observes the load information and equip‐
ment states in the environment at time step t, adjusts the out‐
put power of each piece of equipment to satisfy the load de‐
mand, and then receives the reward and the next state st+1 
from the environment back to the agent. The fundamental el‐
ements of the MDP can be formulated as follows.

1)　State Space
The state space S contains the information that describes 

the state of the IES, and the dispatch agent decides the dis‐
patch strategy based on the observed state at each time step. 
Specifically, the state space S includes the electrical load 
pload( )t , heat load hload( )t , natural gas load qload( )t , power 
output of renewable energy pRE( )t , SOC of the BES 
SOC ( )t , status (HSD) of the TST HSD ( )t , and status (GSD) 
of the GST GSD ( )t . Consequently, the state space is defined 
as:

st = {pload( )t hload( )t qload( )t pRE( )t 

}SOC ( )t HSD ( )t GSD ( )t t (39)

2)　Action Space
The dispatch agent realizes the optimal scheduling strate‐

gy for the IES by controlling the electric and heat power out‐
puts of CHP (pCHP( )t , hCHP( )t ), heat power output of the EB 
hEB( )t , heat power output of the GB hGB( )t , the gas power 
output of PtG qPtG( )t , electric power purchased from the 
main grid pgrid( )t , natural gas power purchased from the nat‐

ural gas supplier qgas( )t , electric power output of the BES 

pBES( )t , heat power output of the TST hTST( )t , and natural 
gas power output of the GST qGST( )t . The electric and natu‐
ral gas power consumed by each device in the system such 
as qchp( )t  is calculated from its output power. The energies 

purchased from external energy suppliers, pgrid( )t  and qgas( )t , 
are calculated using electric power balance constraints and 
gas power balance constraints, respectively. The heat power 
output of the GB hGB( )t  can also be calculated using the 
heat power balance constraint. That is, when hCHP( )t , hEB( )t , 
qPtG( )t , pBES( )t , hTST( )t , and qGST( )t  are jointly determined, 
the other variables can be obtained immediately. Therefore, 
action space is expressed as:

at = { }hCHP( )t hEB( )t qPtG( )t pBES( )t hTST( )t qGST( )t (40)

q
PtG

Action space

State space

Energy storage devicesEnergy supply devices

Load demand
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q
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p
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Fig. 3.　RL framework for IES optimal dispatch.
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3)　Reward Function
The reward function calculates the reward value rt based 

on the current state and action ( )stat , then returns it to the 

agent. The purpose of the reward is to guide the agent to ac‐
complish the stated goal, i.e., low carbon emissions and ED 
of the IES. Therefore, the reward function includes the oper‐
ating cost CE and carbon trading cost CCT of the system. Con‐
sidering that the goal of the training agent in reinforcement 
learning is to maximize the cumulative reward, the reward 
value needs to be set to be a negative value. To accelerate 
convergence, a baseline b is added to the reward function so 
that positive and negative reward values can be given. The 
reward function can be defined as:

rt =- ( )CE( )stat +CCT( )stat - b (41)

where b is taken as 30.
4)　Uncertainty of RL Environment

The stochastic nature of renewable energy generation and 
multiple energy loads needs to be considered in the IES opti‐
mal dispatch problem. To enable the agent to handle this un‐
certainty, the RL environment for the optimal scheduling 
problem needs to be established with stochasticity. Before 
the start of training for each episode, the environment ran‐
domly samples the load data that satisfy the upper and lower 
bound limits.

In each episode, a group of states is generated within the 
upper and lower limits. The energy loads and the renewable 
energy generation are generated randomly within the pre‐
defined range, which means that the dispatch strategy given 
by the agent can handle not only the uncertainty of loads but 
also the uncertainty of renewable energy generation.

B. DPPO

The DRL algorithm is introduced to solve the optimal dis‐
patch problem for a continuous action space. PPO [48] is a 
policy-based DRL algorithm for solving continuous action 
decisions, which is proposed by Google’s DeepMind team 
[49] based on PPO, drawing on the parallel training idea of 
A3C. DPPO is better suited for rich simulation environments 
that consider uncertainty. We introduce the DPPO algorithm 
to solve the problem of optimal dispatch of IES considering 
uncertainty. The equations for DPPO in this subsection can 
be found in [43] and [44].

The PPO algorithm is a policy-based DRL algorithm with 
an actor-critic architecture. The advantage function Aπ( )stat  

is introduced to evaluate the goodness of action at in state st.

Aπ( )stat =Qπ( )stat -Vπ( )st (42)

The action-value (Q-value) function Qπ( )stat  is used to 

evaluate the performance of policy π, and is defined as:

Qπ( )stat =E(stat )~πθ

é

ë
ê
êê
ê∑

t = 0

¥

γtrt∣St = stAt = at

ù

û
ú
úú
ú (43)

where πθ is the policy π with parameter θ; and γ is the re‐
ward discount factor.

The state-value function Vπ( )st  is used to evaluate the 

quality of state st, and is expressed as:

Vπ( )st =Eat~πθ (×| st )

é

ë
ê
êê
ê∑

t = 0

¥

γtrt∣St = st

ù

û
ú
úú
ú (44)

From (43) and (44), the value of the action value function 
Qπ( )stat  represents the expectation of the cumulative re‐
ward for choosing action at in state st under the guidance of 
policy network π. Furthermore, the value of the state-value 
function Vπ( )st  represents the expectation of the cumulative 
reward for all actions in state st under policy π.

With the introduction of the advantage function Aπ( )stat , 
the original objective function can be rewritten as:

J θμ′( )θμ =E( )stat ~π
θμ′

é

ë

ê
êê
ê
ê
ê πθμ( )at∣st

πθμ′( )at∣st

Aθμ′

π (stat )
ù

û

ú
úú
ú
ú
ú

(45)

where θμ is the parameter of the policy network to be opti‐
mized; and θμ′ is the parameter of the policy network that in‐
teracts with the environment to sample data. This is the sur‐
rogate objective function.

Next, the clipped surrogate objective method is employed. 
The surrogate objective function is written as:

J θμ′

PPO - Clip( )θμ =E( )stat  π
θμ′
[min ( ρθAθμ′( )stat 

]clip ( )ρθ1 - ε1 + ε Aθμ′( )stat (46)

clip ( )ρθ1 - ε1 + ε =
ì

í

î

ïïïï

ïïïï

1 - ε    ρ ( )θ < 1 - ε

1 + ε    ρ ( )θ > 1 + ε
ρ(θ)    otherwise

(47)

ρθ =
πθμ( )at∣st

πθμ′( )at∣st

(48)

where ε is a surrogate objective function clipping rate ap‐
plied to limit the change in policy.

The clip function limits the probability ratio to a certain 
range and takes the maximum or minimum value if it is out 
of range. By clipping the probability ratio, changes in policy 
are maintained within a reasonable range. This ensures that 
the change in policy is not too intense when the advantage 
is positive and that the update direction is correct when the 
advantage is negative. Finally, the PPO algorithm updates 
the policy network parameters using gradient ascent.

θμ = θμ + αμÑθμ J
θμ′

PPO - Clip( )θμ (49)

where αμ is the learning rate of the policy network.
The PPO algorithm has an actor-critic architecture. After 

updating the policy network, i. e., actor network, the critic 
network is updated by minimizing the loss function based on 
temporal-different (TD) theory.

L (θQ ) =E
at~πθμ'( )×|st

é
ë
êêêê(qt -V (st ) ) 2ù

û
úúúú (50)

qt = rt + γV (st + 1 ) (51)

θQ = θQ + αQÑθQ L ( )θQ (52)

where L ( )θQ  is the loss function; and αQ is the learning rate 
of the Q-value network, i.e., critic network.

To train the agent to obtain better performance in the es‐
tablished optimal IES scheduling environment, the agent 
must fully explore the environment to face different scenari‐
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os. Therefore, the PPO algorithm with distributed settings 
was introduced to achieve better training performance. DP‐
PO includes workers and a chief, where the workers are set 
up as multiple threads responsible for interacting with their 
respective environments to sample data and provide the data 
to the chief for learning. All parallel threads share the same 
policy network parameters from the global learner. The chief 

updates the network parameters and passes the pre-updated 
parameters to the workers. Each worker does not compute or 
push the gradient of its own policy update to the chief; this 
method promotes the efficiency of the multithreaded data 
collection and reduces the difficulty in implementing the al‐
gorithm. The framework of the DPPO algorithm training pro‐
cess is illustrated in Fig. 4.

The distributed setting of DPPO is reflected in the parallel 
collection of data based on the multithreaded worker net‐
work for the chief network update. In simple terms, DPPO 
can be understood as a multithreaded parallel PPO. The train‐
ing process of DPPO is realized through multithreading and 
communication among multiple threads. The exploration 
thread of the workers and the update thread of the chief are 
not executed simultaneously and communicate through 
events. The flow of the alternating execution of multiple 
threads in DPPO is shown in Fig. 5.

At the beginning of training, the exploration event is set 
to be “set”, and workers start interacting with the environ‐
ment to collect data. The update event is set to be “clear” 
and enters the waiting state. In the exploration thread, the 
global variable global_update_counter is used to record the 
number of steps taken by the workers to interact with the en‐
vironment. When the value of global_update_counter is larg‐
er than the mini-batch size, the update event is set to be 
“set” and the chief network starts to update. The exploration 
event is set to be “clear” and will enter the waiting state 

when running to “wait”. After the chief network update is 
complete, the update event is set to be “clear” and suspend‐
ed. The exploration event is set to be “set” and workers con‐
tinue to interact with the environment to collect data. The of‐
fline training process of the DPPO algorithm is shown in the 
pseudocode in Algorithm 1.

IV. CASE STUDY 

In this section, a platform for IES optimal scheduling is 
established and experiments are conducted using this IES 
platform to verify the superiority of the proposed DPPO-
based dispatch method. The parameter settings, experimental 
details, and concluding analysis are presented in the follow‐
ing subsections.

A. Description of IES

To demonstrate the performance of the proposed DPPO-
based dispatch method, the IES shown in Fig. 1 is used as 
an example in the case study. The IES consists of a power 
grid, heating network, natural gas network, renewable gener‐
ation devices, and energy storage equipment. In addition to 
using the CHP, GB, EB, and PtG to satisfy the load demand, 
energy can be purchased from external energy suppliers.

The purchasing electricity price is the time-of-use (TOU) 
price. The peak-time price is 12.3 ¢/kWh (12:00-20:00), the 
valley-time price is 4.2 ¢/kWh (00:00-08:00), and the flat-time 
price is 7.8 ¢/kWh at all other time. The natural gas price is 
fixed at 49 ¢/m3. In the RPLT-CTM, the carbon trading price 
is 40 $/t, and the length of the carbon trading range is 2 t. 
The property parameters of RPLT-CTM including carbon 
credit allocation factors and carbon emission factors are list‐
ed in Table III.

Environment

Interaction between agent

and environment

DPPO-chief

DPPO-workers

Minibatch

Store trajectory

at

rt

st+1

Actor

μ'(s|θ
μ'
)

Actor

μ'(s|θ
μ'
)

Environment

at

rt

st+1

Actor

μ'(s|θ
μ'
)

�

(s1, a1, r1, …, sT , aT , rT)

st, at, rt, St+1

Update θμ'

Update θμ'

Actor network

(policy network)

Clipped surrogate

loss function

J(θμ')

Update θQ

Critic network

(value network)

TD error

loss function

L(θQ)

Critic

V(s|θQ)

V(s)

Memory

buffer

Fig. 4.　Framework of DPPO algorithm training process.
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The parameters of the equipment operating constraints are 
provided in Table IV. The energy storage equipment parame‐
ters are provided in Table V.

B. Algorithm Setup

The proposed method and compared algorithms were im‐
plemented using TensorFlow and MATLAB. Simulation ex‐
periments were performed on a server with an Intel Xeon 
Gold 6230R CPU and an NVIDIA Quadro RTX 5000 GPU.

The core hyperparameter settings used for training the DP‐
PO algorithm are listed in Table VI. The Adam optimizer is 
used to update the weights and biases of the actor and critic 
networks. The actor and critic networks contain two hidden 
layers with 300 and 100 neurons, respectively. All hidden 
layers use the rectified linear unit (ReLU) activation func‐
tion.

C. Training Process

The DRL environment used to train the agent to learn a 
low-carbon economy dispatch policy was implemented based 
on Python 3.6, the framework of which is described in detail 
in Section III.

To verify the effectiveness of the established environment, 
an agent is trained in it using the DPPO algorithm. After 
testing different combinations of hyperparameters, the train‐
ing results for the original version of the DRL environment 
are found to be poor. Therefore, to achieve better training re‐
sults, state normalization (whitening) and reward normaliza‐
tion (whitening) are introduced. The cumulative rewards ob‐
tained from training in environments in which different 
tricks are applied are shown in Fig. 6.

In Fig. 6, the legend “None” represents the original ver‐
sion of the environment; “With state_norm” represents the 
environment with state normalization; “With reward_norm” 
represents the environment with reward normalization; and 
“With state_norm & reward_norm” represents the environ‐
ment that uses both state normalization and reward normal‐
ization. The rewards obtained from the training show that 
the convergence of the algorithm cannot be improved de‐

TABLE III
PROPERTY PARAMETERS OF RPLT-CTM

Parameter

βe (t/MWh)

βh (t/MWh)

βgas (t/m
3)

βPtG (t/MWh)

Value

1.08

0.234

2.166×10-3

0.106

Parameter

λe (t/MWh)

λh (t/MWh)

λgas (t/m
3)

Value

0.798

0.385

1.95×10-3

TABLE VI
CORE HYPERPARAMETER SETTINGS FOR TRAINING DPPO ALGORITHM

Hyperparameter

Learning rate for actor network

Learning rate for critic network

Discount factor

The maximum episode

Step in each episode

Mini-batch size

Surrogate objective function clipping rate

Number of parallel workers

Value

0.0001

0.0002

0.97

10000

96

64

0.2

4

Algorithm 1: off-line training process of DPPO

Initialize parameters θμ and θQ randomly
Initialize old actor parameters: θμ′¬ θμ

exploration_event.set(), update_event.clear()
global_update_counter = 0
for episode = 1 to N do
 if not exploration_event.set() then
 exploration_event.wait()
 end if
    Exploration thread
 for workers = 1 to U do
 Reset the initial state of IES dispatch environment
 Generate random scenario
 for dispatch time step t = 1 to T do
  Observe state st

  Select energy dispatch action at by old actor θμ′

  Execute action at

  Calculate state of equipment by (13)-(38)
  Calculate reward rt by (41)
  Obtain the next state st + 1

  global_update_counter + = 1
  if global_update_counter > mini_batch_size then
   exploration_event.clear()
   update_event.set()
  end if
 end for
 end for
 Get trajectory τ and push data to chief
 if not update_event.set() then
     update_event.wait()
 end if
     Update thread
 for m = 1 to M do
 Calculate loss function L(θQ) by (50)
 Update parameters of critic network θQ by (53)
 Calculate surrogate objective function J(θμ ) by (46)
 Update parameters of new actor θμ by (49)
 Update parameters of old actor: θμ′¬ θμ

 end for
  global_update_counter = 0
  update_event.clear()
  exploration_event.set()
end for

TABLE IV
PARAMETERS OF EQUIPMENT OPERATING CONSTRAINTS

Equipment

CHP

PtG

EB

GB

The minimum 
power (MW)

0.2

0.0

0.0

0.0

The maximum 
power (MW)

1.2

0.5

0.6

0.6

Climbing power 
(MW)

0.1250

0.0625

0.0750

0.0750

TABLE V
ENERGY STORAGE EQUIPMENT PARAMETERS

Equipment

BES

TST

GST

Capacity 
(MWh)

0.30

0.30

0.54

Charging 
efficiency

0.92

0.95

0.98

Discharging 
efficiency

0.85

0.95

0.98
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spite the use of reward normalization. The reward value re‐
mains low and fluctuates significantly. This result indicates 
that the agent does not learn an effective scheduling strategy. 
The reward value almost converges between 1500 and 3000 
rounds. However, convergence is not maintained during the 
subsequent training process. When both state normalization 
and reward normalization are used, the reward value quickly 
converges and remains stable.

By comparing and analyzing the training results of differ‐
ent environments, we notice that in the environment estab‐
lished in this study, the actor network and critic network are 
more suitable for the input-normalized states. In addition, 
the normalization of the reward helps the DRL agent to 
learn the dispatch strategy more effectively.

D. Simulation Result Analysis

1)　Analysis on Results Based on Two Scenarios
To analyze the benefits of introducing the RPLT-CTM for 

the low-carbon economic operation of IES, two scenarios are 
set up for comparative analysis, which are described as fol‐
lows.

1) Scenario 1: the CTM is a carbon tax model in which 
the price of buying or selling carbon rights is fixed and does 
not change with the volume of carbon rights traded.

2) Scenario 2: the CTM is the RPLT-CTM model, the de‐
tails of which are described in Section II.

To demonstrate the effectiveness of the proposed method, 
the actual operational data of an IES [37] are used for verifi‐
cation. The power load, heat load, gas load, and renewable 
energy generation power are presented in Fig. 7.

To intuitively compare the characteristics of the carbon 
trading models, the agent trained based on the DPPO algo‐
rithm in the two scenarios provides the scheduling plan ac‐
cording to the agent trained based on the DPPO algorithm in 
the two scenarios shown in Fig. 8. The scheduling results 
for the two scenarios, including the system operating costs 
and carbon emissions, are shown in Table VII.

Evidently, Fig. 8 clearly shows that the operating costs 
and carbon emissions of Scenario 1 are higher than those of 
Scenario 2. The reason for this result is that the carbon trad‐
ing price of the carbon emission model in Scenario 1 is 
fixed and does not change with the accumulation of carbon 
trading volume. In Scenario 2, the carbon trading price 
changes in a stepwise manner with the accumulation of car‐
bon trading volume, and the agent can develop a better 
scheduling plan under the guidance of such a mechanism. 
The carbon price gradually increases with the total amount 
of carbon rights purchased or sold. The purchase of carbon 
rights makes the system more expensive to operate, and the 
agent receives a penalty signal from the environment. The 
proceeds from the sale of carbon rights cut the system’s op‐
erating costs, and the agent receives a reward signal from 
the environment. This price mechanism, which is punitive or 
rewarding in nature, can guide the agent in learning schedul‐
ing strategies that can reduce carbon emissions.
2)　Analysis on DPPO-based Method in Scenario 2

The dispatch results of the IES based on DPPO for the 
test day in Scenario 2 are shown in Fig. 9. In Fig. 9(a), dur‐
ing the valley tariff period (00:00-08:00), the IES actively pur‐
chases power from the external grid and supplies the excess 
power to the PtG, EB, and BES systems. The PtG system 
converts electric power into natural gas power to supply the 
natural gas network, and the EB consumes electric power to 
provide heat power to the heating network. In addition, dur‐

TABLE VII
SCHEDULING RESULTS OF TWO SCENARIOS

Scenario

Scenario 1

Scenario 2

Carbon 
credit (t)

15.89

15.54

Carbon 
emission (t)

12.16

11.38

Carbon trading 
cost ($)

-179.22

-224.99

Operating 
cost ($)

1872.00

1789.24
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Fig. 8.　Operating costs and carbon emission based on two scenarios.
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ing peak tariff periods (12:00-20:00), the IES also purchases 
power from the external grid to meet the demand for electri‐
cal loads of customers that cannot be met by equipment 
within the system, thereby ensuring a balance between the 
electric power supply and demand.

In Fig. 9(b), to achieve economic operation of the system, 
the EB operates mainly during the valley tariff period (00:00-
08:00). Although it is less expensive to run the EB during this 
period, the IES does not use the EB to provide a significant 
amount of thermal energy given the carbon emissions. Dur‐
ing the period of 05:00-07:00, the heat load demand of custom‐
ers is high, and to meet the load demand, the GB outputs a 
large amount of heat energy to supply to the heating net‐
work. The TST also outputs stored heat to the heating network 
when the heat load demand is high. Figure 9(c) shows the dis‐
patch results of the natural gas network, where the CHP unit 
and GB consume large amounts of gas as load, and the PtG 
unit can supply natural gas to the network during the valley 
tariff to reduce operating costs.

Guided by the RPLT-CTM, the agent selects a dispatch 
plan with low carbon emissions and high economic efficien‐
cy. The detailed analysis of the scheduling results shows that 
the DPPO-trained dispatch agent provides real-time dispatch 

results according to the load demand and can achieve low-
carbon and economic operation of the system by ensuring 
the safe and stable operation of the IES.
3)　Algorithm Comparison

To verify the performance of the DPPO algorithm, DPPO 
algorithm is compared with other DRL algorithms and tradi‐
tional algorithms in this subsection.

Since DPPO is a distributed version of PPO, PPO is cho‐
sen for comparison. The benchmark DRL algorithms, DDPG 
and twin-delayed DDPG (TD3), are selected. SAC, another 
popular DRL algorithm, is also used for comparison. Consid‐
ering that DPPO is a distributed DRL algorithm, A3C and 
distributed distributional deterministic policy gradients 
(D4PG) are also introduced. In addition, the double deep Q-
network (DDQN), an improved extension of the DQN algo‐
rithm, is employed as another benchmark DRL algorithm.

The cumulative rewards of DPPO and other DRL algo‐
rithms in the training process are shown in Fig. 10. DPPO 
converges quickly, reaching convergence after approximately 
1200 episodes of training. In addition, DPPO obtains the 
highest cumulative reward among all selected DRL algo‐
rithms. D4PG and A3C, two distributed DRL algorithms, al‐
so converge quickly and reach convergence within 2000 epi‐
sodes. TD3 also converges very quickly; however, it has a 
lower cumulative reward value than DPPO and D4PG. 
DDPG and PPO converge slowly, but receive higher rewards 
than A3C when they converge. The training results of SAC 
are poor, only better than those of DDQN in discrete action 
spaces. The comparison shows that DPPO is more efficient 
than the other DRL algorithms in learning to explore the op‐
timal policy. In particular, the advantages of DPPO’s distrib‐
uted architecture are validated in comparison with PPO. Fur‐
thermore, DPPO obtains higher cumulative rewards in the 
convergence state, indicating that the algorithm learns to 
achieve a better strategy.

In addition, PSO- , GA- , and SO-based scheduling algo‐
rithms are introduced to compare IES operating costs and 
carbon emissions. The operating costs and carbon emissions 
of the scheduling plans for the test day provided by these al‐
gorithms are listed in Table VIII. Among them, the daily op‐
erating cost of the dispatch plan provided by DPPO is 
$1789.24, which is 1.53%, 1.71%, 2.13%, 2.84%, 3.76%, 
10.99%, 12.40%, 4.84%, 5.28%, and 3.82% lower than that 
of D4PG, TD3, PPO, DDPG, A3C, SAC, DDQN, GA, PSO, 
and SO, respectively. The daily carbon emission of the dis‐
patch plan given by the DPPO-based method is 11.38 t, 
which is 5.09%, 6.49%, 3.23%, 6.87%, 14.95%, 21.08%, 
28.16%, 21.03%, 15.83%, and 8.81% lower than that of 
D4PG, TD3, PPO, DDPG, A3C, SAC, DDQN, GA, PSO, 
and SO, respectively.

The results show that DRL-based dispatch algorithms with 
a continuous action space outperform the PSO- and SO-
based algorithms. This is a consequence of the fact that 
DRL-based dispatch algorithms do not rely on day-ahead 
forecast information or an assumed distribution of uncertain‐
ty. In contrast, the DRL-based algorithm (DDQN) with a dis‐
crete action space is limited to a finite number of actions 
available in the action space. Therefore, its scheduling re‐
sults are the worst among all algorithms.

1.2

0.9

0.6

0.3

0

00:00 03:00 06:00 09:00

-0.3

-0.6

P
o
w

er
 (

M
W

)

12:00 15:00 18:00 21:00 24:00
Time

(a)

Pptg; Pgrid; Peb; Pchp; PloadPbes; Pre;

1.2

0.9

0.6

0.3

0

00:00 03:00 06:00 09:00
-0.3

P
o
w

er
 (

M
W

)

12:00 15:00 18:00 21:00 24:00

Time

(b)

Htst; Hchp; Heb; Hgb; Hload

3

2

1

0

-1

00:00 03:00 06:00 09:00
-2

P
o
w

er
 (

M
W

)

12:00 15:00 18:00 21:00 24:00
Time

(c)

Qgst; Qchp; Qgb; Qptg; Qgas; Qload

Fig. 9.　Dispatch results of IES based on DPPO for test day in Scenario 2. 
(a) Electrical network. (b) Heating network. (c) Natural gas network.

1838



ZHANG et al.: LOW-CARBON ECONOMIC DISPATCH OF ELECTRICITY-HEAT-GAS INTEGRATED ENERGY SYSTEMS BASED ON...

The above analysis suggests that the DPPO-based method 
has higher learning efficiency and a better dispatch strategy 
than the other DRL-based algorithms. A comparison with 
other dispatch algorithms shows that the DPPO-based meth‐
od also provides a better dispatch strategy.

V. CONCLUSION

In this paper, considering the uncertainty of load demand 
and renewable energy, a low-carbon ED method for electrici‐
ty-heat-gas IES based on DRL is proposed. A reward func‐
tion based on the RPLT-CTM is introduced to guide the 
DRL agent to learn low-carbon dispatch actions. A DRL 
agent trained by DPPO realizes the real-time low-carbon ED 
of an IES. The following conclusions are drawn.

1) Benefiting from the ladder-type dynamic trading price, 
the RPLT-CTM effectively guides the DRL agent to learn a 
low-carbon ED strategy. The dispatch results verify that the 
agent based on the RPLT-CTM makes a dispatch plan with 
lower carbon emissions compared with the agent based on 
the traditional CTM.

2) The effectiveness of the proposed DRL-based method 

for low-carbon ED of an electricity-heat-gas IES is demon‐
strated by the dispatch results on the test day. The agent 
trained using the proposed method controls the dispatch ac‐
tions of each device in the IES in real time. The dispatch 
plan generated by the agent achieves the low-carbon econom‐
ic operation of the electricity-heat-gas IES.

3) The superiority of DPPO is verified through a compara‐
tive analysis. The distributed architecture of DPPO enables it 
to perform better than PPO in complex training environ‐
ments. Compared with the scheduling results of PPO, DPPO 
reduces the operating cost and carbon emissions by 2.13% 
and 3.23%, respectively. Compared with other distributed 
DRL algorithms (D4PG and A3C), the operating cost and 
carbon emissions of the DPPO-based method are reduced by 
1.53%, 3.76% and 5.09%, 14.95%, respectively. DPPO is al‐
so compared with other DRL algorithms (DDPG, A3C, 
SAC, and DDQN) and dispatch algorithms (GA, PSO, and 
SO). The operating costs of the DPPO-based dispatch meth‐
od are reduced by 2.84%, 3.76%, 10.99%, 12.40%, 4.84%, 
5.28%, and 3.82%, and the carbon emissions are reduced by 
6.87%, 14.95%, 21.08%, 28.16%, 21.03%, 15.83%, and 
8.81%, respectively.

In future work, considering the characteristics of multiple 
operators of IES, multi-agent reinforcement learning will be 
applied to the optimal operation of an IES.
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