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Low-carbon Economic Dispatch of Electricity-
Heat-Gas Integrated Energy Systems Based on
Deep Reinforcement Learning

Yuxian Zhang, Yi Han, Deyang Liu, and Xiao Dong

Abstract—The optimal dispatch methods of integrated energy
systems (IESs) currently struggle to address the uncertainties re-
sulting from renewable energy generation and energy demand.
Moreover, the increasing intensity of the greenhouse effect ren-
ders the reduction of IES carbon emissions a priority. To ad-
dress these issues, a deep reinforcement learning (DRL)-based
method is proposed to optimize the low-carbon economic dis-
patch model of an electricity-heat-gas IES. In the DRL frame-
work, the optimal dispatch model of the IES is formulated as a
Markov decision process (MDP). A reward function based on
the reward-penalty ladder-type carbon trading mechanism
(RPLT-CTM) is introduced to enable the DRL agents to learn
more effective dispatch strategies. Moreover, a distributed proxi-
mal policy optimization (DPPO) algorithm, which is a novel pol-
icy-based DRL algorithm, is employed to train the DRL agents.
The multithreaded architecture enhances the exploration ability
of the DRL agents in complex environments. Experimental re-
sults illustrate that the proposed DPPO-based IES dispatch
method can mitigate carbon emissions and reduce the total eco-
nomic cost. The RPLT-CTM-based reward function outper-
forms the CTM-based methods, providing a 4.42% and 6.41%
decrease in operating cost and carbon emission, respectively.
Furthermore, the superiority and computational efficiency of
DPPO compared with other DRL-based methods are demon-
strated by a decrease of more than 1.53% and 3.23% in the op-
erating cost and carbon emissions of the IES, respectively.

Index Terms—Integrated energy system (IES), carbon trad-
ing, optimal dispatch, deep reinforcement learning (DRL), dis-
tributed proximal policy optimization.

[. INTRODUCTION

HE limitations of traditional energy sources and the di-
versity of human needs pose considerable challenges to
current energy structures [1]. Integrated energy systems
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(IESs) can optimize the overall energy utilization while ex-
ploiting renewable energy sources. Therefore, IESs are con-
sidered as key elements in the development of future human
society [2], [3]. In contrast to traditional separated energy
systems, IES enables the comprehensive management and
economic dispatch (ED) of multiple energy resources, thus
improving the complementary utilization of electricity, heat,
gas, and transportation [4].

Recently, research work on the ED of IESs has received
increasing attention. However, the fluctuation and random-
ness of renewable energy and load represent a source of un-
certainty, thus complicating the solution to the ED problem
for IESs [5]. As an important branch of machine learning,
deep reinforcement learning (DRL) has the advantage of self-
learning through interactive trial and error in a dynamic envi-
ronment [6]. DRL has been applied to solve sequential deci-
sion-making problems with uncertainties [7]. Hence, DRL
appears to be suitable for renewable energy and electric sys-
tem optimization problems, which involve complex nonlin-
earities and uncertainties [8].

A relevant aspect to consider in the development of IESs
is global warming, which is caused by the emission of green-
house gases with CO, as the main component [9]. Reducing
CO, emissions has become a major goal in the development
of IESs. The carbon trading mechanism (CTM) is an essen-
tial market mechanism that guides energy companies to meet
emission targets. The CTM has attracted increasing interna-
tional attention, leading to the development of a framework
for an international carbon market, which was proposed at
the 26™ United Nations Climate Change Conference [10].
For example, the Hainan International Carbon Emission
Trading Center in China completed its first cross-border car-
bon emission trading in January 2023 [11]. The impact of
the CTM on the optimal scheduling problem of low-carbon
IESs requires further study and discussion.

Traditional dispatch methods are based on day-ahead fore-
casting information. However, these methods do not consider
uncertainties of load demand and renewable energy genera-
tion. Mathematical programming-based methods have been
developed to solve ED problems while considering these un-
certainties. Reference [12] proposes a scenario-based stochas-
tic optimization (SO) method for IESs to address the uncer-
tainties in energy demand and renewable generation. Refer-
ence [13] proposes a robust optimization (RO)-based day-
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ahead dispatch model that considers the effects of outdoor
temperature uncertainty on thermal comfort. Reference [14]
proposes an RO-based energy management framework for
the optimal day-ahead dispatch of a multi-energy microgrid
accounting for uncertainties of the power market price. Ref-
erence [15] proposes a hybrid SO-RO method for the coordi-
nate scheduling of a multi-energy system, in which erratic
and high-risk wind power production is modeled by RO,
whereas energy demands with a detectible probability distri-
bution are modeled as stochastic scenarios. The hybrid RO-
SO method in [16] can model uncertain variables with differ-
ent characteristics separately by combining the advantages of
the SO and RO methods. However, this method requires the
design of an optimal dispatch framework according to the
specific properties of the random variables involved, while
considering the operating cost and reliability of the system.
The distributionally robust optimization (DRO) [17] method
has gradually gained attention because it obtains decision re-
sults by considering the worst probability distribution of un-
certain parameters.

However, these dispatch methods have certain limitations.
Scenario-based SO may require the generation of several sce-
narios based on probability distributions, resulting in a se-
vere increase in computational burden. More importantly, the
optimal dispatch results may not satisfy the constraints of
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scenarios that are not considered [18]. As the RO-based
method may attempt to avoid the impact of uncertainties on
system operation, its results can be too conservative and are
often not conducive to the economical operation of IESs
[19]. The hybrid SO-RO method cannot overcome these dis-
advantages. Although the DRO-based method combines the
advantages of SO and RO, it requires complex modeling and
solving processes.

Control theory-based methods such as model predictive
control (MPC) have also been used to address uncertainties
in the optimal operation problem. Reference [20] proposes
an MPC-based bi-level optimal integration scheme for the
space heating load of buildings to achieve the economical
and reliable scheduling of the heating system in the presence
of uncertainties. Information gap decision theory (IGDT)
[21] is another method for addressing uncertainties. In [22],
a multi-objective IGDT-based method is applied to handle
the uncertainties associated with wind and photovoltaic (PV)
power predictions. Although MPC-based methods use reced-
ing horizon optimization to offset uncertainties, they still em-
ploy renewable energy generation predictions. Furthermore,
the selection of some parameters in the IGDT method is op-
erator-dependent. A summary of the advantages and disad-
vantages of the aforementioned methods for solving dispatch
problems with uncertainties is presented in Table I.

TABLE I
ADVANTAGES AND DISADVANTAGES OF METHODS FOR SOLVING DISPATCH PROBLEMS WITH UNCERTAINTIES

Reference Method Description
Many scenarios need to be generated. A severe computational burden may be incurred. The optimal dispatch results may
[12] SO . h . -
not satisfy the constraints of scenarios that are not considered.
[13], [14] RO The results are conservative because the worst case of uncertainty is considered.
[15], [16] SO-RO The operating cost and reliability of the system are considered. Appropriate scenarios are required.
[17] DRO The advantages of SO and RO are combined. The modeling and solving processes are complex.
Rolling optimization is applied to offset uncertainty. The process is complicated, and the optimization quality relies on
[20] MPC . .
the forecast accuracy of uncertain variables.
[21], [22] IGDT The choice of some coefficients is subjective.
[23]-45] DRL Instead of relying on prior knowledge, the agent collects data by interacting with the environment and learning from da-

ta. The agent can be applied to real-time dispatch after offline training.

In contrast to the aforementioned methods, the DRL agent
collects data by interacting with the IES environment and
learns a dispatch strategy from the data. In some studies,
DRL algorithms have been applied in discrete action spaces
to solve optimal dispatch problems that consider uncertain-
ties in microgrids [23], home energy management [24], dis-
tributed energy systems [25], and multi-energy microgrids
[26]. However, such a discrete action space not only affects
the accuracy of the dispatch results, but also causes the dis-
patch strategy to lose flexibility. Some studies have applied
DRL algorithms to solve optimal dispatch problems with a
continuous action space. In [27], an online energy manage-
ment system is built using policy gradient (PG) algorithm.
Several other alternatives have been proposed to address the
optimal scheduling problem of microgrids, including asyn-
chronous advantage actor-critic (A3C) [28], deep determinis-
tic policy gradient (DDPG) [29], and proximal policy optimi-
zation (PPO) [30]. However, all these studies consider only

the electrical network as the research object. Therefore, fur-
ther research on the advantages of multi-energy network cou-
pling for optimal dispatch should be conducted.

In [31], a PPO-based renewable energy conversion strate-
gy is applied to reduce the operating costs of an IES. To
solve the ED problem of a combined heat and power (CHP)
system, [32] adopts a distributed PPO-based method. Refer-
ence [33] proposes an improved DDPG algorithm for the op-
timal scheduling of an electricity-heat IES. Reference [34]
develops a real-time autonomous energy management strate-
gy for a residential multi-energy system based on DDPG.
Reference [35] proposes a PPO-based joint load scheduling
strategy to reduce the energy costs of a household multi-en-
ergy system. In [36], a DDPG-based dynamic energy conver-
sion and management strategy is used to coordinate econom-
ic costs and peak load shifting targets. Reference [37] devel-
ops an optimal dispatch framework based on A3C to handle
the dynamic changes on the supply and demand sides of an
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IES. However, these studies do not adequately discuss the
methods for reducing the carbon emissions of the system; in
fact, they only employ the operating cost of the system as
the dispatching target.

To satisfy the energy demands of an IES and minimize op-
erating costs and pollutant emissions, [38] proposes a DRL-
based intelligent energy management system. However, it
can only be applied to discrete action space. Reference [39]
employs the soft actor-critic (SAC) algorithm to solve the
optimal dispatch problem of electricity-gas IES using eco-
nomical operation and low carbon emissions as the objec-
tives of the dispatch model. In [40], an SAC-based energy
dispatch strategy is developed to optimize the multiple objec-
tives of an IES, including minimizing operational costs and
realizing economical low-carbon operation.

Reference [41] designs a multi-agent cooperative control
framework for the energy management of a multi-energy
hub using an attention mechanism based on multi-agent deep
reinforcement learning (MADRL). Moreover, in [42],
MADRL is employed to solve the optimal dispatch problem
of an IES considering energy trading, and in [41] and [42],
the carbon emission target is added to the reward function as
a penalty term. However, the CTM is not considered. Thus,
the IES cannot profit from the sale of carbon rights.

Several studies have attempted to introduce the CTM into
DRL-based frameworks. Reference [43] proposes a model-
free safe DRL method for the real-time automatic optimal en-
ergy management of a renewable-based energy hub with vari-
ous energy components, in which both the system energy
cost and carbon emissions are minimized. In [44], an IES co-
trading market that includes electricity, natural gas, and
CTM is proposed. The coordinative optimization problem as-
sociated to energy management is solved using an improved
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multi-agent DDPG algorithm. In [45], a joint peer-to-peer en-
ergy and carbon allowance trading mechanism for a building
community is proposed, considering both the flexibility of lo-
cal trading and decarbonization of building multi-energy sys-
tems. In these studies, the combination of the CTM and the
low-carbon ED problem of IES or the integrated energy trad-
ing market based on the CTM has demonstrated better re-
sults in controlling and reducing carbon emissions. However,
as DRL is applied to solve such problems, the effectiveness
of the CTM in helping agents learn low-carbon dispatch
strategies should be discussed in detail. The incentive and
penalty mechanism of the CTM for companies to reduce
emissions is similar to the idea of designing a reward func-
tion for DRL. Therefore, this deserves to be discussed in
depth, rather than being simply combined.

Most studies applying DRL methods to solve the optimal
dispatch problem while accounting for uncertainties have not
considered the carbon emissions of the system. Only a few
studies have considered carbon emissions by introducing a
traditional CTM-based reward function to obtain a low-car-
bon ED model for the IES. However, as the reward function
affects the effectiveness of the strategy learned by the agent,
it should be carefully designed within the DRL framework.
Moreover, the introduction of CTM increases the complexity
of the DRL environment. Hence, a more efficient algorithm
is required for the agent to learn low-carbon ED strategies.

To address the existing research gap, a DRL-based dynam-
ic energy dispatch method is proposed for the low-carbon
economic operation of an electricity-heat-gas IES. A compar-
ison of the elements considered in the development of our
model and those presented in the reviewed models is present-
ed in Table II.

TABLE 11
COMPARISON BETWEEN PROPOSED MODEL AND REVIEWED MODELS

Action space Energy Dispatch CTM
Reference - - — — —
Discrete Continuous Electricity Heat Gas Economy Emission Traditional ~ Ladder-type

[23]-[25] N N N

[26] N N N N
[27]-[30] v N N
[31]-[34] N N N N

[35] N N N N N
[36], [37] N N N N N

[38] N N N N N

[39] N N N N N

[40] N N N N N N

[41] N N N N N

[42] N N N N N
[43]-[45] N N N N N N

Proposed model N N N N N N N

To achieve low-carbon operation of the system, a reward-
penalty ladder-type CTM (RPLT-CTM) is introduced into the
DRL framework. The RPLT-CTM models the principles that
guide enterprises to reduce emissions. For this reason, we de-

cide to use the RPLT-CTM-based reward function with vari-
able carbon trading prices to guide the agent more effective-
ly in learning the low-carbon economic scheduling strategy
for the IES. Moreover, to solve the optimal scheduling prob-
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lem, the distributed proximal policy gradient (DPPO) algo-
rithm is introduced, which is a policy-based DRL algorithm
that is less sensitive to hyperparameters and can avoid large
policy updates with undesirable action selections.

The major contributions can be summarized as follows.

1) A DRL-based method for low-carbon ED of an electric-
ity-heat-gas IES, which considers economics and carbon
emissions, is established. The low-carbon ED is mathemati-
cally modeled as a Markov decision process (MDP).

2) The RPLT-CTM is introduced into the DRL framework
to realize low-carbon ED. Compared with the traditional
CTM, the RPLT-CTM-based reward function has been prov-
en to guide the DRL agent in formulating an improved low-
carbon ED strategy.

3) To address the increased complexity introduced by the
low-carbon objective, the DPPO algorithm with a distributed
architecture is introduced to train the DRL agent. A compara-
tive analysis demonstrates the computational effectiveness
and superiority of this algorithm.

The remainder of this paper is organized as follows. Sec-
tion II presents the electricity-heat-gas IES, including the car-
bon trading cost calculation model for the RPLT-CTM-based
IES, and the mathematical model for IES optimal dispatch.
In Section III, the optimal dispatch problem is formulated as
an MDP, and the DPPO-based method for IES optimal dis-
patch is described in detail. Simulation results and the corre-
sponding analysis are presented in Section IV. Conclusions
and future work are discussed in Section V.

II. ELECTRICITY-HEAT-GAS IES

The primary goal of the optimal dispatch of the IES is to
improve the economic benefits of the system, i.e., on the
premise of satisfying the energy demand, the output of each
piece of equipment at each time step is effectively arranged
to achieve the optimal economic operation. Furthermore, to
realize low-carbon operation of the system, the RPLT-CTM
is introduced to incorporate carbon trading costs into the op-
erating costs of the system. To this end, we establish a com-
prehensive ED model that considers the RPLT-CTM. The
structure of electricity-heat-gas IES is shown in Fig. 1.

1 ‘ i

Renewable energy BES

| I |
Power plant . Electricity  Electrical
= Ep D network load
EB PtG TST
_rlisll
. oy e
" Heatin Heat load
! E' EI networﬁ
CHP GB GST
!-u‘@-‘_
N ‘:_‘f 7 o
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Natural gas netwo r%( Natural gas
supplier load

Electricity flow; — Heat flow; — Natural gas flow

Fig. 1. Structure of electricity-heat-gas IES.

JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 11, NO. 6, November 2023

The IES consists of energy suppliers, renewable energy
generation devices, load demand, coupling devices, and ener-
gy storage devices. Renewable energy generation devices in-
clude wind turbines (WTs) and PV generators. The load de-
mand includes electrical, heat, and gas loads. The coupling
equipment includes a CHP, power-to-gas (PtG), and gas boil-
er (GB). The energy storage equipment includes battery ener-
gy storage (BES), gas storage tanks (GSTs), and thermal
storage tanks (TSTs).

A. Carbon Trading Cost Calculation Model for RPLT-CTM-
based IES

The CTM can guide energy companies to reduce emis-
sions, and its essence is to treat carbon credit allowances as
freely tradable commodities [46]. The specific model is pre-
sented as follows.

1) Initial Carbon Credit Allocation Model

The allocation of initial carbon credits is a prerequisite for
low-carbon power dispatch. The initial carbon emission al-
lowance allocation is performed using the free allocation
method.

In the IES model, the electricity purchased from the exter-
nal grid is produced by coal-fired units. In addition to the
equipment in the IES that generates carbon emissions, natu-
ral gas loads are also considered. The CHP unit is consid-
ered as heat supply equipment, and its carbon credits are al-
located according to the equivalent total heat supply. Thus,
the power generated by the CHP units needs to be converted
into an equivalent heat supply. The model is expressed as:

Epg =E +ECHP,C+EGB,C+E

grid, ¢ gload, ¢
T
Egrid,cziengrid(t)At
=1
T
Ecyp. =4 ((DPCHP(t) +hCHP(t))At

= (M

EGB,c:j'hthB(t)At

t=1

~

T
Egload. = igasz‘qload( t ) At
t=1

where E,_ is the total carbon credit allowance of the IES;
E, o Ecyp» and Eg, are the carbon credit allowances for
coal-fired units, CHP, and GB, respectively; E,,,,. is the car-
bon credit allowance received by the user for the consump-
tion of natural gas; Az is the interval for each time step;

Parid(1)s Deup(t), heyp(t), and hgy(t) are the output power of
the coal-fired units, CHP, and GB at time step ¢, respective-
1y; qua(t) is the flow rate of the natural gas load at time
step #; 4., 4;, and 4., are the carbon credit allocation factors
for the electricity supply equipment, heat supply equipment,
and natural gas load, respectively; and ¢ is the conversion
factor of power generation into heat supply, which is taken
as 6 MJ/kWh.
2) Carbon Emission Calculation Model

In the IES, the operation of the CHP units and GB gener-
ates carbon emission. The electricity purchased from the ex-
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ternal grid comes from coal-fired units, the operation of
which generates carbon emissions. The consumption of natu-
ral gas loads, mainly through combustion, also generates car-
bon emissions. The working process of the PtG unit involves
the absorption of CO,. The carbon emission model of the
IES is:

Eys.=E

grid, e + ECHP. e + EGB. e + Eglnadfe - EPtG, e

T
Egrid,e :ﬁengrid(t)At
=1

ECHP,e:ﬁhz({ppCHP(t) +hCHP(t))At

t=1

N 2
EGBﬁe:ﬂhthB(t)At
t=1
T
Egload,e =ﬁgasquaad( t) At
t=1
T
EP[G,e:ﬂP/GsztG(t)At
t=1
where E,, is the total carbon emission of the IES; E .,
Ecype Egp,» and E,, , are the carbon emissions generated

the by coal-fired units, CHP, GB, and natural gas load, re-
spectively; E,, is the amount of CO, absorbed in the ener-
gy conversion process of the PtG unit; 8, f,, and B, are
the carbon emission factors for the electricity supply equip-
ment, heat supply equipment, and natural gas load, respec-
tively; pp(2) is the electric power consumed by the PtG
unit at time step ¢ and S, is the parameter for the absorp-
tion of CO, in the energy conversion of the PtG unit.
3) Carbon Trading Model

The RPLT-CTM [47] divides several net carbon emission
intervals and guides the system in reducing CO, emissions
through incentives and penalties. In addition, the carbon trad-
ing price shows a stepwise increase with the cumulative car-
bon trading volume, as shown in Fig. 2.

Carbon trading price

c(1+3a)
1+2
PurchaseT C(C a +Z;
AR 5 2 30 ELE,
: * —c(1+o)
! : 1
e ~c(1420) Sale|

Fig. 2. Relationship between carbon trading price and cumulative carbon
trading volume.

The mathematical model of the reward and penalty ladder-
type carbon trading is expressed as:

EIES(t) = EIESA,e(t) - EIES,c(t)

EIES:EIES‘e_E[ES,c

€)
4)
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c(1+20)Ep(t) Ep<—6
c(l+0)E(t) —0<E<0

Coli) = CE (1) 0<E; <o 5)
c(l+a)Eg(t)  O0<E<d
c(1420)Egs(t)  O<E <26
c(1+3a)E (1) 30<E

where E(¢) is the amount of carbon trading at time step
E, is the cumulative carbon trading volume; C.,(7) is the
carbon trading cost of the IES at time step #; ¢ is the carbon
trading price; a is the penalty factor, which is taken as 0.2;
o is the reward factor, which is taken as 0.25; and ¢ is the
length of the carbon trading range.

B. Mathematical Model for IES Optimal Dispatch

1) Objective Function

The primary goal of the IES dynamic energy dispatch is
to improve the economy and environmental friendliness of
the system while meeting the constraints. The objective func-
tion is mainly composed of energy purchase and carbon trad-
ing costs. The objective function F of the optimal dispatch is
defined as:

F=mini(CE(t) +Cey(1)) (6)

where C,(#) is the energy purchase cost at time step £.
2) Cost of Energy Purchase

To satisfy the electricity-heat-gas load demand, the system
purchases energy from energy suppliers as fuel for the opera-
tion of the coupled equipment. The equipment that consumes
electrical energy includes the PtG units and electric boiler
(EB), and the equipment that consumes natural gas is the
CHP units and GB. This cost is expressed as:

Cplt) =Cp(t) +Cy () (7)
Cooer(t) =,(1) Pyia(t) At (8)
Coos(t) =2, (1) q,, (1) At )

(¢t) and C

gas
electricity and natural gas, respectively; ¢, () is the output

where C (¢) are the costs of the purchased

power
flow rate of the natural gas supplier; ¢,(¢) is the electricity
price; and &,,,(¢) is the natural gas price.
3) Constraints

The constraints of IES dynamic scheduling consist of ener-
gy balance, equipment operation, and energy supplier con-
straints.

1) Energy balance constraints

To meet the electricity-heat-gas load demand at each time
step, the energy balance constraints are:

Paid(t) +Pre(t) +Dcp(t) +pgs(t) =
Proad(t) +Pes(t) +Pp(2) (10)
hep(t) +hpg(t) +hap(t) +hpg(t) =hye(t) (1)
Tas(1) +0pi6(1) +qsi(t) = Grua(t) +Gep(t) +q (1) (12)

where p,.(t) is the renewable energy generation; p,,(¢) is
the charging/discharging power of the BES; p,,(¢) is the
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electric power consumed by the EB; /1,,(#) is the power out-
put of the EB; &,,(¢) is the charging/discharging power of
the TST; gp(¢) is the output flow rate of PtG; g;s (1) is the
charging/discharging power of the GST; qp(2) is the flow
rate of natural gas consumed by CHP; g,(¢) is the flow rate
of natural gas consumed by the GB; and p,, () and %,,,()
are the electrical load and heat load, respectively.

2) Equipment operation constraints

(D Energy supply devices

a) CHP

The CHP unit provides heat and electricity to the system
and acts as an energy provider in the electricity and heating
networks. The mathematical model of the CHP unit is ex-
pressed as:

pCHP(t) =kCHPhCHP(t) (13)

_ Pep(t) +hep(t)

qCHP(t) = (14)

where k., is the thermoelectric ratio of CHP; 7, is the ef-
ficiency of CHP; and H,;, is the high calorific value of natu-
ral gas, which is taken as 39 MJ/m’.

The power output and ramping rate constraints of the
CHP unit are given by (15)-(18).

NenpHoy

Peip<Penp(t) <PCisp (15)
e < heyn(1) < (16)
_RdcmAtSPCHP(t) _pCHP(t_ 1) <REAL (17)
RPN <heyp(t) =heyp(t—=1) <RE, AL (18)

min max

where pgy and pg, are the lower and upper bounds of the
output electric power, respectively; A, and Al are the
lower and upper bounds of the output heat power of CHP, re-
spectively; pep(t—1) and hp(£—1) are the output electric
and heat power of CHP at time step 7— 1, respectively; and
R& and RY,, are the ramping rates of CHP.

b) PtG

The PtG unit converts electric power into gas. The rela-
tionship between the electric power consumption and the nat-
ural gas supply is expressed as:

_ rlPtGpPrG(t)
qP/G(t) - HGV

where 7,,; is the efficiency of PtG.
The power and ramping rate constraints of the PtG unit
are shown in (20) and (21), respectively.

(19)

max

p}n:zig SthG(t) SPrG

_R;i;t)gnAtSthG(t) _thG(t_ 1) SRpGAt (21

where pp. and pp are the lower and upper bounds of the
consumed electric power, respectively; p,(£—1) is the elec-
tric power consumed by PtG at time step 71— 1; and Ri" and
R are the ramping rates of PtG.

c) EB

The EB converts electric power into heat to satisfy the
heat load. The relationship between the electric power con-
sumption and the heat supply is expressed as:

() =15 pp(t)

(20)

(22)
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where 7., is the efficiency of the EB.
The power output and ramping rate constraints of the EB
are shown in (23) and (24), respectively.

hig <hg(t) < (23)
“ROMAL< b (1) —hy(t—1) <R AL (24)

where Ay and Al are the lower and upper bounds of the
output heat power of the EB, respectively; h.,(¢—1) is the
power output of the EB at time step /- 1; and Rj," and R,
are the ramping rates of the EB.

d) GB

The GB converts natural gas power into heat power,
which is used to supplement the remaining heat load de-
mand when the CHP heat supply is insufficient. The relation-
ship between the natural gas power consumption and the
heat supply is expressed as:

hes(t) =163965(t) Hey
where 7, is the efficiency of the GB.

The power output and ramping rate constraints of the GB
are given by (26) and (27), respectively.

(25)

hop <hgy(t) <hgy (26)
~REGM A< hgp(t) —hgy(t—1) <REAL @7

where A% and A% are the lower and upper bounds of the
output heat power of the GB, respectively; hgz(¢—1) is the
power output of the GB at time step ¢— 1; and R%,™ and R%,
are the ramping rates of the GB.

) Energy storage equipment

a) BES

The BES can store excess energy in the system, which
can be reasonably discharged to meet the electrical demand
of customers in case of insufficient power supply. For the
BES, the state of charge (SOC) is a key operational parame-
ter that directly reflects the remaining energy of the device.

sOC.. <SOC(t) <SOC,. (28)
SOC(t)zSOC(t—l)—nBESpMiS(t)At (29)
QBES

Nep Pas(t) <0
NpEs= > (30)

1/ 4 Pies(t) 20
where SOC (t) and SOC(¢t—1) are the SOCs of the BES at
time steps ¢ and ¢—1, respectively; SOC , and SOC,__ are

the lower and upper bounds of the SOC of the BES, respec-
tively; O, is the capacity of the BES; #,,¢ is the charging/
discharging efficiency of the BES; and #_, and 7, are the
charging and discharging coefficients, respectively.

b) TST

Similar to the BES, the TST can store excess heat and
supply the heat needed for a heat load in the event of a heat-
ing shortage. Similar to the definition of SOC, the heat stor-
age degree (HSD) is defined to monitor the amount of heat
energy that can be stored in the equipment.

HSD,, <HSD(t) <HSD,,, (31)
hTST( t)
HSD(t) =HSD(t—1) =g At (32)
QTST
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Nen hTST(t) <0
l/”dis hTST(t) ZO

where HSD(t) and HSD(t-1) are the HSDs of the TST at
time steps ¢ and ¢—1, respectively; HSD, , and HSD, _ are
the lower and upper bounds of the HSD of the TST, respec-
tively; O, is the capacity of the TST; and #,, is the charg-
ing/discharging efficiency of the TST.

c) GST

The gas storage degree (GSD) of the GST is defined to
monitor the amount of natural gas energy that can be stored
in the equipment.

(33)

Nrsr=

GSD,,,<GSD(t) <GSD,,. (34)
_ QGsr(t)
GSD(t) =GSD(t—1) —nsgr At (3%5)
Ogsr
Nen Gosr(t) <0
Nosr= ) (36)
1/1 45 qGST(t) 20

where GSD(t) and GSD(¢—1) are the GSDs of the GST at
time steps ¢ and ¢—1, respectively; GSD, . and GSD,  are
the lower and upper bounds of the GSD of the GST, respec-
tively; Qg 18 the capacity of the GST; and 7, is the charg-
ing/discharging efficiency of the GST.

(3 Energy supplier constraints

In the dispatching model established in this paper, electric-
ity and natural gas need to be purchased from external sourc-
es to supply the equipment and meet the load demand. The
energy supply device satisfies the following constraints.

min max

pgridgpgrid(t) Spgrid (37)

max

oor < Gus(1) < (38)
where p;;,i,.';, and plo are the lower and upper bounds of the
output electric power of the coal-fired units, respectively;
and gy, and g are the lower and upper bounds of the out-
put gas flow rate of the supplier, respectively.

max
grid

III. DPPO-BASED METHOD FOR IES OPTIMAL DISPATCH

In this section, the IES optimal dispatch is formulated as
an MDP, and the specific reinforcement learning algorithm
is explained.

A. RL Framework

MDP is a mathematically idealized form of the RL prob-
lem and a theoretical framework for achieving goals through
interactive learning. An MDP consists of a state space S, ac-
tion space A4, state transition probability function P, reward
function R, and discount coefficient .

An RL framework is built to solve the low-carbon ED
problem for an IES, as shown in Fig. 3. In the RL environ-
ment for the IES dispatch problem, the state space includes
information on the electric load, heat load, natural gas load,
predicted value of renewable energy output, and state of the
energy storage equipment. The action space includes the out-
put power of the CHP units, electricity-to-gas equipment,
EBs, and GBs as well as the power of electricity and natural
gas purchased from external suppliers. The rewards include
the optimization targets defined above such as operating
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costs and carbon trading costs. During the training process,
the dispatch agent observes the load information and equip-
ment states in the environment at time step ¢, adjusts the out-
put power of each piece of equipment to satisfy the load de-
mand, and then receives the reward and the next state s,
from the environment back to the agent. The fundamental el-
ements of the MDP can be formulated as follows.

©Actionspace | |l
Energy supply devices Energy storage devices Server
B . : : 3
I op@al| i O |
hCIIP hEB qPrG pBES hTST : —_— ;
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, a, |--eeeegeeeeee
State space ‘[
Renewable || Information of 7, St 3
Load demand energy energy storage ;
generation devices
i B B 1~ lg% : DNN
| Proad Pioaa Yioad Pre||SOC HSD GSD|i| [ -
———————————————————————————— Agent
Environment
Fig. 3. RL framework for IES optimal dispatch.

1) State Space

The state space S contains the information that describes
the state of the IES, and the dispatch agent decides the dis-
patch strategy based on the observed state at each time step.
Specifically, the state space S includes the electrical load
Puaa(t), heat load #,,,(¢), natural gas load q,,,(t), power
output of renewable energy pg(t), SOC of the BES
SOC(t), status (HSD) of the TST HSD(¢), and status (GSD)
of the GST GSD(t). Consequently, the state space is defined
as:

Sz: {pload(t)’hload(t)vqload(t)ﬂpRE(t)ﬂ

SOC(t),HSD(t),GSD(t),t} (39)

2) Action Space

The dispatch agent realizes the optimal scheduling strate-
gy for the IES by controlling the electric and heat power out-
puts of CHP (ppp(), hepp(t)), heat power output of the EB
hs(t), heat power output of the GB h,(7), the gas power
output of PtG gqp(1), electric power purchased from the
main grid p,,,(¢), natural gas power purchased from the nat-
ural gas supplier g,,(¢), electric power output of the BES
Pais(t), heat power output of the TST /,(¢), and natural
gas power output of the GST g (¢). The electric and natu-
ral gas power consumed by each device in the system such
as qc,w(t) is calculated from its output power. The energies
purchased from external energy suppliers, p,,,(¢) and q,,(),
are calculated using electric power balance constraints and
gas power balance constraints, respectively. The heat power
output of the GB A ,(¢) can also be calculated using the
heat power balance constraint. That is, when / (1), hg,(7),
Gpic(t)y Pois(t), hy (1), and q.g(¢) are jointly determined,
the other variables can be obtained immediately. Therefore,
action space is expressed as:

a,= {hCHP(t)vhEB(t)qutG(t)’pBES(t)vhTST(t)’qGST(t)} (40)
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3) Reward Function
The reward function calculates the reward value r, based
on the current state and action (St,at), then returns it to the

agent. The purpose of the reward is to guide the agent to ac-
complish the stated goal, i.e., low carbon emissions and ED
of the IES. Therefore, the reward function includes the oper-
ating cost C, and carbon trading cost C,, of the system. Con-
sidering that the goal of the training agent in reinforcement
learning is to maximize the cumulative reward, the reward
value needs to be set to be a negative value. To accelerate
convergence, a baseline b is added to the reward function so
that positive and negative reward values can be given. The
reward function can be defined as:

r,=—(CE(s,,a,) +CCT(S,,at) —b)

where b is taken as 30.
4) Uncertainty of RL Environment

The stochastic nature of renewable energy generation and
multiple energy loads needs to be considered in the IES opti-
mal dispatch problem. To enable the agent to handle this un-
certainty, the RL environment for the optimal scheduling
problem needs to be established with stochasticity. Before
the start of training for each episode, the environment ran-
domly samples the load data that satisfy the upper and lower
bound limits.

In each episode, a group of states is generated within the
upper and lower limits. The energy loads and the renewable
energy generation are generated randomly within the pre-
defined range, which means that the dispatch strategy given
by the agent can handle not only the uncertainty of loads but
also the uncertainty of renewable energy generation.

B. DPPO

The DRL algorithm is introduced to solve the optimal dis-
patch problem for a continuous action space. PPO [48] is a
policy-based DRL algorithm for solving continuous action
decisions, which is proposed by Google’s DeepMind team
[49] based on PPO, drawing on the parallel training idea of
A3C. DPPO is better suited for rich simulation environments
that consider uncertainty. We introduce the DPPO algorithm
to solve the problem of optimal dispatch of IES considering
uncertainty. The equations for DPPO in this subsection can
be found in [43] and [44].

The PPO algorithm is a policy-based DRL algorithm with
an actor-critic architecture. The advantage function An( st,a,)

(41)

is introduced to evaluate the goodness of action ¢, in state s,
An(st’at) :Qn(st’at)_Vn(St) (42)
The action-value (Q-value) function Q,[(st,a,) is used to
evaluate the performance of policy z, and is defined as:

Qn’( St at) = E(s[,az)ﬂr,, iytrJSt =S At =a, (43)
t=0

where 7, is the policy = with parameter #; and y is the re-
ward discount factor.

The state-value function V,[(s,) is used to evaluate the
quality of state s,, and is expressed as:

JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 11, NO. 6, November 2023

(44)

Vn( St) = Eu,~7r‘,(~\ s,)|:zo‘ytrtlst = St :|
1=

From (43) and (44), the value of the action value function
Q,[(s,,a,) represents the expectation of the cumulative re-
ward for choosing action g, in state s, under the guidance of
policy network z. Furthermore, the value of the state-value
function Vn(s,) represents the expectation of the cumulative
reward for all actions in state s, under policy 7.

With the introduction of the advantage function A”(st,at),
the original objective function can be rewritten as:

ng/,(atls,)

JN0)=E,_ 47 (spa) | @43)
e Py

where 0" is the parameter of the policy network to be opti-
mized; and 0" is the parameter of the policy network that in-
teracts with the environment to sample data. This is the sur-
rogate objective function.
Next, the clipped surrogate objective method is employed.
The surrogate objective function is written as:
Jﬁgo-azp(eﬂ) :E(S‘,HI)N,, [min(per“(Sﬂat)’

I

clip(p,,, l1-¢g1 +3)A9‘”(s,,a,)] (46)
l—¢ p(0)<l-¢
Cllp(p0,1—8,1+8)= l+e p(0)>1+e¢ 47)
p(@) otherwise
JAal
py= T is) (48)
na,lv(atlst)

where ¢ is a surrogate objective function clipping rate ap-
plied to limit the change in policy.

The clip function limits the probability ratio to a certain
range and takes the maximum or minimum value if it is out
of range. By clipping the probability ratio, changes in policy
are maintained within a reasonable range. This ensures that
the change in policy is not too intense when the advantage
is positive and that the update direction is correct when the
advantage is negative. Finally, the PPO algorithm updates
the policy network parameters using gradient ascent.

0"=0"+a"'V,.J e C/ip( " )

where ¢ is the learning rate of the policy network.

The PPO algorithm has an actor-critic architecture. After
updating the policy network, i.e., actor network, the critic
network is updated by minimizing the loss function based on
temporal-different (TD) theory.

(49)

L(6°) = Ea/wﬂm(.‘s,)[(q,— v (s,) )2} (50)
q,=r+7V (s,.1) (51)
02=0°+0a°V ,L(69) (52)

where L(6?) is the loss function; and o is the learning rate
of the O-value network, i.e., critic network.

To train the agent to obtain better performance in the es-
tablished optimal IES scheduling environment, the agent
must fully explore the environment to face different scenari-
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os. Therefore, the PPO algorithm with distributed settings
was introduced to achieve better training performance. DP-
PO includes workers and a chief, where the workers are set
up as multiple threads responsible for interacting with their
respective environments to sample data and provide the data
to the chief for learning. All parallel threads share the same
policy network parameters from the global learner. The chief
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updates the network parameters and passes the pre-updated
parameters to the workers. Each worker does not compute or
push the gradient of its own policy update to the chief; this
method promotes the efficiency of the multithreaded data
collection and reduces the difficulty in implementing the al-
gorithm. The framework of the DPPO algorithm training pro-
cess is illustrated in Fig. 4.

777777777777777777777777777777777777777777 DPPO-chief
i Interaction between agent ~ Actornetwork | | Critic network
} and environment : (policy network) (value network)
' a, 'DPPO-workers; ! : -
3 : | Clipped surrogate TD error
r, Actor loss function loss function
nvironmen u ’(s\ 0" ) J(g;:') 3 L(gQ) :
5 l Update 0”? l Update 69
i 1 , ' :
3 : Update 0 | Actor T(s)! Critic
; ' w(s16") Visl0?)
' L S R e R sy s
. r, Actor
! (516" Nll)ir?é;y i ST St
: iniba
| I — c
: Sl

(S1> @1, s ooes S5 A7 1)

L I,,,,,,,,,,,,,,,,,,,,,J

Store trajectory

Fig. 4. Framework of DPPO algorithm training process.

The distributed setting of DPPO is reflected in the parallel
collection of data based on the multithreaded worker net-
work for the chief network update. In simple terms, DPPO
can be understood as a multithreaded parallel PPO. The train-
ing process of DPPO is realized through multithreading and
communication among multiple threads. The exploration
thread of the workers and the update thread of the chief are
not executed simultaneously and communicate through
events. The flow of the alternating execution of multiple
threads in DPPO is shown in Fig. 5.

Exploration thread Update thread

<

-{ Exploration event: wait ]

l

[ Update event: clear ]

Update event: wait

[ Exploration event: clear ]

l l

Update event: set [ Exploration event: set }—

[

Flow of alternating execution of multiple threads in DPPO.

Fig. 5.

At the beginning of training, the exploration event is set
to be “set”, and workers start interacting with the environ-
ment to collect data. The update event is set to be “clear”
and enters the waiting state. In the exploration thread, the
global variable global update counter is used to record the
number of steps taken by the workers to interact with the en-
vironment. When the value of global update counter is larg-
er than the mini-batch size, the update event is set to be
“set” and the chief network starts to update. The exploration
event is set to be “clear” and will enter the waiting state

when running to “wait”. After the chief network update is
complete, the update event is set to be “clear” and suspend-
ed. The exploration event is set to be “set” and workers con-
tinue to interact with the environment to collect data. The of-
fline training process of the DPPO algorithm is shown in the
pseudocode in Algorithm 1.

IV. CASE STUDY

In this section, a platform for IES optimal scheduling is
established and experiments are conducted using this IES
platform to verify the superiority of the proposed DPPO-
based dispatch method. The parameter settings, experimental
details, and concluding analysis are presented in the follow-
ing subsections.

A. Description of IES

To demonstrate the performance of the proposed DPPO-
based dispatch method, the IES shown in Fig. 1 is used as
an example in the case study. The IES consists of a power
grid, heating network, natural gas network, renewable gener-
ation devices, and energy storage equipment. In addition to
using the CHP, GB, EB, and PtG to satisfy the load demand,
energy can be purchased from external energy suppliers.

The purchasing electricity price is the time-of-use (TOU)
price. The peak-time price is 12.3 ¢/kWh (12:00-20:00), the
valley-time price is 4.2 ¢/kWh (00:00-08:00), and the flat-time
price is 7.8 ¢/kWh at all other time. The natural gas price is
fixed at 49 ¢/m’. In the RPLT-CTM, the carbon trading price
is 40 $/t, and the length of the carbon trading range is 2 t.
The property parameters of RPLT-CTM including carbon
credit allocation factors and carbon emission factors are list-
ed in Table III.
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Algorithm 1: off-line training process of DPPO

Initialize parameters #" and 6 randomly
Initialize old actor parameters: 6" < 6"
exploration_event.set(), update_event.clear()
global update counter=0
for episode=1 to N do
if not exploration_event.set() then
exploration_event.wait()
end if
Exploration thread
for workers=1 to U do
Reset the initial state of IES dispatch environment
Generate random scenario
for dispatch time step =1 to 7 do
Observe state s,
Select energy dispatch action a, by old actor 6"
Execute action a,
Calculate state of equipment by (13)-(38)
Calculate reward 7, by (41)
Obtain the next state s, ,
global _update counter+=1
if global update_counter>mini_batch_size then
exploration_event.clear()
update_event.set()
end if
end for
end for
Get trajectory 7 and push data to chief
if not update_event.set() then
update event.wait()
end if
Update thread
for m=1 to M do
Calculate loss function L(69) by (50)
Update parameters of critic network 6¢ by (53)
Calculate surrogate objective function J(6") by (46)
Update parameters of new actor 6 by (49)
Update parameters of old actor: 6 < 6"
end for
global update_counter=0
update_event.clear()
exploration_event.set()

end for
TABLE III
PROPERTY PARAMETERS OF RPLT-CTM

Parameter Value Parameter Value
B, ((/MWh) 1.08 4, (/MWh) 0.798
B, (/MWh) 0.234 A, ((/MWh) 0.385

/)’gm (t/m*) 2.166x107° /lgm (t/m*) 1.95x107°
P (/MWh) 0.106

The parameters of the equipment operating constraints are
provided in Table IV. The energy storage equipment parame-
ters are provided in Table V.

TABLE IV
PARAMETERS OF EQUIPMENT OPERATING CONSTRAINTS

The minimum The maximum Climbing power

Equipment

power (MW) power (MW) (MW)
CHP 0.2 1.2 0.1250
PtG 0.0 0.5 0.0625
EB 0.0 0.6 0.0750
GB 0.0 0.6 0.0750
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TABLE V
ENERGY STORAGE EQUIPMENT PARAMETERS

Equipment C(?\}/)IE{J\CIB thﬁacr ig;rrllfy D::Sffcllé?;iicr;g
BES 030 0.92 0.5
TST 0.30 0.95 0.95
GST 0.54 0.98 0.98

B. Algorithm Setup

The proposed method and compared algorithms were im-
plemented using TensorFlow and MATLAB. Simulation ex-
periments were performed on a server with an Intel Xeon
Gold 6230R CPU and an NVIDIA Quadro RTX 5000 GPU.

The core hyperparameter settings used for training the DP-
PO algorithm are listed in Table VI. The Adam optimizer is
used to update the weights and biases of the actor and critic
networks. The actor and critic networks contain two hidden
layers with 300 and 100 neurons, respectively. All hidden
layers use the rectified linear unit (ReLU) activation func-
tion.

TABLE VI
CORE HYPERPARAMETER SETTINGS FOR TRAINING DPPO ALGORITHM

Hyperparameter Value
Learning rate for actor network 0.0001
Learning rate for critic network 0.0002
Discount factor 0.97
The maximum episode 10000
Step in each episode 96
Mini-batch size 64
Surrogate objective function clipping rate 0.2
Number of parallel workers 4

C. Training Process

The DRL environment used to train the agent to learn a
low-carbon economy dispatch policy was implemented based
on Python 3.6, the framework of which is described in detail
in Section III.

To verify the effectiveness of the established environment,
an agent is trained in it using the DPPO algorithm. After
testing different combinations of hyperparameters, the train-
ing results for the original version of the DRL environment
are found to be poor. Therefore, to achieve better training re-
sults, state normalization (whitening) and reward normaliza-
tion (whitening) are introduced. The cumulative rewards ob-
tained from training in environments in which different
tricks are applied are shown in Fig. 6.

In Fig. 6, the legend “None” represents the original ver-
sion of the environment; “With state norm” represents the
environment with state normalization; “With reward norm”
represents the environment with reward normalization; and
“With state norm & reward norm” represents the environ-
ment that uses both state normalization and reward normal-
ization. The rewards obtained from the training show that
the convergence of the algorithm cannot be improved de-
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spite the use of reward normalization. The reward value re-
mains low and fluctuates significantly. This result indicates
that the agent does not learn an effective scheduling strategy.
The reward value almost converges between 1500 and 3000
rounds. However, convergence is not maintained during the
subsequent training process. When both state normalization
and reward normalization are used, the reward value quickly
converges and remains stable.
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Fig. 6. Comparison of cumulative rewards in DRL environments with

tricks.

By comparing and analyzing the training results of differ-
ent environments, we notice that in the environment estab-
lished in this study, the actor network and critic network are
more suitable for the input-normalized states. In addition,
the normalization of the reward helps the DRL agent to
learn the dispatch strategy more effectively.

D. Simulation Result Analysis

1) Analysis on Results Based on Two Scenarios

To analyze the benefits of introducing the RPLT-CTM for
the low-carbon economic operation of IES, two scenarios are
set up for comparative analysis, which are described as fol-
lows.

1) Scenario 1: the CTM is a carbon tax model in which
the price of buying or selling carbon rights is fixed and does
not change with the volume of carbon rights traded.

2) Scenario 2: the CTM is the RPLT-CTM model, the de-
tails of which are described in Section II.

To demonstrate the effectiveness of the proposed method,
the actual operational data of an IES [37] are used for verifi-
cation. The power load, heat load, gas load, and renewable
energy generation power are presented in Fig. 7.

1.2
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Time
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Renewable energy generation

Fig. 7. Load demand and renewable energy generation on test day.
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To intuitively compare the characteristics of the carbon
trading models, the agent trained based on the DPPO algo-
rithm in the two scenarios provides the scheduling plan ac-
cording to the agent trained based on the DPPO algorithm in
the two scenarios shown in Fig. 8. The scheduling results
for the two scenarios, including the system operating costs
and carbon emissions, are shown in Table VII.

2.0 1 — Cost of scenario 1 1130
Cost of scenario 2 1120
1.8} L .
Carbon emission of scenario 1 1110
16r Carbon emission of scenario 2 1100
14t 190
g N 80
w127 / 1 a
2 170 &€
g 1.0r =
o 160 o
£ 08} /ﬁ/ 150 ©
8 06} 140
U .
130
0.4 120
0271 110
0 0
00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 24:00
Time
Fig. 8. Operating costs and carbon emission based on two scenarios.
TABLE VII
SCHEDULING RESULTS OF TWO SCENARIOS
Scenario Carbon Carbon Carbon trading ~ Operating
credit (t)  emission (t) cost ($) cost ($)
Scenario 1 15.89 12.16 -179.22 1872.00
Scenario 2 15.54 11.38 —224.99 1789.24

Evidently, Fig. 8 clearly shows that the operating costs
and carbon emissions of Scenario 1 are higher than those of
Scenario 2. The reason for this result is that the carbon trad-
ing price of the carbon emission model in Scenario 1 is
fixed and does not change with the accumulation of carbon
trading volume. In Scenario 2, the carbon trading price
changes in a stepwise manner with the accumulation of car-
bon trading volume, and the agent can develop a better
scheduling plan under the guidance of such a mechanism.
The carbon price gradually increases with the total amount
of carbon rights purchased or sold. The purchase of carbon
rights makes the system more expensive to operate, and the
agent receives a penalty signal from the environment. The
proceeds from the sale of carbon rights cut the system’s op-
erating costs, and the agent receives a reward signal from
the environment. This price mechanism, which is punitive or
rewarding in nature, can guide the agent in learning schedul-
ing strategies that can reduce carbon emissions.

2) Analysis on DPPO-based Method in Scenario 2

The dispatch results of the IES based on DPPO for the
test day in Scenario 2 are shown in Fig. 9. In Fig. 9(a), dur-
ing the valley tariff period (00:00-08:00), the IES actively pur-
chases power from the external grid and supplies the excess
power to the PtG, EB, and BES systems. The PtG system
converts electric power into natural gas power to supply the
natural gas network, and the EB consumes electric power to
provide heat power to the heating network. In addition, dur-
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ing peak tariff periods (12:00-20:00), the IES also purchases
power from the external grid to meet the demand for electri-
cal loads of customers that cannot be met by equipment
within the system, thereby ensuring a balance between the
electric power supply and demand.
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Fig. 9. Dispatch results of IES based on DPPO for test day in Scenario 2.

(a) Electrical network. (b) Heating network. (c) Natural gas network.
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In Fig. 9(b), to achieve economic operation of the system,
the EB operates mainly during the valley tariff period (00:00-
08:00). Although it is less expensive to run the EB during this
period, the IES does not use the EB to provide a significant
amount of thermal energy given the carbon emissions. Dur-
ing the period of 05:00-07:00, the heat load demand of custom-
ers is high, and to meet the load demand, the GB outputs a
large amount of heat energy to supply to the heating net-
work. The TST also outputs stored heat to the heating network
when the heat load demand is high. Figure 9(c) shows the dis-
patch results of the natural gas network, where the CHP unit
and GB consume large amounts of gas as load, and the PtG
unit can supply natural gas to the network during the valley
tariff to reduce operating costs.

Guided by the RPLT-CTM, the agent selects a dispatch
plan with low carbon emissions and high economic efficien-
cy. The detailed analysis of the scheduling results shows that
the DPPO-trained dispatch agent provides real-time dispatch
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results according to the load demand and can achieve low-
carbon and economic operation of the system by ensuring
the safe and stable operation of the IES.

3) Algorithm Comparison

To verify the performance of the DPPO algorithm, DPPO
algorithm is compared with other DRL algorithms and tradi-
tional algorithms in this subsection.

Since DPPO is a distributed version of PPO, PPO is cho-
sen for comparison. The benchmark DRL algorithms, DDPG
and twin-delayed DDPG (TD3), are selected. SAC, another
popular DRL algorithm, is also used for comparison. Consid-
ering that DPPO is a distributed DRL algorithm, A3C and
distributed distributional deterministic policy gradients
(D4PG) are also introduced. In addition, the double deep Q-
network (DDQN), an improved extension of the DQN algo-
rithm, is employed as another benchmark DRL algorithm.

The cumulative rewards of DPPO and other DRL algo-
rithms in the training process are shown in Fig. 10. DPPO
converges quickly, reaching convergence after approximately
1200 episodes of training. In addition, DPPO obtains the
highest cumulative reward among all selected DRL algo-
rithms. D4PG and A3C, two distributed DRL algorithms, al-
so converge quickly and reach convergence within 2000 epi-
sodes. TD3 also converges very quickly; however, it has a
lower cumulative reward value than DPPO and DA4PG.
DDPG and PPO converge slowly, but receive higher rewards
than A3C when they converge. The training results of SAC
are poor, only better than those of DDQN in discrete action
spaces. The comparison shows that DPPO is more efficient
than the other DRL algorithms in learning to explore the op-
timal policy. In particular, the advantages of DPPO’s distrib-
uted architecture are validated in comparison with PPO. Fur-
thermore, DPPO obtains higher cumulative rewards in the
convergence state, indicating that the algorithm learns to
achieve a better strategy.

In addition, PSO-, GA-, and SO-based scheduling algo-
rithms are introduced to compare IES operating costs and
carbon emissions. The operating costs and carbon emissions
of the scheduling plans for the test day provided by these al-
gorithms are listed in Table VIII. Among them, the daily op-
erating cost of the dispatch plan provided by DPPO is
$1789.24, which is 1.53%, 1.71%, 2.13%, 2.84%, 3.76%,
10.99%, 12.40%, 4.84%, 5.28%, and 3.82% lower than that
of D4PG, TD3, PPO, DDPG, A3C, SAC, DDQN, GA, PSO,
and SO, respectively. The daily carbon emission of the dis-
patch plan given by the DPPO-based method is 11.38 t,
which is 5.09%, 6.49%, 3.23%, 6.87%, 14.95%, 21.08%,
28.16%, 21.03%, 15.83%, and 8.81% lower than that of
D4PG, TD3, PPO, DDPG, A3C, SAC, DDQN, GA, PSO,
and SO, respectively.

The results show that DRL-based dispatch algorithms with
a continuous action space outperform the PSO- and SO-
based algorithms. This is a consequence of the fact that
DRL-based dispatch algorithms do not rely on day-ahead
forecast information or an assumed distribution of uncertain-
ty. In contrast, the DRL-based algorithm (DDQN) with a dis-
crete action space is limited to a finite number of actions
available in the action space. Therefore, its scheduling re-
sults are the worst among all algorithms.
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TABLE VIII
SCHEDULING RESULTS USING DIFFERENT ALGORITHMS

Algorithm Cart_)on C_arl_)on Carbon trading ~ Operating
credit (t) emission (t) cost ($) cost ($)

DPPO 15.54 11.38 —224.99 1789.24
D4PG 15.94 11.99 —220.42 1817.08
TD3 15.99 12.17 —214.79 1820.42
PPO 15.95 11.76 -219.44 1828.25
DDPG 16.34 12.22 -217.19 1841.59
A3C 16.95 13.38 —-188.78 1859.15
SAC 17.19 14.42 —152.67 2010.06
DDQN 18.07 15.84 —-133.29 2042.46
GA 17.90 14.41 —-191.01 1880.23
PSO 17.74 13.52 —222.37 1889.07
SO 16.79 12.48 —224.83 1860.24

The above analysis suggests that the DPPO-based method
has higher learning efficiency and a better dispatch strategy
than the other DRL-based algorithms. A comparison with
other dispatch algorithms shows that the DPPO-based meth-
od also provides a better dispatch strategy.

V. CONCLUSION

In this paper, considering the uncertainty of load demand
and renewable energy, a low-carbon ED method for electrici-
ty-heat-gas IES based on DRL is proposed. A reward func-
tion based on the RPLT-CTM is introduced to guide the
DRL agent to learn low-carbon dispatch actions. A DRL
agent trained by DPPO realizes the real-time low-carbon ED
of an IES. The following conclusions are drawn.

1) Benefiting from the ladder-type dynamic trading price,
the RPLT-CTM effectively guides the DRL agent to learn a
low-carbon ED strategy. The dispatch results verify that the
agent based on the RPLT-CTM makes a dispatch plan with
lower carbon emissions compared with the agent based on
the traditional CTM.

2) The effectiveness of the proposed DRL-based method
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for low-carbon ED of an electricity-heat-gas IES is demon-
strated by the dispatch results on the test day. The agent
trained using the proposed method controls the dispatch ac-
tions of each device in the IES in real time. The dispatch
plan generated by the agent achieves the low-carbon econom-
ic operation of the electricity-heat-gas IES.

3) The superiority of DPPO is verified through a compara-
tive analysis. The distributed architecture of DPPO enables it
to perform better than PPO in complex training environ-
ments. Compared with the scheduling results of PPO, DPPO
reduces the operating cost and carbon emissions by 2.13%
and 3.23%, respectively. Compared with other distributed
DRL algorithms (D4PG and A3C), the operating cost and
carbon emissions of the DPPO-based method are reduced by
1.53%, 3.76% and 5.09%, 14.95%, respectively. DPPO is al-
so compared with other DRL algorithms (DDPG, A3C,
SAC, and DDQN) and dispatch algorithms (GA, PSO, and
SO). The operating costs of the DPPO-based dispatch meth-
od are reduced by 2.84%, 3.76%, 10.99%, 12.40%, 4.84%,
5.28%, and 3.82%, and the carbon emissions are reduced by
6.87%, 14.95%, 21.08%, 28.16%, 21.03%, 15.83%, and
8.81%, respectively.

In future work, considering the characteristics of multiple
operators of IES, multi-agent reinforcement learning will be
applied to the optimal operation of an IES.
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