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Abstract——In this paper, a new method to address the schedul‐
ing problem of a renewable energy community while consider‐
ing network constraints and users’ privacy preservation is pro‐
posed. The method decouples the optimization solution into two 
interacting procedures: conic projection (CP) and linear pro‐
gramming (LP) optimization. A new optimal CP method is pro‐
posed based on local computations and on the calculation of the 
roots of a fourth-order polynomial for which a closed-form solu‐
tion is known. Computational tests conducted on both 14-bus 
and 84-bus distribution networks demonstrate the effectiveness 
of the proposed method in obtaining the same quality of solu‐
tions compared with that by a centralized solver. The proposed 
method is scalable and has features that can be implemented on 
microcontrollers since both LP and CP procedures require only 
simple matrix-vector multiplications.

Index Terms——Accelerated gradient method, battery storage 
system, conic projection, energy community, energy scheduling, 
linear programming, renewable resource.

I. INTRODUCTION

TO guarantee more sustainable and reasonable access to 
energy, the recent evolution of the regulatory frame‐

works in Europe and elsewhere has promoted the centrality 
of prosumers and the diffusion of renewable energy sources, 
distributed generation, and energy storage systems [1].

Because of improved metering and other information- and 
communication-technology-based infrastructures, a new para‐
digm for managing smart grids has garnered interest. This 
new paradigm involves establishing energy communities 
based on an aggregation of prosumers, allowing direct pow‐
er exchanges. Because electricity exchanges contribute to the 

improved exploitation of renewable energy resources and al‐
low the provision of power flexibilities at reduced costs, pro‐
sumers can benefit from their participation in an energy com‐
munity. The participation of energy communities in ancillary 
service markets (e. g., [2] and references therein) is another 
interesting aspect worthy of study.

Recent research works in the field of energy communities 
have focused on energy exchanges and pricing models [3] -
[10] by using different methods such as game theory [3], 
[9], decentralized bilateral trading [4], [5], and market mod‐
els (e. g., [6]) for distribution networks. In [7], a sensitivity 
analysis is used to assess the effects of transactions on the 
network constraints. An energy-trading method is proposed 
in [8] to mitigate the peak demand by incentivizing prosum‐
ers to conduct energy exchanges. A game-theoretic method 
with heterogeneous prosumers who trade energy for virtual 
microgrids is proposed in [9]. In [10], an energy block con‐
tract market is solved by using a privacy-preserving distribut‐
ed algorithm that allows users to trade services in a flexible 
manner.

Power losses and/or technical constraints in the network 
are often neglected in studies on energy exchange. By ne‐
glecting power losses, the power balance conditions are not 
precisely evaluated [11]. In this regard, different methods 
have been proposed to address this issue. In [12], power loss‐
es are allocated to each bus of a microgrid, and battery stor‐
age units are discharged to compensate for the power losses. 
A market with energy exchanges is considered in [13], and a 
second-order cone programming (SOCP) formulation is de‐
vised for the allocation of power losses. The two considered 
configurations couple peer-to-peer (P2P) interactions with 
distribution network operations using a centralized or P2P 
procedure. In the second case, the utility and the P2P plat‐
form are operated separately, and the coordination between 
them is achieved by an iterative procedure. Network fees 
and power losses are considered in [11], whereas a power 
transfer distribution factor is used in [3] and [4] to evaluate 
the effects of transactions on power flow constraints. The ef‐
fects of the low-voltage networks on local markets are evalu‐
ated in [14]. Electrical distances between prosumers and the 
shortest path algorithm are used in [15]. An estimation meth‐
od for the allocation of power losses to each transaction is 
used in the alternating direction method of multipliers (AD‐
MM) -based method presented in [16] and extended in [17] 

Manuscript received: November 29, 2022; revised: February 21, 2023; accept‐
ed: April 11, 2023. Date of CrossCheck: April 11, 2023. Date of online publica‐
tion: May 25, 2023. 

This article is distributed under the terms of the Creative Commons Attribu‐
tion 4.0 International License (http://creativecommons.org/licenses/by/4.0/).
   M. Dolatabadi is with the Department of Mathematics, Vali-e-Asr University 
of Rafsanjan, Rafsanjan 77188-97111, Iran (e-mail: author1@lamar. colostate.
edu).
   A. Borghetti is with the Department of Electrical, Electronic, and Information 
Engineering, University of Bologna, Bologna, Italy (e-mail: alberto. borghet‐
ti@unibo.it).
   P. Siano (corresponding author) is with the Department of Management & In‐
novation Systems, University of Salerno, Salerno, Italy, and he is also with the 
Department of Electrical and Electronic Engineering Science, University of Jo‐
hannesburg, Johannesburg 2006, South Africa (e-mail: psiano@unisa.it).

DOI: 10.35833/MPCE.2022.000783

1814



DOLATABADI et al.: SCALABLE DISTRIBUTED OPTIMIZATION COMBINING CONIC PROJECTION AND LINEAR PROGRAMMING...

to consider the link between day-ahead and intraday schedul‐
ing (a topic also dealt with in [18]). In [19], a mixed-integer 
centralized model of a local energy community (LEC) is pro‐
posed that adopts the classical SOCP convex relaxation of 
the optimal power flow problem (e.g., [20], [21] and refer‐
ences therein).

P2P methods are particularly attractive because of the spe‐
cific characteristics of energy communities in which multiple 
independent prosumers collaborate to reach a common objec‐
tive, where the primary objective is the reduction of energy 
procurement costs.

In [22], a P2P active power management framework based 
on a multi-agent distribution system is described in which 
only the operational constraints of the agents’ resources and 
the supply-demand balance constraints are considered. A P2P 
management model is adopted to facilitate the independent 
optimization of the agents’ operational plans. In [23], Nash 
bargaining theory is used to formulate a P2P transactive ener‐
gy trading problem that is decomposed into an optimal pow‐
er flow (OPF) problem and a payment bargaining problem. 
ADMM is adopted to solve distributed optimization in a pri‐
vacy-preserving manner. In [24], a P2P platform is presented 
that can minimize the costs associated with battery deprecia‐
tion and power losses. In this case, distributed optimization 
is solved by using the ADMM while considering network 
constraints. In [25], a P2P electricity trading framework 
based on the generalized fast dual ascent method is pro‐
posed. Network constraints are considered in the proposed 
model through a voltage and loss sensitivity method. In [26], 
the proposed distribution system operator-prosumer schedul‐
ing framework is based on Nash bargaining. The problem is 
decomposed into two subproblems and solved in a distribut‐
ed manner using ADMM. In [27], the proposed optimization 
is based on the virtual model of self-consumption, where the 
energy balance within the community is accomplished by 
considering the energy exchanges assessed at each point of 
delivery. This results in scalable and privacy-preserving real-
time distributed parallel optimization for the participation of 
an energy community in the ancillary service market.

It is assumed that the LEC is managed by an energy com‐
munity manager that performs the scheduling optimization 
aiming at minimizing the costs related to the energy con‐
sumption in the community or maximizing the revenues 
when the community globally exports power. Prosumers can 
be endowed with local generation, photovoltaic (PV) units, 
and/or battery systems. Cost minimization is achieved by fa‐
voring direct energy exchanges among prosumers while opti‐
mizing the use of internal energy resources.

Depending on their needs and the choices of the energy 
community manager, prosumers can consume energy from 
the external energy provider (here, for simplicity, this corre‐
sponds to the utility grid) and can use the electrical energy 
produced by their PV plant by consuming it themselves. 
Moreover, prosumers can share energy with other prosumers 
or store it in their local batteries.

The fair prices of the energy exchanges are automatically 
computed by the optimization procedure while considering 

both the time and location of the involved prosumers. The 
prices are based on the calculation of the dual variables of 
the balancing constraints relevant to the energy exchanges in 
the optimization model.

This paper focuses on a deterministic model, and the test 
results are presented for a typical time horizon of 24 hours. 
To consider the uncertainties associated with PV production 
and load forecasting, the procedure has the computational 
characteristics necessary for inclusion in a scenario-based 
stochastic method and for application in rolling horizon intra‐
day procedures such as those described in [27].

Unlike in the centralized model of [19], the proposed 
method does not use binary variables, and the set of con‐
straints is decoupled into a conic projection (CP) procedure  
plus a linear programming (LP) problem, both of which are 
solved in a decentralized privacy-preserving manner.

To solve the SOCP optimization, a specific CP procedure 
is applied locally so that the user’s information is not dis‐
closed. In contrast with, e. g., [28], the P2P exchanges are 
not virtual, and network constraints and power losses are 
evaluated.

To better highlight the innovative contribution of the pro‐
posed method, Table I compares some key features of the 
methods already presented in the literature.

The comparison shows that only a few papers present a 
distributed optimization considering conic constraints, power 
losses, and the privacy of prosumers [6], [23], [26], which 
are the main characteristics of the proposed method. In [6], 
the nonconvex constraints for Distflow equations are approxi‐
mated by using an implicit function instead of the SOCP for‐
mulation. In [23] and [26], the SOCP formulation is adopted 
and embedded in sequential ADMM procedures. As regards 
the privacy issue, in [6] and [23], the respect for user priva‐
cy is assumed because the optimization is performed in a ful‐
ly distributed manner with ADMM, while in [26], the priva‐
cy is preserved by using consensus-based ADMM.

The proposed method has the following original character‐
istics and specific advantages.

1) A new optimal CP method is proposed based on local 
computations. It is presented in detail in the Appendix A and 
is based on the calculation of the roots of a fourth-order 
polynomial for which a closed-form solution is known.

2) A new method for users’ privacy preservation based on 
data aggregation is proposed that decouples the optimization 
solution into two interacting procedures, namely, CP and LP 
optimization. In contrast to the previous methods, the imple‐
mented procedure is based on parallel matrix-vector multipli‐
cations which allow the implementation of a parallel proce‐
dure. After the penalized LP is solved, an individual and in‐
dependent CP procedure is conducted for each user in a pri‐
vate and parallel manner. If the summation of infeasibility 
for the conic constraints remains greater than the required ac‐
curacy, another penalized LP is obtained. These two interact‐
ing LP and CP procedures continue until convergence.

3) The prices of the internal P2P transactions can be evalu‐
ated by using the dual variables associated with the power 
equilibrium constraints.
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4) The proposed method can be easily implemented with‐
out using any commercial or open-source solver.

In previous studies, the ADMM is employed to solve the 
distributed optimization by using off-the-shelf solvers such 
as Gurobi in [6] and [23], CPLEX in [24], and MOSEK 
in [26].

As mentioned, the proposed alternating projection method 
consists of the two LP and CP procedures. The solution to 
LP is based on matrix-vector multiplications. At each itera‐
tion, the only calculation performed by each prosumer is ma‐
trix-vector multiplication plus local CP. It is worth noting 
that without the CP part, the LP part exhibits a convergence 
rate of O(1/k2), while the ADMM used in [6], [23], [26] ex‐
hibits a convergence rate of O(1/k) [28], [29].

The remainder of the paper is organized as follows. The 
proposed model is described in Section II. Section III pres‐
ents the solution procedure. Section IV presents the test re‐

sults, and Section V gives conclusions.

II. PROPOSED MODEL

As in [19], the proposed model represents the internal net‐
work of the LEC as a combination of lines connected to 
each other with a radial configuration and balanced for a sin‐
gle-phase representation. At the end of each line, a prosumer 
is connected.

Including the feeding line, each prosumer is defined by 
two connection points, herein denoted as the input and out‐
put sides. The input side is connected to the slack bus (i.e., 
the medium-voltage (MV) secondary side of the substation 
transformer) or to the output side of the upstream branch. 
The output side is connected to the input side of the down‐
stream branch or it is not connected in the case of the termi‐
nal branches of the system.

In the model, the set of all prosumers is denoted by Ω 
(with index i). For each prosumer i and each time interval t 
(under duration Δt) of the considered optimization horizon T,
vin i,t and vout i,t denote the root mean square (RMS) values of 
the voltages at the input and output terminals, respectively; 
ui,t denotes the square RMS value of the current of the feed‐
ing branch (the charging current is neglected); P in i,t and 
Pout i,t denote the input and output active power flows, respec‐
tively; Qin it and Qout i,t denote the input and output reactive 
power flows, respectively; and ri and xi denote the line resis‐
tance and reactance, respectively.

The prosumer model includes a local load, generating 
unit, and battery energy storage (BES). P l i,t and Ql i,t are the 
active and reactive power load consumptions, respectively; 
Pg i,t and Qg i,t are the active and reactive power generation 
outputs, respectively; PBES i,t is the BES output; and Puser i,t 
and Quser i,t are the total net active and reactive power ex‐
changes, respectively.

The battery model represents the BES energy level (Ei,t) 
and charging and discharging battery power losses 
(ℓcharge i,t, ℓdischarge i,t).

Each prosumer may directly perform energy transactions 
with the utility grid and with other prosumers of the commu‐
nity. Pgrid i,t is the prosumer’s power exchanged with the grid. 
Pbuygrid i,t is the power bought at price πbuy t; Psellgrid i,t is the 
power sold at price πsell t; and PLEC it is the prosumer’s power 
exchanged with the other prosumers of the community.

In the model and the test results presented in this paper, 
prices πbuy t and πsell t as well as ri, xi, P l i,t, Ql i,t, Pg i,t, Qg i,t, 
BES charging and discharging efficiencies (ηcharge i and 
ηdischarge i, respectively), the maximum and minimum limits of 
PBES i,t, Ei,t, vin i,t, vout i,t, and the maximum limit of ui,t, are con‐
sidered parameters with predefined values.

To distinguish the power flows due to the transactions be‐
tween prosumer i and the utility grid from those due to the 
transactions with other prosumers at each time interval t, the 
model includes variables Pgridin i,t and Pgridout i,t (i.e., the power 
flows due to the transactions with the grid at the input and 
output terminals, respectively) and PLECin i,t (i. e., the power 
flow due to the transactions with other prosumers at the in‐
put terminal).

TABLE I
COMPARISONS WITH PREVIOUS METHODS
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No

Yes

No

Yes

No

No

No

Yes

No

Yes

No

Yes

No

No

Yes

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Method

Stackelberg game

Decentralized P2P energy trad‐
ing scheme

Iterative peer matching process

ADMM

Methodology based on 
sensitivity analysis

Stackelberg game

Stackelberg game

Decentralized market clearing 
mechanism

Distributed consensus algorithm

Centralized AC OPF and 
iterative procedure

Forward/backward sweep 
method with power summation

Two market mechanisms for 
P2P energy trading driven by 

electrical distance

ADMM

ADMM

Decentralized sequential 
decision making model

Mixed-integer centralized 
model

Step-wise transactive 
distributed control framework

ADMM

ADMM

Fast dual ascent method

ADMM

P2P exchanges based on virtu‐
al model of self-consumption

LP-based optimization

Note: y means that it is included in the method; n means that it is not in‐
cluded.
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The considered objective minimizes the total community 
costs due to the transactions with the utility grid:

Cgrid =∑
iÎN
∑
tÎ T

(πbuy t Pbuygrid it - πsell t Psellgrid it )Dt (1)

where Pbuygrid it and Psellgrid it are the nonnegative variables. 
The objective does not include generation costs since we as‐
sume here that all the local generation is provided by renew‐
ables (e.g., PV panels). When πbuy t is assumed to be greater 
than πsell t, the cost minimization is favored by a balance be‐
tween the production and consumption in the LEC.

PBES i,t and the trade decisions with the other prosumers of 
the community are the main decision variables.

Following the typical convention of the Distflow or 
branch flow model [30], the values of vout i,t, Pout i,t, Qout i,t, and 
Pgridout i,t should be equal to those of vin i + 1,t, P in i + 1,t, Qin i + 1,t, 
and Pgridin i + 1,t, respectively, considering i and i + 1 as the up‐
stream and downstream prosumers, respectively:

vin i + 1t - vout it = 0 (2)

P in i + 1t -Pout it = 0 (3)

Qin i + 1t -Qout it = 0 (4)

Pgridin i + 1t -Pgridout it = 0 (5)

In terms of branching for active and reactive power, the 
equality is replaced by the balancing constraints at the 
branching node, as in [30].

For the prosumers located at one of the feeder ends, Pout i,t, 
Qout i,t, and Pgrid,out i,t are constrained to be 0.

The square RMS voltages at the input terminals of the pro‐
sumers connected to the substation should be equal to the 
known value of the slack bus voltage V 2

0 :

vin kt =V 2
0     "kÎΩ0 (6)

where Ω0 is the set of prosumers connected to the slack bus.
Transactions between the prosumers of the community do 

not cause any power flow exchange with the grid, i.e.,∑
kÎΩ0

PLECin kt = 0 (7)

For each prosumer i and time interval t, the relationships 
between vin i,t and vout i,t, P in i,t and Pout i,t, and Qin i,t and Qout i,t 
are:

P in it -Pout it =Pit (8)

Qin it -Qout it =Qit (9)

vin it - vout it = 2ri P in it + 2xiQin it - (r 2
i + x2

i )uit (10)

P 2
in it +Q2

in it £ vin ituit (11)

where nonnegative variable ui,t is constrained to be lower 
than the square of the maximum branch current limit, non‐
negative variables vin i,t and vout i,t are constrained between 
0.952 p.u. and 1.052 p.u., and:

Pit = Puser it + riuit (12)

Qit = Quser it + xiuit (13)

Constraint (11) is the usual rotated second-order cone con‐
vex relaxation of the branch flow model. The feasible solu‐
tion is obtained for an equality condition. The achievement 

of this condition is checked after the solution, and an itera‐
tive procedure is implemented that solves the model with a 
progressively increased penalization of the branch power 
losses in the objective function, as described in the final part 
of this section.

The net power for each prosumer is given by:

Puser it -P l it +Pg it +PBES it = 0 (14)

Quser it -Ql it +Qg it = 0 (15)

where PBES i,t is considered positive if supplied by the bat‐
tery. We assume here that the PV and BES units operate at 
the unity power factor Qg it = 0.

The adopted model of the storage units is represented by:

PBES it -P +
BES it +P -

BES it = 0 (16)

lcharge it = (1 - ηcharge i )P
-
BES it (17)

ldischarge it = ( )1
ηdischarge i

- 1 P +
BES it (18)

Eit =Eit - 1 - (PBES it + lcharge it + ldischarge it )Dt (19)

where P +
BES it and P -

BES it are the nonnegative variables con‐
strained by the maximum power limit of the battery.

In the tests, the energy level at the beginning of the first 
interval and at the end of the optimization horizon are con‐
strained to be equal to the battery rating.

The direct exchanges with the utility grid and those with 
the other prosumers are described by:

Pit -Pgrid it -PLEC it = 0 (20)

P in it -Pgridin it -PLECin it = 0 (21)

Pgrid it -Pbuygrid it +Psellgrid it = 0 (22)

Pgrid it -Pgridin it +Pgridout it = 0 (23)

where Pbuy,grid i,t and Psell,grid i,t are the nonnegative variables.
The modules of the dual values associated with the con‐

straint (20) are used to define the prices of the transactions 
between the prosumers of the community.

In a feasible solution, (11) is verified as equality. P +
BES it 

and P -
BES it of (16) cannot be both nonzero for the same t and 

i. Specific checks are included in implementing the model 
and penalization terms of the line active power losses, and 
BES losses are added to the objective function.

Moreover, the nonnegative variable P̂LEC is defined as:

ì
í
î

PLEC - P̂LEC £ 0

-PLEC - P̂LEC £ 0
(24)

The reselling of the power from the grid to the other pro‐
sumers is avoided by the penalization of P̂LEC in the objec‐
tive function, which becomes:

OF=min 
ì
í
î
Cgrid+

ü
ý
þ

∑
iÎN
∑
tÎT

(μ loss iriuit+μBES ilcharge it+μBES ildischarge it+μPLEC
P̂LEC it )Dt

(25)

where μloss i, μBES i, and μPLEC
 are the penalization coefficients 
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of the line power loss, charging and discharging BES losses, 
and power exchanges with the other prosumers, respectively. 
Without penalization term μBES ilcharge it + μBES ildischarge it, there 
can be multiple optimal solutions for which battery charging 
and discharging power are nonzero during the same period t. 
The penalization term enforces the solver to pick only those 
solutions for which battery charging and discharging power 
are both nonzero simultaneously.

When the corresponding feasibility conditions are not met 
(for all the branches, batteries, and prosumers), new solu‐
tions are calculated with the penalization coefficients pro‐
gressively increased until a feasible one is obtained. For all 
test results considered in this paper, the weight of the penal‐
ization terms of the objective function (25) corresponding to 
the final feasible solution is negligible with respect to the 
cost term (1).

In summary, the optimization problem is given by (25), in‐
cluding (1) augmented by the aforementioned penalization 
terms to guarantee a feasible solution, with constraints (2) -
(24), and the lower and upper limits of each variable.

III. SOLUTION PROCEDURE 

A. Centralized Method for SOCP

Since the objective function and the constraints described 
in Section II (excluding (11)) are linear, and because (11) 

can be re-formulized as the second-order cone 










 









2P in it

2Qin it

uit - vin it

T

2

£

uit + vin it, the model can be solved in a centralized manner 
using a commercial or open-source conic solver such as 
CPLEX, Gurobi, MOSEK and JuMP in Julia, and MATLAB. 
In general, the solvers are based on interior point algorithms. 
In [31], the optimization of a linear objective function over 
the intersection of an affine space with a convex cone is ob‐
tained by using an interior-point method (IPM). In [32], a 
more numerically stable IPM is proposed using product-form 
Cholesky factorization.

The typical algorithm implemented in commercial solvers 
is based on the interior-point method, as described in [31] 
and [32], for use in the centralized case. The common fea‐
ture of the interior point method is that a sequence of feasi‐
ble primal-dual pairs is constructed in a manner in which the 
gap between primal-dual objective values approaches a de‐
sired accuracy. Although these methods are extremely fast, 
they can have difficulties with large problems, and they do 
not exploit new hardware accelerators such as GPUs and 
TPUs. In addition, performing computations in a decentral‐
ized manner such that the privacy of the users is respected 
seems to remain unclear. Accordingly, the proposed method 
uses gradient information to address large problems in a de‐
centralized privacy-preserving manner.

B. Proposed Decentralized Method

The proposed decentralized method splits the feasible set 
defined by (2)-(24) into two parts, each of which is easier to 
handle than the original formulation. Let vector x consist of 

all decision variables, and denote the feasible set of all con‐
straints (2) - (24) except (11) by L={x|Ax = blb £ x £ ub} and 
denote the feasible set of (11) (the second-order cone) by C.

The goal is to optimize (25) over LC, where L is the set 
of linear constraints and C is the set of conic constraints. As 
a result, by excluding (11), we come up with an LP as:

min {cT x|Ax = blb £ x £ ub} (26)

This flow chart of iterative two-stage optimization is illus‐
trated in Fig. 1.

Step 1: as γ > 0 is a very small constant, x is computed as 
the optimal solution as (27) by using the procedure present‐
ed in Appendix A.

x = arg min{ }γ
2

x̄T x̄ + cT x̄ | x̄Î L (27) 

Step 2: the convergence criteria are checked as to whether 
 x - x̂  and the summation of infeasibilities for linear con‐
straints Ax = b are less than a predefined threshold.

Step 3: x̂ =ProjC (x) is the projection of x onto the cone C 
as defined by (11). If the corresponding entries in solution x 
(from Step 1) do not satisfy (11), and if |uit| > 0, a new solu‐
tion is obtained by setting vin it =P 2

in it +Q2
in it /uit. If |uit| = 0, 

the procedure for CP presented in Appendix A is applied.
Step 4: cT x̄ is minimized subject to x̄Î L with the penal‐

ization of the distance  x̄ - x̂
2

2
, i. e., cT x̄ +

θ
2
 x̄ - x̂

2

2
=

θ
2

x̄T x̄ + (c - θx̂)T x̄ +
θ
2

x̂T x̂, where θ is a penalty term (con‐

stant number). As x̂T x̂ is constant, the minimization of cT x̄ +
θ
2
 x̄ - x̂

2

2
 is given by:

x = arg min{ }θ
2

x̄T x̄ + (c - θx̂)T x̄ | x̄Î L (28)

which is solved by the method presented in Appendix A.
As for the convergence, the procedure is terminated as 

soon as the infeasibility for the conic constraints is less than 
a threshold: ∑max{0P 2

in it +Q2
in it - vin ituit }£ δ (29)

Start

x=arg min 
2

γ
xTx+cTx|xÎL

S=∑max{0, P2
in i,t+Q2

in i,t�vin i,tui,t}

S≤δ?

N

x=ProjC(x)^

x=arg min 
2
θ
xTx+(c�θx)Tx|xÎL^

End

Y

Fig. 1.　Flow chart of iterative two-stage optimization.
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The most computationally demanding part of the algo‐
rithm is the solution to the LP problem (28). The proposed 
distributed and parallel procedure is based on a modified ver‐
sion of the method proposed in [29] and is explained in Ap‐
pendix A. This method scales to much higher dimensions 
when compared with the ADMM-based parallelized version 
of the method known as the splitting conic solver [33].

Once problem (28) is solved, dual variables λ correspond‐
ing to Ax = b are obtained. The prices of transactions be‐
tween LEC prosumers are obtained by computing the shad‐
ow prices derived from (20).

C. Privacy Preservation Strategy

Since conic constraints in (11) are local ones, the optimi‐
zation for each user can be private without disclosing any da‐
ta to others. Once the optimization is conducted for all us‐
ers, the new solution is fed into the penalized LP, and the 
LP is solved while preserving privacy as described in [28]. 
Using similar notations as in [28], (28) can be rewritten as:

ì
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î

ï
ïï
ï

ï
ïï
ï
ï
ï

min cT x

s.t.  
-
A 1 x1 +

-
A 2 x2 + + -

A n xn =
-
b

        Âii x i = b̂ i    i = 12n
       lb £ x £ ub

(30)

where x1x2xn are n vectors of unknown variables.
The global and local constraints are denoted as 

-
A 1 x1 +

-
A 2 x2 + + -

A n xn =
-
b and Âii x i = b̂ ii = 12n, respectively.

ì

í

î

ï

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

ï

A =

é

ë

ê

ê

ê
êê
ê

ê

ê ù

û

ú

ú

ú
úú
ú

ú

ú
-
A 1

-
A 2  -

A n
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b =

é

ë

ê

ê

ê

ê
êê
ê

ê

ê

ê ù

û

ú

ú

ú

ú
úú
ú

ú

ú

ú
-
b

b̂1


b̂n

(31)

in which Âij = 0 for i ¹ j:
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Step 3 of the procedure presented in [28] can be rewritten 
as:

x(ξ)=-
ATξ + c - θx̂
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ÂT
22ξ2

γ
+
θx̂2 - c2

γ



-
-
A

T
n ξ0

γ
-

ÂT
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(33)

The ith user can update its configuration x i (ξ) without ex‐
changing the information about its objective function ci, the 
dual variables ξ i, or the projected primal x̂ i.

IV. TEST RESULTS 

The proposed method has been implemented in MATLAB 
R2022b on a computer with an Intel(R) Core(TM) i7-10700 
CPU @ 2.90 GHz with 16 GB of RAM and running 64-bit 
Windows 11.

Two test systems have been considered to validate the pro‐
posed method.

1) A 14-bus distribution network with 23 kV rated voltage 
and three feeders (data are given in [34]).

2) An 84-bus distribution network with 11.4 kV rated volt‐
age and 11 feeders (data are given in [35]).

Twenty-four periods of 1 hour each are considered during 
the single-day horizon for both test systems.

To verify the effectiveness of the proposed method, three 
cases have been compared.

1) Case 1: energy exchanges do not occur among prosum‐
ers.

2) Case 2: prosumers are allowed to exchange energy with‐
in the LEC (connected feeders).

3) Case 3: direct exchanges are allowed only among pro‐
sumers belonging to the same feeder by implementing con‐
straint (7) independently for each feeder (separate feeders).

Table II lists the battery sizes considered in the two test 
systems. The battery capacity to rated power ratio is as‐
sumed to be 1 hour.

For both the 14-bus and 84-bus distribution networks, the 
solutions obtained by using the proposed method combining 
CP and LP are compared with those provided by the central‐
ized optimization proposed in [31] and [32] and implement‐
ed in MATLAB. The results derived from the proposed meth‐
od are labeled “D”, whereas those obtained by the central‐
ized optimization are labeled “C” in Tables III and IV.

TABLE II
BATTERY SIZES

Test system

14-bus 
distribution 

network

Bus

1

2

3

4

5

6

7

8

9

10

11

12

13

Size (MWh)

0.5

0.3

0.4

0.2

0.3

1.0

0.5

1.0

0.2

0.6

0.1

0.2

0.2

Test system

84-bus 
distribution 

network

Bus

2

9

14

27

32

34

36

38

52

64

66

71

Size (MWh)

0.48

0.48

0.48

0.56

0.24

0.24

0.24

0.40

0.48

0.40

0.40

0.40
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A. Test Results on 14-bus Distribution Network

The 14-bus distribution network consists of three feeders. 
At each bus, a prosumer is endowed with a PV system and 
battery system. Prosumers with different profiles for load 
and PV production are assumed. The total daily energy con‐
sumptions of the LEC and PV production are equal to 195 
MWh and 84 MWh (43% of the load), respectively. Load 
and PV production profiles are shown in Fig. 2(a) and (b), 
respectively, where the colored lines refer to different pro‐
sumers located at different buses. The total capacity of the 
batteries is 8.25 MWh (9.8% of the daily PV production).

Figure 3 shows the profiles of the prices of the energy 
bought/sold from/to the main grid, i.e., πbuy and πsell, respec‐
tively, together with the energy prices of the exchanges be‐
tween prosumers while considering connected feeders, i. e., 
case 2. Colors solely depict the 3-D nature of the surface, 
which applies to all the subsequent figures. Very similar re‐
sults are obtained in terms of the objective function, power 
losses, voltage profiles, prosumer power exchanges, and cur‐
rents for cases 1-3. The objective function, which is equal to 
€41.7×103 in case 1, decreases to €37.1×103 in case 2 and to 
€39.2×103 in case 3. A comparison of the objective function 
with the augmented one shows that the additional penaliza‐
tion terms included in the objective function (25) are close 
to zero for all cases. As Table III shows, the proposed meth‐
od can achieve the same optimal values for the objective 
function when compared with the centralized optimization 
proposed in [31], [32].

Because of the energy exchanges among prosumers, the 
energy costs reduce to approximately €4600 (11%) and ap‐
proximately €2500 (6%) in the cases of connected and sepa‐
rated feeders, respectively, when compared with the case 
without P2P energy exchanges.

Voltage profiles and currents in the 14-bus distribution net‐
work are shown for case 1 in Figs. 4 and 5, respectively.

Energy exchanges determine an increase in power losses 
of approximately 30% and 41% in the cases of connected 
and separated feeders, respectively, when compared with the 
case without energy exchanges (case 1).

0 5 10 15 20 25 
Time (hour)

(a)

 

1

2

3

4

5

L
o
ad

 (
M

W
)

0 5 10 15 20 25 
Time (hour)

(b)

 

1

2

3

4

5

P
V

 p
ro

d
u
ct

io
n
 (

M
W

)

Fig. 2.　Prosumer characteristics for 14-bus distribution network. (a) Load 
profiles. (b) PV production profiles for each prosumer.

TABLE IV
COMPARISON OF PROPOSED METHOD WITH CENTRALIZED 

OPTIMIZATION FOR 84-BUS DISTRIBUTION NETWORK

Case

Case 1

Case 2

Case 3

OF (k€)

C

36.5

28.8

30.0

D

36.5

28.8

30.0

Augmented OF (k€)

C

36.5

28.8

30.0

D

36.5

28.8

30.0

Loss (MWh)

C

4.5

4.8

4.9

D

4.5

4.8

4.9
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Fig. 3.　Energy prices with connected feeders (case 2). (a) Profiles of pric‐
es of transaction with utility grid and energy prices of exchanges between 
prosumers. (b) Energy prices of exchanges between prosumers at different 
buses.

TABLE III
COMPARISON OF PROPOSED METHOD WITH CENTRALIZED 

OPTIMIZATION FOR 14-BUS DISTRIBUTION NETWORK

Case

Case 1

Case 2

Case 3

OF (k€)

C

41.7

37.1

39.2

D

41.7

37.1

39.2

Augmented OF (k€)

C

41.7

37.1

39.2

D

41.7

37.1

39.2

Loss (MWh)

C

3.38

4.40

4.77

D

3.38

4.40

4.77
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P2P energy exchanges are, indeed, higher in the case with 
connected feeders as compared with those with separated 
feeders (case 3), as shown in Fig. 6.

Figure 7 shows that energy exchanges with the main grid 
diminish due to P2P energy exchanges among prosumers. 
Prosumers endowed with batteries can reduce the amount of 
energy exchanged with the main grid to a much greater ex‐
tent due to the optimal management of the batteries, as 
shown in Fig. 8, which allows better exploitation of the ener‐
gy produced by PV systems and an increase in the energy 
self-consumption in the LEC.

B. Test Results on 84-bus Distribution Network

The 84-bus distribution network is illustrated in Fig. 9. 
Several prosumers are endowed with a PV system and a bat‐
tery.

Load and PV production profiles are shown in Fig. 10(a) 
and (b), respectively. The total daily energy consumptions of 
the LEC and PV production are equal to 239 MWh and 178 
MWh (74.4% of the load), respectively. The total capacity of 
the batteries is 4.8 MWh (3.2% of the daily PV production).
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Figures 11 and 12 show the assumed profiles of the price 
of the energy bought/sold from/to the main grid (i. e., πbuy 
and πsell, respectively) together with the energy prices of the 
exchanges between prosumers (indicated as prices between 
prosumers) when considering connected and separated feed‐
ers, i. e., cases 2 and 3, respectively. It is worth noting that 
the prices of the internal P2P transactions and the corre‐
sponding dual variables associated with the power equilibri‐
um constraints of the proposed method are essentially the 
same as those of the centralized optimization in both cases.

In the case of connected feeders, as shown in Fig. 11, the 
energy prices of the exchanges between prosumers mainly 
coincide with the prices of the energy bought/sold from/to 

the main grid for all buses. When the LEC globally imports/
exports electricity from/to the utility grid, the prices of the 
internal transactions align with πbuy t or πsell t.
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Fig. 11.　Energy prices with connected feeders (case 2) for 81-bus distribu‐
tion network. (a) Profiles of prices of transactions with utility grid and ener‐
gy prices of exchanges between prosumers. (b) Energy prices of exchanges 
between prosumers at different buses.
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In the case of separated feeders, as shown in Fig. 12, the 
energy prices of the exchanges between prosumers show a 
more variable behavior. The sizes and locations of PV/bat‐
tery systems influence the prices related to the energy ex‐
changes so that the prosumers connected at buses closer to 
PV/battery systems tend to exchange the energy at lower 
prices. This is more evident for the prosumers located at 
feeder K for which the installed capacity of PV systems is 
lower than that of other feeders and the battery systems are 
not installed.

When comparing the values of the objective function in 
the three cases, the best value is achieved in case 2, as 
shown in Table IV. In addition, a comparison of the objec‐
tive function with the augmented one shows that the addi‐
tional penalization terms included in the objective function 
(25) are close to zero for all cases. As shown in Table IV, 
the proposed method can achieve the same optimal values 
for the objective function when compared with the central‐
ized optimization proposed in [31], [32].

The CPU time required by the sequential computing proce‐
dure is less than 8 s.

As expected, the energy exchanges among prosumers en‐
able a significant reduction in energy costs, that is, approxi‐
mately €7700 (21%) and approximately €6500 (18%) in the 
case of connected and separated feeders, respectively, when 
compared with the case without P2P energy exchanges.

As regard power losses in the branches of the internal net‐
work, energy exchanges lead to increases of approximately 
7% (approximately 300 kWh) and 9% in the case of connect‐
ed (case 2) and separated feeders, respectively, when com‐
pared with the case without energy exchanges (case 1). Ener‐
gy exchanges are indeed higher in the case with connected 
feeders than with separated feeders (case 3), as shown in 
Fig. 13.

Figure 14 shows the reduction in energy exchanged with 
the main grid due to the energy transactions among prosum‐
ers. The benefits derived from the energy exchanges are 
more evident for prosumers endowed with batteries because 
of the flexibility offered by optimal storage operation. The 
total energy of batteries is shown in Fig. 15(a) and (b) for 
cases 2 and 1, respectively. The optimal operation of batter‐
ies supports the energy exchanges among prosumers during 
the day and contributes to more efficient usage of the energy 
produced by PV systems, thus increasing the energy self-con‐
sumption in the LEC.

V. CONCLUSION 

This paper presents a novel iterative two-stage optimiza‐
tion method that combines LP and a new CP procedure for 
scheduling LECs while considering network constraints and 
branch power losses. CP procedures are conducted locally 
for each prosumer, enabling the computational burden to be 
equally distributed. The method is highly scalable and has 
features that can be implemented on microcontrollers, as 
both LP and CP procedures require only simple matrix-vec‐
tor multiplication.

Simulation results demonstrate that the proposed method 
is computationally efficient, achieving the same quality of so‐
lutions as that by centralized optimization in a few seconds. 
The prices of energy transactions among prosumers are also 
calculated. Participation in a LEC is convenient for each 
prosumer, with individual economic benefits mainly derived 
from the sizes and locations of the PV/battery systems in 
the network.

Future works will focus on the benefits of providing ancil‐
lary services to system operators and on real-time optimiza‐
tion of the LECs [36] while considering prosumer rights relat‐
ed to carbon emissions [37]. Prosumers can improve their eco‐
nomic benefits by also providing up- or down-regulation [27].
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APPENDIX A

A. Matrix Free LP Solver

The advantage of the accelerated gradient descent (AGD) 
method for solving LPs is that it relies merely on matrix-vec‐
tor multiplications, which are parallelizable and can be car‐
ried out in a privacy-preserving way.

Considering the generic LP problem min cT xAx = blb £ x £
ub, the lagrangian dual is:

max
λ

min
lb £ x £ ub

{cT x + λT (Ax - b)} (A1)

Following [29], to guarantee that, for a given value of λ, 
the unconstrained version of the inner optimization has a 
unique solution x(λ), a quadratic penalization term is added 
to the Lagrangian dual problem:

max
λ

min
lb £ x £ ub{cT x +

γ
2

xT x + λT (Ax - b)} (A2)

where γ > 0 is a parameter. When γ is very small, (A2) gets 
very close to (A1) and gives a good approximate solution.

By denoting f (λ)= min
lb £ x £ ub{cT x +

γ
2

xT x + λT (Ax - b)}, (A2) 

can be written as:

max
λ

f (λ) (A3)

Problem (A3) can be solved by any first-order methods 
(FOMs) such as the gradient descent (GD), the main steps 
of which are presented in GD algorithm, where η is the 
step size.

Because the minimum of cT x +
γ
2

xT x + λT (Ax - b) for a 

fixed λ is reached when 
¶
¶x (cT x +

γ
2

xT x + λT (Ax - b)) = 0 

or c + γx +AT λ = 0,

x ( λ) =- AT λ + c
γ

(A4)

In contrast with ADMM-based methods, expensive inter‐
mediate steps are avoided.

Following [38], a good estimate for f (λ) can be obtained 
by the projection of x(λ) onto { |x lb £ x £ ub}, by setting 
x i (λ)= ub(i) if x i (λ)>ub(i), x i (λ)= lb(i) if x i (λ)< lb(i), and by 
leaving the values x i (λ) within the boundaries unchanged:

x i (λ)=min (x i (λ)ub(i)) (A5)

x i (λ)=max (x i (λ)lb(i)) (A6)

Moreover, since 
¶
¶λ (cT x +

γ
2

xT x + λT (Ax - b)) =Ax - b,

Ñf ( λ) =Ax(λ)- b (A7)

As explained in [29], a fixed step size η = L =
γ

 A
2

S

 can 

be adopted, in which  A
2

S
 is the maximum eigenvalue of 

AT A [39]. By applying AGD [29], [40], a two-step updating 
rule of the dual vector λk + 1 is implemented:

ì
í
î

ïï
ïï

λk + 1: =max (0ξ k + ηÑ(ξ k ))

ξ k + 1: = λk + βk (λk - λk - 1 )
(A8)

where βk =
2(tk - 1)

1 + 1 + 4t 2
k

 with initial parameters t1 = 1 and 

ξ 1 = λ0.
AGD guarantees a O(1/k 2 ) convergence rate which means: 

f * - f (λk )£O(1/k 2 ).
The details of accelerated gradient descent algorithm for 

LP are presented in the following algorithm.

B. Exact Conic Projection

If C is a convex set, the projection of x onto C is x̂ =
arg min

xÎC  x - x0 , which is the closest point x in C to x0.

We consider the case in which C is the second-order cone 
[41] C ={(wt)|(wt)ÎRn ´R+ w £ t}. C is convex. Indeed, 
having (w1t1 )ÎC and (w2t2 )ÎC implies that  w1 £ t1 and 

 w2 £ t2, respectively [38]. If each of the later inequalities 
is multiplied by θ and 1 - θ, respectively (in which θÎ[01]) 
and then, they are summed up,  θw1 +  (1 - θ)w2 £ θt1 +
(1 - θ)t2 is obtained. From triangle inequality, 
 θw1 + (1 - θ)w2 £  θw1 +  (1 - θ)w2  and then 

 θw1 + (1 - θ)w2 £ θt1 + (1 - θ)t2 which in turn indicates that 
(θw1 + (1 - θ)w2θt1 + (1 - θ)t2 )= θ(w1t1 )+ (1 - θ)(w2t2 )ÎC, 
which corresponds to the definition of convex sets.
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Fig. 15.　Total energy of batteries for 84-bus distribution network. (a) With 
energy exchanges among prosumers (case 2). (b) Without energy exchanges 
among prosumers (case 1).

Algorithm A1: gradient descent algorithm

Step 1: start with an initial guess λ
Step 2: while  Ñf (λ)  is bigger than a threshold do:
Step 3: λ = λ + ηÑf (λ)
Step 4: end
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The constraint of the form uTu £ xy in which xyÎR+ and 
uÎRn can be written as 4uTu - 2xy £ 2xy and then 4uTu +
x2 - 2xy + y2 £ x2 + 2xy + y2 or 4uTu + (x - y)2 £(x + y)2, which, 
after taking the square root of both hand sides, can be writ‐

ten in matrix form as 





 




2u

x - y
£ x + y, i. e., a second-order 

cone. If (zw)ÎR+ ´R+ and u = é
ë
êêêê ù

û
úúúúz

w
, uTu = z2 +w2. Therefore, 

C ={(xyzw)|(xyzw)ÎR+ ´R+ ´R ´R z2 +w2 £ xy}, called 
the rotated second-order cone, is a convex set [41].

Project of a given point (x0y0z0w0 )ÏC onto C, the clos‐
est point (xyzw) in C to (x0y0z0w0 ) lies on the bound‐
ary of C which means xy = z2 +w2. So the following optimi‐
zation problem needs to be solved:

ì
í
î

min[(x - x0 )2 + (y - y0 )2 + (z - z0 )2 + (w -w0 )2 ]

s.t.  xy = z2 +w2 (B1)

The above optimization is solved by using the Lagrangian 
method of multipliers. The lagrangian is:

L ( xyzwλ) = (x - x0 )2 + (y - y0 )2 + (z - z0 )2 +
(w -w0 )2 + λ(z2 +w2 - xy) (B2)

for which equilibrium points satisfy the following conditions:
¶L
¶x

= 2(x - x0 )- λy = 0 (B3)

¶L
¶y

= 2(y - y0 )- λx = 0 (B4)

¶L
¶z

= 2(z - z0 )+ 2λz = 0 (B5)

¶L
¶w

= 2(w -w0 )+ 2λw = 0 (B6)

¶L
¶λ

= z2 +w2 - xy = 0 (B7)

From (B5) and (B6), respectively, we can obtain:

z(λ)=
z0

1 + λ
(B8)

w(λ)=
w0

1 + λ
(B9)

From (44), we can obtain:

y =
2(x - x0 )

λ
(B10)

From (51) and (45), we can obtain:

x(λ)= 2
2x0 + λy0

4 - λ2 (B11)

and, similarly,

y(λ)= 2
2y0 + λx0

4 - λ2 (B12)

The solution of the system of nonlinear equations (B3) -
(B7) provides λ, which is used in (B8), (B9), (B11), and 
(B12) to compute x, y, z and w, i. e., the optimal solution 
to (B1).

The value of λ is obtained by the roots of a 4th-order poly‐
nomial. Indeed, from (B7) - (B9), (B11), and (B12), as xy =
z2 +w2, we can obtain:

4
(2x0 + λy0 )(2y0 + λx0 )

(4 - λ2 )2
=

z 2
0 +w2

0

(1 + λ)2 (B13)

This yields:
(4x0 y0 - z 2

0 -w2
0 )λ4 + 8(x2

0 + y2
0 + x0 y0 )λ3 +

(20x0 y0 + 16(x2
0 + y2

0 )+ 8(z 2
0 +w2

0 ))λ2 +[8(x2
0 + y2

0 )+
32x0 y0 ]λ + 16(x0 y0 - z 2

0 -w2
0 )= 0 (B14)
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