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Abstract—In this paper, a new method to address the schedul-
ing problem of a renewable energy community while consider-
ing network constraints and users’ privacy preservation is pro-
posed. The method decouples the optimization solution into two
interacting procedures: conic projection (CP) and linear pro-
gramming (LP) optimization. A new optimal CP method is pro-
posed based on local computations and on the calculation of the
roots of a fourth-order polynomial for which a closed-form solu-
tion is known. Computational tests conducted on both 14-bus
and 84-bus distribution networks demonstrate the effectiveness
of the proposed method in obtaining the same quality of solu-
tions compared with that by a centralized solver. The proposed
method is scalable and has features that can be implemented on
microcontrollers since both LP and CP procedures require only
simple matrix-vector multiplications.

Index Terms—Accelerated gradient method, battery storage
system, conic projection, energy community, energy scheduling,
linear programming, renewable resource.

I. INTRODUCTION

O guarantee more sustainable and reasonable access to
energy, the recent evolution of the regulatory frame-
works in Europe and elsewhere has promoted the centrality
of prosumers and the diffusion of renewable energy sources,
distributed generation, and energy storage systems [1].
Because of improved metering and other information- and
communication-technology-based infrastructures, a new para-
digm for managing smart grids has garnered interest. This
new paradigm involves establishing energy communities
based on an aggregation of prosumers, allowing direct pow-
er exchanges. Because electricity exchanges contribute to the
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improved exploitation of renewable energy resources and al-
low the provision of power flexibilities at reduced costs, pro-
sumers can benefit from their participation in an energy com-
munity. The participation of energy communities in ancillary
service markets (e.g., [2] and references therein) is another
interesting aspect worthy of study.

Recent research works in the field of energy communities
have focused on energy exchanges and pricing models [3]-
[10] by using different methods such as game theory [3],
[9], decentralized bilateral trading [4], [5], and market mod-
els (e.g., [6]) for distribution networks. In [7], a sensitivity
analysis is used to assess the effects of transactions on the
network constraints. An energy-trading method is proposed
in [8] to mitigate the peak demand by incentivizing prosum-
ers to conduct energy exchanges. A game-theoretic method
with heterogeneous prosumers who trade energy for virtual
microgrids is proposed in [9]. In [10], an energy block con-
tract market is solved by using a privacy-preserving distribut-
ed algorithm that allows users to trade services in a flexible
manner.

Power losses and/or technical constraints in the network
are often neglected in studies on energy exchange. By ne-
glecting power losses, the power balance conditions are not
precisely evaluated [11]. In this regard, different methods
have been proposed to address this issue. In [12], power loss-
es are allocated to each bus of a microgrid, and battery stor-
age units are discharged to compensate for the power losses.
A market with energy exchanges is considered in [13], and a
second-order cone programming (SOCP) formulation is de-
vised for the allocation of power losses. The two considered
configurations couple peer-to-peer (P2P) interactions with
distribution network operations using a centralized or P2P
procedure. In the second case, the utility and the P2P plat-
form are operated separately, and the coordination between
them is achieved by an iterative procedure. Network fees
and power losses are considered in [11], whereas a power
transfer distribution factor is used in [3] and [4] to evaluate
the effects of transactions on power flow constraints. The ef-
fects of the low-voltage networks on local markets are evalu-
ated in [14]. Electrical distances between prosumers and the
shortest path algorithm are used in [15]. An estimation meth-
od for the allocation of power losses to each transaction is
used in the alternating direction method of multipliers (AD-
MM) -based method presented in [16] and extended in [17]
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to consider the link between day-ahead and intraday schedul-
ing (a topic also dealt with in [18]). In [19], a mixed-integer
centralized model of a local energy community (LEC) is pro-
posed that adopts the classical SOCP convex relaxation of
the optimal power flow problem (e.g., [20], [21] and refer-
ences therein).

P2P methods are particularly attractive because of the spe-
cific characteristics of energy communities in which multiple
independent prosumers collaborate to reach a common objec-
tive, where the primary objective is the reduction of energy
procurement costs.

In [22], a P2P active power management framework based
on a multi-agent distribution system is described in which
only the operational constraints of the agents’ resources and
the supply-demand balance constraints are considered. A P2P
management model is adopted to facilitate the independent
optimization of the agents’ operational plans. In [23], Nash
bargaining theory is used to formulate a P2P transactive ener-
gy trading problem that is decomposed into an optimal pow-
er flow (OPF) problem and a payment bargaining problem.
ADMM is adopted to solve distributed optimization in a pri-
vacy-preserving manner. In [24], a P2P platform is presented
that can minimize the costs associated with battery deprecia-
tion and power losses. In this case, distributed optimization
is solved by using the ADMM while considering network
constraints. In [25], a P2P electricity trading framework
based on the generalized fast dual ascent method is pro-
posed. Network constraints are considered in the proposed
model through a voltage and loss sensitivity method. In [26],
the proposed distribution system operator-prosumer schedul-
ing framework is based on Nash bargaining. The problem is
decomposed into two subproblems and solved in a distribut-
ed manner using ADMM. In [27], the proposed optimization
is based on the virtual model of self-consumption, where the
energy balance within the community is accomplished by
considering the energy exchanges assessed at each point of
delivery. This results in scalable and privacy-preserving real-
time distributed parallel optimization for the participation of
an energy community in the ancillary service market.

It is assumed that the LEC is managed by an energy com-
munity manager that performs the scheduling optimization
aiming at minimizing the costs related to the energy con-
sumption in the community or maximizing the revenues
when the community globally exports power. Prosumers can
be endowed with local generation, photovoltaic (PV) units,
and/or battery systems. Cost minimization is achieved by fa-
voring direct energy exchanges among prosumers while opti-
mizing the use of internal energy resources.

Depending on their needs and the choices of the energy
community manager, prosumers can consume energy from
the external energy provider (here, for simplicity, this corre-
sponds to the utility grid) and can use the electrical energy
produced by their PV plant by consuming it themselves.
Moreover, prosumers can share energy with other prosumers
or store it in their local batteries.

The fair prices of the energy exchanges are automatically
computed by the optimization procedure while considering
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both the time and location of the involved prosumers. The
prices are based on the calculation of the dual variables of
the balancing constraints relevant to the energy exchanges in
the optimization model.

This paper focuses on a deterministic model, and the test
results are presented for a typical time horizon of 24 hours.
To consider the uncertainties associated with PV production
and load forecasting, the procedure has the computational
characteristics necessary for inclusion in a scenario-based
stochastic method and for application in rolling horizon intra-
day procedures such as those described in [27].

Unlike in the centralized model of [19], the proposed
method does not use binary variables, and the set of con-
straints is decoupled into a conic projection (CP) procedure
plus a linear programming (LP) problem, both of which are
solved in a decentralized privacy-preserving manner.

To solve the SOCP optimization, a specific CP procedure
is applied locally so that the user’s information is not dis-
closed. In contrast with, e.g., [28], the P2P exchanges are
not virtual, and network constraints and power losses are
evaluated.

To better highlight the innovative contribution of the pro-
posed method, Table I compares some key features of the
methods already presented in the literature.

The comparison shows that only a few papers present a
distributed optimization considering conic constraints, power
losses, and the privacy of prosumers [6], [23], [26], which
are the main characteristics of the proposed method. In [6],
the nonconvex constraints for Distflow equations are approxi-
mated by using an implicit function instead of the SOCP for-
mulation. In [23] and [26], the SOCP formulation is adopted
and embedded in sequential ADMM procedures. As regards
the privacy issue, in [6] and [23], the respect for user priva-
cy is assumed because the optimization is performed in a ful-
ly distributed manner with ADMM, while in [26], the priva-
cy is preserved by using consensus-based ADMM.

The proposed method has the following original character-
istics and specific advantages.

1) A new optimal CP method is proposed based on local
computations. It is presented in detail in the Appendix A and
is based on the calculation of the roots of a fourth-order
polynomial for which a closed-form solution is known.

2) A new method for users’ privacy preservation based on
data aggregation is proposed that decouples the optimization
solution into two interacting procedures, namely, CP and LP
optimization. In contrast to the previous methods, the imple-
mented procedure is based on parallel matrix-vector multipli-
cations which allow the implementation of a parallel proce-
dure. After the penalized LP is solved, an individual and in-
dependent CP procedure is conducted for each user in a pri-
vate and parallel manner. If the summation of infeasibility
for the conic constraints remains greater than the required ac-
curacy, another penalized LP is obtained. These two interact-
ing LP and CP procedures continue until convergence.

3) The prices of the internal P2P transactions can be evalu-
ated by using the dual variables associated with the power
equilibrium constraints.
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TABLE I
COMPARISONS WITH PREVIOUS METHODS
Ref. Comc' Power loss Privacy Method
constraint  of prosumer
[3] n n No Stackelberg game
[4] n n Yes Decentrah;ed P2P energy trad-
ing scheme
[5] n y No Iterative peer matching process
[6] y y Yes ADMM
Methodology based on
7] y y No sensitivity analysis
[8] n n No Stackelberg game
[9] n n No Stackelberg game
[10] n y Yes Decentralized ma.rket clearing
mechanism
[12] n y No  Distributed consensus algorithm
Centralized AC OPF and
(13] y y Yes iterative procedure
Forward/backward sweep
(14] y y No method with power summation
Two market mechanisms for
[15] n y Yes P2P energy trading driven by
electrical distance
[16] y y No ADMM
[17] y No ADMM
Decentralized sequential
(18] n n Yes decision making model
Mixed-integer centralized
[19] y ¥ No model
Step-wise transactive
(22] n M Yes distributed control framework
[23] y Yes ADMM
[24] n y Yes ADMM
[25] n y Yes Fast dual ascent method
[26] y y Yes ADMM
P2P exchanges based on virtu-
28] n n Yes al model of self-consumption
This N
Paper y y Yes LP-based optimization

Note: y means that it is included in the method; n means that it is not in-
cluded.

4) The proposed method can be easily implemented with-
out using any commercial or open-source solver.

In previous studies, the ADMM is employed to solve the
distributed optimization by using off-the-shelf solvers such
as Gurobi in [6] and [23], CPLEX in [24], and MOSEK
in [26].

As mentioned, the proposed alternating projection method
consists of the two LP and CP procedures. The solution to
LP is based on matrix-vector multiplications. At each itera-
tion, the only calculation performed by each prosumer is ma-
trix-vector multiplication plus local CP. It is worth noting
that without the CP part, the LP part exhibits a convergence
rate of O(1/k%), while the ADMM used in [6], [23], [26] ex-
hibits a convergence rate of O(1/k) [28], [29].

The remainder of the paper is organized as follows. The
proposed model is described in Section II. Section III pres-
ents the solution procedure. Section IV presents the test re-
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sults, and Section V gives conclusions.

II. PROPOSED MODEL

As in [19], the proposed model represents the internal net-
work of the LEC as a combination of lines connected to
each other with a radial configuration and balanced for a sin-
gle-phase representation. At the end of each line, a prosumer
is connected.

Including the feeding line, each prosumer is defined by
two connection points, herein denoted as the input and out-
put sides. The input side is connected to the slack bus (i.e.,
the medium-voltage (MV) secondary side of the substation
transformer) or to the output side of the upstream branch.
The output side is connected to the input side of the down-
stream branch or it is not connected in the case of the termi-
nal branches of the system.

In the model, the set of all prosumers is denoted by Q
(with index 7). For each prosumer i and each time interval ¢
(under duration Af) of the considered optimization horizon 7,
Vini, and v ., denote the root mean square (RMS) values of
the voltages at the input and output terminals, respectively;
u;, denotes the square RMS value of the current of the feed-
ing branch (the charging current is neglected); P, and
P, denote the input and output active power flows, respec-
tively; Q;,,, and Q,,,, denote the input and output reactive
power flows, respectively; and r, and x, denote the line resis-
tance and reactance, respectively.

The prosumer model includes a local load, generating
unit, and battery energy storage (BES). P, and Q,;, are the
active and reactive power load consumptions, respectively;
P,,, and Q,,, are the active and reactive power generation
outputs, respectively; Py, is the BES output; and P,
and O, are the total net active and reactive power ex-
changes, respectively.

The battery model represents the BES energy level (£,)
and charging and discharging battery power losses
(Conarge 1> Catischarge )-

Each prosumer may directly perform energy transactions
with the utility grid and with other prosumers of the commu-
nity. P, is the prosumer’s power exchanged with the grid.
Py aridis is the power bought at price Ty s Petl gridis is the
power sold at price 7 ; and P g, is the prosumer’s power
exchanged with the other prosumers of the community.

In the model and the test results presented in this paper,
prices 7, and 7, as well as r, x, Py, Qip Pyip Oy
BES charging and discharging efficiencies (7, and
N discharge » TESPECtively), the maximum and minimum limits of
Pyrsip Eipp Vi 1o Vou 1o @nd the maximum limit of u,,, are con-
sidered parameters with predefined values.

To distinguish the power flows due to the transactions be-
tween prosumer i and the utility grid from those due to the
transactions with other prosumers at each time interval ¢, the
model includes variables P, ;,;, and P4 o, (i-€., the power
flows due to the transactions with the grid at the input and
output terminals, respectively) and P, p.;,;, (i.e., the power
flow due to the transactions with other prosumers at the in-
put terminal).

in 0,12
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The considered objective minimizes the total community
costs due to the transactions with the utility grid:

Cgrid = 2 z (”buy thuyA, grid it ”sell tPsell, grid it )At (1)
ieNteT

where Py, g, and Py ., are the nonnegative variables.
The objective does not include generation costs since we as-
sume here that all the local generation is provided by renew-
ables (e.g., PV panels). When x,, , is assumed to be greater
than 7, the cost minimization is favored by a balance be-
tween the production and consumption in the LEC.

Py, and the trade decisions with the other prosumers of
the community are the main decision variables.

Following the typical convention of the Distflow or
branch flow model [30], the values of v, Py Qouir»r and
P yig.ous, should be equal to those of vy, Pivivie Qiniere
and Py, 1, respectively, considering i and i+ 1 as the up-
stream and downstream prosumers, respectively:

Vinis 1.0~ Vours =0 (2)
Piiiri=Powii=0 3)
Oinis1i™ Qoui =0 “4)
Pgrid,inH I,I_Pgrid.,outi,tz 0 (5)

In terms of branching for active and reactive power, the
equality is replaced by the balancing constraints at the
branching node, as in [30].

For the prosumers located at one of the feeder ends, P
Ooutir A0 Py, are constrained to be 0.

The square RMS voltages at the input terminals of the pro-
sumers connected to the substation should be equal to the
known value of the slack bus voltage V3

mkt_V2 Vkego (6)
where Q, is the set of prosumers connected to the slack bus.
Transactions between the prosumers of the community do
not cause any power flow exchange with the grid, i.e.,
z PLEC,in =0

keQ,

out i,r>

(7

For each prosumer i and time interval ¢, the relationships

between v, ,, and v, Py, and P, and O, and Q .,
are:

Pini.z_Pouti,tZPz;r (®

Oinii— Qou it Qi,t 9

Vinie™ Vouii=2¥; szt+2xiQinzlt_(ri2+x?)ui.t (10)

Pt O SV g, (1)

where nonnegative variable u;, is constrained to be lower
than the square of the maximum branch current limit, non-
negative variables v, ,, and v, are constrained between
0.95% p.u. and 1.05” p.u., and:

P Pubertt it (12)
Qlt Qusent (13)

Constraint (11) is the usual rotated second-order cone con-
vex relaxation of the branch flow model. The feasible solu-
tion is obtained for an equality condition. The achievement

out 7t

r.u.

ltt
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of this condition is checked after the solution, and an itera-
tive procedure is implemented that solves the model with a
progressively increased penalization of the branch power
losses in the objective function, as described in the final part
of this section.

The net power for each prosumer is given by:

Pusertt Pll[+P5tl+PBESL[:0 (14)

Quseri.t_Qli,t+Qgi,t:0 (15)
where Py, is considered positive if supplied by the bat-
tery. We assume here that the PV and BES units operate at
the unity power factor Q,,,=

The adopted model of the storage units is represented by:

PBESi,z_PgEsm"'Pl;ESi,z:O (16)
lchargc = (1 - nchargc i )PI;ES it (17)
1 n
ldischarge it —-1|P BES i, (18)
’/Idischargei
E Ez -1 (PBESL t+ lchargcz t dlschargC/ I)At (19)

where Pggg,, and Pggg,;, are the nonnegative variables con-
strained by the maximum power limit of the battery.

In the tests, the energy level at the beginning of the first
interval and at the end of the optimization horizon are con-
strained to be equal to the battery rating.

The direct exchanges with the utility grid and those with
the other prosumers are described by:

Pi,t_Pgridi,r_PLECi,tZO (20)
Pin[,l_Pgrid,ini,z_PLEC‘in[J:O (21)
P gridi,t_P buy, grid i,t+P sell,gridi,tzo (22)
Pyidii=Paiainiit Pidoni =0 (23)

where Py, ., and Py .q,;, are the nonnegative variables.

The modules of the dual values associated with the con-
straint (20) are used to define the prices of the transactions
between the prosumers of the community.

In a feasible solution, (11) is verified as equality. P,
and Py, of (16) cannot be both nonzero for the same ¢ and
i. Specific checks are included in implementing the model
and penalization terms of the line active power losses, and
BES losses are added to the objective function.

Moreover, the nonnegative variable ISLEC is defined as:

Prpc—=Prgc < 0
_PLEC_PLECSO
The reselling of the power from the grid to the other pro-

sumers is avoided by the penalization of ISLEC in the objec-
tive function, which becomes:

24

OF=min { Cuiat

2 z(lulosslrl i, I+luBESl£chdrgel t+luBES lgdlst.hdrgel t luP,_F( PLEC] I)At
ieNteT
(25)

where > Mges,» and wp —are the penalization coefficients
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of the line power loss, charging and discharging BES losses,
and power exchanges with the other prosumers, respectively.
Without penalization term ,uBESiéchargei,,+/¢BESi€(iischargei7,, there
can be multiple optimal solutions for which battery charging
and discharging power are nonzero during the same period ¢.
The penalization term enforces the solver to pick only those
solutions for which battery charging and discharging power
are both nonzero simultaneously.

When the corresponding feasibility conditions are not met
(for all the branches, batteries, and prosumers), new solu-
tions are calculated with the penalization coefficients pro-
gressively increased until a feasible one is obtained. For all
test results considered in this paper, the weight of the penal-
ization terms of the objective function (25) corresponding to
the final feasible solution is negligible with respect to the
cost term (1).

In summary, the optimization problem is given by (25), in-
cluding (1) augmented by the aforementioned penalization
terms to guarantee a feasible solution, with constraints (2)-
(24), and the lower and upper limits of each variable.

III. SOLUTION PROCEDURE

A. Centralized Method for SOCP
Since the objective function and the constraints described
in Section II (excluding (11)) are linear, and because (11)
2P init !
205, | <
v

can be re-formulized as the second-order cone
u

it ing, ¢t 12
u;,+v,.» the model can be solved in a centralized manner
using a commercial or open-source conic solver such as
CPLEX, Gurobi, MOSEK and JuMP in Julia, and MATLAB.
In general, the solvers are based on interior point algorithms.
In [31], the optimization of a linear objective function over
the intersection of an affine space with a convex cone is ob-
tained by using an interior-point method (IPM). In [32], a
more numerically stable IPM is proposed using product-form
Cholesky factorization.

The typical algorithm implemented in commercial solvers
is based on the interior-point method, as described in [31]
and [32], for use in the centralized case. The common fea-
ture of the interior point method is that a sequence of feasi-
ble primal-dual pairs is constructed in a manner in which the
gap between primal-dual objective values approaches a de-
sired accuracy. Although these methods are extremely fast,
they can have difficulties with large problems, and they do
not exploit new hardware accelerators such as GPUs and
TPUs. In addition, performing computations in a decentral-
ized manner such that the privacy of the users is respected
seems to remain unclear. Accordingly, the proposed method
uses gradient information to address large problems in a de-
centralized privacy-preserving manner.

B. Proposed Decentralized Method

The proposed decentralized method splits the feasible set
defined by (2)-(24) into two parts, each of which is easier to
handle than the original formulation. Let vector x consist of
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all decision variables, and denote the feasible set of all con-
straints (2)-(24) except (11) by L={x|Ax=b,lb<x<ub} and

denote the feasible set of (11) (the second-order cone) by C.
The goal is to optimize (25) over L\ C, where L is the set
of linear constraints and C is the set of conic constraints. As
a result, by excluding (11), we come up with an LP as:
min {c"x|Ax=b,Ib <x < ub)} (26)

This flow chart of iterative two-stage optimization is illus-

trated in Fig. 1.

X=arg min {%XT)I? + chclieL}

T
v

§= Zmax {0, P}, agtt [0 i Vin i i}

¢ Y
N
‘ X=Proj(x) ‘

!

x=arg min {gﬂfﬂﬁﬁﬁ)ﬁc\feeL}
I

End

Fig. 1. Flow chart of iterative two-stage optimization.

Step 1: as y>0 is a very small constant, x is computed as
the optimal solution as (27) by using the procedure present-
ed in Appendix A.

x=arg min{ngx+ch|x el 27

Step 2: the convergence criteria are checked as to whether
||x—.§: || and the summation of infeasibilities for linear con-
straints Ax=5 are less than a predefined threshold.

Step 3: x=Proj-(x) is the projection of x onto the cone C
as defined by (11). If the corresponding entries in solution x
(from Step I) do not satisfy (11), and if |u; |>0, a new solu-
tion is obtained by setting v, =P;,,+O. /u, . If [u,|=0,
the procedure for CP presented in Appendix A is applied.

Step 4: ¢'X is minimized subject to X € L with the penal-
. . — a2 . _ Oy _ .2
ization of the distance |X-x |2, i.e, c'x+ §||x—x .=

0 _._ - O a1a .
ExTx+(c—6x)Tx+ ExTx, where 6 is a penalty term (con-
stant number). As x"x is constant, the minimization of ¢'x+

gni—)} ||z is given by:

X =arg min gin+(c—0fc)Tf|feL (28)
which is solved by the method presented in Appendix A.

As for the convergence, the procedure is terminated as
soon as the infeasibility for the conic constraints is less than
a threshold:

zmax{07pi2ni,t+Qizni,t_viniﬁtuitt}ga (29)
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The most computationally demanding part of the algo-
rithm is the solution to the LP problem (28). The proposed
distributed and parallel procedure is based on a modified ver-
sion of the method proposed in [29] and is explained in Ap-
pendix A. This method scales to much higher dimensions
when compared with the ADMM-based parallelized version
of the method known as the splitting conic solver [33].

Once problem (28) is solved, dual variables 4 correspond-
ing to Ax=b are obtained. The prices of transactions be-
tween LEC prosumers are obtained by computing the shad-
ow prices derived from (20).

C. Privacy Preservation Strategy

Since conic constraints in (11) are local ones, the optimi-
zation for each user can be private without disclosing any da-
ta to others. Once the optimization is conducted for all us-
ers, the new solution is fed into the penalized LP, and the
LP is solved while preserving privacy as described in [28].
Using similar notations as in [28], (28) can be rewritten as:

minec’x
S.t. Z]x1+ 22x2+...+ Z,,xn: b
. . (30)
A;x;=b, i=12,...n
Ib<x<ub

where x,,x,, ...,x, are n vectors of unknown variables.
The global and local constraints are denoted as A4,x,+

A,x,+...+ A,x,=band A, x,=b.i=1,2, ....n, respectively.

A, A4, A4,
A= A,11 A'IZ A_ln
/inl "inZ /’inn
_ 31
. (31)
b
b,
in which A, =0 for i=;:
_ _ — —T -
A, A4, ... A, ! & A&+ A€
A A A —T A
A, A, A, | [ |4:6+458, (32)
~ ~ A —T : ~
Anl An2 Ann é:” AW§O+A:’1§”

Step 3 of the procedure presented in [28] can be rewritten
as:

—T - -
4.6, 45, " Ox, —c,

Y Y Y
—T n N
A"E+c— 0% _AZSZO _ 43¢, n Ox,—c,
x(&)=- =l y y
Y .
—T AT. N
_ A n 50 _ Amzfn + Hxn - cn
Y Y Y

(33)
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The i" user can update its configuration x, (&) without ex-
changing the information about its objective function ¢, the
dual variables &, or the projected primal x,.

IV. TEST RESULTS

The proposed method has been implemented in MATLAB
R2022b on a computer with an Intel™® Core™ i7-10700
CPU @ 2.90 GHz with 16 GB of RAM and running 64-bit
Windows 11.

Two test systems have been considered to validate the pro-
posed method.

1) A 14-bus distribution network with 23 kV rated voltage
and three feeders (data are given in [34]).

2) An 84-bus distribution network with 11.4 kV rated volt-
age and 11 feeders (data are given in [35]).

Twenty-four periods of 1 hour each are considered during
the single-day horizon for both test systems.

To verify the effectiveness of the proposed method, three
cases have been compared.

1) Case 1: energy exchanges do not occur among prosum-
ers.

2) Case 2: prosumers are allowed to exchange energy with-
in the LEC (connected feeders).

3) Case 3: direct exchanges are allowed only among pro-
sumers belonging to the same feeder by implementing con-
straint (7) independently for each feeder (separate feeders).

Table II lists the battery sizes considered in the two test
systems. The battery capacity to rated power ratio is as-
sumed to be 1 hour.

TABLE 11
BATTERY SIZES

Test system  Bus Size (MWh) | Test system  Bus Size (MWh)
1 0.5 2 0.48
2 0.3 9 0.48
3 0.4 14 0.48
4 0.2 27 0.56
5 0.3 32 0.24
14-bus 6 1.0 84-bus 34 0.24
distribution 7 0.5 distribution 36 0.24
network 3 1.0 network 38 0.40
9 0.2 52 0.48
10 0.6 64 0.40
11 0.1 66 0.40
12 0.2 71 0.40
13 0.2

For both the 14-bus and 84-bus distribution networks, the
solutions obtained by using the proposed method combining
CP and LP are compared with those provided by the central-
ized optimization proposed in [31] and [32] and implement-
ed in MATLAB. The results derived from the proposed meth-
od are labeled “D”, whereas those obtained by the central-
ized optimization are labeled “C” in Tables III and IV.
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TABLE III
COMPARISON OF PROPOSED METHOD WITH CENTRALIZED
OPTIMIZATION FOR 14-BUS DISTRIBUTION NETWORK

Case OF (k€)  Augmented OF (k€) Loss (MWh)
C D C D C D
Case 1 41.7 41.7 41.7 41.7 338 338
Case 2 37.1 37.1 37.1 37.1 440 440
Case 3 392 392 39.2 39.2 477  4.77
TABLE IV

COMPARISON OF PROPOSED METHOD WITH CENTRALIZED
OPTIMIZATION FOR 84-BUS DISTRIBUTION NETWORK

Case OF (k€) Augmented OF (k€) Loss (MWh)
C D C D C D
Case 1 36.5 36.5 36.5 36.5 45 4.5
Case 2 28.8 288 28.8 28.8 4.8 4.8
Case 3 30.0 30.0 30.0 30.0 4.9 4.9

A. Test Results on 14-bus Distribution Network

The 14-bus distribution network consists of three feeders.
At each bus, a prosumer is endowed with a PV system and
battery system. Prosumers with different profiles for load
and PV production are assumed. The total daily energy con-
sumptions of the LEC and PV production are equal to 195
MWh and 84 MWh (43% of the load), respectively. Load
and PV production profiles are shown in Fig. 2(a) and (b),
respectively, where the colored lines refer to different pro-
sumers located at different buses. The total capacity of the
batteries is 8.25 MWh (9.8% of the daily PV production).

Figure 3 shows the profiles of the prices of the energy
bought/sold from/to the main grid, i.e., =, and =, respec-
tively, together with the energy prices of the exchanges be-
tween prosumers while considering connected feeders, i.e.,
case 2. Colors solely depict the 3-D nature of the surface,
which applies to all the subsequent figures. Very similar re-
sults are obtained in terms of the objective function, power
losses, voltage profiles, prosumer power exchanges, and cur-
rents for cases 1-3. The objective function, which is equal to
€41.7x10% in case 1, decreases to €37.1x10° in case 2 and to
€39.2x10’ in case 3. A comparison of the objective function
with the augmented one shows that the additional penaliza-
tion terms included in the objective function (25) are close
to zero for all cases. As Table III shows, the proposed meth-
od can achieve the same optimal values for the objective
function when compared with the centralized optimization
proposed in [31], [32].

Because of the energy exchanges among prosumers, the
energy costs reduce to approximately €4600 (11%) and ap-
proximately €2500 (6%) in the cases of connected and sepa-
rated feeders, respectively, when compared with the case
without P2P energy exchanges.

Voltage profiles and currents in the 14-bus distribution net-
work are shown for case 1 in Figs. 4 and 5, respectively.

Energy exchanges determine an increase in power losses
of approximately 30% and 41% in the cases of connected
and separated feeders, respectively, when compared with the
case without energy exchanges (case 1).
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Fig. 2. Prosumer characteristics for 14-bus distribution network. (a) Load
profiles. (b) PV production profiles for each prosumer.
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Fig. 3. Energy prices with connected feeders (case 2). (a) Profiles of pric-
es of transaction with utility grid and energy prices of exchanges between
prosumers. (b) Energy prices of exchanges between prosumers at different
buses.
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Fig. 4. Voltages in 14-bus distribution network.
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Fig. 5. Currents in 14-bus distribution network.

P2P energy exchanges are, indeed, higher in the case with
connected feeders as compared with those with separated
feeders (case 3), as shown in Fig. 6.
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P2P energy exchange among prosumers for 14-bus distribution
(a) With connected feeders (case 2). (b) With separated feeders

Fig. 6.
network.
(case 3).

Figure 7 shows that energy exchanges with the main grid
diminish due to P2P energy exchanges among prosumers.
Prosumers endowed with batteries can reduce the amount of
energy exchanged with the main grid to a much greater ex-
tent due to the optimal management of the batteries, as
shown in Fig. 8, which allows better exploitation of the ener-
gy produced by PV systems and an increase in the energy
self-consumption in the LEC.
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Fig. 8. Total energy of batteries for 14-bus distribution network. (a) With

energy exchanges among prosumers (case 2). (b) Without energy exchanges
among prosumers (case 1).

B. Test Results on 84-bus Distribution Network

The 84-bus distribution network is illustrated in Fig. 9.
Several prosumers are endowed with a PV system and a bat-
tery.

Load and PV production profiles are shown in Fig. 10(a)
and (b), respectively. The total daily energy consumptions of
the LEC and PV production are equal to 239 MWh and 178
MWh (74.4% of the load), respectively. The total capacity of
the batteries is 4.8 MWh (3.2% of the daily PV production).
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Fig. 10. Prosumer characteristics for 84-bus distribution network. (a) Load
profiles. (b) PV production profiles for each prosumer.

Figures 11 and 12 show the assumed profiles of the price
of the energy bought/sold from/to the main grid (i.e., 7y,
and =z, respectively) together with the energy prices of the
exchanges between prosumers (indicated as prices between
prosumers) when considering connected and separated feed-
ers, i.e., cases 2 and 3, respectively. It is worth noting that
the prices of the internal P2P transactions and the corre-
sponding dual variables associated with the power equilibri-
um constraints of the proposed method are essentially the
same as those of the centralized optimization in both cases.

In the case of connected feeders, as shown in Fig. 11, the
energy prices of the exchanges between prosumers mainly
coincide with the prices of the energy bought/sold from/to
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the main grid for all buses. When the LEC globally imports/
exports electricity from/to the utility grid, the prices of the

internal transactions align with 7, or 7,
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Fig. 11.  Energy prices with connected feeders (case 2) for 81-bus distribu-
tion network. (a) Profiles of prices of transactions with utility grid and ener-
gy prices of exchanges between prosumers. (b) Energy prices of exchanges
between prosumers at different buses.
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Fig. 12.  Energy prices with separated feeders (case 3) for 81-bus distribu-
tion network. (a) Profiles of prices of transactions with utility grid and ener-
gy prices of exchanges between prosumers. (b) Energy prices of exchanges
between prosumers at different buses.
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In the case of separated feeders, as shown in Fig. 12, the
energy prices of the exchanges between prosumers show a
more variable behavior. The sizes and locations of PV/bat-
tery systems influence the prices related to the energy ex-
changes so that the prosumers connected at buses closer to
PV/battery systems tend to exchange the energy at lower
prices. This is more evident for the prosumers located at
feeder K for which the installed capacity of PV systems is
lower than that of other feeders and the battery systems are
not installed.

When comparing the values of the objective function in
the three cases, the best value is achieved in case 2, as
shown in Table IV. In addition, a comparison of the objec-
tive function with the augmented one shows that the addi-
tional penalization terms included in the objective function
(25) are close to zero for all cases. As shown in Table IV,
the proposed method can achieve the same optimal values
for the objective function when compared with the central-
ized optimization proposed in [31], [32].

The CPU time required by the sequential computing proce-
dure is less than 8 s.

As expected, the energy exchanges among prosumers en-
able a significant reduction in energy costs, that is, approxi-
mately €7700 (21%) and approximately €6500 (18%) in the
case of connected and separated feeders, respectively, when
compared with the case without P2P energy exchanges.

As regard power losses in the branches of the internal net-
work, energy exchanges lead to increases of approximately
7% (approximately 300 kWh) and 9% in the case of connect-
ed (case 2) and separated feeders, respectively, when com-
pared with the case without energy exchanges (case 1). Ener-
gy exchanges are indeed higher in the case with connected
feeders than with separated feeders (case 3), as shown in
Fig. 13.
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Fig. 13.  P2P energy exchanges among prosumers for 81-bus distribution
network. (a) With connected feeders (case 2). (b) With separated feeders
(case 3).
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Figure 14 shows the reduction in energy exchanged with
the main grid due to the energy transactions among prosum-
ers. The benefits derived from the energy exchanges are
more evident for prosumers endowed with batteries because
of the flexibility offered by optimal storage operation. The
total energy of batteries is shown in Fig. 15(a) and (b) for
cases 2 and 1, respectively. The optimal operation of batter-
ies supports the energy exchanges among prosumers during
the day and contributes to more efficient usage of the energy
produced by PV systems, thus increasing the energy self-con-
sumption in the LEC.
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Fig. 14. Reduction in energy exchanged with main grid. (a) With P2P ener-

gy exchanges among prosumers (case 2). (b) Without energy exchanges
among prosumers (case 1).

V. CONCLUSION

This paper presents a novel iterative two-stage optimiza-
tion method that combines LP and a new CP procedure for
scheduling LECs while considering network constraints and
branch power losses. CP procedures are conducted locally
for each prosumer, enabling the computational burden to be
equally distributed. The method is highly scalable and has
features that can be implemented on microcontrollers, as
both LP and CP procedures require only simple matrix-vec-
tor multiplication.

Simulation results demonstrate that the proposed method
is computationally efficient, achieving the same quality of so-
lutions as that by centralized optimization in a few seconds.
The prices of energy transactions among prosumers are also
calculated. Participation in a LEC is convenient for each
prosumer, with individual economic benefits mainly derived
from the sizes and locations of the PV/battery systems in
the network.

Future works will focus on the benefits of providing ancil-
lary services to system operators and on real-time optimiza-
tion of the LECs [36] while considering prosumer rights relat-
ed to carbon emissions [37]. Prosumers can improve their eco-
nomic benefits by also providing up- or down-regulation [27].
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APPENDIX A

A. Matrix Free LP Solver

The advantage of the accelerated gradient descent (AGD)
method for solving LPs is that it relies merely on matrix-vec-
tor multiplications, which are parallelizable and can be car-
ried out in a privacy-preserving way.

Considering the generic LP problem min ¢"xAx=b,lh<x<
ub, the lagrangian dual is:

: T T _
max min {¢ x+1 (Ax-b)}

(A

Following [29], to guarantee that, for a given value of 4,
the unconstrained version of the inner optimization has a
unique solution x(4), a quadratic penalization term is added
to the Lagrangian dual problem:

max min
2 Ib<x<ub

(A2)

c'x+ %xTxhlT (Ax—b)}

where y>0 is a parameter. When y is very small, (A2) gets
very close to (Al) and gives a good approximate solution.

By denoting f(4)= Ibgli(rlb{ch+ %xTx+,1T (Ax—b)}, (A2)
can be written as:

max /() (A3)

Problem (A3) can be solved by any first-order methods
(FOMs) such as the gradient descent (GD), the main steps
of which are presented in GD algorithm, where # is the
step size.
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Algorithm Al: gradient descent algorithm

Step 1: start with an initial guess 4

Step 2: while || V£(2) || is bigger than a threshold do:
Step 3: A=2+nVf(2)

Step 4: end

Because the minimum of ¢"x+ %xTx +2"(Ax—b) for a

fixed 4 is reached when % cTx+ %xTx+lT(Ax—b) =0
or c+yx+A"21=0,
_A'i+c

x(A)=

. (A4)

In contrast with ADMM-based methods, expensive inter-
mediate steps are avoided.

Following [38], a good estimate for f(4) can be obtained
by the projection of x(4) onto {x|lb<x<ub), by setting
x; (A)=ub(i) if x,(A)>ub(), x,(A)=1Ib@i) if x,(A)<Ib(i), and by
leaving the values x,(4) within the boundaries unchanged:

x;(4)=min (x, (4), ub(i)) (A5)
x;(A)=max (x,(4), Ib(7)) (A6)
Moreover, since 6% cTx+ % x"x+2T(Ax—b)| =Ax—b,
Vf () =Ax(2)-b (A7)
As explained in [29], a fixed step size y=L= ” j" >
s

be adopted, in which | 4 ||§ is the maximum eigenvalue of
A" A [39]. By applying AGD [29], [40], a two-step updating
rule of the dual vector A**' is implemented:
2 =max (0, &+ V(EN)
§k+1:=lk+ﬂk(lk_lk—l)
20,=1)

1+ /1+4¢

(A8)

where f,= with initial parameters #,=1 and

=20

AGD guarantees a O(1/k*) convergence rate which means:
fI=f@aH<o/k?).

The details of accelerated gradient descent algorithm for
LP are presented in the following algorithm.
B. Exact Conic Projection

If C is a convex set, the projection of x onto C is x=
arg mi(rcl || X—X, |, which is the closest point x in C to x,,.
X e

We consider the case in which C is the second-order cone
[41] C={w,)(w,NeR"xR",|w]| <z}. C is convex. Indeed,
having (w,¢,)e C and (w,,#,)e C implies that ||w1 || <t, and
|| w, || <t,, respectively [38]. If each of the later inequalities
is multiplied by 8 and 1-6, respectively (in which & €[0, 1])
and then, they are summed up, || 6w, || + || 1-6w, || <6t +
(1-6)y, is obtained. @ From triangle inequality,
[ow, +@ =0, | <|ow, |+ |a-0w, | and then
| 6w, +@1 = 6w, | <6, +(1—6), which in turn indicates that
Ow,+(1 =O)w,, 0t +(1 - )t )=0(w .t )+(1 —O)(w,, t,)e C,
which corresponds to the definition of convex sets.
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Algorithm A2: accelerated gradient descent algorithm for LP

Step I: start with an initial guess 2

Step 2: L= —"— ¢=d1,=1
Il
T

Step 3: x({)=— %
Step 4: x({)=max(Ib,x({))
Step 5: x({)=min(ub,x({))
Step 6: VI ({)=Ax()-b
Step 7: while || V(&) || is bigger than a threshold do:
Step 8: A,,=4

T .
Step 9: x({):—%

Step 10: x({)=max(lb,x({))
Step 11: x({)=min(ub,x({))
Step 12: Vf({)=Ax()-b
Step 13: 2=max(0,{+LVf({))
Step 14: p= — 20D
1+ /1+4¢

/ 2
Step 15: t,= w

Step 16: E=A+P(A—2,,)
Step 17: end

The constraint of the form u"u <xy in which x,y € R* and
ucR"” can be written as 4u'u—2xy<2xy and then 4u"u+
X2 =2xy+y*<x?+2xy+y* or 4u"u+(x—y) <(x+y)’, which,
after taking the square root of both hand sides, can be writ-

ten in matrix form as <x+y, i.e., a second-order

cone. If (zzw)e R"xR" and u= Z}, u"u=z"+w’. Therefore,
w

C={xy,zwlxy,zw)e R*xR* xR xR, z? +w?<xyp}, called

the rotated second-order cone, is a convex set [41].

Project of a given point (x,,,,z,. W, )€ C onto C, the clos-
est point (x,y,z,w) in C to (xy,v,,20, W, ) lies on the bound-
ary of C which means xy=z?+w?. So the following optimi-
zation problem needs to be solved:

min[(x—x, )’ +(y =y, +(z =2z, +(w—w,)’]

B1
st xy=z"+w’ (BD)

The above optimization is solved by using the Lagrangian
method of multipliers. The lagrangian is:

L(x,y,z,w,/l) :(x_x0)2+(y_J’0 )2+(Z_Zo )+

(W—wy )+ 2>+ W —xy) (B2)

for which equilibrium points satisfy the following conditions:
gf; =2(x—x,)—-Ay=0 (B3)

gﬁ =2(y—y,)—-Ax=0 (B4)

g]; =2(z—-2z,)+24z=0 (BS)

va =2(w—w,)+2iw=0 (B6)

% =22+l —xy=0 (B7)

From (B5) and (B6), respectively, we can obtain:

1825
- _%o
0= 12 (BS)
_ M
w(l)= Y (BY)
From (44), we can obtain:
e Z(x;xo) (B10)
From (51) and (45), we can obtain:
2xy+ Ay
A)=2"0=0 BI11
(=277 (B11)
and, similarly,
2y,+x
A)=2=0"10 BI12
y( ) 4_12 ( )

The solution of the system of nonlinear equations (B3)-
(B7) provides A, which is used in (BS), (B9), (B1l), and
(B12) to compute x, y, z and w, i.e., the optimal solution
to (B1).

The value of A is obtained by the roots of a 4™-order poly-
nomial. Indeed, from (B7)-(B9), (B11), and (B12), as xy=
z*+w?, we can obtain:

4 (2x)+ g N2y +2x,) Zo+Wp

4=y IEY% (B13)
This yields:
(4x,y, _Zg _Wg A+ 8(x§ +J’§ +X0)o )4+
(200 v+ 16(xg +5 )+ 8(z5 +wi )A* +[8(x5+y5) +
3200 1At 16(xyy,—25 —w5)=0 (B14)
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