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Power Generation Integrating Robust Optimization 
and Radial Basis Function Neural Network

Ziqi Zhang, Zhong Chen, Qi Zhao, Yi Wang, and Jiang Tian

Abstract——The significance of situation awareness (SA) in 
power systems has increased to enhance the utilization of grid-
connected renewable energy power generation (REPG). This pa‐
per proposes a real-time calculation architecture based on the 
integration of robust optimization (RO) and artificial intelli‐
gence. First, the time-series simulation of the REPG consump‐
tion capacity is carried out under the current grid operating 
conditions. RO is employed in this simulation, given the ran‐
domness of the REPG output and the grid load. Then, the radi‐
al basis function neural network (RBFNN) is trained with the 
results under different parameters using the artificial fish 
swarm algorithm (AFSA), enabling the neural network (NN) to 
be the replacement for the time-series simulation model. The 
trained NN can quickly perceive the REPG absorption situation 
within the predefined grid structure and period. Moreover, the 
Sobol’ method is adopted to conduct the global sensitivity anal‐
ysis for different parameters based on the input-output samples 
obtained by the trained NN. Finally, the simulation experiments 
based on the modified IEEE 14-bus system prove the real-time 
performance and accuracy of the proposed SA architecture.

Index Terms——Renewable energy, radial basis function neural 
network, robust optimization, sensitivity analysis, situation 
awareness.

I. INTRODUCTION 

THE injection of renewable energy power generation 
(REPG) into the power grid is crucial for improving en‐

ergy security and achieving carbon neutrality [1], [2]. How‐
ever, the volatility and randomness of wind power (WP) and 
photovoltaic (PV) present a significant challenge for system 

operators who must ensure the efficient and safe absorption 
of the grid-connected REPG while maintaining the economic 
and operational stability of the power grid [3]-[5].

The direct consequence of insufficient consumption of the 
REPG is electricity curtailment. In 2019, the curtailment in 
China and Germany reached 16869 GWh and 6273 GWh 
[6], respectively, resulting in more than 1 billion euros in 
economic losses. Quantitative evaluation of the REPG con‐
sumption capacity based on the parameters of the current 
power grid can provide the maximum limit for the REPG of 
a specific power system and guide the construction of renew‐
able energy sources [7], [8]. Moreover, identifying the key 
parameters that affect the REPG absorption can help guide 
the grid operation and the electricity market [9] to improve 
the consumption rate (CR) on various time scales. Thus, nu‐
merous research works have been conducted on the evalua‐
tion means including multi-scenario, probabilistic, and time-
series simulations.

An absorption analysis based on stochastic scenarios for 
WP is proposed in [10], which considers the correlation be‐
tween WP and grid load. Reference [11] develops the corre‐
lation between WP and PV and employs the Copula model 
to analyze various scenarios. In [12], the frequency stability 
is taken as a constraint to calculate the absorption capacity 
for the typical days. The probabilistic power flow inspires 
and provides the theoretical basis for the probabilistic meth‐
od [13]-[16]. The absorption results can be calculated direct‐
ly according to the probability distribution of the load and 
REPG output. The time-series simulation has been the most 
widely used method in analyzing REPG absorption for accu‐
racy [17] - [22]. Reference [17] combines the day-ahead unit 
commitment, which employs WP’s quadratic optimization 
(considering the costs of conventional units), with the ab‐
sorption capacity assessment for a long period. A Nordic 
power system model is constructed in [18] to study the cur‐
tailment of the WP in 2025 based on historical data, and the 
influencing factors such as the transmission line capacity 
(TLC) are analyzed. The concept of the contribution degree 
for REPG accommodation factors is constructed in [20] to 
discover the interaction between various parameters. Then, 
the amount of REPG curtailment is calculated under differ‐
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ent conditions.
The above methods all have shortcomings. The calculation 

results of the multi-scenario method do not consider the tim‐
ing characteristics of the power system, and the probabilistic 
method cannot incorporate some essential constraints such as 
the ramping rate of the conventional units. In addition, since 
the span of the time-series simulation is usually more than 
one year and some iterations may be required, the calcula‐
tion time can be pretty long. Although the time-series simula‐
tion results can guide offline planning, this method cannot 
be applied to online situation awareness (SA), which sup‐
ports the scheduling decision [23]. Moreover, sensitivity 
analysis to identify critical factors affecting the REPG ab‐
sorption requires massive sample data, which are difficult to 
obtain through time-series simulation because of its long cal‐
culation time.

The probabilistic method has revealed the existence of an 
analytical relationship between the absorption results and the 
parameters that influence the REPG absorption in a specified 
power grid and during a specified period [13], [16]. This 
high-dimensional and nonlinear mathematical relationship 
can be effectively fitted by the neural network (NN) [24], 
presenting a novel method for rapidly calculating absorption 
results. Therefore, this paper proposes an architecture that 
combines the NN and time-series simulation for online SA 
and sensitivity analysis of REPG absorption. The utilization 
of machine learning provides two advantages. Firstly, the 
NN can calculate the absorption of the next time window 
and perceive the trend over an extended period, enabling it 
to provide useful guidance for the system operator. Addition‐
ally, the NN can perform sample expansion based on the 
time-series simulation results, providing sufficient samples 
for global sensitivity analysis. Figure 1 shows the main con‐
tributions of this paper.

1) We address the volatility and randomness of the REPG 
and load by developing a time-series simulation model based 
on robust optimization (RO). We change input parameters to 
obtain simulation results under various conditions. These 
samples are then used to train a radial basis function neural 
network (RBFNN) employing the artificial fish swarm algo‐
rithm (AFSA). The trained NN can accurately predict real-
time absorption results within the set grid.

2) We carry out the global sensitivity analysis using So‐

bol’ method to investigate the impact of different parame‐
ters on the absorption results. This method considers the in‐
teraction between various parameters based on variance [25], 
unlike the the local sensitivity analysis which only utilizes 
the first-order partial differential of the output to the input. 
To ensure the convergence of sensitivity analysis, we adopt 
the trained RBFNN to expand the results of the time-series 
simulation so that enough samples can be available.

The rest of this paper is organized as follows. Section II 
develops the time-series simulation based on RO. Section III 
proposes the online SA based on AFSA-RBFNN. Section IV 
introduces the global sensitivity analysis of REPG absorp‐
tion by Sobol’ method. Section V conducts the simulation 
experiments, and Section VI summarizes the paper.

II. TIME-SERIES SIMULATION BASED ON RO 

While the current work based on the time-series simula‐
tion has considered the volatility of the REPG, the random‐
ness is often neglected. It is imperative to note that the 
REPG output cannot be regarded as a definitive curve in the 
day-ahead unit commitment since it is not entirely predict‐
able. Although the reserve capacity of conventional power 
generation can cover some prediction errors, the optimized 
results could not meet the up/down ramping constraint, re‐
sulting in the curtailment of the REPG and the loss of load 
[26]. This may, in turn, lead to imprecise assessment results. 
This section proposes an time-series simulation based on RO 
that considers the worst-case condition to achieve optimal re‐
sults while including the influence of the volatility and ran‐
domness of the REPG on the absorption. Although this meth‐
od requires a longer calculation time, it can provide better 
samples for NN training. To the best of our knowledge, 
there are few reports on the application of RO in the time-se‐
ries simulation for REPG absorption.

A. Process and Objective Function of Simulation

Figure 2 demonstrates the process of the time-series simu‐
lation based on RO. After setting the grid topology and oth‐
er initial parameters, the RO will be carried out consecutive‐
ly in each time window (one day in this paper). Then, we re‐
cord the optimization results and the boundary conditions 
such as the output and state of conventional generation that 
will be transferred to the next time window.

The objective function is given as:

min
P PV

t ÎP PV
t P WT

t ÎPWT
t P L

t ÎP L
t

∑
t = 1

NT∑
i = 1

NG

P G
it (1)

where P G
it is the output of conventional generation i in time 

interval t; NG is the number of conventional units; NT is the 
value of time intervals in each time window; P PV

t  and P WT
t  

are the maximum outputs of PV and WP in time interval t, 
respectively, which have uncertainties; P PV

t  and PWT
t  are the 

sets of their possible values, respectively; and P L
t  is the ran‐

dom value of grid load in time interval t, while P L
t  is the set 

of its values. Reducing the power of conventional genera‐
tions can promote the REPG utilization, so the curtailment 
of WP and PV can be lower.
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Fig. 1.　Main contributions of this paper.
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B. Constraints

1)　Conventional Generation
Constraints of the conventional generations include the 

max-min output, ramping capacity, and on-off time:

P G
imin sG

it £P G
it £P G

imax sG
it (2)

{P G
it + 1 -P G

it £P Gup
i

P G
it -P G

it + 1 £P Gdown
i

(3)
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it £ 2
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sG
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it - 1 + Y G
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(5)

where P G
imax and P G

imin are the maximum and minimum out‐
puts of generation i, respectively; sG

it is a binary variable rep‐
resenting the on-off states of generation i in time interval t 
as 1-0; P Gup

i  and P Gdown
i  are the maximum ramping up and 

ramping down capacities, respectively; X G
it and Y G

it are the bi‐
nary variables, and generation i will start or halt in time in‐
terval t if X G

it or Y G
it equals 1; and Ton and Toff are the short‐

est durations of consecutive on and off states, respectively. 
Formula (5) constrains the logical relationships between start‐
up, shutdown, and on-off states.
2)　REPG Output

In (6), P PV
t  and P WT

t  are supposed to be no more than the 
maximum prediction values.

{0 £P PV
t £P PV

t

0 £P WT
t £PWT

t

(6)

3)　Power Balance and Spinning Reserve
Formula (7) ensures that the total output of the REPG and 

conventional units is greater than the grid load, even in the 
worst scenario. Formula (8) is the spinning reserve con‐
straint in which Pre is the reserved capacity.

∑
i = 1

NT

P G
it +P PV

t +P WT
t ³P L

t (7)

∑
i = 1

NT

P G
imax sG

it +P PV
t +P WT

t -P L
t ³Pre (8)

4)　TLC
The power flow transfer factor γl - b is adopted to depict 

the influence of node b on the power flow of line l.

-Tlmax £∑
b = 1

Nb

γl - b Pbt £ Tlmax (9)

where Nb is the number of grid nodes; and Tlmax is the maxi‐
mum TLC of line l.

We regard the parameters related to the REPG and load as 
random variables in RO. When these parameters change 
within a specific range, all the constraints should still be sat‐
isfied. RO is an NP-hard problem but can be calculated us‐
ing the algorithms such as column and constraint generation 
(C&CG) [27]. However, to evaluate the future trend of 
REPG absorption, the time-series simulation based on RO is 
not only carried out for the next single time window but re‐
peated in numerous time windows. Hence, although C&CG 
can complete RO within a second, the total simulation time 
may be unacceptable for online applications.

III. ONLINE SA BASED ON AFSA-RBFNN 

A. Framework of Integration of RO and NN

The limitation of the time-series simulation is its extended 
computational time for online scheduling decision support 
and generation of a significant number of samples, which 
are essential for global sensitivity analysis. Hence, based on 
the time-series simulation, this subsection develops a method 
for online SA toward the REPG absorption employing NN. 
The framework of the NN-based online SA is illustrated in 
Fig. 3.

First, the parameters that may influence REPG absorption 
will be input into the time-series simulation based on RO. 
We select ten parameters in this paper: prediction error of 
load (PEL), peak load (PL), peak-valley difference of load 
(PVDL), amount of flexible load (AFL), TLC, REPG capaci‐
ty (REC), prediction error of REPG (PERE), capacity of con‐
ventional generation (CCG), minimum output of convention‐
al generation (MICG), and ramping rate of conventional gen‐
eration (RRCG). Then, the absorption results will be calculat‐
ed for the specified grid and period. We can obtain multiple 
input-output data sets as training samples by adjusting the 
parameters.
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Fig. 2.　Process of time-series simulation based on RO.

1797



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 11, NO. 6, November 2023

Second, the RBFNN will be trained based on the samples 
acquired from the time-series simulation. Thus, the trained 
RBFNN can perceive the REPG absorption results of the pre‐
scribed power grid during the specified period according to 
the characteristic parameters.

Finally, we generate a large number of parameter sets 
through Sobol’ sampling. The corresponding absorption re‐
sults can be achieved based on the trained RBFNN, which 
provides numerous samples for global sensitivity analysis. 
Therefore, we can quantitatively reveal the comprehensive 
influence of various characteristic parameters on REPG ab‐
sorption.

B. AFSA-RBFNN Training Method

Artificial NNs have emerged as a powerful tool in the re‐
search and practice of power systems. The specific tasks de‐
termine the form of NN utilized. For example, long short-
term memory (LSTM) NN, which can effectively process 
time series, is good at forecasting load and REPG output 
[28]. Networks such as stacked autoencoder (SAE) and self-
organizing map (SOM) can solve classification problems 
such as the transient stability assessment for their ability of 
feature extraction [29]. In this paper, we want to fit the high-
dimensional, continuous, and nonlinear relationships of the 
input parameters and output results of the time-series simula‐
tion based on RO. Therefore, RBFNN is adopted. RBFNN 
employs the radial basis function in the hidden layer and 
projects the low-dimensional input vector to the high-dimen‐
sional space so that the original linear indivisible problems 
can become linearly separable. Because of its strong general‐
ization ability, fast convergence speed, and good local ap‐
proximation performance [30], [31], RBFNN has been wide‐
ly used in time-series forecasting [32], nonlinear optimiza‐
tion [33], and pattern recognition [34]. Moreover, to improve 
the fitting accuracy, AFSA [35], [36] is employed to opti‐
mize the initial NN parameters.

We utilize the Gaussian kernel function as the activation 
function:

ϕk (μ)= exp
|

|

|

|
||
|

|
-

 μk - ck

2

2d 2
k

|

|

|

|
||
|

|
(10)

where μk is the input sample; and ck and dk are the center 
vector and the neuron width of the hidden layer, respective‐
ly. The output result v is the sum of the products of the 
weight vectors ωm and the corresponding ϕk (μ).

ck, dk, and ωm are the crucial parameters of RBFNN, of 
which the general training method can be found in [30]. To 
further reduce the error of training results, we will search for 
the optimal initial values of parameters based on AFSA. Fig‐
ure 4 presents the AFSA-RBFNN training method.

IV. GLOBAL SENSITIVITY ANALYSIS OF REPG 
ABSORPTION BY SOBOL’ METHOD

Sobol’ method finds wide application in the fields such as 
economy, environment, and society [37]. Moreover, it has 
been applied in voltage stabilization [38], minor disturbance 
stabilization [39], and distributed energy system design [40]. 
However, there have been no related reports about its appli‐
cation in REPG absorption.

The global sensitivity analysis can obtain the independent 
influence of different parameters on the absorption results 
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and consider each parameter’s effect when coupled with the 
others. The Sobol’ method conducts the global sensitivity 
analysis based on variance, calculated by decomposing the 
input-output function f (μ) as:

f (μ1μ2μK )= f0 +∑
k = 1

K

fk (μk )+ ∑
1 £ k1 < k2 £K

fk1k2
(μk1

μk2
)+ +

f12K (μ1μ2μK ) (11)

The sensitivity coefficient can be expressed as:

Sk1k2ks
=

Dk1k2ks

D
(12)

where D is the total variance; and Dk1k2ks
 is the partial 

variance caused by various parameters (1 £ k1 < < ks £K); 
Sk is the first-order sensitivity coefficient of parameter k; and 
Sk1k2

 is the second-order sensitivity coefficient which repre‐

sents the cross-influence of k1 and k2. The total sensitivity co‐
efficient of k equals the sum of its various orders.

Based on (11) and (12), to calculate the first-order and to‐
tal sensitivity coefficients of each parameter, the variance is 
then estimated by Monte Carlo simulation according to (13):
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N

f 2 (μm ) - f ̂ 20

D̂k =
1
N∑m = 1

N

f (μ(1)
m(~k)μ
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mk ) f (μ(2)

m(~k)μ
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mk ) - f ̂ 20

D̂~k =
1
N∑m = 1

N

f (μ(1)
m(~k)μ

(1)
mk ) f (μ(1)

m(~k)μ
(2)
mk ) - f ̂ 20

(13)

where N is the number of samples; the superscripts (1) and 
(2) represent two N ´K dimensional sampling matrices; μm(~k) 
represents all columns of matrix μm without the sampled val‐
ues of parameter k; D̂~k is the estimated value of variance 
caused by changes of parameters except k; and ^ represents 
the estimated value. Therefore, the total sensitivity coeffi‐
cient of k is given as:

TSk = 1 -
D̂~k

D̂
(14)

Figure 5 shows the Sobol’ sampling based global sensitiv‐
ity analysis.

V. CASE STUDY 

A. Comparison Between Results of Time-series Simulation 
Based on Robust and Deterministic Optimization

The time-series simulations are based on a modified IEEE 
14-bus system presented in Fig. 6. We list the parameters in 
the Supplementary Material, including the admittance matrix 
and the power flow transfer factors, as shown in Tables SAI 
and SAII. We set the simulation period as one year, and the 
time window is one day with 1-hour interval, so 365 time 
windows are considered during RO. The curves of the 
REPG output and the grid load are the actual data on the 
southeast coast of China in 2020, as shown in Figs. SA1-
SA3 in the Supplementary Material. The maximum load is 
supposed to be 220 MW, and the maximum outputs of WP 
and PV are 77 MW and 33 MW, respectively. We set the to‐
tal maximum output of conventional generations to be 240 
MW, and the other parameters of these generations are in Ta‐
ble SAIII.

In the time-series simulation based on RO, the uncertain‐
ties of the PV output, the WP output, and the grid load are 
considered, unlike in the time-series simulation based on de‐
terministic optimization, where the predicted value is direct‐
ly used as input parameters for each optimization. Figure 7 
illustrates the curves and uncertain ranges of REPG output 
and grid load. The possible range of uncertain parameters is 
taken as ±5% of the prediction values.
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Fig. 5.　Sobol’ sampling based global sensitivity analysis.
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Constraint violations must occur during this time window 
if the RO model cannot be solved successfully. In such cas‐
es, the REPG CR of this time window is regarded as zero, 
and the number of times this situation occurs is conunted 
during the whole simulation span.

We conducted all experiments on a personal computer 
with an Intel Core i7-9700 CPU and 32 GB of RAM using 
MATLAB 2019a with MOSEK. The time-series simulation 
based on RO took 192.62 s, while the deterministic algo‐
rithm only took 52.12 s. The simulation considering random‐
ness needs more calculation time for its complexity.

The REPG CR derived by the RO algorithm is 71.41%, 
and the constraints are violated 23 times. However, the CR 
is 94.46% with the deterministic optimization-based simula‐
tion, where the constraint violations occur only ten times. 
Figure 8 presents histograms of the CRs in various time win‐
dows. The deterministic algorithm obtains significantly high‐
er CRs under the same conditions because it ignores the cost 
of the randomness caused by the REPG and load. Therefore, 
the time-series simulation based on RO can provide more ac‐
curate learning samples for RBFNN training.

The simulation period is adjustable. Thus, by adjusting the 
duration and number of time windows, the REPG absorption 
results of this the modified IEEE 14-bus system for different 
periods can be obtained.

B. Application of AFSA-RBFNN

We achieve different results of REPG absorption with vari‐
ous parameters through time-series simulation based on RO, 
which provides training and test samples for the RBFNN. 
The value ranges of the parameters are shown in Table I, 

where the value of PVDL is the ratio of PL to valley load, 
while the values of MICG and RRCG indicate the corre‐
sponding ratios of CCG.

Within the value ranges of parameters, 900 different data 
sets are randomly selected as the input of the time-series 
simulation based on RO, which takes approximately 48 
hours to complete. Figure 9 presents the negative correlation 
between the REPG CR and constraint violation rate (CVR), 
which is defined as the ratio of time windows during which 
the constraints cannot be satisfied to the total number of 
time windows.

Seventy percentage of the results from the time-series sim‐
ulation are randomly selected as the training set, while the 
remaining 30% are used as the test set. The AFSA is adopt‐
ed to train the RBFNN, while another NN with a tansig acti‐
vation function is trained by the error back propagation NN 
(BPNN) as a control. The parameters of the AFSA are set as 
follows: the number of artificial fishes is 30, the maximum 
number of attempts is 10, the vision is 2, the step size is 
0.5, and the crowding factor is 0.618. We present the struc‐
tures of the RBFNN trained by the AFSA and BPNN in Fig. 
SA4 of Supplementary Material. All the NNs are implement‐
ed based on MATLAB.

The performance of different algorithms on the training 
set is shown in Table II. The training time of the RBFNN 
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TABLE I
VALUE RANGES OF PARAMETERS

Parameter

PEL

PL

PVDL

AFL

TLC

REC

PERE

CCG

MICG

RRCG

Value range

±4% - ±10%

210-300 MW

1.1-1.4

0-40 MW

65-85 MW

70-110 MW

±4% - ±10%

220-300 MW
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Fig. 9.　Negative correlation between REPG CR and CVR.
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based on the iterative method is the shortest, but this NN 
has the most significant mean square error (MSE), which 
can be significantly reduced based on the AFSA through a 
longer training time. The MSE of BPNN in the training set 
is also acceptable, and it has half the training time of the AF‐
SA-RBFNN.

The comparison of performance on test set between AF‐
SA-RBFNN and BPNN is illustrated in Fig. 10. The RBF‐
NN performs significantly better on the test set than the 
BPNN. The MSE of AFSA-RBFNN is 0.0027 and 0.0026 
when predicting CR and CVR, respectively.

To further demonstrate the advantages of AFSA-RBFNN 
in the application scenarios of this paper, we gradually in‐
crease the number of neurons in the hidden layer of BPNN 
from 10 to 60. Figure 11 shows MSE of BPNN on the train‐
ing and test sets. As the number of neurons increases, BPNN 
performs better and obtains lower MSE on the training set. 
However, on the test set, the performance of BPNN has not 
surpassed AFSA-RBFNN. On the contrary, when the number 
of neurons exceeds 40, MSE tends to increase because of 
overfitting.

C. Global Sensitivity Analysis

Generate 100000 sets of parameters within the ranges in 
Table I, then input them to the trained RBFNN, and we can 
obtain the absorption results. On this basis, the influence of 

each parameter on absorption is analyzed by employing So‐
bol’ method.

Figure 12(a) and (b) presents the results of global sensitiv‐
ity analysis of CVR and CR to different parameters, respec‐
tively. The parameters with large total sensitivity coefficients 
can influence the absorption results more significantly, so 
they should be adjusted first if there is an unexpected curtail‐
ment of the REPG.

According to Fig. 12, the peak regulation capacity of con‐
ventional generations (MICG and RRCG), whose total sensi‐
tivity coefficients are significantly higher than others, has 
the most critical impact on REPG absorption. Therefore, ex‐
panding the adjustment ranges of the maximum/minimum 
output of conventional units can create more space for the 
REPG absorption when ensuring the balance of the power 
system. In addition, flexible load also has a significant pro‐
motion effect on absorption results. Besides, we cannot ig‐
nore the limitation of the TLC.

D. Discussion

1) The time-series simulation based on RO obtains a low‐
er CR than deterministic optimization due to the strict restric‐
tion of uncertainty. The results of the stochastic optimization 
are supposed to be bounded between them. Rather than the 
scheduling plan, this paper estimates the REPG and analyzes 
the key factors affecting absorption. Therefore, the time-se‐
ries simulation based on RO, which can account for various 
parameters, is suitable for this application scenario and can 
provide high-quality learning samples for RBFNN training.
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TABLE II
PERFORMANCE OF DIFFERENT ALGORITHMS ON TRAINING SET

Algorithm

BPNN

RBFNN

AFSA-RBFNN

MSE

0.0030

0.0150

0.0013

Training time (s)

4.070

0.741

11.797
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2) BPNN and AFSA-RBFNN have their advantages in the 
training set. However, the performance of the AFSA-RBF‐
NN is significantly better on the test set, which proves its 
strong generalization ability. This ability comes from the 
characteristics of RBFNN and the underlying mathematical 
relationship between input parameters and absorption results. 
It is difficult for the NN to obtain the absorption results en‐
tirely consistent with the time-series simulation. In contrast, 
it enables the operators to quickly perceive the REPG ab‐
sorption situation in real time since the calculation time of 
the trained RBFNN is less than 1 ms. On the test set, the 
Pearson correlation coefficients between the results of RBF‐
NN and the time-series simulation are close to 1 (0.9882 
and 0.9839), i.e., they have incredibly high consistency.

3) We find that the first-order sensitivity coefficients of 
most parameters are much smaller than the total sensitivity 
coefficients, especially parameters such as PERE, REL, and 
CCG. It illustrates that although the independent influence 
of these parameters is small, they can also change the ab‐
sorption results by coupling with other parameters. The dis‐
covery of this hidden relationship is also the significance of 
the global sensitivity analysis.

VI. CONCLUSION 

This paper proposes an architecture combining the AFSA-
RBFNN and the time-series simulation based on RO for on‐
line SA and sensitivity analysis of the REPG absorption. 
First, RO is adopted to consider the influence of the uncer‐

tainties of REPG and grid load. The calculation results are 
more suitable for analyzing the absorption expectation. 
Then, we introduce the RBFNN trained by AFSA to effec‐
tively fit the input-output relationship of the time-series sim‐
ulation based on RO, making it possible to conduct the on‐
line SA of the REPG absorption with different parameters 
within the specified power grid and period.

The global sensitivity analysis based on Sobol’ method 
shows that the peak regulation capacity of conventional gen‐
erations, TLC, and flexible load significantly impacts the ab‐
sorption results.

The trained RBFNN and sensitivity analysis results apply 
to the given power grid and period. However, this analysis 
procedure described in this paper is universal, i.e., online ap‐
plications in different times and spaces using NNs can be 
supported by their corresponding offline time-series simula‐
tions.
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