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Abstract——This paper proposes a robust and computationally 
efficient control method for damping ultra-low frequency oscil‐
lations (ULFOs) in hydropower-dominated systems. Unlike the 
existing robust optimization based control formulation that can 
only deal with a limited number of operating conditions, the 
proposed method reformulates the control problem into a bi-lev‐
el robust parameter optimization model. This allows us to con‐
sider a wide range of system operating conditions. To speed up 
the bi-level optimization process, the deep deterministic policy 
gradient (DDPG) based deep reinforcement learning algorithm 
is developed to train an intelligent agent. This agent can pro‐
vide very fast lower-level decision variables for the upper-level 
model, significantly enhancing its computational efficiency. Sim‐
ulation results demonstrate that the proposed method can 
achieve much better damping control performance than other 
alternatives with slightly degraded dynamic response perfor‐
mance of the governor under various types of operating condi‐
tions.

Index Terms——Bi-level robust parameter optimization, deep re‐
inforcement learning, deep deterministic policy gradient, ultra-
low frequency oscillation, damping control stability.

I. INTRODUCTION 

IN recent years, the negative effects of the fossil fuel 
based power system attract more and more attentions. In 

this context, increasing the penetration of renewable energy 
with low carbon and sustainable characteristics in the power 

system is a significant pathway to address this issue [1]. Hy‐
dropower is one of the cheapest and reliable sources of re‐
newable energy and it accounts for nearly 50% of renewable 
power generation [2]. However, recent studies indicate that 
the hydropower-dominanted systems are easily subject to the 
ultra-low frequency oscillation (ULFO) [3], which have been 
observed in China [4] as well as Nordic and Colombia [5], 
[6]. If ULFO is not properly controlled, there is a risk of sys‐
tem instability.

In [7], the root cause of ULFO is investigated based on 
the vector margin method, where it is shown that the hydrau‐
lic turbine-governor creates a negative damping torque in the 
ultra-low frequency band. In [8], via the damping torque analy‐
sis, it is found that the unreasonable parameter settings of the 
hydraulic governor proportional-integral (PI) controller lead to 
ULFO. Furthermore, if the ratio of the proportional parameter 
to the integral parameter is too small for the hydropower gov‐
ernor, the ULFO can occur [9]. To damp out ULFO, various 
strategies have been proposed. In [10], a high-voltage direct 
current frequency limiting controller (HVDC-FLC) is devel‐
oped. Note that for partial hydropower-dominated systems, on‐
ly the AC transmission is used for the transmission of elec‐
tric energy and thus it is difficult to adopt this method. In 
[11], the power system stabilizer (PSS) is configured on the 
governor to mitigate the impacts of the negative damping 
torque. By contrast, in [12], the PSS and proportion resonant 
(PR) are integrated to form the PR-PSS for ULFO control. A 
multi-band PSS, named PSS4B, is also proposed [13] with 
low-band, intermediate-band, and high-band controllers. The 
low-band controller provides the damping of the ULFO 
modes. However, these configurations are not always avail‐
able in practice, limiting their applications in power systems.

Optimizing the proportional-integral-derivative (PID) pa‐
rameters of the governor is another alternative for ULFO 
control. It is also shown that the re-tuning of the governor 
settings has high practical value [14]. In [15], [16], a robust 
optimization method for tuning governor is proposed. A ro‐
bust fixed order control design method is also developed in 
[2]. However, these methods are limited to several typical 
operating conditions. To this end, a bi-level optimization 
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model (min-max or max-min) is proposed [17]. In particular, 
the performance of optimization variables under extreme op‐
erating conditions is taken as the objective to achieve gener‐
alizability under all operating conditions. Although the re‐
sults are conservative, it is appropriate considering the im‐
portance of system stability unless other effective methods 
are available. To solve the bi-level model, it is advocated to 
replace the lower-level model using Karush-Kuhn-Tucker for‐
mulation [18], duality principle [19], and penalty function 
[20], yielding a single-level optimization model. However, 
for the decision variables provided by the upper-level model 
at each iteration, the lower-level model needs to repeat opti‐
mizations to find the corresponding extreme operating condi‐
tion, which is usually time-consuming.

To this end, a novel bi-level PID parameter optimization 
model is proposed for ULFO control. It has the following 
contributions:

1) Based on the Routh-Hurwitz criterion, the mechanism 
of the ULFO is studied and the feasibility of formulating 
ULFO control as optimizing PID parameters is demonstrat‐
ed. In particular, the problem of ULFO control is formulated 
as a bi-level robust PID optimization model. This is in con‐
trast with the formulation in [14], [15] and allows us to deal 
with a wider range of extreme system operating conditions. 
In addition, the optimized PID parameters retain the dynam‐
ic performance of the governor.

2) To improve the efficiency of solving bi-level model, 
this paper forms the lower-level model into the Markov deci‐
sion process (MDP) solved by a deep deterministic policy 
gradient (DDPG) based algorithm. After that, the decision 
variables transferred by the upper-level model can be quick‐
ly addressed via the well-trained DDPG agent without the re‐
peated optimization. This is a novel method to solve min-
max optimization model and is different from previous min-
max model [18]-[20], yielding significantly improved compu‐
tational efficiency.

The rest of this paper is organized as follows. Section II 
introduces the system model. In Section III, the formulation 
of governor parameter optimization is presented. The pro‐
posed bi-level robust parameter optimization model is pre‐
sented in Section IV. The case study is provided in Section 
V. Section VI presents the actual hydropower-dominated sys‐
tem and conclusions are given in Section VII.

II. SYSTEM MODEL 

A. Two-machine System

Figure 1 shows a two-machine system, which is intro‐
duced to act as the studied system to investigate ULFO, in‐
cluding hydropower unit (G1), thermal power unit (G2), and 
load. The key parameter settings of this system are provided 
in Appendix A. The hydropower mainly consists of a genera‐
tor, a governor, and a turbine, as shown in Fig. A1 of Appen‐
dix A. Among them, the linearized dynamic equation of gen‐
erator can be described as:

TJ

dDω
dt

=DPm -DPe -DsDω (1)

where TJ is the inertia time constant; Δω is the rotor speed 

deviation; ΔPm is the mechanical power deviation; ΔPe is the 
electromagnetic power deviation; and Ds is the damping co‐
efficient.

Assuming frequency-dependent load as ΔPe = KLΔω, 
where KL is the load frequency sensitivity, and substituting 
ΔPe = KLΔω into (1), the transfer function of the generator 
Ggen( )s  can be described as [15]:

Ggen(s) = Dω ( )s
DPm( )s

=
1

TJ s +Ds +KL

=
1

TJ s +D (2)

where D = Ds + KL. The transfer function of prime mover 
(governor and turbine) Gm( )s  can be defined as [4]:

ì
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Gm(s) = DPm( )s
-Dω ( )s

=Ggov(s)Gt(s)

Ggov(s) = KD s2 +KP s +KI

bp KI + s
1

1 + TG s

Gt(s) = 1 - Tw s
1 + 0.5Tw s

(3)

where Ggov( )s  and Gt( )s  are the transfer functions of gover‐

nor and turbine, respectively; KP, KI, and KD are the propor‐
tional, integral, and differential coefficients of the governor, 
respectively; bp is the adjustment coefficient of the governor; 
TG is the response time of the governor; and Tw is the water 
hammer effect and it depends on the operating conditions of 
hydroturbine [2]:

Tw =
∑
i = 1

n Li

Ai

Qr

gHr

(4)

where Li and Ai are the length and sectional area of the ith di‐
version pipeline, respectively; Qr is the rated water flow; g 
is the gravitational acceleration; Hr is the rated water head; 
and n is the number of diversion pipelines.

For the thermal power unit, this paper ignores the boiler 
dynamic process and mainly considers the steam turbine and 
governor [8]:

DPmh(s) =-Gh(s)Dω (s) = -KaDω ( )s

( )1 + sTg ( )1 + sTch

(5)

where DPmh( )s  is the damping torque of thermal generator;   
Gh( )s  is the transfer function of thermal power unit; Ka is 
the gain; Tg and Tch are the time-steps of hydraulic system 
and high-pressure cylinder, respectively.

B. ULFO Mechanism Analysis

The dynamic responses of G1 and G2 under fault 1, i.e., a 

Load

Bus 1

Bus 2

Bus 3
Hydropower unit

 (G1)

Thermal power unit

 (G2)

Fig. 1.　Schematic of two-machine system.
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double-phase short-circuit fault at bus 3 from 2.0 s to 2.2 s, 
are shown in Fig. 2. It can be observed that, the angle speed 
of two generators varies with the same phase and amplitude. 
No oscillations between two units are observed. It is differ‐
ent from traditional low-frequecy oscillation (LFO). The Pro‐
ny method [21] is utilized to identify the oscillation model 
and the identification results show that a ULFO mode 
-0.0001 + j0.403 exists in the system.

To investigate the cause of ULFO in the studied system, 
we calculate the damping torque coefficient of two units’  
primary frequency regulation (PFR). Among them, the de‐
tailed calculation process of damping torque coefficient of 
hydropower unit is provided in [12] and can be defined as:

DH(s) = 1 - 0.5TGTwω
2
d -ω

2
dTω( )TG + 0.5Tw

1 - 0.5TGTwω
2
d +ω

2
d( )TG + 0.5Tw

(6)

Submitting s = jωd into (3), the damping torque coefficient 
of stream power unit can be obtained as [8]:

DPm =-DTDω - jDIMDω (7)

DT( )s =
Ka( )1 - TgTchω

2
d

( )1 - TgTchω
2
d

2

+ ( )Tg + Tch

2

ω2
d

(8)

where DT denotes the damping torque coefficient; and DIM 
denotes the synchronous torque coefficient.

Submitting ωd = 2πf into (6) and (8), the trajectory of 
damping torque coefficients DH and DT changing with fre‐
quency f can be obtained, as shown in Fig. 3.

It can be observed that the hydropower unit will produce 
a negative damping under the ultra-low frequency band (be‐
low 0.1 Hz). In contrast, the thermal power unit would pro‐
duce a positive damping in this band. Therefore, the ULFO 
is strongly related with hydropower unit.

To further investigate the relationship of ULFO and hydro‐
power unit, the characteristic equation of closed-loop trans‐
fer function of the hydropower unit is calculated based on 
(2) and (3) and can be written as:

(TJ s +D) (bp KI + s) (1 + TG s) (1 + 0.5Tw s) +
(1 - Tw s) (KD s2 +KP s +KI ) = 0 (9)

After simplification, (9) can be rewritten as:

s4 + a1 s3 + a2 s2 + a3 s + a4 = 0 (10)

where a1, a2, a3, and a4 are the Routh-Hurwitz criterion coef‐

ficients, which are related to Tw. Specifically, the Routh-Hur‐
witz criterion coefficients and oscillation frequency changing 
with Tw are shown in Fig. 4. Note that, the detailed expres‐
sion of these coefficients and the calculation process of oscil‐
lation frequency are provided in Appendix A.
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Fig. 2.　Dynamic responses of G1 and G2 under fault 1.
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Fig. 3.　 Trajectory of damping torque coefficients of hydropower and 
stream power units. (a) Hydropower unit. (b) Stream power unit.
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It can be observed from Fig. 4(a) that with the increase of 
Tw, all Routh-Hurwitz criterion coefficients decrease and in 
particular, the coefficient c1 becomes negative. Base on the 
Routh-Hurwitz criterion [3], it can be concluded that the sys‐
tem is unstable, and there is a negative damping oscillation 
mode in the system. In addition, Fig. 4(b) shows that, with 
the increase of Tw, the oscillation frequency decreases to be‐
low 0.1 Hz. It means that this dominant negative damping 
oscillation mode is ULFO mode.

In summary, the ULFO is strongly related to the hydro-
power units, and it is caused by the PFR of the hydropower 
units. More specifically, due to the water hammer effect, the 
hydraulic governor easily produces negative damping torque, 
as shown in Fig. 3, resulting in the negative ULFO mode.

Besides, Routh-Hurwitz criterion coefficients are related 
to the hydrogovernor PID parameters. In fact, we can adjust 
PID parameter settings to make these coefficients keep posi‐
tive. Based on this consideration, we test the trajectory of c1 
with different PID parameter settings and the results are 
shown in Fig. 5. It can be observed that the tuning of PID 
parameters can make the c1 positive. In this way, the system 
becomes stable, which means that optimizing PID parame‐
ters contributes to preventing ULFO.

III. FORMULATION OF GOVERNOR PARAMETER OPTIMIZATION

Based on the system linearization technology, the state ma‐
trix A can be obtained [22]. Then, (11) can be utilized to di‐
agonalize matrix A to obtain eigenvalues:

{A =VΛ
UV T = I (11)

ì

í

î

ï
ïï
ï

ï
ïï
ï

Λ = diag ( )λ1λ2λULFOλm

λULFO = σULFO + jβULFO

ξULFO = -σULFO σ 2
ULFO + β

2
ULFO

(12)

where U and V are the left and right feature vectors, respec‐
tively; Λ is the diagonal matrix; λm denotes the mth eigenval‐
ue; λULFO is the ULFO mode; σULFO and βULFO are the real 
part and imaginary part of λULFO, respectively; and ξULFO is 
the damping ratio.

As mentioned above, optimizing PID parameter settings 
contributes to stable ULFO mode λULFO. However, there are 
some requirements: ① less effect on other oscillation 
modes: we should avoid weakening the damping of other 
modes when improving the damping of ULFO mode; ② 

good dynamic performance for the PFR: previous studies in‐
dicate that if without proper design, optimizing PID parame‐
ters may deteriorate PFR dynamic performance, and thus 
weakening the frequency adjustment ability of governor 
[14], [15]; ③ robustness to the change of operating condi‐
tions: in actual operation, the operating condition of the tur‐
bine is time-varying. The optimized PID parameters that 
show good performance under one operating condition may 
not work well under other conditions. Therefore, during the 
optimization process, extreme operating conditions should be 
considered. Based on the above considerations, the suppres‐
sion of ULFO is modeled as a bi-level min-max optimiza‐
tion model with constraints, which is described as:
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min J upper( )KPiKIiKDiT
*
wi

K min
Pi £KPi £K max

Pi

K min
Ii £KIi £K max

Ii

K min
Di £KDi £K max

Di

T *
wi = arg max ylower

z ( )KPiKIiKDi

T min
wi £ Twi £ T max

wi

ξ′j ( )KPiKIiKDiTwi > ξ0

    i = 12N (13)

where J upper( )×  is the objective function of the optimization 
problem; T *

wi is the time constant of water hammer effect of 
the ith governor representing the operating conditions of the 
governor and limited between 0.5 and 3 [15]; ylower

z  is the ob‐
jective function of the lower model; ξ′j ( )×  is the damping of 

the j th oscillation mode except for the ULFO mode; ξ0 is the 
desired damping ratio of the oscillation mode that is typical‐
ly set to be 0.05 [12]; and N is the number of the governors. 
J upper( )×  can be reformulated as [15]:

J upper(KPiKIiKDiTwi ) = JSTB + JITAE

ì

í

î

ï
ïï
ï

ï
ïï
ï

JSTB = ∑
ξULFO < ξset

|| ξULFO - ξset + ∑
σULFO > σset

|| σULFO - σset

JITAE =∑
i = 1

N ( )∫
0

T

|| t ( )DPm( )t -DP¥
m dt

(14)

where JSTB is the stability of the ULFO; JITAE is the primary 
frequency control performance of the prime mover; σset is 
the desired real part of the eigenvalues; ξset is the damping 
ratio of the eigenvalues; DPm(t ) is the dynamic response of 
governor under disturbance; and DP¥

m is the steady-state val‐
ue of the prime mover under disturbance. In fact, JSTB can 
be further written as:

JSTB =
ì
í
î

ξset - ξULFO + σULFO - σset    ξULFO < ξsetσULFO > σset

0                                             ξULFO ³ ξsetσULFO £ σset

(15)

It can be observed from (15) that, when ξULFO < ξsetσULFO >
σset, JSTB is defined as ξset - ξULFO + σULFO - σset, by minimizing 
this target, ξULFO and σULFO of ULFO mode would be pushed 
close to the predetermined damping and real part. Note that 
the damping of ULFO mode is set to be a bigger value. By 
optimizing PID parameter settings to make the damping of 
ULFO mode close to the predetermined damping, the damp‐
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ing of ULFO mode is improved. Once the damping and real 
parts of ULFO mode reach to the predetermined value, JSTB 
becomes 0.

By minimizing JSTB, the output deviation of the prime 
mover can be optimized to close to steady-state point. In 
this way, both the oscillation amplitude and oscillation time 
of the prime mover under disturbance can be optimized, 
which means that the dynamic performance of the primary 
frequency control can be improved.

IV. PROPOSED BI-LEVEL ROBUST PARAMETER

OPTIMIZATION MODEL

For the bi-level robust parameter optimization model, the 
lower-level model is reformulated as the MDP and solved by 
the DDPG algorithm. Subsequently, the trained agent is em‐
ployed to assist particle swarm optimization (PSO) to solve 
the upper-level model to obtain the optimal solution. The 
overall scheme of the optimization process is shown in 
Fig. 6.

A. Solving Lower-level Model via DDPG Algorithm

The core functions of lower-level model shown in Fig. 6 
can be described as:

ì

í

î

ï
ïï
ï

ï
ïï
ï

T *
wi = arg max ylower

z ( )KPiKIiKDi

T min
wi £ Twi £ T max

wi i = 12N

ξ′j ( )KPiKIiKDiTwi > ξ0

(16)

In each episode, the upper-level model would provide a 
set of PID parameter setting (KPiKIiKDi ) to the lower-lev‐

el model. The lower-level model searches the extreme operat‐
ing condition T *

wi with the worst performance under this PID 
setting condition. In this way, both the upper-level and lower-
level variables are determined and the objective function 
(14) can be calculated and sent to the upper-level model.

In fact, the function of the lower-level model is to find 
the corresponding extreme operating condition under every 
PID setting condition. Therefore, the key to solving this low‐
er-level model is to find the policy function T *

wi =
π (KPiKIiKDi ) that maximizes the objective function. It is 

a decision-making problem in an uncertain environment. 
This paper reformulates it as an MDP, and the key elements 
related to MDP are defined as a tuple, S A P R , where S 
denotes the state and is composed of the PID parameter set‐
tings of each hydrogovernor; A denotes the action and is rep‐
resented as the operation conditions of governor; P denotes 
the transition probability; and R denotes the reward and is 
used to evaluate the action taken by the agent at each time 
step. In this paper, the reward r ( )skak  is defined as:

r (skak ) = J (K k
PiK

k
IiK

k
DiT

k
wi ) +

∑
j = 1

m ∑
ξ0 < ξ′j

( )ξ0 - ξ′j ( )K k
PiK

k
IiK

k
DiT

k
wi (17)

where the superscript k denotes the kth turbine governor.
The reinforcement learning algorithm is a common meth‐

od to solve this MDP [22]. The background of reinforcement 
learning is described as follows:

1) Q-learning: it is a widely used reinforcement learning 
method [23], where an agent is trained to learn the optimal 
control policy to maximize the cumulative reward. In Q-
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learning, each state-action pair ( )sk,ak  is assigned with a Q-

value, stored in the Q-table, and denoted as Q ( )sk,ak . For a 
given state, the higher Q-value for an action denotes a high‐
er potential cumulative reward and it can be utilized to up‐
date Q-value via Bellman equation [24]:

Q (skak ) ¬Q (skak ) +
α[ r (skak ) + γmax Q (sk + 1ak + 1 ) -Q (skak ) ] (18)

where γ is the discount rate; and α is the learning rate. The 
ε -greedy policy is adopted in Q-learning, where the agent 
will choose the action with the highest Q-value during the 
training process. Note that Q-learning is only suitable for the 
case where state-action space is small. The increase of state-
action space size would make the Q-table become too big, 
resulting in each Q-value being rarely updated. In this con‐
text, deep Q-network (DQN) is proposed to address it.

2) DQN: DQN is proposed for solving high dimension 
state-action problem via combining deep neural network 
(DNN) with Q-learning method. Specifically, a DNN is uti‐
lized to approximate Q-table, named Q-network, represented 
as Q ( )sk,ak,θ , where θ denotes the parameters of DNN. The 
Q-network takes the state as input and outputs the Q-value 
for each state-action pair. It can be trained via minimizing 
the loss function:

L (θ ) =E é
ëy -Q (skakθ ) 2ù

û (19)

where E ( )·  is the expected function; y = r (skak ) +
γmax Q (sk + 1ak + 1θ′) denotes the target Q-value, and θ′ de‐
notes the parameter of target Q-network and is updated via 
soft-update method [25]. To stabilize training process, it can 
be calculated via the target Q-network Q (sk + 1ak + 1θ′).

Moreover, a replay buffer is employed in DQN to break 
the identically distributed state samples and reduce the corre‐
lation between them, leading to improved data efficiency. 
Specifically, during the training process, all information is 
saved as an experience ek = (statrtst + 1 ) and stored in the 

memory D = {e1e2eM}. After the buffer is full, the old‐
est experience will be replaced by the newly obtained one. 
Subsequently, at each iteration, the agent will sample a mini-
batch of experience from the replay buffer.

3) DDPG: DDPG is the standard DQN method only work‐
ing effectively for solving control problems with continuous 
states and low-dimension discrete action sets. It is not suit‐
able to solve the optimization problem of PID parameter set‐
ting. To this end, DDPG is introduced and it can achieve bet‐
ter performance in solving control problems with continuous 
action space than DQN. Figure 6 shows the procedure of the 
DDPG and it consists of two eponymous ingredients: an ac‐
tor network is utilized to fit the state sk to action ak, denoted 
as policy function μ ( )sk|θ

μ  via adjusting the network pa‐

rameter θμ = {W a
1 b

a
1W

a
2 b

a
2W a

n b
a
n}; and a critic net‐

work is utilized to fit the action-value function 
Q (skak|θQ ) via adjusting network parameter θQ =

{W c
1 b

c
1W

c
2 b

c
2W c

mb
c
m}.

During the training process, these two networks are 

trained against each other. Among them, the critic network 
can be updated by the loss function [26]:

ì

í

î

ï

ïï
ï
ï

ï

ï

ï
ïï
ï

ï

L ( )θQ =
1

Nmm
∑
i = 1

n ( )Q ( )skak|θQ - yk

2

yk = r ( )skak + γQ ( )sk + 1μ ( )sk|θμ |θQ

θQ
k + 1 = θ

Q
k + α

QÑθμ L ( )θQ
k

(20)

where Nmm is the number of mini-batch; and αQ is the learn‐
ing rate of the critic networks, Then, the parameters of the 
actor network can be updated by the gradient descent [27]:
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Ñθμ J (θμ ) =
             

1
Nmm
∑
i = 1

N

ÑαQ (sa |θQ ) |||||| s = ska = μ ( )sk +N
|
|
||||Ñθμ μ (s |θμ ) s = sk

θμk + 1 = θ
μ
k + α

μÑθμ J (θμk )
(21)

where αμ is the learning rate of the actor network; and N  is 
the Gaussian noise.

Moreover, to stabilize the training process, both target ac‐
tor-critic pair networks are added in DDPG, which can be 
parameterized by θμ′ and θQ′. At each iteration, the soft updat‐
ing (22) is utilized to synchronize its parameters to the tar‐
get actor-critic networks [26].

ì
í
î

θQ′¬ τθQ + ( )1 - τ θQ′

θμ′¬ τθμ + ( )1 - τ θμ′
(22)

where τ is the soft-update rate.

B. Combining PSO and Well-trained DDPG-enabled Agent 
to Solve Upper-level Model

After off-line training, the well-trained DDPG-enabled 
agent can learn the optimal control policy and provide ex‐
treme operating conditions for each PID parameter setting of 
the system.

T *
wi = μ (KPiKIiKDi|θμ )     i = 12N (23)

In this way, the proposed bi-level min-max optimization 
model (13) can be transformed into a single-level mathemati‐
cal programming problem with constraints, i.e.,

ì
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ï

ï

ï
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ïïï
ï

ï

ï

min J ( )KPiKIiKDiT
*
wi

K min
Pi £KPi £K max

Pi

K min
Ii £KIi £K max

Ii

K min
Di £KDi £K max

Di

T *
wi = μ ( )KPiKIiKDi|θμ

i = 12N (24)

It can be observed from (23) that the bi-level model is 
converted into a nonlinear optimization problem. A heuristic 
algorithm is a good choice to solve that and this paper uses 
the PSO algorithm [28]. The detailed solution processes of 
the optimization model are as follows.

Step 1: define the solution space and fitness function. The 
PSO is used to find the optimal PID parameter settings for 
governor. In this context, the particle position is designed as 
the PID parameter settings (KPi, KIi, KDi). The fitness func‐
tion is applied to evaluate the training error and the good‐
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ness of a given solution, which is defined as the objective 
function and shown in (14).

Step 2: initialize random swarm location and velocities. 
Before beginning to search the optimal position, each parti‐
cle is initialized with the random PID parameter setting with‐
in the allowable ranges. Moreover, the direction and length 
of movement of the particle at each episode are named ve‐
locity, which is also initialized.

Step 3: calculate the fitness of each particle. The PID pa‐
rameter setting carried by each particle is transmitted to the 
well-trained DDPG agent. Then, the actor network in DDPG 
can provide the extreme operating condition T *

w - i with the 
worst performance for each particle under the corresponding 
PID parameter setting. Next, both PID parameter setting and 
operating condition data of each particle can be updated to 
the studied system to calculate the fitness via (14).

Step 4: update the particle position and velocity. The ve‐
locity and position of each particle can be updated via:

ì
í
î

ïï

ïï

vd
i + 1 =ωvd

i + c1r1( )pd
i - xd

i + c2r2( )pg - xd
i

xd
i + 1 = xd

i + vd
i

(25)

where vd
i  is the velocity of the d th particle at the ith iteration; 

xd
i  is the position of the d th particle at the ith iteration; pg is 

the best position among all particles in the population up to 
the nth iteration; pd

i  is the optimal position of the d th particle 
up to the nth iteration; ω is the inertia factor; c1 and c2 are 
the acceleration coefficients; and r1 and r2 are the random 
numbers in [0,1]. In this paper, c1 = c2 = 2; ω= 0.6 [15].

Step 5: iterate to find the optimal solution. Repeat Steps 2 
and 3 until the minimum error is met, or the maximum num‐
ber of iterations is reached. Output the final result as the so‐
lution to the above optimization problem.

V. CASE STUDY 

In this section, the performance of the proposed method is 
tested on the IEEE 10-machine 39-bus system. All genera‐
tors adopt a fifth-order model and a simplified excitation sys‐
tem [14]. The eigenvalue analysis results show that a ULFO 
mode of 0.00045 + j0.55 exists in the system. The generators 
strongly related with this mode include G1, G2, G5, and G8. 
To damp out that oscillation, we formulate the ULFO sup‐
pression problem as a bi-level PID parameter setting optimi‐
zation model. Then, the DDPG and PSO algorithms are com‐
bined to solve this model. The simulation is carried out via 
Python and power system analysis software package 
(PSASP) [29]. Among them, the studied system is construct‐
ed in PSASP. PSO and DDPG algorithms are modelled in 
Python.

A. Performance Evaluation of Trained Agents

The numbers of layers and neurons for the networks in 
the DDPG algorithm are set as follows: both actor and critic 
networks adopt the same structure, which contains three hid‐
den layers; and the numbers of neurons for the hidden layers 
are 128, 64, and 64, respectively. The hyperparameters of 
the DDPG algorithm can be found in Table I.

To obtain the corresponding extreme operating conditions  

with different PID parameter settings, which maximize the 
objective function, numerous scenarios are constructed for 
training. Specifically, we generate scenarios by randomly 
sampling from the upper- and lower-limits of PID parameter 
settings of each hydroturbine (0 £KPi £ 25, 0 £KIi £ 0.5, 0 £
KDi £ 3). Note that 95% of these PID parameter settings are 
used for training while the remaining 5% are used for test‐
ing. The cumulative reward changing with the episode dur‐
ing the training process is shown in Fig. 7, where the blue 
solid lines and the shaded areas represent the average accu‐
mulated reward and the standard deviation of the reward, re‐
spectively. At the beginning of the training process, as the 
parameters of DDPG are randomly initialized, the agent does 
not learn the optimal policy that satisfies all constraints, lead‐
ing to low accumulated reward. As the training process goes 
further, the agent interacts with the system to obtain experi‐
ences to optimize the parameters of DDPG, and the cumula‐
tive reward increases gradually. After about 5000 episodes, 
the algorithm converges.

After training, the well-trained agent can provide each 
PID parameter setting to the corresponding extreme operat‐
ing condition. After that, this agent can be applied to assist 
the PSO algorithm to solve the upper-level model. To show 
the computational efficiency of this agent, we compare the 
solution methods of the lower-level model in [19] and [20] 
with our trained agent. The computational efficiency compar‐
ison of different methods is shown in Table II. It can be ob‐
served that our proposed method achieves the highest compu‐
tational efficiency.

Moreover, we further investigate the performance of the 
PSO and differential evolution (DE) to test the performance 
of these two methods. To balance the training time and opti‐
mization effect, by careful trial and error, the population size 

TABLE I
HYPERPARAMETERS OF DDPG ALGORITHM

Parameter

Learning rate for actor network

Learning rate for critic network

Experience replay memory capacity

Step size of each episode

Mini-batch size

Value

0.001

0.002

8000

12

40

2000

1500

2500

3000

3500

4000

4500

5000
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u

m
u
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ti

v
e 
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w

ar
d

0 5000 10000 15000
Epoch

Fig. 7.　Cumulative reward changes with episode during training process.
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of these two methods is set to be 30. Except the population 
size, the hyperparameters of the method have a great impact 
on the optimization performance. To deal with it, each hyper‐
parameter in the method will first be discretized into several 
points in its feasible region. Then, these discrete points form 
a test table by the orthogonal method.

In this way, we can form nine sets of hyperparameter set‐
tings for DE and PSO algorithms, respectively. Then, we can 
train the PSO and DE algorithms with each set of hyperpa‐
rameter settings, as shown in Fig. 8, where the solid lines 
and the shaded areas represent the average and the standard 
deviations of the objective function under different trials, re‐
spectively. Moreover, some quantitative indicators are intro‐
duced to evaluate the optimization performance of PSO and 
DE algorithms, as shown in Table III. It can be observed 
that, the performance of both PSO and DE algorithms is al‐
most similar in terms of the best fitness value obtained in 
the 18 runs. Specifically, DE algorithm is slightly better than 
PSO algorithm. However, the PSO algorithm performs better 
compared with DE algorithm in terms of the average, the 
worst, and the standard deviations of the objective function.

B. Control Performance Comparisons

To test the effectiveness of the proposed method, five cas‐
es are tested by setting different time constants of the hydro-
turbine Tw, as shown in Table IV. Other PID parameter set‐
ting tuning methods are compared as well, including the opti‐
mization method shown in [14] (called robust method I), 
and the one in [15] (called robust method II). The optimized 
parameters are used in the time-domain simulations to vali‐
date the damping control performances. Taking G1 and G2 
as examples, the frequency deviations of units under fault 1, 
i.e., a double-phase short-circuit fault at bus 3 from 2.0 s to 
2.2 s, are shown in Fig. 9. The damping of ULFO mode by 
different optimization methods is presented in Table V. It 
can be observed from Table V and Fig. 9 that ULFO exists 
in the system before PID parameter tuning. After PID param‐
eter optimization, the damping of ULFO mode is enhanced 
and the oscillation is suppressed. However, the PID parame‐
ter settings optimized by different methods show different 
performances. Compared with the other two robust optimiza‐
tion methods, the proposed method achieves the best damp‐
ing of ULFO mode and allows the generators to reach a 
steady state in the shortest time.

To further elaborate on the results, the dynamic character‐
istic of G1 and step responses of PFR are shown in Figs. 10 
and 11. It can be observed that the original parameters make 

TABLE II
COMPUTATIONAL EFFICIENCY COMPARISON OF DIFFERENT METHODS

Method

Optimization method in [19]

Optimization method in [20]

Proposed method

Average solution time of lower-level 
model (s)

13.40

3.70

0.05

TABLE III
QUANTITATIVE INDICATORS OF OPTIMIZATION PERFORMANCE OF PSO AND 

DE ALGORITHMS WITH DIFFERENT HYPERPARAMETER SETTINGS

Algorithm

PSO

DE

Value of quantitative indicator

Best

26.42

25.01

Average

33.18

41.07

Worst

53.30

140.27

Standard deviation

9.71

37.68

TABLE IV
Tw OF HYDRO-TURBINES IN DIFFERENT CASES

Generator

G1

G2

G3

G4

G5

G6

G7

G8

G9

G10

Tw of hydro-turbine

Case 1

0.5

1.5

0.5

2.5

1.5

1.5

0.5

0.5

1.5

2.5

Case 2

2.5

1.5

1.5

2.5

2.5

0.5

1.5

0.5

2.5

0.5

Case 3

1.5

2.5

1.5

2.5

0.5

0.5

0.5

1.5

1.5

1.5

Case 4

1.5

0.5

1.5

1.5

1.5

1.5

0.5

1.5

2.5

0.5

Case 5

2.5

0.5

0.5

1.5

0.5

2.5

2.5

1.5

1.5

2.5
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Fig. 9.　Frequency deviations of units under fault 1. (a) G1. (b) G2.
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the units achieve the best dynamic response but the worst 
damping performance of ULFO. The parameter settings re-
tuned by the three optimization methods can improve the 
damping characteristics of the governor with the cost of re‐
duced dynamic characteristics. Among them, the proposed 
method not only improves the damping characteristics of the 
governors but also retains a better dynamic response of PFR 
than the other two methods.

C. Robustness to Various Operating Conditions

To test the robustness of all three methods under different 
disturbances, four different two-phase short-circuit faults are 
applied with 100 ms fault duration and the faulty buses are 
8, 16, 23, and 25, which are named as fault 2, fault 3, fault 
4, and fault 5, respectively. The simulation results are shown 
in Fig. 12. It can be observed that all methods can damp out 
the oscillations. Among them, the proposed method takes the 
least time to damp out the oscillations as compared with the 
other two robust methods. The proposed method also has the 
smallest oscillation magnitude, demonstrating the best perfor‐
mance of damping out UFLO under different faults.

Furthermore, different Tw settings for Cases 2-5 in Table 
IV are taken as comparative cases to test the robustness of 
the proposed method under different cases. 

For each case, time-domain simulations are carried out 
with different PID parameter settings. The results are shown 
in Fig. 13. 

It can be concluded that the PID parameters optimized by 
the proposed method can achieve better performance in com‐
parison with two other optimization methods. To further in‐
vestigate the performance of the proposed method, we adopt 
the Monte Carlo method to sample time constant Tw of tur‐
bines between 0.5 s and 3 s to generate 300 cases. For each 
case, the ULFO mode is calculated and the probability densi‐
ty function (PDF) of ULFO nodes is also calculated, as 
shown in Fig. 14. Note that the red curve denotes the PDF 
distribution and is formed by fitting the eigenvalues pro‐
duced via different PID parameter tuning method. It can be 
observed that before PID parameter optimization, the damp‐
ing of the ULFO mode is less than 0 for some cases and not 
located in the secure region (ξ> 5%). This means that there 
is a risk of ULFO induced instability during the operation of 
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Fig. 13.　Dynamic response of G1 under different cases. (a) Case 2. (b) 
Case 3. (c) Case 4. (d) Case 5.

TABLE V
DAMPING OF ULFO MODE BY DIFFERENT OPTIMIZATION METHODS

Method

Original parameters

Robust method I

Robust method II

Proposed method

Real part

0.0005

-0.0410

-0.0540

-0.0920

Imaginary part

0.54

0.59

0.55

0.52

Damping (%)

-0.093

6.930

9.770

17.420
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Fig. 10.　Dynamic characteristic of G1. (a) Damping curve. (b) Step re‐
sponse.
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Fig. 12.　Dynamic response of G1 under different disturbances. (a) Fault 2. 
(b) Fault 3. (c) Fault 4. (d) Fault 5.
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the system. Figure 14(b), (c), and (d) shows the distributions 
of ULFO modes under different PID parameter settings. The 
statistical hypothesis for damping ratio of ULFO mode un‐
der 300 operating conditions is listed in Table VI. Clearly, 
compared with two other robust methods, the proposed meth‐
od can make the ULFO mode achieve better mean value and 
smaller standard deviation of the damping ratio, yielding a 
larger stability margin.

VI. ACTUAL HYDROPOWER-DOMINATED SYSTEM

In this section, an actual hydropower-dominated system in 
Sichuan Power Grid, China is introduced as a studied sys‐
tem, which is shown in Fig. 15. The abbreviations shown in 
Fig. 15 are the acronyms of the region names. This system 
consists of 53 buses, 26 lines, and 17 hydropower units and 
the installed capacity is 1100 MW. For such system, the ei‐
genvalue analysis results show that a ULFO mode -0.0013 +
j0.597 exists in this system. To damp out that oscillation, the 
proposed method is employed to optimize the governor PID 
parameters, which are strongly related to the ULFO (CJB-1, 
CJB-2, CPQ-3, CTCH-2).

A. Further Evaluation of Proposed Method

To test the effectiveness of the proposed method under dif‐
ferent datasets, we generate three datasets via different distri‐
bution functions. Specifically, we generate three datasets by 
sampling from the upper- and lower-limits of PID parameter 
settings of each hydroturbine via the uniform distribution 

function, normal distribution function, and rayleigh distribu‐
tion function, respectively. Each dataset is utilized to train a 
DDPG agent. The training process is shown in Fig. 16. The 
curves and shaded areas in Fig. 16 represent the mean and 
variance of the reward function during the training process, 
respectively.

It can be observed from Fig. 16 that, with the increase of 
training episodes, the proposed method would converge un‐
der three different datasets. It means that the DDPG agent 
can learn the control policy that maximizes the cumulative 
reward. Then, these well-trained agents can be utilized to as‐
sist PSO to find the appropriate PID parameter settings to 
prevent ULFO. The effectiveness analysis of these obtained 
PID parameter settings is provided in the next part.

B. Control Performance Analysis and Comparison

To test the control performance of obtained PID parameter 
settings, we send the PID parameter settings to the system 
and compare these settings under a fault, where a two-phase 
short-circuit faults are applied with 150 ms fault duration 
and the faulty buses are CJL-220. The simulation is carried 
out under two different cases and the results are shown in 
Fig. 17. Clearly, each group of PID parameter settings ob‐
tained via different datasets can prevent ULFO phenomena 
under all three operating conditions, which means that the 
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parameters. (b) Robust method I. (c) Robust method II. (d) Proposed meth‐
od.

TABLE VI
STATISTICAL HYPOTHESIS FOR DAMPING RATIO OF ULFO MODE UNDER 

300 OPERATING CONDITIONS

Method

Original parameters

Robust method I

Robust method II

Proposed method

Mean value (%)

0.27

6.18

10.25

13.78

Standard deviation

0.0075

0.0420

0.0536

0.0213
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Fig. 15.　Simplified system topology used for case.
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proposed method can work effectively under different datas‐
et and the appropriate PID parameter settings can be found 
to prevent ULFO.

Moreover, to further investigate the performance of the 
proposed method, the common PID parameter tuning meth‐
od (Ziegler-Nichols) is applied to act as benchmark method. 
The details of this method can be found in [30]. The compar‐
ison results of different PID tuning methods can be found in 
Fig. 18. It can be observed that both the Ziegler-Nichols 
method and the proposed method can damp out the frequen‐
cy oscillations. Among them, the proposed method can make 
the frequency deviation curve recover to the steady point 
faster. It means that the proposed method can search better 
PID parameter settings and has better control performance.

VII. CONCLUSION

In this paper, a novel bi-level robust parameter optimiza‐
tion model is proposed to re-tune the PID parameters to con‐
trol ULFO. Different from the conventional robust optimiza‐
tion methods, the PID parameter optimization is reformulat‐
ed into the form of a min-max optimization model to ensure 
the effectiveness of the optimized PID parameters under vari‐
ous extreme operating conditions. The DDPG is developed 
to train an agent for the fast decision making of lower-level 
model and ensure the effective interactions with the upper-
level model, significantly improving the computational effi‐
ciency. 

After the agent is trained, each iteration only needs 0.05 s 
to provide actions for the upper-level model. Simulation re‐
sults are carried out in IEEE 10-machine 39-bus system and 
actual hydropower-dominated system in Sichuan Power 
Grid. Three hundred cases are generated by Monte Carlo 
method to act as test cases and the comparison results show 
that the proposed method can achieve better damping control 
performance. The mean value of the ULFO mode damping 
under 300 cases can reach 13.78%. The mean value of other 
two robust methods can only reach 6.18% and 10.25%, re‐
spectively. It means that the PID parameters optimized by 
the proposed method can achieve better damping control per‐
formance in comparison with two other robust optimization 
methods under different operating conditions.

APPENDIX A

The standard PFR model of the hydropower unit is shown 
in Fig. A1.

Governor Turbine Generator and load+
+

−

ω
ref Δμ ΔωΔPm

Fig. A1.　Structure diagram of standard PFR model of hydropower unit.

The parameter settings of hydropower unit, thermal power 
unit, and AC lines are listed in Tables AI-AIII, respectively. 
The parameter setting of generators in two-machine system 
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is listed in Table AIV. The rated active and reactive power 
of generators and load are listed in Table V.

The detailed expressions of Routh-Hurwitz criterion coeffi‐
cients a1, a2, a3, and a4 are shown as follows:
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a1=
0.5TGTwTJbp+0.5TwTJ N0+TGTJ N0+0.5TGTw DN0-Tw N1

0.5TGTwTJ N0

a2=
TJbp( )0.5Tw+TG +Tw( )0.5TG Dbp-N2 +

0.5TGTw ×
®

          ¬
N0( )TJ+0.5Tw D+TG D

TJ N0

a3=
N2-Tw+bp( )TJ+0.5Tw D+TG D +DN0

0.5TGTwTJ N0

a4=
1+Dbp

0.5TGTwTJ N0

No= 1 KI

N1= KD KI

N2= KP KI

(A1)

The calculation process of oscillation frequency of two-
machine system can be given.

Considering two-machine system is unstable, a dominant 
oscillation mode exists in the system. In this context, (5) can 
be represented as:

(s - λ1 ) (s - λ2 ) (s + σ + jω) (s + σ - jω) = 0 (A2)

That is further rewritten as:

s4 + (2σ - λ1 - λ2 ) s3 + [ λ1 λ2 + σ
2 +ω2 - 2σ ( λ1 + λ2 ) ] s2 +

[ (σ2 +ω2 ) ( λ1 + λ2 ) + 2σλ1 λ2 ] s + (σ2 +ω2 ) λ1 λ2 = 0

(A3)

where λ1, λ2, and σ ± jω are the poles of the closed-loop 
transfer function. Note that λ1 and λ2 can be two real roots 
or a pair of the conjugate complex root. σ ± jω is the domi‐
nant pole. When σ = 0, the frequency response will oscillate 
critically. Meanwhile, we have:

ì
í
î

ïï

ïïïï

a1 =- ( )λ1 + λ2

a3 =-ω
2( )λ1 + λ2

(A4)

Based on (10), the oscillation frequency ω is defined as:

ω = a3 a1 (A5)

Combining (A5) and (A1), ω can be rewritten as:

ω =
2[ ]N2 - Tw + bp( )TJ + 0.5Tw D + TG D +DN0

TGTwTJbp + TwTJ N0 + TGTJ N0 + TGTw DN0 - 2Tw N1

(A6)

The obtained PID parameters of IEEE 10-machine 39-bus 
system is shown in Table AVI.

TABLE AI
PARAMETER SETTING OF HYDROPOWER UNIT

Variable

KP

KI

KD

TJ

Value

4.0

2.5

0.5

10.0

Variable

bp

D

TG

Tw

Value

0.05

2.00

0.20

4.00

TABLE AII
PARAMETER SETTING OF THERMAL POWER UNIT

Variable

Ka

Tch

Tg

Value

1.0

0.2

0.3

TABLE AIII
PARAMETER SETTING OF AC LINE

AC line

x1

x2

R

0.0057

0.0032

X

0.0625

0.0323

B/2

0.5145

0.2806

TABLE AIV
PARAMETER SETTING OF GENERATORS IN TWO-MACHINE SYSTEM

Parameter

Xd

X ′d
X ″d
Xq

X ′q
X ″q
X2

Ra

T ′d0

T″d0

T ′q0

T″q0

H

D

G1

0.4400

0.2500

0.2200

1.7000

0.5000

0.6000

0.0025

0.0250

8.0000

0.0300

0.4000

0.0500

13.000

0

G2

1.0870

0.2890

0.2020

0.6840

0.6870

0.2280

0.2150

0

10.0300

0.0400

0.2590

0.0600

12.0000

0

TABLE AV
RATED ACTIVE AND REACTIVE POWER OF GENERATORS AND LOAD

Generator and load

G1

G2

Load 1

P (MW)

700

700

600

Q (Mvar)

185

185

100
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TABLE AVI
PID PARAMETER SETTING

Method

Robust method I

Robust method II

Proposed method

Generator

G1

G2

G5

G8

G1

G2

G5

G8

G1

G2

G5

G8

KP

8.36

2.77

17.90

1.54

8.61

2.81

11.98

6.59

6.73

2.28

13.58

2.68

KI

0.34

0.04

0.09

0.18

0.29

0.26

0.32

0.05

0.33

0.11

0.18

0.21

KD

2.33

1.18

2.66

1.10

2.69

1.74

0.60

1.63

2.07

1.39

1.52

1.73
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