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Abstract—This paper proposes a robust and computationally
efficient control method for damping ultra-low frequency oscil-
lations (ULFOs) in hydropower-dominated systems. Unlike the
existing robust optimization based control formulation that can
only deal with a limited number of operating conditions, the
proposed method reformulates the control problem into a bi-lev-
el robust parameter optimization model. This allows us to con-
sider a wide range of system operating conditions. To speed up
the bi-level optimization process, the deep deterministic policy
gradient (DDPG) based deep reinforcement learning algorithm
is developed to train an intelligent agent. This agent can pro-
vide very fast lower-level decision variables for the upper-level
model, significantly enhancing its computational efficiency. Sim-
ulation results demonstrate that the proposed method can
achieve much better damping control performance than other
alternatives with slightly degraded dynamic response perfor-
mance of the governor under various types of operating condi-
tions.

Index Terms—Bi-level robust parameter optimization, deep re-
inforcement learning, deep deterministic policy gradient, ultra-
low frequency oscillation, damping control stability.

[. INTRODUCTION

N recent years, the negative effects of the fossil fuel
based power system attract more and more attentions. In
this context, increasing the penetration of renewable energy
with low carbon and sustainable characteristics in the power
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system is a significant pathway to address this issue [1]. Hy-
dropower is one of the cheapest and reliable sources of re-
newable energy and it accounts for nearly 50% of renewable
power generation [2]. However, recent studies indicate that
the hydropower-dominanted systems are easily subject to the
ultra-low frequency oscillation (ULFO) [3], which have been
observed in China [4] as well as Nordic and Colombia [5],
[6]. If ULFO is not properly controlled, there is a risk of sys-
tem instability.

In [7], the root cause of ULFO is investigated based on
the vector margin method, where it is shown that the hydrau-
lic turbine-governor creates a negative damping torque in the
ultra-low frequency band. In [8], via the damping torque analy-
sis, it is found that the unreasonable parameter settings of the
hydraulic governor proportional-integral (PI) controller lead to
ULFO. Furthermore, if the ratio of the proportional parameter
to the integral parameter is too small for the hydropower gov-
ernor, the ULFO can occur [9]. To damp out ULFO, various
strategies have been proposed. In [10], a high-voltage direct
current frequency limiting controller (HVDC-FLC) is devel-
oped. Note that for partial hydropower-dominated systems, on-
ly the AC transmission is used for the transmission of elec-
tric energy and thus it is difficult to adopt this method. In
[11], the power system stabilizer (PSS) is configured on the
governor to mitigate the impacts of the negative damping
torque. By contrast, in [12], the PSS and proportion resonant
(PR) are integrated to form the PR-PSS for ULFO control. A
multi-band PSS, named PSS4B, is also proposed [13] with
low-band, intermediate-band, and high-band controllers. The
low-band controller provides the damping of the ULFO
modes. However, these configurations are not always avail-
able in practice, limiting their applications in power systems.

Optimizing the proportional-integral-derivative (PID) pa-
rameters of the governor is another alternative for ULFO
control. It is also shown that the re-tuning of the governor
settings has high practical value [14]. In [15], [16], a robust
optimization method for tuning governor is proposed. A ro-
bust fixed order control design method is also developed in
[2]. However, these methods are limited to several typical
operating conditions. To this end, a bi-level optimization
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model (min-max or max-min) is proposed [17]. In particular,
the performance of optimization variables under extreme op-
erating conditions is taken as the objective to achieve gener-
alizability under all operating conditions. Although the re-
sults are conservative, it is appropriate considering the im-
portance of system stability unless other effective methods
are available. To solve the bi-level model, it is advocated to
replace the lower-level model using Karush-Kuhn-Tucker for-
mulation [18], duality principle [19], and penalty function
[20], yielding a single-level optimization model. However,
for the decision variables provided by the upper-level model
at each iteration, the lower-level model needs to repeat opti-
mizations to find the corresponding extreme operating condi-
tion, which is usually time-consuming.

To this end, a novel bi-level PID parameter optimization
model is proposed for ULFO control. It has the following
contributions:

1) Based on the Routh-Hurwitz criterion, the mechanism
of the ULFO is studied and the feasibility of formulating
ULFO control as optimizing PID parameters is demonstrat-
ed. In particular, the problem of ULFO control is formulated
as a bi-level robust PID optimization model. This is in con-
trast with the formulation in [14], [15] and allows us to deal
with a wider range of extreme system operating conditions.
In addition, the optimized PID parameters retain the dynam-
ic performance of the governor.

2) To improve the efficiency of solving bi-level model,
this paper forms the lower-level model into the Markov deci-
sion process (MDP) solved by a deep deterministic policy
gradient (DDPG) based algorithm. After that, the decision
variables transferred by the upper-level model can be quick-
ly addressed via the well-trained DDPG agent without the re-
peated optimization. This is a novel method to solve min-
max optimization model and is different from previous min-
max model [18]-[20], yielding significantly improved compu-
tational efficiency.

The rest of this paper is organized as follows. Section II
introduces the system model. In Section III, the formulation
of governor parameter optimization is presented. The pro-
posed bi-level robust parameter optimization model is pre-
sented in Section IV. The case study is provided in Section
V. Section VI presents the actual hydropower-dominated sys-
tem and conclusions are given in Section VII.

II. SYSTEM MODEL

A. Two-machine System

Figure 1 shows a two-machine system, which is intro-
duced to act as the studied system to investigate ULFO, in-
cluding hydropower unit (G1), thermal power unit (G2), and
load. The key parameter settings of this system are provided
in Appendix A. The hydropower mainly consists of a genera-
tor, a governor, and a turbine, as shown in Fig. Al of Appen-
dix A. Among them, the linearized dynamic equation of gen-
erator can be described as:

dAw
T (D

where T, is the inertia time constant; Aw is the rotor speed

7,2 =AP,~AP,~D Aw
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deviation; AP, is the mechanical power deviation; AP, is the
electromagnetic power deviation; and D, is the damping co-
efficient.

Hydropower unit

(Gl) Bus 1 Bus 3
@ 2aaa
Thermal power unit
(G2) Bus 2
@ NS Load
Fig. 1. Schematic of two-machine system.
Assuming frequency-dependent load as AP,=K,Aw,

where K, is the load frequency sensitivity, and substituting
AP,=K,Aw into (1), the transfer function of the generator
G.(s) can be described as [15]:

_Ao(s) 1 1
AP, (s) T,s+D,+K, T,s+D

Geon(s) 2

where D=D +K,. The transfer function of prime mover
(governor and turbine) G,,(s) can be defined as [4]:

AP, (s)

G,(s)= “ao(s) =G, (5)G(s)
Kys*+Kps+K, 1
= 3
Cen(s) b K+s  1+Tgs ®)
1-T,s
Gls) = 1+0.57, s

where G,

nor and turbine, respectively; K,, K,, and K,, are the propor-
tional, integral, and differential coefficients of the governor,
respectively; b, is the adjustment coefficient of the governor;
T; is the response time of the governor; and 7, is the water
hammer effect and it depends on the operating conditions of
hydroturbine [2]:

(s) and G (s) are the transfer functions of gover-

Sk,
T — i=1°710
w gHr
where L, and A4, are the length and sectional area of the i" di-
version pipeline, respectively; O, is the rated water flow; g
is the gravitational acceleration; H, is the rated water head;
and »n is the number of diversion pipelines.
For the thermal power unit, this paper ignores the boiler
dynamic process and mainly considers the steam turbine and
governor [8]:

4)

—K,Aw(s)
(1 +sTg)(1 +sTch)

Ath(S) =—G;1(S)AC()(S) = (5)
where AP, ,(s) is the damping torque of thermal generator;
G,(s) is the transfer function of thermal power unit; K, is
the gain; 7, and T, are the time-steps of hydraulic system
and high-pressure cylinder, respectively.

B. ULFO Mechanism Analysis
The dynamic responses of G1 and G2 under fault 1, i.e., a
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double-phase short-circuit fault at bus 3 from 2.0 s to 2.2 s,
are shown in Fig. 2. It can be observed that, the angle speed
of two generators varies with the same phase and amplitude.
No oscillations between two units are observed. It is differ-
ent from traditional low-frequecy oscillation (LFO). The Pro-
ny method [21] is utilized to identify the oscillation model

and the identification results show that a ULFO mode
-0.0001 +0.403 exists in the system.
1.10f — G1
---G2
S 1.05F
£
3
g 1.00
°
on
Z 095}
0.90 : ‘ ‘ : : :
0 10 20 30 40 50 60

Time (s)
Fig. 2. Dynamic responses of G1 and G2 under fault 1.

To investigate the cause of ULFO in the studied system,
we calculate the damping torque coefficient of two units’
primary frequency regulation (PFR). Among them, the de-
tailed calculation process of damping torque coefficient of
hydropower unit is provided in [12] and can be defined as:

D.(s) 1-0.5T,T, w2~ w’T,(T;+0.5T,)
S)=
" 1-0.5T,T, 0+ T;+0.5T,)

(6)

Submitting s=jw, into (3), the damping torque coefficient
of stream power unit can be obtained as [8]:

AP, ==D;Aw—]DAw @)

Do) K,(1-7,1,07)

(1 —TgT,hwf,)zJr (,+ Tch)za)j ®

c

where D, denotes the damping torque coefficient; and D,
denotes the synchronous torque coefficient.

Submitting ®,=2xnf into (6) and (8), the trajectory of
damping torque coefficients D, and D, changing with fre-
quency f can be obtained, as shown in Fig. 3.

It can be observed that the hydropower unit will produce
a negative damping under the ultra-low frequency band (be-
low 0.1 Hz). In contrast, the thermal power unit would pro-
duce a positive damping in this band. Therefore, the ULFO
is strongly related with hydropower unit.

To further investigate the relationship of ULFO and hydro-
power unit, the characteristic equation of closed-loop trans-
fer function of the hydropower unit is calculated based on
(2) and (3) and can be written as:

(T,5+D)(b,K,+5)(1+T4s)(1+0.5T, 5) +

(1-T,5)(Kps*+Kps+K,;) =0 )
After simplification, (9) can be rewritten as:
s'+va, s’ +aystta;s+a,=0 (10)

where a,, a,, a,, and a, are the Routh-Hurwitz criterion coef-
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ficients, which are related to 7',. Specifically, the Routh-Hur-
witz criterion coefficients and oscillation frequency changing
with T, are shown in Fig. 4. Note that, the detailed expres-
sion of these coefficients and the calculation process of oscil-
lation frequency are provided in Appendix A.

Damping torque coefficient

Y0 05 10 15 20 25 30
f(Hz)
(a)

Damping torque coefficient

0 05 1.0 15 20 25 30
J(Hz)

(b)

Fig. 3. Trajectory of damping torque coefficients of hydropower and
stream power units. (a) Hydropower unit. (b) Stream power unit.

Routh-Hurwitz criterion coefficient

0.5 L0 1.5 2.0 2.5 3.0
(@)
0.25¢

0.20p

0.15F

J(Hz)

0.10f

0.05¢

0 . . . . )
0.5 1.0 L5 2.0 2.5 3.0

T,
(®)
Fig. 4. Routh-Hurwitz criterion coefficients and oscillation frequency
changing with 7. (a) Routh-Hurwitz criterion coefficients. (b) Oscillation
frequency.
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It can be observed from Fig. 4(a) that with the increase of
T, all Routh-Hurwitz criterion coefficients decrease and in
particular, the coefficient ¢, becomes negative. Base on the
Routh-Hurwitz criterion [3], it can be concluded that the sys-
tem is unstable, and there is a negative damping oscillation
mode in the system. In addition, Fig. 4(b) shows that, with
the increase of T, the oscillation frequency decreases to be-
low 0.1 Hz. It means that this dominant negative damping
oscillation mode is ULFO mode.

In summary, the ULFO is strongly related to the hydro-
power units, and it is caused by the PFR of the hydropower
units. More specifically, due to the water hammer effect, the
hydraulic governor easily produces negative damping torque,
as shown in Fig. 3, resulting in the negative ULFO mode.

Besides, Routh-Hurwitz criterion coefficients are related
to the hydrogovernor PID parameters. In fact, we can adjust
PID parameter settings to make these coefficients keep posi-
tive. Based on this consideration, we test the trajectory of c,
with different PID parameter settings and the results are
shown in Fig. 5. It can be observed that the tuning of PID
parameters can make the ¢, positive. In this way, the system
becomes stable, which means that optimizing PID parame-
ters contributes to preventing ULFO.

10
8k, — Ky=4, K=2.5, K,;=0.1
P K,=3, K=2.0, K,=0.2

_ D ---K=2,K=1.0, K,=0.3

A N K=1,K70.5, K,=0.4
2} o
ol .
2 . . . , 4
0.5 1.0 15 2.0 2.5 3.0

Fig. 5. ¢, changing with different PID parameter settings.

III. FORMULATION OF GOVERNOR PARAMETER OPTIMIZATION

Based on the system linearization technology, the state ma-
trix A can be obtained [22]. Then, (11) can be utilized to di-
agonalize matrix A to obtain eigenvalues:

A=VA
{UVT:I (D
A=diag( 2.y, s Aurros oo )
Auro=0urro +JButro (12)

__ ) 2
Sutro=—0 ULFO/ oiiro T Burro

where U and V are the left and right feature vectors, respec-
tively; A is the diagonal matrix; 1, denotes the m" eigenval-
ue; Ay po is the ULFO mode; oy, and Sy are the real
part and imaginary part of Ay, respectively; and yiro 1S
the damping ratio.

As mentioned above, optimizing PID parameter settings
contributes to stable ULFO mode A.;,. However, there are
some requirements: () less effect on other oscillation
modes: we should avoid weakening the damping of other
modes when improving the damping of ULFO mode; @
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good dynamic performance for the PFR: previous studies in-
dicate that if without proper design, optimizing PID parame-
ters may deteriorate PFR dynamic performance, and thus
weakening the frequency adjustment ability of governor
[14], [15]; @ robustness to the change of operating condi-
tions: in actual operation, the operating condition of the tur-
bine is time-varying. The optimized PID parameters that
show good performance under one operating condition may
not work well under other conditions. Therefore, during the
optimization process, extreme operating conditions should be
considered. Based on the above considerations, the suppres-
sion of ULFO is modeled as a bi-level min-max optimiza-
tion model with constraints, which is described as:

minJupPer(Kp,,'oK[,i’KD.i’ T:k',i)

"
min max

KP,i SIgvP.z'SI(VP,i
min max

K[,i SI<I,i£1<[~i
min max

KD,i S]<D,i S]<D,i

* lower
T, ,=argmaxy; MU(KP,:"KIJ’KDJ)

i=1,2,..,N  (13)

Turzning T‘w.,iS T:’?‘?X
5/"( KP.i’ KI.i’ KDJ’ Tw,i) >§0

where J“"“(-) is the objective function of the optimization
problem; T, is the time constant of water hammer effect of
the i™ governor representing the operating conditions of the
governor and limited between 0.5 and 3 [15]; y*“ is the ob-
jective function of the lower model; é‘j’() is the damping of

the /™ oscillation mode except for the ULFO mode; ¢, is the
desired damping ratio of the oscillation mode that is typical-
ly set to be 0.05 [12]; and N is the number of the governors.
J*r(.) can be reformulated as [15]:

Jupper( Kp i Ky Kp s Tw,i) =Jsts +Jimae

Jsrp= 2 ‘ Sutro — Cset | T z ‘ OULFO ~ O et

Suro <G OuLro> O
N [T
Jitae= z(fo‘t(APm(t) —APE?)‘df)
i=1

where Jg, is the stability of the ULFO; J;,. is the primary
frequency control performance of the prime mover; o, is
the desired real part of the eigenvalues; &, is the damping
ratio of the eigenvalues; AP, (¢) is the dynamic response of
governor under disturbance; and AP;, is the steady-state val-
ue of the prime mover under disturbance. In fact, Jg; can
be further written as:

(14)

Cet=Cutrot Outro — Oser Surro <Cserr TuLro ™ Oser
0 Cutro 2 Ceerr OuLro < O

(15)

Jsm=

It can be observed from (15) that, when &;p0 <& Ourro >
v Jorp 18 defined as & — &\ po+ 0yiro— O DY Mminimizing
this target, & po and oy o 0f ULFO mode would be pushed
close to the predetermined damping and real part. Note that
the damping of ULFO mode is set to be a bigger value. By
optimizing PID parameter settings to make the damping of
ULFO mode close to the predetermined damping, the damp-

o set
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ing of ULFO mode is improved. Once the damping and real
parts of ULFO mode reach to the predetermined value, Jg,
becomes 0.

By minimizing Jg,, the output deviation of the prime
mover can be optimized to close to steady-state point. In
this way, both the oscillation amplitude and oscillation time
of the prime mover under disturbance can be optimized,
which means that the dynamic performance of the primary
frequency control can be improved.
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IV. PROPOSED BI-LEVEL ROBUST PARAMETER
OPTIMIZATION MODEL

For the bi-level robust parameter optimization model, the
lower-level model is reformulated as the MDP and solved by
the DDPG algorithm. Subsequently, the trained agent is em-
ployed to assist particle swarm optimization (PSO) to solve
the upper-level model to obtain the optimal solution. The
overall scheme of the optimization process is shown in
Fig. 6.

Fig. 6. Overall scheme of optimization process.

A. Solving Lower-level Model via DDPG Algorithm

The core functions of lower-level model shown in Fig. 6
can be described as:
T‘:yi:argmaxyi”w""(KP,i,KLi,KD_i)
Tr<T, <Tm
(K KK i T,1) > &y

In each episode, the upper-level model would provide a

i=1,2,...N (16)

set of PID parameter setting (K iK1 K D,l.) to the lower-lev-

el model. The lower-level model searches the extreme operat-
ing condition T, with the worst performance under this PID
setting condition. In this way, both the upper-level and lower-
level variables are determined and the objective function
(14) can be calculated and sent to the upper-level model.

In fact, the function of the lower-level model is to find
the corresponding extreme operating condition under every
PID setting condition. Therefore, the key to solving this low-
er-level model is to find the policy function T, =
n(K oK K D_i) that maximizes the objective function. It is

3 PSO 3 ! Deep deterministic policy gradient !
| i Upper-level model | |
. Initialize the PID | Hydro-governor PID parameter setting producer l Poli L |
! parameters of '@m=  Objective: obtain optimal PID parameters that minimize i - rZ dlii:};lt & n(::iiso ol ] 3
! hydro-governor ! objective function ! = !
! Kp» Kpi» Kpi ! ‘ |
i 1 i Optimization results Optimization ] 3 i
! Send the PID parameter ! of outer-layer model results of ! !
1 to the well-trau.led agent || (Kp, Kp s Kp)) inner-layer model 1 |
! and the well-trained agent| ! ! !
; provides action 1 Lower-level model 1 |
| Carry out the simulation | ; Hydro-governor operating condition producer ! Juver (K . : '
3 and identify the damping 3 1 Objective: obtain the worst case that make | K, KDPf” | |
! of oscillation modes ! . stability function the maximum ‘ }* ) ! | |
! v ! LM i |
; Calculate the objective | | |
! function and update ! Hydro-governor state 1 |
! all the particles . (Kp'[, K],[, KD,[, Tw,[) ‘ |
! } ' Simulation is carried out and objective function :
| Is the | L e ‘ |
‘ diti | ! is calculated (Prony algorithm is used to ! !
l convergence condition™, ! identify the oscillation mode) —— !
| of the algorithm w T |

a decision-making problem in an uncertain environment.
This paper reformulates it as an MDP, and the key elements
related to MDP are defined as a tuple, <S, A, P, R>, where S
denotes the state and is composed of the PID parameter set-
tings of each hydrogovernor; 4 denotes the action and is rep-
resented as the operation conditions of governor; P denotes
the transition probability; and R denotes the reward and is
used to evaluate the action taken by the agent at each time
step. In this paper, the reward r(sk,ak) is defined as:

W

S S (G-l Kb KL K TL))

J=1&<g

V(Skvak) =J(K£’,.,Kf,.,Kf,.,~, Tlfzi) +
(17)

where the superscript & denotes the " turbine governor.

The reinforcement learning algorithm is a common meth-
od to solve this MDP [22]. The background of reinforcement
learning is described as follows:

1) Q-learning: it is a widely used reinforcement learning
method [23], where an agent is trained to learn the optimal
control policy to maximize the cumulative reward. In Q-
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learning, each state-action pair (sk,ak) is assigned with a Q-
value, stored in the Q-table, and denoted as Q(sk,ak). For a
given state, the higher Q-value for an action denotes a high-

er potential cumulative reward and it can be utilized to up-
date O-value via Bellman equation [24]:

O(sa,) < O(spa,) +
a[r(slr7ak) +VmaxQ(Sk+l’ak+l)_Q(Sk’ak)] (18)

where y is the discount rate; and « is the learning rate. The
e-greedy policy is adopted in Q-learning, where the agent
will choose the action with the highest O-value during the
training process. Note that O-learning is only suitable for the
case where state-action space is small. The increase of state-
action space size would make the QO-table become too big,
resulting in each Q-value being rarely updated. In this con-
text, deep O-network (DQN) is proposed to address it.

2) DQN: DQN is proposed for solving high dimension
state-action problem via combining deep neural network
(DNN) with Q-learning method. Specifically, a DNN is uti-
lized to approximate (-table, named Q-network, represented
as Q(sk,akﬂ), where 6 denotes the parameters of DNN. The
O-network takes the state as input and outputs the Q-value
for each state-action pair. It can be trained via minimizing
the loss function:

L(0) B[ y-0(s.4,.0)'] (19)

where [E(-) is the expected function; y=r(s.a,)+
ymaxQ(sk+1,ak+1,9') denotes the target O-value, and 0’ de-
notes the parameter of target O-network and is updated via
soft-update method [25]. To stabilize training process, it can
be calculated via the target Q-network Q(s,m,a el 9').
Moreover, a replay buffer is employed in DQN to break
the identically distributed state samples and reduce the corre-
lation between them, leading to improved data efficiency.
Specifically, during the training process, all information is

saved as an experience e, = (st, a, rt,s,ﬂ) and stored in the

ey ). After the buffer is full, the old-
est experience will be replaced by the newly obtained one.
Subsequently, at each iteration, the agent will sample a mini-
batch of experience from the replay buffer.

3) DDPG: DDPG is the standard DQN method only work-
ing effectively for solving control problems with continuous
states and low-dimension discrete action sets. It is not suit-
able to solve the optimization problem of PID parameter set-
ting. To this end, DDPG is introduced and it can achieve bet-
ter performance in solving control problems with continuous
action space than DQN. Figure 6 shows the procedure of the
DDPG and it consists of two eponymous ingredients: an ac-
tor network is utilized to fit the state s, to action q,, denoted
as policy function ,u(sk\H") via adjusting the network pa-
rameter 0= {Wf,b‘f, wy,bs, ..., Wn",b::}; and a critic net-
work is utilized to fit the
Q(sk,ak‘ﬁg) via adjusting network parameter 09=
(Wb Wi bs, . Wb,

During the training process, these two networks are

memory D= {el,eQ, -

action-value function
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trained against each other. Among them, the critic network
can be updated by the loss function [26]:

L(GQ) = NLWZ(Q(S;”G,{‘@Q) _J’k)z

ve=r(sia) +70( s u(s]00)]0°)
02.,=02+a°V ,L(02)

(20)

where N, is the number of mini-batch; and a¢ is the learn-
ing rate of the critic networks, Then, the parameters of the

actor network can be updated by the gradient descent [27]:
v, J(0")=
1 & |
T Zan(S, a ‘ 6? )' s=spa=p(s;) +va,u(s | 0" )

mm =

01, =0 +a'V,J(01)

s=5,

2D
where o is the learning rate of the actor network; and A/ is
the Gaussian noise.

Moreover, to stabilize the training process, both target ac-
tor-critic pair networks are added in DDPG, which can be
parameterized by 6* and 9. At each iteration, the soft updat-
ing (22) is utilized to synchronize its parameters to the tar-

get actor-critic networks [26].
09«16+ (1-1)62 -
010"+ (1-1)0" (22)

where 7 is the soft-update rate.

B. Combining PSO and Well-trained DDPG-enabled Agent
to Solve Upper-level Model

After off-line training, the well-trained DDPG-enabled
agent can learn the optimal control policy and provide ex-
treme operating conditions for each PID parameter setting of
the system.

T:-,f:ﬂ(KP,f’Kl,f’KD,i

0") i=1.2...N (23)

In this way, the proposed bi-level min-max optimization
model (13) can be transformed into a single-level mathemati-
cal programming problem with constraints, i.e.,
minJ(KP.i’KI.i’KD,HT»:,i)
KPP <K, <K7»

KM <K, <K"™
Kpr<K, <K

T:r,i:/’l(KP,i’KI,i?KD.i

i=1,2,...N (24)

0")

It can be observed from (23) that the bi-level model is
converted into a nonlinear optimization problem. A heuristic
algorithm is a good choice to solve that and this paper uses
the PSO algorithm [28]. The detailed solution processes of
the optimization model are as follows.

Step 1. define the solution space and fitness function. The
PSO is used to find the optimal PID parameter settings for
governor. In this context, the particle position is designed as
the PID parameter settings (K, ,K,, K ,). The fitness func-
tion is applied to evaluate the training error and the good-
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ness of a given solution, which is defined as the objective
function and shown in (14).

Step 2: initialize random swarm location and velocities.
Before beginning to search the optimal position, each parti-
cle is initialized with the random PID parameter setting with-
in the allowable ranges. Moreover, the direction and length
of movement of the particle at each episode are named ve-
locity, which is also initialized.

Step 3: calculate the fitness of each particle. The PID pa-
rameter setting carried by each particle is transmitted to the
well-trained DDPG agent. Then, the actor network in DDPG
can provide the extreme operating condition 7 , with the
worst performance for each particle under the corresponding
PID parameter setting. Next, both PID parameter setting and
operating condition data of each particle can be updated to
the studied system to calculate the fitness via (14).

Step 4: update the particle position and velocity. The ve-
locity and position of each particle can be updated via:

d d d d d
Vi =0V +clr1(p, x,) +c2r2(pg x,) 25)

d
i+1

x? =xd+v?

where v/ is the velocity of the d" particle at the i iteration;
x{ is the position of the d™ particle at the i" iteration; p, is
the best position among all particles in the population up to
the n™ iteration; p¢ is the optimal position of the d™ particle
up to the n™ iteration; w is the inertia factor; ¢, and c, are
the acceleration coefficients; and r, and r, are the random
numbers in [0,1]. In this paper, ¢,=¢,=2; @ =0.6 [15].

Step 5: iterate to find the optimal solution. Repeat Steps 2
and 3 until the minimum error is met, or the maximum num-
ber of iterations is reached. Output the final result as the so-
lution to the above optimization problem.

V. CASE STUDY

In this section, the performance of the proposed method is
tested on the IEEE 10-machine 39-bus system. All genera-
tors adopt a fifth-order model and a simplified excitation sys-
tem [14]. The eigenvalue analysis results show that a ULFO
mode of 0.00045+j0.55 exists in the system. The generators
strongly related with this mode include G1, G2, G5, and G8.
To damp out that oscillation, we formulate the ULFO sup-
pression problem as a bi-level PID parameter setting optimi-
zation model. Then, the DDPG and PSO algorithms are com-
bined to solve this model. The simulation is carried out via
Python and power system analysis software package
(PSASP) [29]. Among them, the studied system is construct-
ed in PSASP. PSO and DDPG algorithms are modelled in
Python.

A. Performance Evaluation of Trained Agents

The numbers of layers and neurons for the networks in
the DDPG algorithm are set as follows: both actor and critic
networks adopt the same structure, which contains three hid-
den layers; and the numbers of neurons for the hidden layers
are 128, 64, and 64, respectively. The hyperparameters of
the DDPG algorithm can be found in Table I.

To obtain the corresponding extreme operating conditions
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with different PID parameter settings, which maximize the
objective function, numerous scenarios are constructed for
training. Specifically, we generate scenarios by randomly
sampling from the upper- and lower-limits of PID parameter
settings of each hydroturbine (0<K,,<25, 0<K,;,<0.5, 0<
K, ;<3). Note that 95% of these PID parameter settings are
used for training while the remaining 5% are used for test-
ing. The cumulative reward changing with the episode dur-
ing the training process is shown in Fig. 7, where the blue
solid lines and the shaded areas represent the average accu-
mulated reward and the standard deviation of the reward, re-
spectively. At the beginning of the training process, as the
parameters of DDPG are randomly initialized, the agent does
not learn the optimal policy that satisfies all constraints, lead-
ing to low accumulated reward. As the training process goes
further, the agent interacts with the system to obtain experi-
ences to optimize the parameters of DDPG, and the cumula-
tive reward increases gradually. After about 5000 episodes,
the algorithm converges.

TABLE I
HYPERPARAMETERS OF DDPG ALGORITHM

Parameter Value
Learning rate for actor network 0.001
Learning rate for critic network 0.002
Experience replay memory capacity 8000
Step size of each episode 12
Mini-batch size 40
5000
4500
E 4000+
g
= 3500+
o
2
E 3000+
El
g
5 2500 |
2000 |
1500 - - .
0 5000 10000 15000
Epoch
Fig. 7. Cumulative reward changes with episode during training process.

After training, the well-trained agent can provide each
PID parameter setting to the corresponding extreme operat-
ing condition. After that, this agent can be applied to assist
the PSO algorithm to solve the upper-level model. To show
the computational efficiency of this agent, we compare the
solution methods of the lower-level model in [19] and [20]
with our trained agent. The computational efficiency compar-
ison of different methods is shown in Table II. It can be ob-
served that our proposed method achieves the highest compu-
tational efficiency.

Moreover, we further investigate the performance of the
PSO and differential evolution (DE) to test the performance
of these two methods. To balance the training time and opti-
mization effect, by careful trial and error, the population size
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of these two methods is set to be 30. Except the population
size, the hyperparameters of the method have a great impact
on the optimization performance. To deal with it, each hyper-
parameter in the method will first be discretized into several
points in its feasible region. Then, these discrete points form
a test table by the orthogonal method.

TABLE 11
COMPUTATIONAL EFFICIENCY COMPARISON OF DIFFERENT METHODS

Method Average solution time of lower-level

model (s)
Optimization method in [19] 13.40
Optimization method in [20] 3.70
Proposed method 0.05

In this way, we can form nine sets of hyperparameter set-
tings for DE and PSO algorithms, respectively. Then, we can
train the PSO and DE algorithms with each set of hyperpa-
rameter settings, as shown in Fig. 8, where the solid lines
and the shaded areas represent the average and the standard
deviations of the objective function under different trials, re-
spectively. Moreover, some quantitative indicators are intro-
duced to evaluate the optimization performance of PSO and
DE algorithms, as shown in Table III. It can be observed
that, the performance of both PSO and DE algorithms is al-
most similar in terms of the best fitness value obtained in
the 18 runs. Specifically, DE algorithm is slightly better than
PSO algorithm. However, the PSO algorithm performs better
compared with DE algorithm in terms of the average, the
worst, and the standard deviations of the objective function.

300
—— PSO algorithm

250 —— DE algorithm
= 200
g
3]
=]
£
g 150
8
=
© 100t

50+
0 50 100 150 200 250 300
[teration

Fig. 8. Convergence process of DE and PSO algorithms with different hy-
perparameter settings.

TABLE 111
QUANTITATIVE INDICATORS OF OPTIMIZATION PERFORMANCE OF PSO AND
DE ALGORITHMS WITH DIFFERENT HYPERPARAMETER SETTINGS

Value of quantitative indicator

Algorithm
Best Average Worst Standard deviation
PSO 26.42 33.18 53.30 9.71
DE 25.01 41.07 140.27 37.68
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B. Control Performance Comparisons

To test the effectiveness of the proposed method, five cas-
es are tested by setting different time constants of the hydro-
turbine T, as shown in Table IV. Other PID parameter set-
ting tuning methods are compared as well, including the opti-
mization method shown in [14] (called robust method I),
and the one in [15] (called robust method II). The optimized
parameters are used in the time-domain simulations to vali-
date the damping control performances. Taking G1 and G2
as examples, the frequency deviations of units under fault 1,
i.e., a double-phase short-circuit fault at bus 3 from 2.0 s to
2.2 s, are shown in Fig. 9. The damping of ULFO mode by
different optimization methods is presented in Table V. It
can be observed from Table V and Fig. 9 that ULFO exists
in the system before PID parameter tuning. After PID param-
eter optimization, the damping of ULFO mode is enhanced
and the oscillation is suppressed. However, the PID parame-
ter settings optimized by different methods show different
performances. Compared with the other two robust optimiza-
tion methods, the proposed method achieves the best damp-
ing of ULFO mode and allows the generators to reach a
steady state in the shortest time.

TABLE IV
T,, OF HYDRO-TURBINES IN DIFFERENT CASES

T, of hydro-turbine

Generator

Case 1 Case 2 Case 3 Case 4 Case 5
Gl 0.5 2.5 1.5 1.5 2.5
G2 1.5 1.5 2.5 0.5 0.5
G3 0.5 1.5 1.5 1.5 0.5
G4 2.5 2.5 2.5 1.5 1.5
G5 1.5 2.5 0.5 1.5 0.5
G6 1.5 0.5 0.5 1.5 2.5
G7 0.5 1.5 0.5 0.5 2.5
G8 0.5 0.5 1.5 1.5 1.5
G9 1.5 2.5 1.5 2.5 1.5
G10 2.5 0.5 1.5 0.5 2.5
< 4r - 4r
2E ot T 2F
g g 2z
=20 3 50
gE ER=
E 520 222
© 4 . . . . ) 3.4
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o ‘
<05 2 205
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= 3 3
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Robust method IT; — Proposed method

Fig. 9. Frequency deviations of units under fault 1. (a) G1. (b) G2.

To further elaborate on the results, the dynamic character-
istic of G1 and step responses of PFR are shown in Figs. 10
and 11. It can be observed that the original parameters make
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the units achieve the best dynamic response but the worst
damping performance of ULFO. The parameter settings re-
tuned by the three optimization methods can improve the
damping characteristics of the governor with the cost of re-
duced dynamic characteristics. Among them, the proposed
method not only improves the damping characteristics of the
governors but also retains a better dynamic response of PFR
than the other two methods.

TABLE V
DAMPING OF ULFO MODE BY DIFFERENT OPTIMIZATION METHODS

Method Real part Imaginary part  Damping (%)
Original parameters 0.0005 0.54 —-0.093
Robust method I —0.0410 0.59 6.930
Robust method 11 —0.0540 0.55 9.770
Proposed method —-0.0920 0.52 17.420

Y 2 40
g = g =30
8.z 35 20
Q =
22 2 g 10p
£ 9 g3
S g
-10 : - : : : -10 . : . ! :
0 02 04 06 08 1.0 0 02 04 06 08 1.0
Frequency (Hz) Frequency (Hz)
(a) (b)
—— Original parameters; — Robust method I
—— Robust method II; Proposed method
Fig. 10. Dynamic characteristic of G1. (a) Damping curve. (b) Step re-
sponse.

200 400 600 800 1000

400 600 800 1000 0

0 200
Time (s) Time (s)
(a) (b)
——Original parameters; — Robust method I
——Robust method II; Proposed method
Fig. 11.  Step responses of PFR. (a) G1. (b) G2.

C. Robustness to Various Operating Conditions

To test the robustness of all three methods under different
disturbances, four different two-phase short-circuit faults are
applied with 100 ms fault duration and the faulty buses are
8, 16, 23, and 25, which are named as fault 2, fault 3, fault
4, and fault 5, respectively. The simulation results are shown
in Fig. 12. It can be observed that all methods can damp out
the oscillations. Among them, the proposed method takes the
least time to damp out the oscillations as compared with the
other two robust methods. The proposed method also has the
smallest oscillation magnitude, demonstrating the best perfor-
mance of damping out UFLO under different faults.

Furthermore, different 7, settings for Cases 2-5 in Table
IV are taken as comparative cases to test the robustness of
the proposed method under different cases.
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Fig. 12.  Dynamic response of G1 under different disturbances. (a) Fault 2.
(b) Fault 3. (c) Fault 4. (d) Fault 5.

For each case, time-domain simulations are carried out
with different PID parameter settings. The results are shown
in Fig. 13.
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Fig. 13. Dynamic response of G1 under different cases. (a) Case 2. (b)

Case 3. (c¢) Case 4. (d) Case 5.

It can be concluded that the PID parameters optimized by
the proposed method can achieve better performance in com-
parison with two other optimization methods. To further in-
vestigate the performance of the proposed method, we adopt
the Monte Carlo method to sample time constant 7, of tur-
bines between 0.5 s and 3 s to generate 300 cases. For each
case, the ULFO mode is calculated and the probability densi-
ty function (PDF) of ULFO nodes is also calculated, as
shown in Fig. 14. Note that the red curve denotes the PDF
distribution and is formed by fitting the eigenvalues pro-
duced via different PID parameter tuning method. It can be
observed that before PID parameter optimization, the damp-
ing of the ULFO mode is less than 0 for some cases and not
located in the secure region (¢>5%). This means that there
is a risk of ULFO induced instability during the operation of
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the system. Figure 14(b), (c), and (d) shows the distributions
of ULFO modes under different PID parameter settings. The
statistical hypothesis for damping ratio of ULFO mode un-
der 300 operating conditions is listed in Table VI. Clearly,
compared with two other robust methods, the proposed meth-
od can make the ULFO mode achieve better mean value and
smaller standard deviation of the damping ratio, yielding a
larger stability margin.

1.0 0.25¢
0.8 0.201
= L

= 0.6 £0.15
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0 A I | 3
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Fig. 14. Damping PDF of ULFO mode under different cases. (a) Original
parameters. (b) Robust method 1. (¢) Robust method II. (d) Proposed meth-
od.

TABLE VI
STATISTICAL HYPOTHESIS FOR DAMPING RATIO OF ULFO MODE UNDER
300 OPERATING CONDITIONS

Method Mean value (%) Standard deviation
Original parameters 0.27 0.0075
Robust method 1 6.18 0.0420
Robust method 11 10.25 0.0536
Proposed method 13.78 0.0213

VI. ACTUAL HYDROPOWER-DOMINATED SYSTEM

In this section, an actual hydropower-dominated system in
Sichuan Power Grid, China is introduced as a studied sys-
tem, which is shown in Fig. 15. The abbreviations shown in
Fig. 15 are the acronyms of the region names. This system
consists of 53 buses, 26 lines, and 17 hydropower units and
the installed capacity is 1100 MW. For such system, the ei-
genvalue analysis results show that a ULFO mode —0.0013 +
J0.597 exists in this system. To damp out that oscillation, the
proposed method is employed to optimize the governor PID
parameters, which are strongly related to the ULFO (CJB-1,
CIB-2, CPQ-3, CTCH-2).

A. Further Evaluation of Proposed Method

To test the effectiveness of the proposed method under dif-
ferent datasets, we generate three datasets via different distri-
bution functions. Specifically, we generate three datasets by
sampling from the upper- and lower-limits of PID parameter
settings of each hydroturbine via the uniform distribution
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function, normal distribution function, and rayleigh distribu-
tion function, respectively. Each dataset is utilized to train a
DDPG agent. The training process is shown in Fig. 16. The
curves and shaded areas in Fig. 16 represent the mean and
variance of the reward function during the training process,
respectively.

CPQ

- Hydropower cluster; @220 kV substation; .500 kV substation

Fig. 15. Simplified system topology used for case.
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Epoch (10%)

Fig. 16. Cumulative reward changes with episode under different datasets.

It can be observed from Fig. 16 that, with the increase of
training episodes, the proposed method would converge un-
der three different datasets. It means that the DDPG agent
can learn the control policy that maximizes the cumulative
reward. Then, these well-trained agents can be utilized to as-
sist PSO to find the appropriate PID parameter settings to
prevent ULFO. The effectiveness analysis of these obtained
PID parameter settings is provided in the next part.

B. Control Performance Analysis and Comparison

To test the control performance of obtained PID parameter
settings, we send the PID parameter settings to the system
and compare these settings under a fault, where a two-phase
short-circuit faults are applied with 150 ms fault duration
and the faulty buses are CJL-220. The simulation is carried
out under two different cases and the results are shown in
Fig. 17. Clearly, each group of PID parameter settings ob-
tained via different datasets can prevent ULFO phenomena
under all three operating conditions, which means that the
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proposed method can work effectively under different datas-
et and the appropriate PID parameter settings can be found
to prevent ULFO.
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Fig. 17. Comparison results of different PID parameter settings obtained

via different datasets. (a) 7,,=2.5. (b) T,,=3.0.

Moreover, to further investigate the performance of the
proposed method, the common PID parameter tuning meth-
od (Ziegler-Nichols) is applied to act as benchmark method.
The details of this method can be found in [30]. The compar-
ison results of different PID tuning methods can be found in
Fig. 18. It can be observed that both the Ziegler-Nichols
method and the proposed method can damp out the frequen-
cy oscillations. Among them, the proposed method can make
the frequency deviation curve recover to the steady point
faster. It means that the proposed method can search better
PID parameter settings and has better control performance.

VII. CONCLUSION

In this paper, a novel bi-level robust parameter optimiza-
tion model is proposed to re-tune the PID parameters to con-
trol ULFO. Different from the conventional robust optimiza-
tion methods, the PID parameter optimization is reformulat-
ed into the form of a min-max optimization model to ensure
the effectiveness of the optimized PID parameters under vari-
ous extreme operating conditions. The DDPG is developed
to train an agent for the fast decision making of lower-level
model and ensure the effective interactions with the upper-
level model, significantly improving the computational effi-
ciency.
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Fig. 18.  Comparison results of different PID tuning methods. (a) 7,,=2.5.
(b) T,,=3.0.

After the agent is trained, each iteration only needs 0.05 s
to provide actions for the upper-level model. Simulation re-
sults are carried out in IEEE 10-machine 39-bus system and
actual hydropower-dominated system in Sichuan Power
Grid. Three hundred cases are generated by Monte Carlo
method to act as test cases and the comparison results show
that the proposed method can achieve better damping control
performance. The mean value of the ULFO mode damping
under 300 cases can reach 13.78%. The mean value of other
two robust methods can only reach 6.18% and 10.25%, re-
spectively. It means that the PID parameters optimized by
the proposed method can achieve better damping control per-
formance in comparison with two other robust optimization
methods under different operating conditions.

APPENDIX A

The standard PFR model of the hydropower unit is shown
in Fig. Al.

3} A AP,
ref > Governor }—ﬂ—{ Turbine H Generator and load =L
Fig. Al. Structure diagram of standard PFR model of hydropower unit.

The parameter settings of hydropower unit, thermal power
unit, and AC lines are listed in Tables AI-AIIl, respectively.
The parameter setting of generators in two-machine system
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is listed in Table AIV. The rated active and reactive power
of generators and load are listed in Table V.

TABLE Al
PARAMETER SETTING OF HYDROPOWER UNIT

Variable Value Variable Value
K, 4.0 b, 0.05
K, 2.5 D 2.00
K, 0.5 T, 0.20
T, 10.0 T, 4.00

TABLE AIl

PARAMETER SETTING OF THERMAL POWER UNIT

Variable Value
K, 1.0
T, 0.2
T P 0.3

TABLE AIII
PARAMETER SETTING OF AC LINE

AC line R X B2
X, 0.0057 0.0625 0.5145
X, 0.0032 0.0323 0.2806
TABLE AIV

PARAMETER SETTING OF GENERATORS IN TWO-MACHINE SYSTEM

Parameter G, G,
X, 0.4400 1.0870
X, 0.2500 0.2890
X, 0.2200 0.2020
X, 1.7000 0.6840
X, 0.5000 0.6870
X, 0.6000 0.2280
X, 0.0025 0.2150
R, 0.0250 0
T 8.0000 10.0300
Ty 0.0300 0.0400
T 0.4000 0.2590
T 0.0500 0.0600
H 13.000 12.0000
D 0 0

TABLE AV

RATED ACTIVE AND REACTIVE POWER OF GENERATORS AND LOAD

Generator and load P (MW) O (Mvar)
Gl 700 185
G2 700 185
Load 1 600 100

The detailed expressions of Routh-Hurwitz criterion coeffi-
cients a,, a,, a,, and a, are shown as follows:
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0.5T4T,T,b,+0.5T, TN+ T;T,Ny+0.5T,T, DNy—T, N,
h= 0.5T,T,T,N,
T,b,(0.5T,+T;)+T,(0.5T4Db,~N, ) +
4= 0.57,T, - -
Ny(T,+0.5T,D+T;D)
TJNO
N,-T,+b,(T,+0.5T,D+T,D)+DN,
4= 0.5T,T,T,N,
1+Db,
a,= ————"—
‘= 0.5T,T,T,N,
N,= VK,
N,= K, /K,
Ny=K/K,

(A
The calculation process of oscillation frequency of two-
machine system can be given.
Considering two-machine system is unstable, a dominant
oscillation mode exists in the system. In this context, (5) can
be represented as:

(s—/ll)(s—/lz)(s+o'+ja))(s+cr—ja)) =0
That is further rewritten as:

st (20’—/11—/12)s3+ [/11/12+02+a)2—2a(/11+/12)}s2+

(A2)

[(P+0?) (2, +2,) +202, 0, |5+ (6> +@?) 2 2, =0
(A3)

where 1,, 4,, and otjw are the poles of the closed-loop
transfer function. Note that A, and 1, can be two real roots
or a pair of the conjugate complex root. o+ jw is the domi-
nant pole. When =0, the frequency response will oscillate
critically. Meanwhile, we have:

a,=—(24,+4,)

(A4)
ay=—w*(1,+1,)
Based on (10), the oscillation frequency w is defined as:

(AS5)

0= /aya,

Combining (AS5) and (Al), @ can be rewritten as:

2[N,=T,+b,(T,+0.5T,D+T;D) +DN,
T,T,T,b,+T,T,No+ ToT,N,+ TT,DN,—2T,N,
(A6)

The obtained PID parameters of IEEE 10-machine 39-bus
system is shown in Table AVI.
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TABLE AVI
PID PARAMETER SETTING

(1]

(2]

[10]

(1]

[12]

[13]

[14]

Method Generator K, K, K,
Gl 8.36 0.34 2.33
G2 2.77 0.04 1.18

Robust method 1
G5 17.90 0.09 2.66
G8 1.54 0.18 1.10
Gl 8.61 0.29 2.69
G2 2.81 0.26 1.74

Robust method 11
G5 11.98 0.32 0.60
G8 6.59 0.05 1.63
Gl 6.73 0.33 2.07
G2 2.28 0.11 1.39

Proposed method
G5 13.58 0.18 1.52
G8 2.68 0.21 1.73
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