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Abstract——The increasing penetration of the renewable energy 
sources brings new challenges to the frequency security of pow‐
er systems. In order to guarantee the system frequency security, 
frequency constraints are incorporated into unit commitment 
(UC) models. Due to the non-convex form of the frequency na‐
dir constraint which makes the frequency constrained UC 
(FCUC) intractable, this letter proposes a revised support vec‐
tor machine (SVM) based system parameter separating plane 
method to convexify it. Based on this data-driven convexifica‐
tion method, we obtain a tractable FCUC model which is for‐
mulated as a mixed-integer quadratic programming (MIQP) 
problem. Case studies indicate that the proposed method can 
obtain less conservative solution than the existing methods with 
higher efficiency.

Index Terms——Unit commitment, frequency constraint, sup‐
port vector machine (SVM), data-driven convexification.

I. INTRODUCTION 

WITH the integration of massive renewable energy 
sources (RESs) into power system, system operators 

face new challenges to ensure frequency stability. Since 
RESs are mostly connected to power grid by power electron‐
ic interfaces, the power system inertia is gradually decreas‐
ing with the growing share of RESs, which will deteriorate 
the frequency response performance of the power system [1].

There are some works on characterizing the frequency de‐
viation of power systems after a disturbance. In [2]-[7], the 
frequency deviation is derived based on the swing equation, 
on the premise that the governor response of units is approxi‐
mated as a ramp model. However, the approximation ap‐
proach ignores the differences between the governor re‐
sponse models of each unit, so the frequency deviation re‐
sult may involve large errors. In [8], a low-order frequency 
response model is proposed, which can derive the formula‐

tion of frequency deviation with the assumption that the gen‐
eration is dominated by reheating steam turbine generators. 
In [9], the high-order frequency response model of the multi-
machine system is directly solved, but the time-domain ex‐
pression is too complicated. Reference [10] presents a meth‐
od to aggregate the frequency response model of multi-ma‐
chine system into a single-machine model.

In terms of frequency constrained unit commitment 
(FCUC) models, some efforts have been presented so far. 
The frequency constraints are derived in [11] based on the 
frequency response model of multi-machine system, and 
piece-wise linearization (PWL) technique is employed to lin‐
earize the nonlinear frequency nadir constraint (FNC), facili‐
tating its integration in UC problem. The concept of frequen‐
cy security margin is proposed to quantify the system fre‐
quency regulation ability in [12], and PWL technique is ad‐
opted to linearize it. However, the constraints containing 
piece-wise functions will cause high computational burden. 
In [13], a new linearization method for the nonlinear FNC is 
proposed, which recasts the nadir constraint by extracting 
bounds (EBs) on relevant variables of UC model. However, 
this linearization method may be very conservative. In [14] 
and [15], data-driven methods are used to reformulate the 
frequency constraints, such as classification decision tree and 
deep neural network, but these machine learning based meth‐
ods may involve ultra-heavy computational burden since ex‐
tra integer variables are introduced.

This letter proposes a revised support vector machine 
(SVM) based system parameter separating plane method to 
convexify the FNC. Based on this data-driven convexifica‐
tion method, we obtain a tractable FCUC model which is 
formulated as a mixed-integer quadratic programming 
(MIQP) problem. Finally, case studies indicate that our pro‐
posed method can obtain less conservative solution than the 
existing methods with higher efficiency.

II. PRELIMINARIES 

The frequency of power systems is closely linked with 
the real-time balance of active power. Figure 1 shows the 
frequency response model of the multi-machine system [11].
In Fig. 1, H is the total system inertia provided by conven‐
tional generators and RES; D is the load damping factor; Ri 
is the droop coefficient; Kmi is the mechanical power gain 
factor; FHi is the fraction of power generated by turbines; TRi 
is the turbine time constant; the subscript i (i = 12M ) is 
the index of thermal generators; and ∆Pm and ∆Pe are the 
variations of mechanical power and electrical power, respec‐
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tively.
An analytical expression of the frequency dynamics ∆f (t) 

after a step disturbance ∆P can be derived as follows, under 
the assumption that TRi = T (i = 12M ), and the detailed 
derivation can be found in [11].
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We concern about two frequency dynamic metrics, i. e., 
frequency nadir and rate of change of frequency (RoCoF), as 
shown in Fig. 2.

For these two metrics, they should be kept within safe 
range after disturbance; otherwise, it may lead to frequency 
security violation. Then, the following frequency constraints 
should be satisfied:

tnadir =
1
ωr

arctan ( )ωr

ζωn - 1/T
(5)

∆fmax =
f0∆P
R +D ( )1 + e-ζωntnadir

T(R -F)
2H

£ ∆flim (6)

f ̇max =
f0∆P
2H

£ f ̇lim (7)

where tnadir is the time when the frequency reaches its nadir, 
i. e., fnadir; f0 is the base frequency; ∆fmax and ∆flim are the 
maximum frequency deviation and its threshold, respective‐
ly; and f ̇max and f ̇lim are the maximum RoCoF and its thresh‐
old, respectively.

The power disturbance ∆P can be obtained by statistical 
analysis on historical data, and in this letter, we consider ∆P 
as a fixed value. Assuming that D and T are constant [11], 
the frequency constraints (6) and (7) are directly dependent 
on the system parameters H, R, and F. These system parame‐
ters can be linearly expressed as the decision variables in 
UC models. Unlike the linear RoCoF constraint (7), the 
FNC (6) is non-convex, which will make the FCUC intracta‐
ble. Therefore, convexifying or linearizing constraint (6) is 
needed.

References [11] and [12] propose the PWL technique for 
obtaining the linearized FNC, facilitating its integration in 
UC problem. However, the constraint containing piece-wise 
functions also cause high computational burden. In [13], a 
new linearization method is proposed, which recasts the na‐
dir constraint by extracting relaxed bounds on relevant vari‐
ables of UC models as:
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H ³Hlim

R ³Rlim

F ³Flim

(8)

However, this linearization method in [13] is not suitable 
for large-scale power systems. For example, when the num‐
ber of generators M > 40, there will be more than 1012 gener‐
ator commitment combinations. It is impossible to calculate 
all of these combinations. To avoid the high computational 
burden, we use Monte Carlo method to generate enough gen‐
erator commitment combinations, e.g., 50000, for extracting 
bounds on relevant variables.

In addition, it is too conservative to directly convert the 
constraint (6) into (8). For example, when a system parame‐
ter, e.g., R, is appropriately less than its bound, and other pa‐
rameters are appropriately larger than their bounds, the maxi‐
mum frequency deviation may still be within the safe range, 
but this situation is outside the feasible set because it does 
not satisfy the constraint (8). That is to say, many “safe sam‐
ples” would be misclassified due to the simple classification 
method.

In [14], the classification decision tree method is used to 
extract the frequency security constraints. Each leaf in the 
decision trees is labeled according to the dominant class of 
samples in population. It would be likely that some “unsafe 
samples” are included in a leaf flagged with safe label. The 
UC results from the decision tree method may violate con‐
straint (6) because the decision tree method is under-conser‐
vative. The deep neutral network approach is employed to 
predict the frequency response in [15]. The frequency con‐
straints are reformulated as a set of mixed-integer linear con‐
straints, and the number of introduced integer variables is re‐
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Fig. 1.　Frequency response model of multi-machine system.
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Fig. 2.　Frequency dynamics after power disturbance.
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lated to the scale of the neutral networks.
In summary, both the PWL technique and neutral net‐

works approach will introduce extra integer variables in UC 
models, which lead to ultra-heavy computational burden. 
The convexification method in [13] is concise but over-con‐
servative, while the decision tree method in [14] is under-
conservative. Therefore, the convexification method for FNC 
in (6) needs to be improved.

III. METHODOLOGY 

A. Linearization Method for FNC

Take the modified IEEE 24-bus system as an example. 
First, we generate data samples of the unit commitment by 
Monte Carlo method, and the scatter plot reflects the value 
of system parameters in 3-dimensional space, as presented in 
Fig. 3. The yellow points correspond to the unit combina‐
tions which satisfy the constraint (6), while the blue points 
correspond to those that do not satisfy. Enumerating all unit 
combinations is difficult and not worthwhile (30 generators 
correspond to more than 109 unit combinations), so in this 
example, we choose the sizes of training and test samples as 
50000 and 5000, respectively. The size of training sample is 
proper because the training process is not time-consuming 
(around 1 s) and the results are accurate, as shown in Sec‐
tion IV.

It is obvious that the blue points and the yellow points 
can be separated. If they can be linearly separated, the non-
convex constraint (6) could be converted into a linear one 
where the system parameter point is located above the sepa‐
rating plane. For deriving the separating plane, we can use 
the tool of SVM.

SVM is a classification learning method which can find a 
proper separating hyperplane based on training samples and 
separate samples into different categories. Figure 4 shows 
that there are many separating hyperplanes (dotted lines) that 

can separate samples, but only one (solid line) has the best 
effect. The optimal hyperplane maximizes the sum of the dis‐
tances from the nearest two points to the separating hyper‐
plane γ = 2/ ω . The detailed solution of the SVM model 
can be found in [16].

It should be noted that the standard SVM model is derived 
based on the assumption that the data set can be linearly sepa‐
rated. If the training sample cannot be linearly separated, as 
shown in Fig. 5, the SVM model needs to be revised.

As shown in Fig. 5, by adding slack variable ξ, we can ob‐
tain a single soft margin SVM model. For system parameter 
points that do not satisfy the constraint (6) (blue points), we 
do not add slack variable ξ, while for points that satisfy the 
constraint (6) (yellow points), we add slack variable ξ, 
which means only the “safe samples” may be misclassified 
while the “unsafe samples” are kept correct. This classifica‐
tion model is conservative but reliable, which is formulated as:
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where ω is the normal vector of the hyperplane; b is the off‐
set of the hyperplane from the origin; y is the label of data 
points, yi = 1 for data points satisfies the constraint (6), while 
yj =-1 for those do not satisfy; ξi is the slack variable; and 
C is the regularization parameter, which represents the penal‐
ty on the classification error.

Adding slack variable ξ only on the points that satisfy con‐
straint (6) can ensure that all of other points that do not satis‐
fy (6) are located on one side of the solved separating hyper‐
plane for the reason that they have “hard margin”. A conser‐
vative linear constraint will be obtained because some “safe 
samples” are misclassified, while this constraint could en‐
sure all of the points above the hyperplane do not violate fre‐
quency security.
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Fig. 3.　System parameter scatter plot.

x2

x1O

x2

x1O

γ=
||ω||
2

ω
T
x+b=1

ω
T
x+b=�1

ω
T
x+b=0

Fig. 4.　SVM model.

o

x
2

x
1O

ω
T
x+b=1

ω
T
x+b=�1

ω
T
x+b=0

ξ
1

ξ
2

Fig. 5.　Single soft margin SVM model for data set that cannot be linearly 
separated.

1713



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 11, NO. 5, September 2023

Figure 6 shows the system parameter scatter plot and its 
separating plane calculated by the single soft margin SVM 
model, for the same system as in Fig. 3. The points which 
are marked by black circles are the support vectors of the 
SVM model. Therefore, the non-convex constraint (6) can 
be convexified into the linear constraint (10), which repre‐
sents the predicted safe class of the SVM model.

ωF F +ωR R +ωH H + b ³ 0 (10)

where ω =[ωF ωR ωH]T is the normal vector of the plane; 
and b is the offset of the plane from the origin.

The constraint (10) is conservative to some extent. Howev‐
er, it is less conservative compared with the simple classifi‐
cation method proposed in [13] since the proposed method 
incurs less misclassified samples. In addition, the linearized 
constraint will not include extra integer variables.

Remark 1: load damping D also has a significant impact 
on frequency nadir. In practice, if D changes, (9) should be 
retrained to obtain hyperplanes corresponding to different 
values of D. Different hyperplanes can be added to UC mod‐
el during different time periods. In this letter, we assume 
TRi = T for all generators, and the impact of heterogeneous 
TRi on frequency nadir will be studied in our future work.

B. FCUC Model

By integrating the frequency constraints into traditional 
UC model, we can obtain a novel FCUC model. The objec‐
tive function (11) is to minimize the total costs, which con‐
tain UC costs function (12) (start-up cost and shut-down 
cost), fuel costs function (13) (quadratic function on power 
output), wind power curtailment penalty function (14), and 
are subjected to power balance constraint (15), thermal gen‐
erator constraints (16)-(18), the minimum up/down time con‐
straints (19) - (22), wind power constraints (23) and (24), 
transmission line constraints (25) and (26), FNCs in (27) 
and (28), RoCoF constraint (29), and primary frequency reg‐

ulation reserve constraint for thermal generators (30).

min
ì
í
î

ïï
ïï

ü
ý
þ

ïïïï
ïï

∑
t = 1

T é

ë

ê
êê
ê ù

û

ú
úú
ú∑

i = 1

M

(UC t
i +FC t

i )+∑
j = 1

N

CP t
j (11)

UC t
i =max {SUi ×(u

t
i - ut - 1

i )0}+max {SDi ×(u
t - 1
i - ut

i )0}
(12)

FC t
i = ai (P

t
i )2 + bi P

t
i + ciu

t
i (13)

CP t
j = kjcur (W t

jcur )2 (14)

∑
i = 1

M

P t
i +∑

j = 1

N

W t
jsche =∑

k = 1

D

Dt
k (15)

ut
i Pimin £P t

i £ ut
i Pimax (16)

P t
i -P t - 1

i £RUi + (2 - ut - 1
i - ut

i )Pimax (17)

P t - 1
i -P t

i £RDi + (2 - ut - 1
i - ut

i )Pimax (18)

∑
m = t

t +UTi - 1

um
i ³UTi ×(u

t
i - ut - 1

i )    "t = 12T -UTi + 1 (19)

∑
m = t

T

[um
i - (ut

i - ut - 1
i )]³ 0    "t = T -UTi + 2T -UTi + 3T

(20)

∑
m = t

t +DTi - 1

(1 - um
i )³DTi ×(u

t - 1
i - ut

i )    "t = 12T -DTi + 1

(21)

∑
m = t

T

[1 - um
i - (ut - 1

i - ut
i )]³ 0    "t = T -DTi + 2T -UTi + 3T

(22)

W t
jsche =W t

jfore -W t
jcur (23)

0 £W t
jcur £W t

jfore (24)

∑
i = 1

M

sL
i P t

i +∑
j = 1

N

sL
j W

t
jsche -∑

k = 1

D

sL
k Dt

k £P L
max (25)

∑
i = 1

M

sL
i P t

i +∑
j = 1

N

sL
j W

t
jsche -∑

k = 1

D

sL
k Dt

k ³-P L
max (26)

ωF F t
sys +ωR Rt

sys +ωH H t
sys + b ³ 0 (27)

ì

í

î

ï

ï

ï

ï

ï

ï

ï
ïï
ï
ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï
ïï
ï
ï

ï

ï

ï

ï

ï

Rt
sys =

∑
i = 1

M

ut
i

Kmi

Ri

Pimax

∑
i = 1

M

Pimax +∑
j = 1

N

Pjcap

H t
sys =
∑
i = 1

M

ut
i Hi Pimax +∑

j = 1

N

Hj Pjcap

∑
i = 1

M

Pimax +∑
j = 1

N

Pjcap

F t
sys =
∑
i = 1

M

ut
i

Kmi

Ri

FHi Pimax

∑
i = 1

M

Pimax +∑
j = 1

N

Pjcap

(28)

H t
sys ³

f0∆P

2f ̇lim
(29)

0

0

1

2

3

4

5

1
2

3
4

5

5
10

15
20

25

H

R

F

3.0

3.0 2.9 2.8 15.0
14.5

14.0
13.5

13.0
12.5

3.1

3.1

3.2

3.2

3.3

3.3

3.4

3.4

3.5

3.5

3.6

H

F R

Separating

plane

Separating plane

Partial enlargement

14.0
13.5

13.
3.23.33.4

Separating plane

Fig. 6.　System parameter scatter plot and its separating plane.

1714



SHEN et al.: DATA-DRIVEN CONVEXIFICATION FOR FREQUENCY NADIR CONSTRAINT OF UNIT COMMITMENT

Pimax -P t
i ³ ut

i

Kmi

Ri

Pimaxγ
∆flim

f0
(30)

where t, i, j, and k are the indices of time, thermal genera‐
tors, wind farms, and loads, respectively. For generator i,  ut

i 
and P t

i are commitment status and power output, respective‐
ly; Pimax, Pimin, RUi, and RDi are the upper/lower power 
bounds and the upward/downward ramping limits, respective‐
ly; UTi and DTi are minimum up/down time, respectively; Ri,
 Hi,  Kmi, and FHi are the frequency regulation parameters; 
UC t

i  is the UC cost depending on the adjacent commitment 
state; SUi and SDi are the cost coefficients of start-up and 
shut-down, respectively; FC t

i  is the fuel cost described with 
a quadratic function of power output; ai, bi, and ci are the co‐
efficients of the fuel cost function. For wind farm j, W t

jsche, 
W t

jcur, and W t
jfore are the scheduled, curtailed, and forecasted 

wind power, respectively; Pjcap is the power capacity; Hj is 
the virtual inertia; CP t

j is the curtailment penalty proportion‐
al to square of the curtailed wind power; kjcur is the penaliza‐
tion coefficient;  Dt

k is the power demand of load k;  P L
max is 

the power capacity of transmission line; sL
i , s

L
j , and sL

k are the 
power transfer distribution factors of generator i, wind farm 
j, and load k, respectively, and they are calculated by DC 
power flow model; F t

sys, R
t
sys, and H t

sys are the system parame‐
ters, which can be linearly expressed as the status variable 
ut

i, and the total system capacity is set as the base value of 
power; and γ is the ratio of the steady-state value to the max‐
imum value of frequency deviation, which is set to be 0.5 
[12]. Constraint (30) ensures all of the online thermal genera‐
tors have enough power reserve to deal with the power dis‐
turbance.

In summary, the formulations in (11) - (30) compose the 
proposed FCUC model which is formulated as an MIQP 
problem and can be efficiently solved by off-the-shelf solvers.

IV. CASE STUDIES 

The FCUC model is tested and compared with the exist‐
ing model from [13] with a time resolution of 1 hour on 
modified IEEE 24-bus and 118-bus systems. The models are 
implemented in C++ and solved by CPLEX on a laptop with 
an Intel Core i7-10875H CPU and 16 GB RAM. For each 
test system, simulation results for three different UC models 
are reported: ① Model 1: without frequency constraints (11)-
(26); ② Model 2: with frequency constraints from [13]; and 
③ Model 3: with frequency constraints (11) - (30) proposed 
in this letter.

The difference between Model 2 and Model 3 is the for‐
mulation of FNC, where the former is (8) and the latter is 
(27). The linearization process for FNC of Models 2 and 3 
are both solved in MATLAB R2021b. The power distur‐
bance ∆P is set to be 250 MW and 650 MW for IEEE 24-
bus and 118-bus systems, respectively. They are both almost 
equivalent to the capacity of the biggest generator of each 
test system. The base frequency is 50 Hz, the frequency na‐
dir threshold is 49.5 Hz, and the maximum allowable Ro‐
CoF is 0.5 Hz/s. Table I shows the frequency regulation pa‐
rameters of thermal generators and wind farms for the two 
test systems.

The linearization processes for FNC of Model 2 (EB) and 
Model 3 (SVM) are two different classification models. We 
first perform evaluation on these two classification models 
with two evaluation indices: Precision and Recall. For a bi‐
nary classification model, all data samples can be classified 
into one of the four groups: true positive (TP), false positive 
(FP), false negative (FN), and true negative (TN), as shown 
in Fig. 7.

The evaluation indices Precision and Recall can be calcu‐
lated as:

Precision =
num(TP)

num(TP)+ num(FP) (31)

Recall =
num(TP)

num(TP)+ num(FN) (32)

where num(×) is the number of the samples which belong to 
the corresponding group.

Precision reflects the reliability of the classification mod‐
el, while Recall reflects its conservatism. The lower Recall, 
the more “safe samples” are predicted as “unsafe samples”. 
Tables II and III show the evaluation indices on the two clas‐
sification models in IEEE 24-bus and 118-bus systems, re‐
spectively.

TABLE I
FREQUENCY REGULATION PARAMETERS OF THERMAL GENERATORS AND 

WIND FARMS

Type

Thermal generator

Wind farm

H (s)

4.0-7.5

3.0-5.0

Km /R (p.u.)

15-30

FH (p.u.)

0.15-0.30

TP F P

FN TN

1

-1

1 -1

True condition

 

Predicted

condition

Fig. 7.　Four groups of binary classification.

TABLE II
EVALUATION INDICES OF TWO CLASSIFICATION MODELS IN IEEE 24-BUS 

SYSTEM

Model

Model 2 (EB)

Model 3 (SVM)

Sample

Training sample

Test sample

Training sample

Test sample

Precision (%)

100

100

100

100

Recall (%)

79.29

79.76

98.25

98.21

TABLE III
EVALUATION INDICES OF TWO CLASSIFICATION MODELS IN IEEE 118-BUS 

SYSTEM

Model

Model 2 (EB)

Model 3 (SVM)

Sample

Training sample

Test sample

Training sample

Test sample

Precision (%)

100

100

100

100

Recall (%)

76.85

75.77

95.86

96.50
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The results show that Precision of the two classification 
models are both 100%, so that the classification rules are 
both reliable on the training sample and test sample. Howev‐
er, Recall of Model 2 (EB) is much lower than that of Mod‐
el 3 (SVM), which means more “safe samples” of Model 2 
(EB) are predicted incorrectly. As a result, the constraint (8) 
in Model 2 is much more conservative than (27) in Model 3, 
and it would cause extra cost in operation.

Remark 2: the disadvantage of both the method in [13] 
and the proposed method is that the results are conservative. 
However, to stabilize the frequency for power systems under 
disturbance, such conservativeness is acceptable. The results 
in Tables II and III show that our proposed method reduces 
the conservativeness compared with the method in [13]. In 
practice, Precision and Recall should be calculated after 
SVM training to evaluate the conservativeness. Based on the 

two evaluation indices, system operators can judge whether 
the convex constraint (10) is applicable to the specific power 
grid.

The results of the three UC models tested on IEEE 24-bus 
and 118-bus systems are summarized in Tables IV and V,  
where the mixed-integer programming gaps are 0.1% and 
1%, respectively. The operation cost (objective function mi‐
nus wind curtailment penalty) represents the total cost for 
thermal generators. The linearizing FNC time (LFT) includes 
both the time for generating data sample and the time for 
training classification model. Owing to incorporating linear 
frequency constraint, the proposed FCUC model can be 
solved efficiently. Table IV shows that the solution time of 
FCUC models is less than that of Model 1, since the added 
linear constraints reduce the solution space.

We use the system frequency response model to compare 
the frequency dynamics of the three UC models after the dis‐
turbances on IEEE 24-bus and 118-bus systems, as shown in 
Figs. 8 and 9, respectively. In order to eliminate frequency 
violations, more thermal generators need to be scheduled on‐
line, which will increase the operation cost and wind curtail‐
ment. Compared with Model 2, the frequency nadir of Mod‐
el 3 is much closer to the threshold for the reason that the 
constraint (27) is less conservative than (8). For Model 3, 
fewer thermal generators need to be scheduled online than 
Model 2. Therefore, the operation cost and wind curtailment 
of Model 3 are both lower than those of Model 2, which in‐
dicates that our proposed FCUC model is more effective.

V. CONCLUSION 

This letter proposes a revised SVM-based system parame‐
ter separating plane method to convexify the non-convex 
FNC. Based on this data-driven converification method, we 
obtain a novel FCUC model which can be formulated as a 
tractable MIQP problem. Case studies indicate that the pro‐
posed method can obtain much less conservative solution 
than the existing methods with high efficiency.
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