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Multi-energy Management of Interconnected
Multi-microgrid System Using Multi-agent
Deep Reinforcement Learning

Sichen Li, Di Cao, Weihao Hu, Qi Huang, Zhe Chen, and Frede Blaabjerg

Abstract—The multi-directional flow of energy in a multi-mi-
crogrid (MMG) system and different dispatching needs of multi-
ple energy sources in time and location hinder the optimal oper-
ation coordination between microgrids. We propose an ap-
proach to centrally train all the agents to achieve coordinated
control through an individual attention mechanism with a deep
dense neural network for reinforcement learning. The attention
mechanism and novel deep dense neural network allow each
agent to attend to the specific information that is most relevant
to its reward. When training is complete, the proposed ap-
proach can construct decisions to manage multiple energy
sources within the MMG system in a fully decentralized man-
ner. Using only local information, the proposed approach can
coordinate multiple internal energy allocations within individu-
al microgrids and external multilateral multi-energy interac-
tions among interconnected microgrids to enhance the opera-
tional economy and voltage stability. Comparative results dem-
onstrate that the cost achieved by the proposed approach is at
most 71.1% lower than that obtained by other multi-agent deep
reinforcement learning approaches.

Index Terms—Interconnected multi-microgrid system, energy
management, combined heat and power, demand response, deep
reinforcement learning.

[. INTRODUCTION

ULTI-ENERGY microgrid (MG) is a new paradigm

for the generation, transmission, and consumption
from heterogencous energy carriers such as electrical and
thermal energy sources at the distribution-network (DN) lev-
el [1], [2]. Typically, the components of a multi-energy MG
at this level include distributed energy resources, energy-cou-
pling equipment, local active loads, and energy storage sys-
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tems (ESSs) [3]. Recently, energy coupling innovations such
as micro-turbines and electric heat pumps have been integrat-
ed with multiple energy carriers to enhance the economics
and environmental sustainability of energy systems [4], [5].
Multi-energy MGs have thus evolved into a cost-effective
and reliable strategy for providing both multi-energy supply
via enhanced utilization of renewable energy sources (RESs)
and multi-energy coordination. However, owing to the local
nature of their power supply, multi-energy MGs and RESs
have limited energy supply capabilities [6], [7]. To overcome
this deficiency, several neighboring MGs can share energy in
certain areas to address the capacity limitations of individual
MGs [8], [9]. Hence, in addition to directly connecting each
individual MG to the DN, multiple MGs can be interconnect-
ed into a multi-microgrid (MMGQG) system over an area and
to the DN to improve the economic benefits and power sup-
ply reliability for both the MMG system and DN [10], [11].
In a multi-energy MG, consumers typically demand large
amounts of electrical and thermal energy simultaneously
[12]. Thus, energy management is critical for reliable and ef-
ficient multi-energy MG operation and control [13], particu-
larly for multi-energy MMG systems.

An entirely centralized control system generally involves
a specialized controller that performs a variety of functions,
including gathering data and calculating, optimizing, and de-
termining the control actions that will be applied to the con-
trolled units. In addition, the central controller and con-
trolled units must interact via an extensive communication
network to execute all these functions from a single site. For
example, particle swarm optimization is applied in [14] to
determine the optimal scheduling of interconnected MMGs
in a centralized manner for minimizing the operating costs.
However, given the real-time requirements for MG operation
and complex energy management of interconnected MMGs
(for energy management of a single MG and interactions be-
tween MGs and between MGs and the DN), the approach in
[14] cannot achieve the desired results. In view of this, an
imperialist competitive-based algorithm with faster, more ac-
curate, and stronger global convergence than the approach in
[14] is introduced in [15] for energy management of inter-
connected MMGs. Furthermore, an improved linear control
and dispatch model is devised in [16] for integrated energy
systems to reduce the complexity of calculation and control.

The abovementioned studies are aimed at adjusting central-
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ized approaches to MG energy management. However, given
the requirement of concurrently processing large amounts of
data at a single location, centralized control is not a plug-
and-play approach, which is required in an MG setup [17].
Generally, centralized control is useful in standalone power
systems that must maintain a critical supply and demand bal-
ance over the long term in a slow-changing infrastructure
[17]. In addition, MGs in a DN may be owned by different
parties, and energy management within each MG may be de-
termined by specific policies and economic rules [18]. This
may limit information exchange between the distribution sys-
tem operator and MGs and between MMGs owing to priva-
cy and security concerns.

Overall, centralized approaches are unsuitable for energy
scheduling in interconnected MMG systems. Instead, distrib-
uted and decentralized management is a major trend for such
systems [1]. A distributed stochastic optimal scheduling
scheme with minimal information exchange overhead is pro-
posed in [19] for iterative energy scheduling of interconnect-
ed MMG systems, which are decomposed into MGs with lo-
cal and reduced complexity. In [20], to measure the benefits
of proactive resource trading within an interconnected MMG
system, a distributed alternating direction method of multipli-
ers is proposed to optimize synergistic operations of MMGs,
thus determining the optimal solution in few iterations. The
primal dual-multiplier method (PDMM) introduced in [21]
outperforms the approach in [20] in terms of processing time
and accuracy. Accordingly, the PDMM is applied in [22] to
an interconnected MMG energy management system, show-
ing the desired results. Other common algorithms such as La-
grangian relaxation algorithm [8] and consensus algorithm
[23] have been successfully applied to distributed decision-
making. A decentralized approach does not require each con-
troller to establish communication channels with other con-
trollers. Thus, some features of the distributed approach are
preserved, and control is executed using only local informa-
tion. A decentralized bilevel algorithm is used in [24] for en-
ergy management to coordinate the operation of interconnect-
ed MMGs within a distribution system. In [25], a decentral-
ized two-stage approach is proposed for local energy trading
in MMGs with an integrated pricing mechanism.

Although the abovementioned decentralized approaches
have achieved promising results, energy management of in-
terconnected systems still faces four main shortcomings.

1) Decentralized approaches are based on models, but de-
riving an accurate and efficient physical model of an inter-
connected MMG energy management system is difficult be-
cause the power flow and energy coupling relationships are
influenced by numerous factors [26].

2) Model-based approaches depend on specific intercon-
nected MMG environments. Hence, their generalization is
limited when applied to a variety of MMG environments
(1], [27].

3) By adding MGs and devices to the DN, the amount of
data to be transmitted, processed, and stored in power sys-
tems increases rapidly. Therefore, the computational cost of
energy management drastically increases when using conven-
tional model-based approaches [1].
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4) Model-based approaches fail to respond to continuously
changing conditions and require continuous problem-solving,
likely delaying real-time decisions. Hence, massive amounts
of data should be used fully, accurately, and efficiently for
proper energy management.

Among the available techniques to overcome the above-
mentioned drawbacks are data-driven such as model-free
deep reinforcement learning. Such techniques can fully ex-
ploit information in interactions within the interconnected
MMG environment to learn an optimal management policy
without requiring accurate physical models of the intercon-
nected MMGs. After learning is complete, the obtained poli-
cy can be used for end-to-end complex decision-making,
such as instantly (e.g., within milliseconds) generating opti-
mal actions in response to a real-time system state without
any prior knowledge. In [1], deep reinforcement learning is
applied to manage the energy sources of an MMG system,
in which each MG is controlled by an agent through decen-
tralized control. However, agents do not have a coordinated
mechanism. Thus, each agent is independently optimized by
its own reward function and lacks a coordinated relationship
with other agents. However, such deployment mode does not
fit an MMG system, in which energy interactions between
MGs are intended to meet the energy needs of a single MG
and realize energy complementarity within the system by in-
tegrating multiple MGs. Therefore, a high-quality coordinat-
ed optimization approach is essential for the efficient opera-
tion of MMG systems [6]. In [10], an approach based on
multi-agent deep reinforcement learning (MADRL) is pro-
posed to coordinately manage the energy resources of an
MMBG system. A peer-to-peer energy trading system for ener-
gy management of small-scale distributed energy resources
is introduced in [28] based on MADRL. An MADRL-en-
abled demand response system is proposed in [29] to mini-
mize electricity costs and improve grid reliability. These ap-
proaches establish a coordinated mechanism between control-
lable units (e.g., MGs). Nevertheless, they do not provide
each unit a clear distinction between the impacts of other
units’ control strategies on its own electrical characteristics.
In this situation, it may ignore the characteristics of energy
conversion and transfer that are owned by different MGs
and the voltage fluctuations caused by the frequent interac-
tions of energy between MGs in the MMG system during
the process of energy management, thereby causing certain
hidden dangers to the stable operation of MG, ultimately re-
sulting in the bad performance of the energy management of
MMGs.

To improve energy management, we propose a novel
MADRL-based approach called deep dense individual atten-
tion (D2IA) architecture in multi-agent soft actor critic (MA-
SAC) algorithm to manage the energy of multi-energy inter-
connected MMG systems, aiming to minimize the operation
cost while satisfying voltage limitations.

The main contributions of this study are summarized as
follows.

1) A general energy network model is established. Along
with the balance between energy supply and demand, a com-
prehensive electricity-thermal energy MG model is derived



1608

to describe the internal structure and operation mechanism
of each energy network.

2) A novel MADRL-based approach is proposed for a
multi-energy interconnected MMG system, in which each
MG controller is modeled as an intelligent agent. Instead of
concatenating all the system information into a neural net-
work, as in [10], [28], and [29], the proposed approach de-
ploys individual attention mechanisms in each MG control-
ler. In addition, it applies the deep dense architecture in rein-
forcement learning (D2RL) to enhance the nonlinear expres-
sion of the attention mechanism. This provides each MG
with the ability to determine the degree of impact of other
MG control strategies on its operation state.

3) Unlike model-based approaches, the proposed approach
does not require optimization of the complex energy manage-
ment problem of interconnected MMG systems in real time.
Using the proposed approach, the MG controllers can build
decision-making functions offline and deploy them online to
select the optimal decision based on the latest system state
data in a fully decentralized manner.

4) We evaluate the performance of the proposed approach
against various benchmark approaches using real-world his-
torical data.

The remainder of this paper is organized as follows. Sec-
tion II introduces the mathematical model of the intercon-
nected MMG system and formulates the optimization prob-
lem as a Markov game. In Section III, the proposed ap-
proach to solve MG energy management is detailed. To high-
light the effectiveness of the proposed approach, Section IV
reports extensive simulation and comparative results. Finally,
Section V concludes this paper.

II. MATHEMATICAL MODEL OF INTERCONNECTED MMG
SYSTEM

A. Architecture of Interconnected MMG System

The typical structure of an interconnected MMG system
with combined heat and power (CHP) is shown in Fig. 1.
Each MG establishes heat and electricity networks, where
the heat network consists of a micro-turbine, a power-to-heat
(PtH) unit (e.g., heat pump), and thermal load, while the
electricity network consists of a diesel generator (DG), RES
(e.g., solar, wind power), ESS, and electrical load. The pow-
er line (black lines in Fig. 1) and heat pipe (red lines) inte-
grate the individual MGs into an interconnected MMG sys-
tem, such that electrical and thermal energy can be supplied
between MGs.

The individual MGs shown in Fig. 1 are autonomous sys-
tems that are geographically dispersed and equipped with
RES, energy storage, and DG units to sustain local loads. En-
ergy management at the individual MG level is intended to
handle time-varying issues associated with RESs and loads
using the complementary characteristics of the ESS, DG,
and RESs. Individual MGs are often not intended to manage
geographically scattered RESs and loads of a region but rath-
er to manage a local area. Consequently, overall energy man-
agement may not be the globally optimal for that region [6],
[30]. As shown in Fig. 1, MGs can be linked to form an in-
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terconnected MMG system using power lines and heat pipes.
In an interconnected MMG system, energy management is
aimed to handle spatial variations in RESs and loads within
a region or wider area by coordinating the exchange of pow-
er between MGs and trading energy between the DN and in-
dividual MGs [6].
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Fig. 1. Typical architecture of interconnected MMG system with CHP.

This paper considers a decentralized energy management
system that controls the operation of an interconnected
MMG system, in which each MG has its own controller.
Each MG controller gathers two types of information from
the local area to aid in decision-making. The forecasted val-
ues of wind power, solar power, electricity prices, and ther-
mal and electrical loads of a local area, etc., are of the first
type. The second type comes from real-time monitoring of
system conditions such as time information, state of charge
(SOC) of the ESS, and voltage at each node in the local ar-
ea. The energy management system analyzes the second type
of information and controls the power flow to maintain the
security of the MMG system while maximizing the econom-
ic benefits.

B. Optimization Model

We formulate the energy management problem of the in-
terconnected MMG system as a Markov game that can be
solved using MADRL. To model the Markov game, various
components should be described, as detailed below.

1) State. State variables reflect the current operating condi-
tions of the individual MG and are gathered by each MG
controller in the energy management system for decision-
making. The state of the g" MG at time 7, s¢ € S%, is defined
as:
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PV

s¢={t.EP,.SOC%.TL . EL.P«e By BL  NLE.Nvey (1)

where E\ﬁ, is the forecasted electricity price at time ¢ SOC?,
is the SOC of the ESS in the g" MG at node i; ﬁf is the

. =
forecasted cumulative thermal load of each node; EL, is the
forecasted cumulative electrical load of each node PEPS s

~ g PV
the operation power of the DG at time #—1; P Iy and Pft

are the forecasted power values of the wind turbine (WT)

and photovoltaic (PV) system, respectively; J’\if is the fore-
casted electrical load of each node in the g" MG; and NV?
is the voltage of each node.

2) Action. In the Markov game, the action of the g" MG
is defined as:

ag {PgESS PgDG PngH QgPV QgESS QgDG Qg WT} (2)

where P¢"5, P£PY and P¢™ are the active power values of
the ESS, DG, and PtH units, respectively; and o, 08,
079 and Q%" are the reactive power values of the PV sys-
tem, ESS, DG, and WT, respectively.

3) Reward function. The reward function in the Markov
game is the objective function for optimization. It can be de-
fined as:

G
—_ E(CtEP"_ C;g,DG_i_ C;g,Gas+ C;g, Voltage) (3)
g=1

where G is the number of MGs; C/ is the cost of buying
electricity from the DN; C#”“ is the cost of the DG; C#%*
is the cost of buying gas; and C#"”" is the cost of unstable
voltage [31], [32]. These costs are given by:

CE =gP™ . EP,- At 4)
CgA,DG — Ctg Fuel + C;g, Operation (5)
Colel = zs (@(PEP9) +bPEP + o)Al (6)
1

g Opcmtwn 2cg . start/stop g DG s[g,[D_(Zt ‘ (7)

I CHP A f
Cron= 2 P (8)

i= cvng
C[g, Voltage — ic[gl Voltage (9)

i=1

2.5-50|1-v%,| v¥,€(0.95,1.05)
Cgotase = ~50[1-v%,| V¢, €[0.8,0.95)Uv%, €(1.05, 1.25]
-500 otherwise

(10)
where EP, is the electricity price at time #; ¢ is the motivat-
ing factor, which is similar to the one defined in [33] and
used to balance the importance of the economic reward in
the total reward; P”" is the power exchange between the
MMG system and DN at time #; C#"™ and C#%““" are the
fuel and operation costs of the DG in the g" MG, respective-
ly; a, b, and ¢ are the coefficients of the DG fuel cost func-
tion; C£""* s the start/stop cost of the DG in node i of
the g" MG at time #; 5% is the operation state of the DG;
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HE™" denotes the thermal output of CHP; 774, is the ener-
gy generation efficiency; L., is the low calorific value of
natural gas; GP, is the gas price; v, is the node voltage; and
I is the number of nodes in the interconnected MMG system.

4) Transition function. The transition function s%, =
T (s%,a%,S) maps current state s¥ to next state s%,, according
to action af and the randomness from the environment &. Ac-
tion a¢ mainly alters the deterministic elements in s¢. For ex-

ample, SOCE, =SOC*+ agAt/Eﬁm, where E;‘;’lax is the ESS ca-
~gWlI ~gPV

pac1ty of the g" MG. For EP,, 7L, EL:, P, , P, , and

NLt in 5%, the state transition is influenced by &.

C. Constraints

The constraints are divided into those related to heat and
power. Most heat networks comprise one source and several
intermediate/load nodes interconnected via supply and return
pipelines. Thus, the primary and secondary networks are the
generation and consumption networks, respectively. Trans-
porting thermal energy from the source node to intermediate/
load nodes comprises two steps: (D the source node gener-
ates thermal energy; (2 thermal energy is transported
through the water supply pipe of the primary network to the
thermal exchanger of the secondary network at the begin-
ning. After entering the thermal exchanger of the secondary
network, the thermal energy is transferred to all the interme-
diate/load nodes, and the water temperature changes drasti-
cally through this process. The water returns to the system
through return pipelines to complete thermal circulation [34].

1) Loop pressure equation

The head loss is the change in pressure caused by pipe
friction. In accordance with the loop pressure equation, the
sum of all the head losses around a closed loop must equal
zero. The loop pressure for the entire hydraulic network is
given by [35]:

Bh,=0 (11)

where B is the loop incidence matrix that relates loops to
branches; and 4, is the vector of head losses.

2) Nodal ﬂow balance

Thermal flow follows Kirchhoff’s law. At each node, the
amount of inflowing water is equal to that of outflowing wa-

ter.
2 mv/r — 2 mv/r

peP peP;

(12)

where P)7 and P are the sets of pipes starting and ending
at node 7 in supply/return network, respectively; and m” is
the mass flow rate of supply/return pipe p at time ¢.

3) Thermal energy balance

The generation and consumption of thermal energy must
be balanced. In a thermal system, considering that thermal
energy is transferred between the heat source and load nodes
through hot and cold water via a thermal pipe, the required
thermal energy equals the difference in energy between the
beginning of the supply pipe and the end of the return
pipe [34].

H, = CWH(m"VTS

vpt

m\T!, ) peNg (13)

where H,, is the thermal demand of pipe p at time #; Cyy, is
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water heat capacity; Ny, is the set of source nodes; and T ;’; ,
and T j/;, are the temperatures at the start and end of supply/
return pipe p at time ¢, respectively.
The following constraints related to the power component
must be satisfied during optimization of energy management.
J
z[i.kP,w—Pf;’”d: Vi.tsz,t (G[/',t cos 0, +B"t sin Hg',r) (14)
x J=1

it 3

J
S1,0,,-0M =V, SV, (G,,sin0,,~B,, cos0,,) (15)
s Jj=1

Vimin S Vi SV max (16)
0<PI<PI (17)
o<plT<pll (18)
o<plf<plil (19)

PrY=PlE SR AL + P (570 =575+ Pl (1 =579)
(20)

Prl = PLe <SRG AL+ PU (570 =570 )+ Plope (=575,

(21)
—P i SPIESPR (22)
SOCESS <SOCES <SOCES, (23)
(P Y+ <) (24)
P+ <!y (25)
(PO +(O Y S(SP) (26)
(PES Y +OF P <(SF5) 27)

where k e{PV, WT, PtH, DG, ESS}; I, is an element in the
generator incidence matrix, and when generator k is connect-
ed to node i, [,,=1; P, is the active power of generator k at
time #; P7/* is the load demand of node i; J is the number
of nodes in the MG; V', is the voltage amplitude of node i;
G,, and B, are the real and imaginary parts of the admit-
tance element between nodes 7 and j, respectively; 6, is the
voltage phase difference between nodes i and j; s e{PV, WT,
DG, ESS}; Q,, is the reactive power of node s at time ¢
0 is the reactive power of node i; ¥, . and V, . are the
lower and upper voltage limits of node i, respectively; P}/,
Pl PIY PPY, and PSY are the active power values of the
PV system, WT, PtH unit, DG, and ESS of node i, respec-
tively; R, and R, are the ramp-up and ramp-down limits
of the DG, respectively; s is a binary variable that repre-
sents the operation state of the DG at time ¢ (1, on; 0, off);
Pl Pl P, PPO ., and PP are the upper limits of
the active power for the PV system, WT, PtH unit, DG, and
ESS of node i, respectively; SOC/® is the SOC of the ESS
of node i; SOCF and SOCS  are the lower and upper lim-
its of the SOC of ESS, respectively; Of/, O!7, 07, and
O are the reactive power values of the PV system, WT,
DG, and ESS, respectively; and S/, S/"", SP° and S are
the apparent power values of the PV system, WT, DG, and
ESS of node i, respectively.

Equations (14) and (15) establish AC power flow con-
straints, while (16) is the voltage amplitude constraint of
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each node. Formulas (17) - (22) are operation power con-
straints, while (23) is the SOC constraint for the ESS, and
(24)-(27) ensure that the reactive power generated at the in-
verter of the PV system, WT, DG, and ESS does not exceed
the available capacity.

III. PROPOSED APPROACH TO SOLVE MG ENERGY
MANAGEMENT

Conventional reinforcement learning algorithms can not
suitably deal with Markov games owing to the curse of di-
mensionality and lack of coordination between agents while
considering privacy and information security. To solve this
problem, we propose an MADRL-based approach for energy
management of complex interconnected MMGs. Our
MADRL-based approach called D2IA-MASAC features cen-
tralized training and decentralized execution to ensure that
each MG has autonomous energy management within an in-
terconnected MMG system. The proposed approach consists
of two neural network stages. The actor stage is responsible
for making decisions, and the critic stage is responsible for
guiding the actor stage to approximate the optimal poli-
cy [36].

1) MASAC Overview

The MASAC algorithm is a multi-agent variant [37] of
the soft actor-critic (SAC) algorithm [38]. Each MG control-
ler is modeled as an SAC agent within the centralized train-
ing framework to manage the energy of the interconnected
MMG system.

Considering N agents with parameterized critic network
0j.j €ll,N], the update of the individual critic network for

the j™ agent can be defined as:
Loss= E[(quﬁ/ (Xtht)_y)z ]

y=ri+7E0}(X,. .4, )~ aln()(s],, )] (29)
Loss

where denotes the optimization objective; X,=
[s),s7,...,s'] is the state concatenation at time ¢ A4,=
la},al,..,a¥] is the action concatenation at time ¢
0} (X,.4,) and 0},(X,,.4,.,) are the centralized action-val-

ue functions with parameter ¢, and ¢/, respectively; y is the

reward discount factor; a is the temperature ratio used to bal-
ance exploration and exploitation; and ¢, denotes the target

(28)

actor network with parameter ).
N agents are parameterized by actor network ),/ [l, N],

and the individual policies are updated by ascent according
to the following gradient:

VI (uy )=E[V, In(uty, (s)NQ} (X, A,) = aln (e, (sHD] (30)
Parameters ¢/ and 6/ can be updated as:
¢/ <1, +(1 1)/

' ' (€1Y
0/« 10,+(1 —1)0;

where the soft replacement parameter << 1.
2) Architectures of D2IA-MASAC Networks

The architecture of the critic network used in the pro-
posed approach is shown in Fig. 2. Each agent has its critic,
which is composed of D2RL [39] and attention mechanism
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[40]. Considering the first agent in Fig. 2 as an example, the
input of the critic is the agent state and actions. Each agent
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information (i.e., states and actions) is encoded by the D2RL.

l Contribution Lo Contribution l l Contribution |
; calculation L calculation | ; calculation |
1 - | s
| Scale Lo Scale ; | Scale 1
i calculation i i calculation i i calculation i
o f ¥ oo f f | o f ¥ |
A €3,€3,...,€y L 6 €, €;3,....6y | Y €1,€y,...,€N |
| / ot / AN | | / |
| |D2RL| |D2RL|...|D2RL|} ||D2RL||D2RL|...[D2RL|: !|D2RL||D2RL| [D2RL]...:
soal 2 o2 Y 2 a2 sl N gV NN gl gl 2 o2

Fig. 2. Architecture of critic network used in proposed approach.

Deep neural network is a powerful approach for extracting
features from inputs and mapping them to the desired out-
puts. Hence, it can enhance the nonlinear capability of the
critic network. Merely increasing the depth of a dense neural
network may be ineffective because the original input infor-
mation gradually vanishes as the network deepens [41]. The
D2RL can prevent this problem. Its architecture is shown in
Fig. 3(a). Input data i are first processed by dense neural net-
work £, to obtain output m,. The input of 4, is the concatena-
tion of i and m, instead of m, alone, as shown in Fig. 3(b).
A loop is established until obtaining output O. This strategy
leverages the nonlinear mapping ability of deep dense neural
networks by incorporating original input i into each hidden
layer of the network, such that the information of input 7 is
retained. The calculation from the input of the critic network
belonging to the first agent of e, is given by:

I,=concat(s',s*,...s",a",a*, ....a")
I,.,=ReLu(concat(I,,1,)-W!+B!) u=2,3,....U-1
{=ReLu(I,W})+B,)

e, =(W)+B)

(32)

where concat(’) denotes the concatenate operation function;
ReLu(") denotes the rectified linear unit activation function;
I, is the input of the »" hidden layer; W, and B! are the
weight and bias matrices of the " hidden layer of the first
agent, respectively; U is the number of hidden layers; ¢ de-
notes the latent feature extracted by the U hidden layers
from input 1,; and W) and B, are the weight and bias matri-
ces of the output layer of the first agent, respectively.

The calculations for e,,i €[1, N] are processed by the atten-
tion mechanism to emphasize representative information of
other agents while discarding irrelevant details for decision-
making. The detailed calculation process is given as (33)-
(35).

(b)

Fig. 3. Architectures of D2RL and conventional dense neural network. (a)
D2RL. (b) Conventional dense neural.

exp(xy;
=) s N
i N (33)
zexp()(m)
k=2
w(e, [e;.e],...ey))
Lt 216y -+ X100 1= l 2\/d73 ) oY
B
N
81: zwkek (35)
=

where w(e,.[e;.€}....e ) =[e,e].e e}, ..e e\ ]; d, is the net-
work dimension; and &, denotes influence of other agents for
the first agent.
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The action-value function is expressed as:
0 (XA =fp(e)58)) (36)
where [,z denotes the deep-blue D2RL in the first agent.

Training process of the proposed approach is described in Al-
gorithm 1.

Algorithm 1: training process of D2IA-MASAC approach for energy man-
agement in interconnected MMG system

Initialize parameters and replay buffer

1:  for episode from 1 to P do

2: Randomly choose electricity price and PV and WT power data of
the «" day
3: Randomly generate thermal and electrical loads in range

4: fort=1to T do
for MG j =1 to N do

5: Sample action @] from 4 (s})

Input s/ and & to environment to obtain 7/ and s/, ,

Store transition (s, @), /, s/, ) in memory of the /" MG con-

troller

8: Randomly sample batch-sized transitions from the j* replay
buffer

9: Update ¢, 0,, ¢/, and 6] using (28)-(31)

10: end for

11: end for

12: end for
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shown in Fig. 4 are listed in Tables I and II, respectively.
The interconnected MMG system includes three MGs, each
of which consists of a heat network and an electricity net-
work. Each MG has the ESS, DG, WT, PV system, and mi-
cro-turbine (i.e., source node in Fig. 4). The parameters relat-
ed to this case study are listed in Tables III and IV, and
those of the proposed approach are listed in Table V. The
electricity price offered by the DN follows the hourly pric-
ing from PJM [42], and the natural gas prices follow the
monthly Natural Gas Industrial Price from the US Energy In-
formation Administration [43]. The training data contain the
first 200 days of data, and the test data are from days 201 to
300 in 2017. The forecasted power of electrical and thermal
loads, PV system, and WT of the three MGs in the intercon-
nected MMG system on a typical day are shown in Fig. 5.
The regions of MGI largely include electrical loads and
have a high RES capacity. There are fewer electrical loads
in MG2 than in MGI, and the RES capacity of MG2 is low-
er. MG3 has the highest proportion of RESs among the three
MGs. In addition, the electrical loads on MG3 are relatively
low. The thermal loads of MG1 and MG2 are similar, and
that of MG3 is the highest.

TABLE I
PARAMETERS OF LINES IN MMG SYSTEM

IV. NUMERICAL RESULTS

A. Experimental Setup

We evaluated the performance of the proposed D2IA-MA-
SAC approach through numerical experiments on an inter-
connected MMG system, whose architecture is illustrated in
Fig. 4. Therein, there are three MGs that each contain a heat
network. Each colored region shown in Fig. 4 denotes a heat
network.

12
| | A

13 1|14 1[15 1|16 @«7 ,,,,,,,, :
S OONDICE |

O Source node; @ Intermediate supply node; @ Intermediate return node
— Power line impedance; == Thermal load
— Power bus; — Power load

Fig. 4. Architecture of interconnected MMG system.

The parameters of lines and heat pipes in MMG system

Line From node To node Resistance (Q2) Reactance (Q)
1 1 2 0.0125 0.005
2 2 3 0.0375 0.015
3 2 4 0.0300 0.012
4 2 5 0.0225 0.009
5 2 6 0.0150 0.006
6 2 7 0.7500 0.300
7 2 12 0.7500 0.300
8 1 7 0.0125 0.005
9 7 8 0.0250 0.010

10 7 9 0.0200 0.008
11 7 10 0.0225 0.009
12 7 11 0.0275 0.011
13 7 12 0.7500 0.300
14 1 12 0.0125 0.005
15 12 13 0.0175 0.007
16 12 14 0.0200 0.008
17 12 15 0.0250 0.010
18 12 16 0.0250 0.010
TABLE II
PARAMETERS OF HEAT PIPES IN MMG SYSTEM
Pipe Length (m) Diameter (m)

1 205 0.08

2 200 0.05

3 200 0.05

4 200 0.05

5 200 0.05

6 195 0.06

7 208 0.07
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TABLE III
PARAMETERS OF SYSTEM MODEL

Symbol Value Symbol Value
a ($/((kW)*h)) 1040 o 6
b ($/MWh) 304 Nenp 0.36
c(9) 1.3 L., MWh/m®) 9.7%x 107
cEsarlsior (g) 5
TABLE IV
PARAMETERS OF INTERCONNECTED MMG SYSTEM
P.PV P.WT P‘Ptll PDG PDG PLS
MO W) W) W) uW) W) (W)
MGl 0.20 0.25 0.005 0.05 0.02 0.050
MG2 0.15 0.20 0.005 0.05 0.02 0.045
MG3 0.10 0.15 0.005 0.05 0.02 0.040
MG iwhy  SOCh  SOCh. R RYY
MG1 0.20 1 0.1 0.025 0.025
MG2 0.18 1 0.1 0.025 0.025
MG3 0.16 1 0.1 0.025 0.025
TABLE V
PARAMETERS OF PROPOSED APPROACH
Parameter Value
Temperature ratio 10
Reward discount factor 0.95
Memory capacity 1x10°
Learning rate of actor 3x107*
Learning rate of critic 3x107™
Soft replacement 1x107°
Batch size for updating 256

B. Comparisons with Benchmark Approaches

To assess the effectiveness of our proposal, we compared
it with various benchmark approaches.
1) Evaluated Benchmark Approaches

1) TD3 [44]: MG controllers are modeled as TD3 agents,
each of which is trained individually to maximize its own re-
ward function without coordinating with other MGs.

2) MATD3 [10]: MATD?3 is an approach to optimize the
energy management of interconnected MMG systems. This
is a multi-agent variant of TD3.

3) MAAC [45]: MAAC uses a single common attention
network to collect information from all MGs in a centralized
manner and constructs a common gradient space for all MG
controllers to update the parameters of the neural network.
The most notable difference between MAAC and MATD3 is
that the former introduces a common attention network.

2) Performance on Training Set

Figure 6 shows the normalized cumulative rewards (i.e.,
values of the objective function) obtained using different re-
inforcement-learning-based approaches during the training
process. The agents have no initial knowledge for decision-
making to obtain a high reward.
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Fig. 5. Forecasted power of electrical and thermal loads, PV system, and
WT of three MGs. (a) Data of MG1. (b) Data of MG2. (c¢) Data of MG3.
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— TD3‘ ) ) ‘
0 5000 10000 15000 20000
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Fig. 6. Normalized cumulative rewards obtained using different reinforce-
ment-learning-based approaches during training process.

Consequently, they explore the action space to gain experi-
ence. As training proceeds, the agents gradually learn the en-
ergy management strategy of the interconnected MMG sys-
tem to increase the reward. The training curves increase un-
til complete convergence, representing the end of training.

The reward curve of TD3 shows the lowest value and os-
cillates considerably during training compared with other ap-
proaches, demonstrating that a lack of coordination impedes
a suitable energy management of an interconnected MMG
system. MATD3 is a multi-agent variant of TD3. Compared
with TD3, MATD3 uses the multi-agent framework inspired
by the approach in [37] to construct a coordination relation-
ship between each MG for energy management in an inter-
connected MMG system. Evidently, MATD3 outperforms
TD3 in terms of training stability and performance owing to
the coordination mechanism. The MAAC [45] further en-
hances the coordination between MGs by using a common
attention network in the critic part, outperforming MATD3.
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Using the common attention network in MAAC, the network
parameters of each agent include part of the network parame-
ters shared among agents, and each agent has an attention at-
tribute to accelerate consensus among agents and thus en-
hance their coordination. However, the attention network in
MAAC does not seem to fit the optimization of the energy
management of interconnected MMG systems because such
systems have complex coupling characteristics between MGs
in the energy network with combined heat and power, ener-
gy exchange among MMGs, and energy trading between the
MMG and DN. In an interconnected MMG system, each
MG has its system parameters (e.g., thermal and electrical
loads, rated power of devices, heat and power flow), and
each MG may have negative effects on others through a
common network owing to the complex and individual oper-
ation. Hence, the proposed approach uses the network archi-
tecture described in Section III, and its training outperforms
that of MAAC, indicating the effectiveness of our proposal.
3) Performance on Test Set

To further demonstrate the effectiveness of the proposed
approach, we select stochastic optimization approaches for
comparison. We performed the comparisons using the NLopt
library [46].

For optimization of deterministic information scenario
with NLopt, uncertain information about electricity prices,
electrical and thermal loads, solar and wind power, and other
factors is assumed to be known beforehand. NLopt is then
used to solve a deterministic optimization problem based on
global information. Note that this approach is infeasible in a
realistic scenario owing to the randomness of electricity pric-
es, electrical load, etc.

Table VI lists the average cost of the proposed and bench-
mark approaches over 100 test days.

TABLE VI
AVERAGE COST OF PROPOSED AND BENCHMARK APPROACHES

Approach Average cost ($/day) Percentage (%)
TD3 1870.14 565.00
MATD3 1145.15 345.97
MAAC 420.58 127.06
Proposed 331.00 100.00
NLopt 86.11 26.02

The percentage represents the average cost of the bench-
mark approaches divided by that of the proposed approach.
The interconnected MMG system spends 465.00%, 245.97%,
and 27.06% more under control of TD3, MATD3, and
MAAC compared with the proposed approach, respectively.
TD3 has no mechanism for coordination between agents and
provides the worst results. Hence, coordination among
agents are necessary in an MMG system. The results of
MATD3, which are better than those of TD3, further demon-
strate this point. The proposed approach is superior to
MAAC, which has a common attention layer. Therefore, us-
ing an individual attention mechanism to manage the energy
of an interconnected MMG system is more suitable than us-
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ing a common attention mechanism. Compared with other
approaches, our proposal achieves the closest performance to
that of NLopt, confirming its effectiveness.

C. Evaluation on Test Set Over a Day

To show the effectiveness of the proposed approach in
guaranteeing secure operation, the voltage of each bus for a
day in the interconnected MMG system is shown in Fig. 7.
The red, blue, and green lines indicate the voltage profiles
of MG1, MG2, and MG3, respectively, while marks *, A, V,
and + indicate the voltage profiles at nodes 1, 2, 3, and 4, re-
spectively. The shaded part indicates the area where the volt-
age exceeds the limit. The voltage is constrained within a
safe range at each bus and is more stable using our proposal
than the rule-based approach, in which the rule-based ap-
proach follows: ESS, DG, and PtH units do not operate, and
each controllable reactive power unit has the reactive power
associated with its power factor and active power. These re-
sults suggest that the proposed approach can ensure the safe
operation of interconnected MMG systems by providing rele-
vant solutions.

1.03
5 Lol
S0.99L7—
0.97
0.95
0.93

0

Voltage

4 8 12 16 20 23
Time (hour)

(b)

Fig. 7. Voltage profile of each bus for a day in interconnected MMG sys-
tem. (a) Voltage profile with proposed approach. (b) Voltage profile with
rule-based approach.

The energy management result of the proposed approach
on a test day is depicted in Fig. 8 to further illustrate the ef-
fectiveness of the proposed approach.

MGT1 has the lowest RES proportion and the largest fluctu-
ation range in its voltage profile compared with the other
two MGs, which has the most severe undervoltage, as
shown in Fig. 7(b). Therefore, MGI1 has a different charging
mode from MG2 and MG3, as shown in Fig. 8(b). Specifi-
cally, MG1 has a low voltage early in the day. To increase
the voltage, the ESSs of MGI1 discharge their power to
avoid further voltage drops. On the contrary, MG3 has the
highest RES penetration, which can be used to supply the
electrical load to stabilize the voltage. Hence, its ESS can be
used for energy arbitrage, that is, charging when the electrici-
ty price is low and discharging when the electricity price is
high.
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Fig. 8. Energy management results of proposed approach on a test day. (a)
Real-time electricity price. (b) Charging/discharging power of ESSs in inter-
connected MMG system. (c) Energy of ESSs in interconnected MMG sys-
tem. (d) Power of PtH units in interconnected MMG system. (¢) Power of
DGs in interconnected MMG system.

Similarly, the ESS of MG2 performs energy arbitrage, but
it behaves more conservatively than that of MG3. Specifical-
ly, as shown in Fig. 8(c), the discharging power of MG3 is
larger than that of MG2, resulting in the lowest SOC of

1615

MG3 at the 17" hour being lower than that of MG2 at the
23" hour. As MG2 has a lower RES penetration than MG3,
if the ESS has a low SOC, the ESS may fail to supply
enough energy to the electrical load, thus leading to under-
voltage in MG2. Therefore, sufficient energy is required for
the ESS of MG2 to stabilize the voltage profile. In other
words, voltage stability is more important in MG2 than that
in MG3 for the charging/discharging management of the
ESS. The period from the 21* hour to the 23" hour is the
time of the day when electricity prices are low, as shown in
Fig. 8(a). During this period, the charging power of MG3 is
more reasonable when analyzed from the energy arbitrage
perspective, as shown in Fig. 8(b). However, because MG2
has a lower RES penetration than MG3, MG2 needs an addi-
tional energy supply from the ESS from the 21* hour to the
23" hour to stabilize the voltage.

Figure 8(d) shows the operation of the PtH units, which
convert electrical energy into thermal energy. In the heat net-
work, the thermal demand is satisfied by the micro-turbine
and PtH units. Because the PtH units consume power, like
the ESS, their power profile follows a rule similar to that of
the ESS.

As shown in Fig. 8(e), the DG of MGI1 does not operate
from the 0™ hour to the 5" hour and operates at almost maxi-
mum power from the 6" hour to the 23" hour. This is be-
cause from the 0™ hour to the 5" hour, the electrical load is
low, and the voltage of MGI is relatively stable. To reduce
the DG operation and related fuel costs, the DG should not
work when the voltage is stable. After the 5" hour, as people
start their activities, the electricity consumption gradually in-
creases, and the voltage fluctuates, as shown in Fig. 7(b),
thus requiring DG operation to compensate for the fluctua-
tions. The DG of MGI1 operates at almost maximum power
from the 6™ hour to the 23" hour given the severe undervolt-
age during this period, as shown in Fig. 7(b). As the voltag-
es of MG2 and MG3 are more stable after regulation, their
DGs do not operate to prevent the related costs.

As shown in Fig. 9, because MGI1 has the lowest RES
penetration and largest voltage fluctuations compared with
the other two MGs, MG2 and MG3 transfer their energy to
MGT through the power line to stabilize its voltage profile.
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Fig. 9. Power transference between MGs.

V. CONCLUSION

Energy management at the MMG system level focuses on
scheduling power exchange between MGs and power trades
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with the DN to minimize the total cost. In this paper, a de-
centralized multi-energy management approach is proposed
to achieve optimal synergies between multiple MGs. The ap-
proach encourages active resource transactions between inter-
connected MGs by optimizing the reward function to lever-
age diverse multi-energy generation/loads to synergize multi-
ple MGs. The coordinated optimization of the interconnected
MMG system is modeled as a Markov game and solved us-
ing the proposed approach. The proposed approach is decen-
tralized and does not require information sharing between
MGs to protect privacy and guarantee resource autonomy.

Simulations and comparative results show that: (D) com-
pared with benchmark approaches, the proposed approach is
the most stable during training and achieves the best training
results; @ on the test set, the proposed approach can
achieve the best energy management for the interconnected
MMG system, demonstrating its generalization ability; and
@ the interpretability of the operation of different MG as-
sets and the power transfer between MGs further confirm
the effectiveness of the proposed approach. At the MMG sys-
tem level, suitably managing its internal energy can not only
lower the cost of the system but also help keep the voltage
of each node stable through an effective management of
how MGs exchange energy with each other. In addition, we
can determine from these data that the proposed approach al-
lows MG controllers to distinguish the degree to which the
control strategies of other MG controllers influence their
working states, thus providing the MG controller with the ca-
pability to effectively manage multiple energies, making the
proposed approach more economical and safer than other
benchmark approaches.
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