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Deep Reinforcement Learning
Sichen Li, Di Cao, Weihao Hu, Qi Huang, Zhe Chen, and Frede Blaabjerg

Abstract——The multi-directional flow of energy in a multi-mi‐
crogrid (MMG) system and different dispatching needs of multi‐
ple energy sources in time and location hinder the optimal oper‐
ation coordination between microgrids. We propose an ap‐
proach to centrally train all the agents to achieve coordinated 
control through an individual attention mechanism with a deep 
dense neural network for reinforcement learning. The attention 
mechanism and novel deep dense neural network allow each 
agent to attend to the specific information that is most relevant 
to its reward. When training is complete, the proposed ap‐
proach can construct decisions to manage multiple energy 
sources within the MMG system in a fully decentralized man‐
ner. Using only local information, the proposed approach can 
coordinate multiple internal energy allocations within individu‐
al microgrids and external multilateral multi-energy interac‐
tions among interconnected microgrids to enhance the opera‐
tional economy and voltage stability. Comparative results dem‐
onstrate that the cost achieved by the proposed approach is at 
most 71.1% lower than that obtained by other multi-agent deep 
reinforcement learning approaches.

Index Terms——Interconnected multi-microgrid system, energy 
management, combined heat and power, demand response, deep 
reinforcement learning.

I. INTRODUCTION 

MULTI-ENERGY microgrid (MG) is a new paradigm 
for the generation, transmission, and consumption 

from heterogeneous energy carriers such as electrical and 
thermal energy sources at the distribution-network (DN) lev‐
el [1], [2]. Typically, the components of a multi-energy MG 
at this level include distributed energy resources, energy-cou‐
pling equipment, local active loads, and energy storage sys‐

tems (ESSs) [3]. Recently, energy coupling innovations such 
as micro-turbines and electric heat pumps have been integrat‐
ed with multiple energy carriers to enhance the economics 
and environmental sustainability of energy systems [4], [5]. 
Multi-energy MGs have thus evolved into a cost-effective 
and reliable strategy for providing both multi-energy supply 
via enhanced utilization of renewable energy sources (RESs) 
and multi-energy coordination. However, owing to the local 
nature of their power supply, multi-energy MGs and RESs 
have limited energy supply capabilities [6], [7]. To overcome 
this deficiency, several neighboring MGs can share energy in 
certain areas to address the capacity limitations of individual 
MGs [8], [9]. Hence, in addition to directly connecting each 
individual MG to the DN, multiple MGs can be interconnect‐
ed into a multi-microgrid (MMG) system over an area and 
to the DN to improve the economic benefits and power sup‐
ply reliability for both the MMG system and DN [10], [11]. 
In a multi-energy MG, consumers typically demand large 
amounts of electrical and thermal energy simultaneously 
[12]. Thus, energy management is critical for reliable and ef‐
ficient multi-energy MG operation and control [13], particu‐
larly for multi-energy MMG systems.

An entirely centralized control system generally involves 
a specialized controller that performs a variety of functions, 
including gathering data and calculating, optimizing, and de‐
termining the control actions that will be applied to the con‐
trolled units. In addition, the central controller and con‐
trolled units must interact via an extensive communication 
network to execute all these functions from a single site. For 
example, particle swarm optimization is applied in [14] to 
determine the optimal scheduling of interconnected MMGs 
in a centralized manner for minimizing the operating costs. 
However, given the real-time requirements for MG operation 
and complex energy management of interconnected MMGs 
(for energy management of a single MG and interactions be‐
tween MGs and between MGs and the DN), the approach in 
[14] cannot achieve the desired results. In view of this, an 
imperialist competitive-based algorithm with faster, more ac‐
curate, and stronger global convergence than the approach in 
[14] is introduced in [15] for energy management of inter‐
connected MMGs. Furthermore, an improved linear control 
and dispatch model is devised in [16] for integrated energy 
systems to reduce the complexity of calculation and control.

The abovementioned studies are aimed at adjusting central‐

Manuscript received: July 30, 2022; revised: December 8, 2022; accepted: De‐
cember 28, 2022. Date of CrossCheck: December 28, 2022. Date of online pub‐
lication: March 27, 2023. 

This work was supported by Sichuan Province Innovative Talent Funding 
Project for Postdoctoral Fellows (No. BX202210).

This article is distributed under the terms of the Creative Commons Attribu‐
tion 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

S. Li, D. Cao (corresponding author), W. Hu, and Q. Huang are with the 
School of Mechanical and Electrical Engineering, University of Electronic Sci‐
ence and Technology of China, Chengdu, China, and Q. Huang is also with 
Southwest University of Science and Technology, Mianyang, China (e-mail: si‐
chenli@std. uestc. edu. cn; caodi@uestc. edu. cn; whu@uestc. edu. cn; hwong@ 
uestc.edu.cn).

Z. Chen and F. Blaabjerg are with the Department of Energy Technology, Aal‐
borg University, DK-9220 Aalborg, Denmark (e-mail: zch@et. aau. dk; fbl@et.
aau.dk).

DOI: 10.35833/MPCE.2022.000473

1606



LI et al.: MULTI-ENERGY MANAGEMENT OF INTERCONNECTED MULTI-MICROGRID SYSTEM USING MULTI-AGENT DEEP...

ized approaches to MG energy management. However, given 
the requirement of concurrently processing large amounts of 
data at a single location, centralized control is not a plug-
and-play approach, which is required in an MG setup [17]. 
Generally, centralized control is useful in standalone power 
systems that must maintain a critical supply and demand bal‐
ance over the long term in a slow-changing infrastructure 
[17]. In addition, MGs in a DN may be owned by different 
parties, and energy management within each MG may be de‐
termined by specific policies and economic rules [18]. This 
may limit information exchange between the distribution sys‐
tem operator and MGs and between MMGs owing to priva‐
cy and security concerns.

Overall, centralized approaches are unsuitable for energy 
scheduling in interconnected MMG systems. Instead, distrib‐
uted and decentralized management is a major trend for such 
systems [1]. A distributed stochastic optimal scheduling 
scheme with minimal information exchange overhead is pro‐
posed in [19] for iterative energy scheduling of interconnect‐
ed MMG systems, which are decomposed into MGs with lo‐
cal and reduced complexity. In [20], to measure the benefits 
of proactive resource trading within an interconnected MMG 
system, a distributed alternating direction method of multipli‐
ers is proposed to optimize synergistic operations of MMGs, 
thus determining the optimal solution in few iterations. The 
primal dual-multiplier method (PDMM) introduced in [21] 
outperforms the approach in [20] in terms of processing time 
and accuracy. Accordingly, the PDMM is applied in [22] to 
an interconnected MMG energy management system, show‐
ing the desired results. Other common algorithms such as La‐
grangian relaxation algorithm [8] and consensus algorithm 
[23] have been successfully applied to distributed decision-
making. A decentralized approach does not require each con‐
troller to establish communication channels with other con‐
trollers. Thus, some features of the distributed approach are 
preserved, and control is executed using only local informa‐
tion. A decentralized bilevel algorithm is used in [24] for en‐
ergy management to coordinate the operation of interconnect‐
ed MMGs within a distribution system. In [25], a decentral‐
ized two-stage approach is proposed for local energy trading 
in MMGs with an integrated pricing mechanism.

Although the abovementioned decentralized approaches 
have achieved promising results, energy management of in‐
terconnected systems still faces four main shortcomings.

1) Decentralized approaches are based on models, but de‐
riving an accurate and efficient physical model of an inter‐
connected MMG energy management system is difficult be‐
cause the power flow and energy coupling relationships are 
influenced by numerous factors [26].

2) Model-based approaches depend on specific intercon‐
nected MMG environments. Hence, their generalization is 
limited when applied to a variety of MMG environments 
[1], [27].

3) By adding MGs and devices to the DN, the amount of 
data to be transmitted, processed, and stored in power sys‐
tems increases rapidly. Therefore, the computational cost of 
energy management drastically increases when using conven‐
tional model-based approaches [1].

4) Model-based approaches fail to respond to continuously 
changing conditions and require continuous problem-solving, 
likely delaying real-time decisions. Hence, massive amounts 
of data should be used fully, accurately, and efficiently for 
proper energy management.

Among the available techniques to overcome the above‐
mentioned drawbacks are data-driven such as model-free 
deep reinforcement learning. Such techniques can fully ex‐
ploit information in interactions within the interconnected 
MMG environment to learn an optimal management policy 
without requiring accurate physical models of the intercon‐
nected MMGs. After learning is complete, the obtained poli‐
cy can be used for end-to-end complex decision-making, 
such as instantly (e.g., within milliseconds) generating opti‐
mal actions in response to a real-time system state without 
any prior knowledge. In [1], deep reinforcement learning is 
applied to manage the energy sources of an MMG system, 
in which each MG is controlled by an agent through decen‐
tralized control. However, agents do not have a coordinated 
mechanism. Thus, each agent is independently optimized by 
its own reward function and lacks a coordinated relationship 
with other agents. However, such deployment mode does not 
fit an MMG system, in which energy interactions between 
MGs are intended to meet the energy needs of a single MG 
and realize energy complementarity within the system by in‐
tegrating multiple MGs. Therefore, a high-quality coordinat‐
ed optimization approach is essential for the efficient opera‐
tion of MMG systems [6]. In [10], an approach based on 
multi-agent deep reinforcement learning (MADRL) is pro‐
posed to coordinately manage the energy resources of an 
MMG system. A peer-to-peer energy trading system for ener‐
gy management of small-scale distributed energy resources 
is introduced in [28] based on MADRL. An MADRL-en‐
abled demand response system is proposed in [29] to mini‐
mize electricity costs and improve grid reliability. These ap‐
proaches establish a coordinated mechanism between control‐
lable units (e. g., MGs). Nevertheless, they do not provide 
each unit a clear distinction between the impacts of other 
units’  control strategies on its own electrical characteristics. 
In this situation, it may ignore the characteristics of energy 
conversion and transfer that are owned by different MGs 
and the voltage fluctuations caused by the frequent interac‐
tions of energy between MGs in the MMG system during 
the process of energy management, thereby causing certain 
hidden dangers to the stable operation of MG, ultimately re‐
sulting in the bad performance of the energy management of 
MMGs.

To improve energy management, we propose a novel 
MADRL-based approach called deep dense individual atten‐
tion (D2IA) architecture in multi-agent soft actor critic (MA‐
SAC) algorithm to manage the energy of multi-energy inter‐
connected MMG systems, aiming to minimize the operation 
cost while satisfying voltage limitations.

The main contributions of this study are summarized as 
follows.

1) A general energy network model is established. Along 
with the balance between energy supply and demand, a com‐
prehensive electricity-thermal energy MG model is derived 
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to describe the internal structure and operation mechanism 
of each energy network.

2) A novel MADRL-based approach is proposed for a 
multi-energy interconnected MMG system, in which each 
MG controller is modeled as an intelligent agent. Instead of 
concatenating all the system information into a neural net‐
work, as in [10], [28], and [29], the proposed approach de‐
ploys individual attention mechanisms in each MG control‐
ler. In addition, it applies the deep dense architecture in rein‐
forcement learning (D2RL) to enhance the nonlinear expres‐
sion of the attention mechanism. This provides each MG 
with the ability to determine the degree of impact of other 
MG control strategies on its operation state.

3) Unlike model-based approaches, the proposed approach 
does not require optimization of the complex energy manage‐
ment problem of interconnected MMG systems in real time. 
Using the proposed approach, the MG controllers can build 
decision-making functions offline and deploy them online to 
select the optimal decision based on the latest system state 
data in a fully decentralized manner.

4) We evaluate the performance of the proposed approach 
against various benchmark approaches using real-world his‐
torical data.

The remainder of this paper is organized as follows. Sec‐
tion II introduces the mathematical model of the intercon‐
nected MMG system and formulates the optimization prob‐
lem as a Markov game. In Section III, the proposed ap‐
proach to solve MG energy management is detailed. To high‐
light the effectiveness of the proposed approach, Section IV 
reports extensive simulation and comparative results. Finally, 
Section V concludes this paper.

II. MATHEMATICAL MODEL OF INTERCONNECTED MMG 
SYSTEM 

A. Architecture of Interconnected MMG System

The typical structure of an interconnected MMG system 
with combined heat and power (CHP) is shown in Fig. 1. 
Each MG establishes heat and electricity networks, where 
the heat network consists of a micro-turbine, a power-to-heat 
(PtH) unit (e. g., heat pump), and thermal load, while the 
electricity network consists of a diesel generator (DG), RES 
(e.g., solar, wind power), ESS, and electrical load. The pow‐
er line (black lines in Fig. 1) and heat pipe (red lines) inte‐
grate the individual MGs into an interconnected MMG sys‐
tem, such that electrical and thermal energy can be supplied 
between MGs.

The individual MGs shown in Fig. 1 are autonomous sys‐
tems that are geographically dispersed and equipped with 
RES, energy storage, and DG units to sustain local loads. En‐
ergy management at the individual MG level is intended to 
handle time-varying issues associated with RESs and loads 
using the complementary characteristics of the ESS, DG, 
and RESs. Individual MGs are often not intended to manage 
geographically scattered RESs and loads of a region but rath‐
er to manage a local area. Consequently, overall energy man‐
agement may not be the globally optimal for that region [6], 
[30]. As shown in Fig. 1, MGs can be linked to form an in‐

terconnected MMG system using power lines and heat pipes. 
In an interconnected MMG system, energy management is 
aimed to handle spatial variations in RESs and loads within 
a region or wider area by coordinating the exchange of pow‐
er between MGs and trading energy between the DN and in‐
dividual MGs [6].

This paper considers a decentralized energy management 
system that controls the operation of an interconnected 
MMG system, in which each MG has its own controller. 
Each MG controller gathers two types of information from 
the local area to aid in decision-making. The forecasted val‐
ues of wind power, solar power, electricity prices, and ther‐
mal and electrical loads of a local area, etc., are of the first 
type. The second type comes from real-time monitoring of 
system conditions such as time information, state of charge 
(SOC) of the ESS, and voltage at each node in the local ar‐
ea. The energy management system analyzes the second type 
of information and controls the power flow to maintain the 
security of the MMG system while maximizing the econom‐
ic benefits.

B. Optimization Model

We formulate the energy management problem of the in‐
terconnected MMG system as a Markov game that can be 
solved using MADRL. To model the Markov game, various 
components should be described, as detailed below.

1) State. State variables reflect the current operating condi‐
tions of the individual MG and are gathered by each MG 
controller in the energy management system for decision-
making. The state of the gth MG at time t, sg

t Î Sg, is defined 
as:
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Fig. 1.　Typical architecture of interconnected MMG system with CHP.
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where 
~
EP t is the forecasted electricity price at time t; SOC g

it 

is the SOC of the ESS in the gth MG at node i; 
~
TL

g

t  is the 

forecasted cumulative thermal load of each node; 
~
EL

g

t  is the 
forecasted cumulative electrical load of each node; P gDG

it - 1 is 

the operation power of the DG at time t - 1; 
~
P

gWT

it  and 
~
P

gPV

it  
are the forecasted power values of the wind turbine (WT) 

and photovoltaic (PV) system, respectively; 
~
NL

g

t  is the fore‐
casted electrical load of each node in the gth MG; and NV g

t  
is the voltage of each node.

2) Action. In the Markov game, the action of the gth MG 
is defined as:

ag
t ={P gESS

it P gDG
it P gPtH

it QgPV
it QgESS

it QgDG
it QgWT

it } (2)

where P gESS
it , P gDG

it , and P gPtH
it  are the active power values of 

the ESS, DG, and PtH units, respectively; and QgPV
it , QgESS

it , 
QgDG

it , and QgWT
it  are the reactive power values of the PV sys‐

tem, ESS, DG, and WT, respectively.
3) Reward function. The reward function in the Markov 

game is the objective function for optimization. It can be de‐
fined as:

r g
t =-∑

g = 1

G

(C EP
t +C gDG

t +C gGas
t +C gVoltage

t ) (3)

where G is the number of MGs; C EP
t  is the cost of buying 

electricity from the DN; C gDG
t  is the cost of the DG; C gGas

t  
is the cost of buying gas; and C gVoltage

t  is the cost of unstable 
voltage [31], [32]. These costs are given by:

C EP
t = σP DN

t ×EPt × Dt (4)

C gDG
t =C gFuel

t +C gOperation
t (5)

C gFuel
t =∑

i = 1

I

sDG
it (a(P gDG

it )2 + bP gDG
it + c)Dt (6)

C gOperation
t =∑

i = 1

I

C gstart/stop
it || sgDG

it - sgDG
it -Dt (7)

C gGas
t =∑

i = 1

I H gCHP
it Dt

ηCHP Lcvng

×GPt (8)

C gVoltage
t =∑

i = 1

I

C gVoltage
it (9)

C gVoltage
it =

ì

í

î

ïïïï

ï
ïï
ï

2.5 - 50 ||1 - vg
it     vg

itÎ(0.951.05)

-50 ||1 - vg
it            vg

itÎ[0.80.95) vg
itÎ(1.051.25]

-500                         otherwise
(10)

where EPt is the electricity price at time t; σ is the motivat‐
ing factor, which is similar to the one defined in [33] and 
used to balance the importance of the economic reward in 
the total reward; P DN

t  is the power exchange between the 
MMG system and DN at time t; C gFuel

t  and C gOperation
t  are the 

fuel and operation costs of the DG in the gth MG, respective‐
ly; a, b, and c are the coefficients of the DG fuel cost func‐
tion; C gstart/stop

it  is the start/stop cost of the DG in node i of 
the gth MG at time t; sgDG

it  is the operation state of the DG; 

H gCHP
it  denotes the thermal output of CHP; ηCHP is the ener‐

gy generation efficiency; Lcvng is the low calorific value of 
natural gas; GPt is the gas price; vg

it is the node voltage; and 
I is the number of nodes in the interconnected MMG system.

4) Transition function. The transition function sg
t + 1 =

T (sg
t a

g
t S) maps current state sg

t  to next state sg
t + 1 according 

to action ag
t  and the randomness from the environment S. Ac‐

tion ag
t  mainly alters the deterministic elements in sg

t . For ex‐
ample, SOC g

t + 1 = SOC g
t + ag

t Dt/E g
max, where E g

max is the ESS ca‐

pacity of the gth MG. For 
~
EP t, 

~
TL

g

t , 
~
EL

g

t , 
~
P

gWT

it , 
~
P

gPV

it , and 
~
NL

g

t  in sg
t , the state transition is influenced by S.

C. Constraints

The constraints are divided into those related to heat and 
power. Most heat networks comprise one source and several 
intermediate/load nodes interconnected via supply and return 
pipelines. Thus, the primary and secondary networks are the 
generation and consumption networks, respectively. Trans‐
porting thermal energy from the source node to intermediate/
load nodes comprises two steps: ① the source node gener‐
ates thermal energy; ② thermal energy is transported 
through the water supply pipe of the primary network to the 
thermal exchanger of the secondary network at the begin‐
ning. After entering the thermal exchanger of the secondary 
network, the thermal energy is transferred to all the interme‐
diate/load nodes, and the water temperature changes drasti‐
cally through this process. The water returns to the system 
through return pipelines to complete thermal circulation [34].

1)　Loop pressure equation
The head loss is the change in pressure caused by pipe 

friction. In accordance with the loop pressure equation, the 
sum of all the head losses around a closed loop must equal 
zero. The loop pressure for the entire hydraulic network is 
given by [35]:

Bhf = 0 (11)

where B is the loop incidence matrix that relates loops to 
branches; and hf is the vector of head losses.

2)　Nodal flow balance
Thermal flow follows Kirchhoff’s law. At each node, the 

amount of inflowing water is equal to that of outflowing wa‐
ter. ∑

pÎP s/r
si

ms/r
pt = ∑

pÎP s/r
ei

ms/r
pt (12)

where P s/r
si  and P s/r

ei are the sets of pipes starting and ending 
at node i in supply/return network, respectively; and ms/r

pt is 
the mass flow rate of supply/return pipe p at time t.

3)　Thermal energy balance
The generation and consumption of thermal energy must 

be balanced. In a thermal system, considering that thermal 
energy is transferred between the heat source and load nodes 
through hot and cold water via a thermal pipe, the required 
thermal energy equals the difference in energy between the 
beginning of the supply pipe and the end of the return 
pipe [34].

Hpt =CWH (ms/r
ptT

s
spt -ms/r

ptT
r
ept )    pÎNSN (13)

where Hpt is the thermal demand of pipe p at time t; CWH is 
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water heat capacity; NSN is the set of source nodes; and T s/r
spt 

and T s/r
ept are the temperatures at the start and end of supply/

return pipe p at time t, respectively.
The following constraints related to the power component 

must be satisfied during optimization of energy management.

∑
k

Iik Pkt -P Load
it =Vit∑

j = 1

J

Vjt (Gijt cos θijt +Bijt sin θijt ) (14)

∑
s

IisQst -QLoad
it =Vit∑

j = 1

J

Vjt (Gijt sin θijt -Bijt cos θijt ) (15)

Vimin £Vit £Vimax (16)

0 £P PV
it £P PV

imax (17)

0 £P WT
it £P WT

imax (18)

0 £P PtH
it £P PtH

imax (19)

P DG
it -P DG

it -Dt £RDG
up DtsDG

t -Dt +P DG
imin (sDG

t - sDG
t -Dt )+P DG

imax (1 - sDG
t )
 (20)

P DG
it -Dt -P DG

it £RDG
dn DtsDG

t +P DG
imin (sDG

t -Dt - sDG
t )+P DG

imax (1 - sDG
t -Dt )
 (21)

-P ESS
imax £P ESS

it £P ESS
imax (22)

SOC ESS
imin £ SOC ESS

it £ SOC ESS
imax (23)

(P PV
it )2 + (QPV

it )2 £(S PV
i )2 (24)

(P WT
it )2 + (QWT

it )2 £(S WT
i )2 (25)

(P DG
it )2 + (QDG

it )2 £(S DG
i )2 (26)

(P ESS
it )2 + (QESS

it )2 £(S ESS
i )2 (27)

where kÎ{PV, WT, PtH, DG, ESS}; Iik is an element in the 
generator incidence matrix, and when generator k is connect‐
ed to node i, Iik=1; Pkt is the active power of generator k at 
time t; P Load

it  is the load demand of node i; J is the number 
of nodes in the MG; Vit is the voltage amplitude of node i; 
Gijt and Bijt are the real and imaginary parts of the admit‐
tance element between nodes i and j, respectively; θijt is the 
voltage phase difference between nodes i and j; sÎ{PV, WT, 
DG, ESS}; Qst is the reactive power of node s at time t; 
QLoad

it  is the reactive power of node i; Vimin and Vimax are the 
lower and upper voltage limits of node i, respectively; P PV

it , 
P WT

it , P PtH
it , P DG

it , and P ESS
it  are the active power values of the 

PV system, WT, PtH unit, DG, and ESS of node i, respec‐
tively; RDG

up  and RDG
dn  are the ramp-up and ramp-down limits 

of the DG, respectively; sDG
t  is a binary variable that repre‐

sents the operation state of the DG at time t (1, on; 0, off); 
P PV

imax, P WT
imax, P PtH

imax, P DG
imax, and P ESS

imax are the upper limits of 
the active power for the PV system, WT, PtH unit, DG, and 
ESS of node i, respectively; SOC ESS

it  is the SOC of the ESS 
of node i; SOC ESS

imin and SOC ESS
imax are the lower and upper lim‐

its of the SOC of ESS, respectively; QPV
it , QWT

it , QDG
it , and 

QESS
it  are the reactive power values of the PV system, WT, 

DG, and ESS, respectively; and S PV
i , S WT

i , S DG
i , and S ESS

i  are 
the apparent power values of the PV system, WT, DG, and 
ESS of node i, respectively.

Equations (14) and (15) establish AC power flow con‐
straints, while (16) is the voltage amplitude constraint of 

each node. Formulas (17) - (22) are operation power con‐
straints, while (23) is the SOC constraint for the ESS, and 
(24)-(27) ensure that the reactive power generated at the in‐
verter of the PV system, WT, DG, and ESS does not exceed 
the available capacity.

III. PROPOSED APPROACH TO SOLVE MG ENERGY 
MANAGEMENT 

Conventional reinforcement learning algorithms can not 
suitably deal with Markov games owing to the curse of di‐
mensionality and lack of coordination between agents while 
considering privacy and information security. To solve this 
problem, we propose an MADRL-based approach for energy 
management of complex interconnected MMGs. Our 
MADRL-based approach called D2IA-MASAC features cen‐
tralized training and decentralized execution to ensure that 
each MG has autonomous energy management within an in‐
terconnected MMG system. The proposed approach consists 
of two neural network stages. The actor stage is responsible 
for making decisions, and the critic stage is responsible for 
guiding the actor stage to approximate the optimal poli‐
cy [36].
1) MASAC Overview

The MASAC algorithm is a multi-agent variant [37] of 
the soft actor-critic (SAC) algorithm [38]. Each MG control‐
ler is modeled as an SAC agent within the centralized train‐
ing framework to manage the energy of the interconnected 
MMG system.

Considering N agents with parameterized critic network 
Qj
ϕj
jÎ[1N], the update of the individual critic network for 

the jth agent can be defined as:

Loss =E[(Qj
ϕj

(X tAt )- y)2 ] (28)

y = r j
t + γE[Qj

ϕ′j (X t + 1At + 1 )- α ln(μ j
θ′j (s

j
t + 1 ))] (29)

where Loss denotes the optimization objective; Xt =
[s1

t s
2
t ...s

N
t ] is the state concatenation at time t; At =

[a1
t a

2
t ...a

N
t ] is the action concatenation at time t; 

Qj
ϕj

(X tAt ) and Qj
ϕ′j (X t + 1At + 1 ) are the centralized action-val‐

ue functions with parameter ϕ j and ϕ′j, respectively; γ is the 
reward discount factor; α is the temperature ratio used to bal‐
ance exploration and exploitation; and μj

θ′j denotes the target 

actor network with parameter θ′j.
N agents are parameterized by actor network μj

θj
jÎ[1N], 

and the individual policies are updated by ascent according 
to the following gradient:

ÑJ(μ j
θj

)=E[Ñθj
ln(μ j

θj
(sj

t ))(Q
j
ϕj

(X tAt )- α ln(μ j
θj

(sj
t )))]   (30)

Parameters ϕ′j and θ′j can be updated as:

ì
í
î

ïïϕ′j¬ τϕ j + (1 - τ)ϕ′j
θ′j ¬ τθj + (1 - τ)θ′j

(31)

where the soft replacement parameter τ 1.
2)　Architectures of D2IA-MASAC Networks

The architecture of the critic network used in the pro‐
posed approach is shown in Fig. 2. Each agent has its critic, 
which is composed of D2RL [39] and attention mechanism 
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[40]. Considering the first agent in Fig. 2 as an example, the 
input of the critic is the agent state and actions. Each agent 

information (i.e., states and actions) is encoded by the D2RL.

Deep neural network is a powerful approach for extracting 
features from inputs and mapping them to the desired out‐
puts. Hence, it can enhance the nonlinear capability of the 
critic network. Merely increasing the depth of a dense neural 
network may be ineffective because the original input infor‐
mation gradually vanishes as the network deepens [41]. The 
D2RL can prevent this problem. Its architecture is shown in 
Fig. 3(a). Input data i are first processed by dense neural net‐
work h1 to obtain output m1. The input of h2 is the concatena‐
tion of i and m1 instead of m1 alone, as shown in Fig. 3(b). 
A loop is established until obtaining output O. This strategy 
leverages the nonlinear mapping ability of deep dense neural 
networks by incorporating original input i into each hidden 
layer of the network, such that the information of input i is 
retained. The calculation from the input of the critic network 
belonging to the first agent of e1 is given by:

ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

I1 = concat(s1s2...sNa1a2...aN )

Iu + 1 =ReLu(concat(I1Iu )×W 1
u +B1

u )    u = 23U - 1

ζ =ReLu(IUW 1
U +B1

U )

e1 = ζW
1

O +B1
O

  (32)

where concat(·) denotes the concatenate operation function; 
ReLu(·) denotes the rectified linear unit activation function; 

Iu is the input of the uth hidden layer; W 1
u  and B1

u are the 
weight and bias matrices of the uth hidden layer of the first 
agent, respectively; U is the number of hidden layers; ζ de‐
notes the latent feature extracted by the U hidden layers 
from input I1; and W 1

O and B1
O are the weight and bias matri‐

ces of the output layer of the first agent, respectively.
The calculations for eiiÎ[1N] are processed by the atten‐

tion mechanism to emphasize representative information of 
other agents while discarding irrelevant details for decision-
making. The detailed calculation process is given as (33)- 
(35).

ωi =
exp(χ1(i) )

∑
k = 2

N

exp(χ1(k) )
    iÎ[23...N]

(33)

[χ1(2)χ1(3)...χ1(N) ]=
ϖ(e1[e

T
2 e

T
3 ...e

T
N ])

dβ
(34)

ε1 =∑
k = 2

N

ωkek (35)

where ϖ(e1[e
T
2 e

T
3 ...e

T
N ])=[e1eT

2 e1eT
3 ...e1eT

N ]; dβ is the net‐
work dimension; and ε1 denotes influence of other agents for 
the first agent.
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Fig. 2.　Architecture of critic network used in proposed approach.
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The action-value function is expressed as:

Q1 (XA)= fD2RL (e1ε1 ) (36)

where fD2RL denotes the deep-blue D2RL in the first agent. 
Training process of the proposed approach is described in Al‐
gorithm 1.

IV. NUMERICAL RESULTS 

A. Experimental Setup

We evaluated the performance of the proposed D2IA-MA‐
SAC approach through numerical experiments on an inter‐
connected MMG system, whose architecture is illustrated in 
Fig. 4. Therein, there are three MGs that each contain a heat 
network. Each colored region shown in Fig. 4 denotes a heat 
network.

Power bus; Power load
Power line impedance; Thermal load

Source node; Intermediate supply node; Intermediate return node

1
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3 4 5 6
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13 14 15 16
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67

WTPVESS DG3

3

WT

WT

PV
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ESS

ESS

DG

DG

1

2

1 2

3

1

2

Fig. 4.　Architecture of interconnected MMG system.

The parameters of lines and heat pipes in MMG system 

shown in Fig. 4 are listed in Tables I and II, respectively. 
The interconnected MMG system includes three MGs, each 
of which consists of a heat network and an electricity net‐
work. Each MG has the ESS, DG, WT, PV system, and mi‐
cro-turbine (i.e., source node in Fig. 4). The parameters relat‐
ed to this case study are listed in Tables III and IV, and 
those of the proposed approach are listed in Table V. The 
electricity price offered by the DN follows the hourly pric‐
ing from PJM [42], and the natural gas prices follow the 
monthly Natural Gas Industrial Price from the US Energy In‐
formation Administration [43]. The training data contain the 
first 200 days of data, and the test data are from days 201 to 
300 in 2017. The forecasted power of electrical and thermal 
loads, PV system, and WT of the three MGs in the intercon‐
nected MMG system on a typical day are shown in Fig. 5. 
The regions of MG1 largely include electrical loads and 
have a high RES capacity. There are fewer electrical loads 
in MG2 than in MG1, and the RES capacity of MG2 is low‐
er. MG3 has the highest proportion of RESs among the three 
MGs. In addition, the electrical loads on MG3 are relatively 
low. The thermal loads of MG1 and MG2 are similar, and 
that of MG3 is the highest.

Algorithm 1: training process of D2IA-MASAC approach for energy man‐
agement in interconnected MMG system

Initialize parameters and replay buffer

1:   for episode from 1 to P do

2:       Randomly choose electricity price and PV and WT power data of 
the κth day

3:       Randomly generate thermal and electrical loads in range

4:       for t = 1 to T do

             for MG j = 1 to N do

5:              Sample action aj
t from μj

θj
(sj

t )

6:              Input sj
t and aj

t to environment to obtain r j
t and sj

t + 1

7:              Store transition (sj
ta

j
tr

j
t s

j
t + 1 ) in memory of the jth MG con‐

troller

8:              Randomly sample batch-sized transitions from the jth replay 
buffer

9:              Update ϕj, θj, ϕ′j, and θ′j using (28)-(31)

10:          end for

11:      end for

12:  end for

TABLE I
PARAMETERS OF LINES IN MMG SYSTEM

Line

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

From node

1

2

2

2

2

2

2

1

7

7

7

7

7

1

12

12

12

12

To node

2

3

4

5

6

7

12

7

8

9

10

11

12

12

13

14

15

16

Resistance (Ω)

0.0125

0.0375

0.0300

0.0225

0.0150

0.7500

0.7500

0.0125

0.0250

0.0200

0.0225

0.0275

0.7500

0.0125

0.0175

0.0200

0.0250

0.0250

Reactance (Ω)

0.005

0.015

0.012

0.009

0.006

0.300

0.300

0.005

0.010

0.008

0.009

0.011

0.300

0.005

0.007

0.008

0.010

0.010

TABLE II
PARAMETERS OF HEAT PIPES IN MMG SYSTEM

Pipe

1

2

3

4

5

6

7

Length (m)

205

200

200

200

200

195

208

Diameter (m)

0.08

0.05

0.05

0.05

0.05

0.06

0.07
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B. Comparisons with Benchmark Approaches

To assess the effectiveness of our proposal, we compared 
it with various benchmark approaches.
1) Evaluated Benchmark Approaches

1) TD3 [44]: MG controllers are modeled as TD3 agents, 
each of which is trained individually to maximize its own re‐
ward function without coordinating with other MGs.

2) MATD3 [10]: MATD3 is an approach to optimize the 
energy management of interconnected MMG systems. This 
is a multi-agent variant of TD3.

3) MAAC [45]: MAAC uses a single common attention 
network to collect information from all MGs in a centralized 
manner and constructs a common gradient space for all MG 
controllers to update the parameters of the neural network. 
The most notable difference between MAAC and MATD3 is 
that the former introduces a common attention network.
2) Performance on Training Set

Figure 6 shows the normalized cumulative rewards (i. e., 
values of the objective function) obtained using different re‐
inforcement-learning-based approaches during the training 
process. The agents have no initial knowledge for decision-
making to obtain a high reward. 

Consequently, they explore the action space to gain experi‐
ence. As training proceeds, the agents gradually learn the en‐
ergy management strategy of the interconnected MMG sys‐
tem to increase the reward. The training curves increase un‐
til complete convergence, representing the end of training.

The reward curve of TD3 shows the lowest value and os‐
cillates considerably during training compared with other ap‐
proaches, demonstrating that a lack of coordination impedes 
a suitable energy management of an interconnected MMG 
system. MATD3 is a multi-agent variant of TD3. Compared 
with TD3, MATD3 uses the multi-agent framework inspired 
by the approach in [37] to construct a coordination relation‐
ship between each MG for energy management in an inter‐
connected MMG system. Evidently, MATD3 outperforms 
TD3 in terms of training stability and performance owing to 
the coordination mechanism. The MAAC [45] further en‐
hances the coordination between MGs by using a common 
attention network in the critic part, outperforming MATD3. 

TABLE III
PARAMETERS OF SYSTEM MODEL

Symbol

a ($/((kW)2⋅h))

b ($/MWh)

c ($)

Cgstart/stop ($)

Value

1040

30.4

1.3

5

Symbol

σ

ηCHP

Lcvng (MWh/m3)

Value

6

0.36

9.7 ´ 10-3
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Fig. 5.　Forecasted power of electrical and thermal loads, PV system, and 
WT of three MGs. (a) Data of MG1. (b) Data of MG2. (c) Data of MG3.
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Fig. 6.　Normalized cumulative rewards obtained using different reinforce‐
ment-learning-based approaches during training process.

TABLE IV
PARAMETERS OF INTERCONNECTED MMG SYSTEM

MG

MG1

MG2

MG3

MG

MG1

MG2

MG3

P PV
imax 

(MW)

0.20

0.15

0.10

Eimax 
(MWh)

0.20

0.18

0.16

P WT
imax 

(MW)

0.25

0.20

0.15

SOC ES
imax

1

1

1

P PtH
imax 

(MW)

0.005

0.005

0.005

SOC ES
imin

0.1

0.1

0.1

P DG
imax 

(MW)

0.05

0.05

0.05

RDG
up

0.025

0.025

0.025

P DG
imin 

(MW)

0.02

0.02

0.02

RDG
dn

0.025

0.025

0.025

P ES
imax 

(MW)

0.050

0.045

0.040

TABLE V
PARAMETERS OF PROPOSED APPROACH

Parameter

Temperature ratio

Reward discount factor

Memory capacity

Learning rate of actor

Learning rate of critic

Soft replacement

Batch size for updating

Value

10

0.95

1×106

3×10−4

3×10−4

1×10−3

256
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Using the common attention network in MAAC, the network 
parameters of each agent include part of the network parame‐
ters shared among agents, and each agent has an attention at‐
tribute to accelerate consensus among agents and thus en‐
hance their coordination. However, the attention network in 
MAAC does not seem to fit the optimization of the energy 
management of interconnected MMG systems because such 
systems have complex coupling characteristics between MGs 
in the energy network with combined heat and power, ener‐
gy exchange among MMGs, and energy trading between the 
MMG and DN. In an interconnected MMG system, each 
MG has its system parameters (e.g., thermal and electrical 
loads, rated power of devices, heat and power flow), and 
each MG may have negative effects on others through a 
common network owing to the complex and individual oper‐
ation. Hence, the proposed approach uses the network archi‐
tecture described in Section III, and its training outperforms 
that of MAAC, indicating the effectiveness of our proposal.
3) Performance on Test Set

To further demonstrate the effectiveness of the proposed 
approach, we select stochastic optimization approaches for 
comparison. We performed the comparisons using the NLopt 
library [46].

For optimization of deterministic information scenario 
with NLopt, uncertain information about electricity prices, 
electrical and thermal loads, solar and wind power, and other 
factors is assumed to be known beforehand. NLopt is then 
used to solve a deterministic optimization problem based on 
global information. Note that this approach is infeasible in a 
realistic scenario owing to the randomness of electricity pric‐
es, electrical load, etc.

Table VI lists the average cost of the proposed and bench‐
mark approaches over 100 test days.

The percentage represents the average cost of the bench‐
mark approaches divided by that of the proposed approach. 
The interconnected MMG system spends 465.00%, 245.97%, 
and 27.06% more under control of TD3, MATD3, and 
MAAC compared with the proposed approach, respectively. 
TD3 has no mechanism for coordination between agents and 
provides the worst results. Hence, coordination among 
agents are necessary in an MMG system. The results of 
MATD3, which are better than those of TD3, further demon‐
strate this point. The proposed approach is superior to 
MAAC, which has a common attention layer. Therefore, us‐
ing an individual attention mechanism to manage the energy 
of an interconnected MMG system is more suitable than us‐

ing a common attention mechanism. Compared with other 
approaches, our proposal achieves the closest performance to 
that of NLopt, confirming its effectiveness.

C. Evaluation on Test Set Over a Day

To show the effectiveness of the proposed approach in 
guaranteeing secure operation, the voltage of each bus for a 
day in the interconnected MMG system is shown in Fig. 7. 
The red, blue, and green lines indicate the voltage profiles 
of MG1, MG2, and MG3, respectively, while marks *, D, Ñ, 
and + indicate the voltage profiles at nodes 1, 2, 3, and 4, re‐
spectively. The shaded part indicates the area where the volt‐
age exceeds the limit. The voltage is constrained within a 
safe range at each bus and is more stable using our proposal 
than the rule-based approach, in which the rule-based ap‐
proach follows: ESS, DG, and PtH units do not operate, and 
each controllable reactive power unit has the reactive power 
associated with its power factor and active power. These re‐
sults suggest that the proposed approach can ensure the safe 
operation of interconnected MMG systems by providing rele‐
vant solutions.

The energy management result of the proposed approach 
on a test day is depicted in Fig. 8 to further illustrate the ef‐
fectiveness of the proposed approach.

MG1 has the lowest RES proportion and the largest fluctu‐
ation range in its voltage profile compared with the other 
two MGs, which has the most severe undervoltage, as 
shown in Fig. 7(b). Therefore, MG1 has a different charging 
mode from MG2 and MG3, as shown in Fig. 8(b). Specifi‐
cally, MG1 has a low voltage early in the day. To increase 
the voltage, the ESSs of MG1 discharge their power to 
avoid further voltage drops. On the contrary, MG3 has the 
highest RES penetration, which can be used to supply the 
electrical load to stabilize the voltage. Hence, its ESS can be 
used for energy arbitrage, that is, charging when the electrici‐
ty price is low and discharging when the electricity price is 
high.

TABLE VI
AVERAGE COST OF PROPOSED AND BENCHMARK APPROACHES

Approach

TD3

MATD3

MAAC

Proposed

NLopt

Average cost ($/day)

1870.14

1145.15

420.58

331.00

86.11

Percentage (%)

565.00

345.97

127.06

100.00

26.02

1.03

1.01

0.99

0.97

0.95

0.93
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Fig. 7.　Voltage profile of each bus for a day in interconnected MMG sys‐
tem. (a) Voltage profile with proposed approach. (b) Voltage profile with 
rule-based approach.
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Similarly, the ESS of MG2 performs energy arbitrage, but 
it behaves more conservatively than that of MG3. Specifical‐
ly, as shown in Fig. 8(c), the discharging power of MG3 is 
larger than that of MG2, resulting in the lowest SOC of 

MG3 at the 17th hour being lower than that of MG2 at the 
23rd hour. As MG2 has a lower RES penetration than MG3, 
if the ESS has a low SOC, the ESS may fail to supply 
enough energy to the electrical load, thus leading to under‐
voltage in MG2. Therefore, sufficient energy is required for 
the ESS of MG2 to stabilize the voltage profile. In other 
words, voltage stability is more important in MG2 than that 
in MG3 for the charging/discharging management of the 
ESS. The period from the 21st hour to the 23rd hour is the 
time of the day when electricity prices are low, as shown in 
Fig. 8(a). During this period, the charging power of MG3 is 
more reasonable when analyzed from the energy arbitrage 
perspective, as shown in Fig. 8(b). However, because MG2 
has a lower RES penetration than MG3, MG2 needs an addi‐
tional energy supply from the ESS from the 21st hour to the 
23rd hour to stabilize the voltage.

Figure 8(d) shows the operation of the PtH units, which 
convert electrical energy into thermal energy. In the heat net‐
work, the thermal demand is satisfied by the micro-turbine 
and PtH units. Because the PtH units consume power, like 
the ESS, their power profile follows a rule similar to that of 
the ESS.

As shown in Fig. 8(e), the DG of MG1 does not operate 
from the 0th hour to the 5th hour and operates at almost maxi‐
mum power from the 6th hour to the 23rd hour. This is be‐
cause from the 0th hour to the 5th hour, the electrical load is 
low, and the voltage of MG1 is relatively stable. To reduce 
the DG operation and related fuel costs, the DG should not 
work when the voltage is stable. After the 5th hour, as people 
start their activities, the electricity consumption gradually in‐
creases, and the voltage fluctuates, as shown in Fig. 7(b), 
thus requiring DG operation to compensate for the fluctua‐
tions. The DG of MG1 operates at almost maximum power 
from the 6th hour to the 23rd hour given the severe undervolt‐
age during this period, as shown in Fig. 7(b). As the voltag‐
es of MG2 and MG3 are more stable after regulation, their 
DGs do not operate to prevent the related costs.

As shown in Fig. 9, because MG1 has the lowest RES 
penetration and largest voltage fluctuations compared with 
the other two MGs, MG2 and MG3 transfer their energy to 
MG1 through the power line to stabilize its voltage profile.

V. CONCLUSION 

Energy management at the MMG system level focuses on 
scheduling power exchange between MGs and power trades 
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with the DN to minimize the total cost. In this paper, a de‐
centralized multi-energy management approach is proposed 
to achieve optimal synergies between multiple MGs. The ap‐
proach encourages active resource transactions between inter‐
connected MGs by optimizing the reward function to lever‐
age diverse multi-energy generation/loads to synergize multi‐
ple MGs. The coordinated optimization of the interconnected 
MMG system is modeled as a Markov game and solved us‐
ing the proposed approach. The proposed approach is decen‐
tralized and does not require information sharing between 
MGs to protect privacy and guarantee resource autonomy.

Simulations and comparative results show that: ① com‐
pared with benchmark approaches, the proposed approach is 
the most stable during training and achieves the best training 
results; ② on the test set, the proposed approach can 
achieve the best energy management for the interconnected 
MMG system, demonstrating its generalization ability; and ③ the interpretability of the operation of different MG as‐
sets and the power transfer between MGs further confirm 
the effectiveness of the proposed approach. At the MMG sys‐
tem level, suitably managing its internal energy can not only 
lower the cost of the system but also help keep the voltage 
of each node stable through an effective management of 
how MGs exchange energy with each other. In addition, we 
can determine from these data that the proposed approach al‐
lows MG controllers to distinguish the degree to which the 
control strategies of other MG controllers influence their 
working states, thus providing the MG controller with the ca‐
pability to effectively manage multiple energies, making the 
proposed approach more economical and safer than other 
benchmark approaches.
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