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Abstract——With the popularity of smart meters and the grow‐
ing availability of high-resolution load data, the research on the 
dynamics of electricity consumption at finely resolved times‐
cales has become increasingly popular. Many existing algo‐
rithms underperform when clustering load profiles contain a 
large number of feature points. In addition, it is difficult to ac‐
curately describe the similarity of profile shapes when load se‐
quences have large fluctuations, leading to inaccurate clustering 
results. To this end, this paper proposes a high-resolution load 
profile clustering approach based on dynamic largest triangle 
three buckets (LTTBs) and multiscale dynamic time warping 
under limited warping path length (LDTW). Dynamic LTTB is 
a novel dimensionality reduction algorithm based on LTTB. 
New sequences are constructed by dynamically dividing the in‐
tervals of significant feature points. The extraction of fluctua‐
tion characteristics is optimized. New curves with more concen‐
trated features will be applied to the subsequent clustering. The 
proposed multiscale LDTW is used to generate a similarity ma‐
trix for spectral clustering, providing a more comprehensive 
and flexible matching method to characterize the similarity of 
load profiles. Thus, the clustering effect of a high-resolution 
load profile is improved. The proposed approach has been ap‐
plied to multiple datasets. Experiment results demonstrate that 
the proposed approach significantly improves the Davies-Bould‐
in indicator (DBI) and validity index (VI). Therefore, better sim‐
ilarity and accuracy can be achieved using high-resolution load 
profile clustering.

Index Terms——Load profile clustering, largest triangle three 
buckets (LTTB), dynamic time warping (DTW), spectral cluster‐
ing.

I. INTRODUCTION 

WITH the development of smart grids and advanced 
metering infrastructure, a vast amount of fine-grained 

electricity consumption data has been generated [1]. Mining 
the electricity consumption behavior of consumers and ana‐
lyzing the potential connections among power consumption 
data allow the distribution of loads in regions to be clearly 
ascertained and improve the deployment efficiency of the 
power grid [2]. Merging consumers with similar behaviors is 
an efficient way to explore the typical electricity consump‐
tion behavior of different types of consumers [3]. The high-
resolution load profiles collected by smart meters contain 
more information but present a high degree of temporal vari‐
ability [4], which leads to indeterminate peaks and valleys in 
the power consumption curves. In recent years, effectively 
clustering high-resolution load profiles and extracting typical 
power consumption behaviors have become significant chal‐
lenges and an extremely popular research area [5].

Numerous methods, including K-medoids [6], K-means 
[7], fuzzy C-means [8], and spectral clustering [9], [10], 
have been used for load profile clustering. However, the pop‐
ular advanced monitoring systems in power distribution net‐
works provide more details related to the power consump‐
tion behavior and complicate the load profile analysis. Many 
small fluctuations will be recorded in a load curve sampled 
at a high frequency. These data floating under a stable aver‐
age value make it difficult to describe the user’s power con‐
sumption behavior and will increase the calculation cost. 
Most cluster analyses use the Euclidean distance as the basis 
for evaluating the similarity, ignoring consumption behaviors 
that might be offset on the timeline. Few studies have uti‐
lized the shapes of the load profiles as significant properties 
for clustering and classification.

To retain the major information related to electricity usage 
activities and improve computational efficiency, some stud‐
ies have utilized different dimensionality reduction technolo‐
gies to reduce the dimensions of the load data such as piece‐
wise aggregate approximation (PAA) [9] and discrete wave‐
let transform (DWT) [11]. These methods transform the orig‐
inal data to extract more compact features. For a curve that 
has a large peak-valley difference over a short time period, 
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the result after dimensionality reduction might be distorted. 
The largest triangle three buckets (LTTB) algorithm [12] 
was proposed by Steinarsson for the first time as an effec‐
tive downsampling dimensionality reduction algorithm. It 
maximizes the shape similarity to the original data and guar‐
antees that the samples contained in the output are present in 
the original input. In [13], density-based spatial clustering of 
applications with noise (DBSCAN) was used for load profile 
clustering after using LTTB algorithm to reduce the number 
of dimensions. The LTTB algorithm can represent the origi‐
nal sequence in most cases. Nevertheless, not all of the buck‐
ets can be visually represented with only one point in a stat‐
ic equal division. Further, the largest triangle dynamic (LTD) 
algorithm was proposed to extract feature data points from 
rapidly changing irregular data. It can adjust the bucket 
length to adapt to fluctuations in the curve, but the unlimited 
assignment of regions is prone to distort the time axis. In ad‐
dition, this algorithm has never been applied to load profile 
analysis.

Dynamic time warping (DTW) can realign the matching 
relationship between data points to alleviate the problem of 
time drift [14]. Therefore, DTW has been used in cluster 
analyses of load profiles [15], [16] to provide a more accu‐
rate evaluation of the similarity based on the shape of a 
curve. Reference [10] used improved fast DTW to calculate 
coarse-grained data to form a similarity matrix of spectral 
clustering. Although the calculation efficiency was im‐
proved, the accuracy was decreased. Traditional DTW may 
be prone to causing pathological alignment. A data point 
may be sufficiently close to match a large subsection of the 
other time series and affect the assessment of the similarity. 
Existing studies have effectively improved DTW and sup‐
pressed pathological alignments. The LimitDTW algorithm 
was proposed in [17] to restrict the search area to the re‐
gions close to the diagonal area of the distance matrix. How‐
ever, limiting the number of connection points may cause in‐
correct alignment owing to its rigidity. Reference [18] pro‐
posed a fast derivative dynamic time warping (FDDTW) al‐
gorithm that works on the derivative of the raw data to 
speed up the calculation of the elastic dissimilarity and pre‐
cisely reveal the load shape features, but the similarity of the 
curves can be evaluated by indicators other than the trend. 
Reference [19] proposed a method to limit the step size of a 
generated path to provide a flexible matching relationship. 
However, the maximum allowable step size cannot be consis‐
tently determined using this method.

To address these problems, a high-resolution load profile 
clustering approach based on dynamic LTTB and a multi‐
scale dynamic time warping under limited warping path 
length (LDTW) is proposed in this paper. The proposed ap‐
proach reduces the dimensions of high-resolution load pro‐
files using the dynamic LTTB and obtains a new representa‐
tive sequence composed of the original data. It can dynami‐
cally select the region where the appropriate feature points 
are located according to the degree of fluctuation in the 
curve. The use of raw data to form a new sequence ensures 
that the characteristics will not be flattened because of vio‐

lent fluctuations over a short time period. Subsequently, the 
multiscale LDTW is used as a metric to describe the similari‐
ty of sequences with regards to shape and value. The meth‐
od of limiting the overall step size is used to determine the 
matching relationship of the data points in multiscale 
LDTW, suppressing pathological alignments without limiting 
the matching relationship of each point. The similarity ma‐
trix of spectral clustering is created accordingly. Finally, 
spectral clustering improves the similarity of the load pro‐
files in the same cluster and increases the accuracy of load 
profiling.

The main contributions of this paper are as follows.
1) An improved LTTB algorithm is proposed to address 

the high volatility of high-resolution load profiles. A dynam‐
ic method for determining a region of representative points 
in the load profiles is provided, and the new sequence is 
composed of the original data to reduce the possibility of dis‐
tortion. It can overcome the fixed bucket limitation and 
maintain a balance between the retention of key information 
and the computational cost.

2) Multiscale LDTW is proposed to construct a similarity 
matrix for spectral clustering. The determination of the 
matching relationship between data points by limiting the 
overall step size is applied to load profile clustering for the 
first time. This flexible method suppresses pathological align‐
ment. The discrimination ability of the shape similarity is en‐
hanced, and the accuracy of high-dimensional load profile 
clustering is improved.

3) An approach to high-resolution load profile clustering 
is proposed, which improves the effect of clustering and pro‐
vides a more accurate description of the power consumption 
behavior.

II. PROPOSED APPROACH 

The main process of load profile clustering includes five 
steps: input raw data to generate load profiles, preprocess 
the raw load profiles, reduce the dimensionality of the load 
profiles using dynamic LTTB, cluster load profile using mul‐
tiscale LDTW, and extract typical load profiles.

A. Data Preprocessing

We regard the load data that fall outside three standard de‐
viations of the mean as outlier data and fill in missing data 
using the k-nearest neighbor (KNN) algorithm. We normal‐
ize the data using the min-max method and convert data at 
different levels into a unified measure. The processed data 
are arranged to form the load profiles for clustering.

Assuming that the original data X ={x1x2...xn } have 
been screened for outliers and that the missing values are 
filled in, we convert the original data into a new sequence 
X ′={x1′x2′...xn′}. The ith datum xi′ is calculated using (1).

xi′=
xi - ximin

ximax - ximin

    i = 12n (1)

where xi′ is the ith record after normalization using the ex‐
treme values; and ximin and ximax are the minimum and maxi‐
mum records, respectively.
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B. Dynamic LTTB

The proposed dynamic LTTB has a dynamic bucket size 
that is different from LTTB with equal-sized buckets. In‐
spired by the LTD algorithm, dynamic LTTB reassigns each 
bucket to capture representative feature points. If the fluctua‐
tion in a bucket is considerable, it is likely that the data 
points are better represented as two buckets. Two adjacent 
buckets can be merged if the fluctuation is low. The steps of 
the proposed method are as follows.

Step 1: separate all the data points into roughly equal-
sized buckets, with the first and last data points from the 
original data serving as the first and last buckets, respective‐
ly.

Step 2: evaluate the fluctuation in the data in each bucket 
by the variance and adjust the sizes of the buckets according‐
ly. Select the highest-ranking bucket and divide it into two 
equal-sized buckets so that an extra bucket can be created. 
We maintain the total number of iterative buckets by locat‐
ing and combining an adjacent bucket pair with the lowest 
total variance sum. Meanwhile, we focus on limiting the size 
of a single bucket. Taking division and merging as one oper‐
ation, we obtain the final bucket distribution through itera‐
tion. The number of iterations for adjusting the bucket size 
is calculated using (2).

N =
n

T ´ 10
(2)

where N is the number of iterations; n is the original count 
of data points; and T is the downsampling threshold.

To guarantee that a bucket does not cause an excessive 
time shift after redivision, which will have a negative effect 
on the description of the load curve characteristics, we need 
to limit the size of a single bucket. Let the maximum length 
of the barrel be m times the original length and the mini‐
mum length be n times the original length. The range of the 
limit length can be adjusted according to different datasets. 
We select different values of m and n for multiple power 
load datasets having different lengths for the experiments. 
During the experiments, we need to select different values of 
m and n to limit the splitting of the buckets, and we com‐
pare the effects of dimensionality reduction for different val‐
ues of m and n to determine the appropriate values.

Step 3: go through all the buckets and choose the represen‐
tative points from each. The first and last buckets have only 
one point that is selected by default. The dynamic LTTB 
moves from left to right, working with three buckets at a 
time. The first point in the left corner of the triangle is al‐
ways fixed as the previously selected point. We select the 
midpoint of the third bucket as a temporary point. Thus, the 
dynamic LTTB has two fixed points. The remaining point to 
be determined is the intermediate data point. We use the ef‐
fective area (EA) of the data point of the current bucket to 
determine the most representative point. The EA of a point 
is the area of a triangle formed by its two adjacent points. 
The construction of the largest triangle across the buckets is 
depicted in Fig. 1 using the previously selected points A and 
B and a temporary point C. Each circle represents a data 
point, and the blue circles are the selected representative da‐
ta points.

By adjusting the buckets of the original data and restrict‐
ing bucket segmentation dynamically, representative data 
points can be extracted more effectively, and the interval for 
selecting the feature data can be selectively controlled when 
the curves have different fluctuations.

C. Spectral Clustering Based on Multiscale LDTW

The description of the similarity between curves and the 
choice of clustering algorithm are the important components 
of the power load profile clustering analysis. The DTW algo‐
rithm is frequently used to compare similarities across time 
series and has a positive impact on curve comparisons. On 
this basis, the proposed multiscale LDTW offers a more 
adaptable and multiangle data point matching relationship. 
Spectral clustering has been widely used because of its excel‐
lent clustering effects. This paper proposes spectral cluster‐
ing based on multiscale LDTW to improve clustering out‐
comes. It employs multiscale LDTW as a similarity measure 
to produce a similarity matrix for spectral clustering.
1)　Multiscale LDTW

The proposed multiscale LDTW inherits the concept of 
DTW with a limited warping path length. In the matching 
process, the soft restriction method of limiting the number 
of steps in the entire series matching process is used to gen‐
erate an evaluation index for clustering. On this basis, the 
original distance measurement method is improved. More‐
over, a method for determining the step length for the restric‐
tion of series with different characteristics is proposed to bal‐
ance the topological and direct alignments of the series.

The main idea of multiscale LDTW is to determine the 
step size of a path to provide more flexible restriction for da‐
ta point matching and find the optimal matching path. We 
can observe the process in reverse. Let the total step size of 
a path be S, the current step size in the matching process be 
s, and the corresponding distance be l. The last point of the 
two series must match, and S = s at this time. S = s - 1 must 
originate from the left, lower, or lower left side according to 
DTW rules. The previous step cannot be used if the step 
size for these three positions does not satisfy S = s - 1. An ad‐
ditional dimension s is added to determine whether the possi‐
ble step size of the previous data point conforms to the total 
step size S. When filling the distance matrix Dist, each posi‐
tion Dist[ijs] needs to include the path length correspond‐
ing to all possible path lengths, and the minimum is selected 
in this step.

Therefore, we can improve the calculation process of 
DTW and obtain:

Bucket n−1

A

B

Bucket n Bucket n+1

C

Fig. 1.　Largest triangle formed by three adjacent buckets.
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¥                                                                     i = 0j > 0 or i > 0j = 0

dist(piqj )+min{Dist[i - 1j - 1s - 1]

   Dist[i - 1js - 1]Dist[ij - 1s - 1]}    i > 0j > 0
(3)

where i and j represent the positions of the data points in the 
series P and Q, respectively; and dist(piqj ) is the distance 
between the data points pi and qj.

The numerical values and derivatives of the series mea‐
sure the characteristics of the series from different perspec‐
tives. The difference in the numerical values indicates the 
difference between the series themselves, whereas the deriva‐
tive more closely reflects whether the changes in the trends 
of the series are similar. In this study, we use a combination 
of numerical and derivative differences as the distance mea‐
sure and provide adjustable weights. An element of the dis‐
tance matrix is calculated as:

dist(xy)= αdE (xy)+ βdD (xy) (4)

where dist(xy) is the distance metric obtained after weight‐
ing; dE (xy) and dD (xy) are the numerical and derivative dif‐
ferences of each corresponding data point of the two series, 
respectively; and α and β are the corresponding weights (α +
β = 1).

The weights can be adjusted according to the characteris‐
tics of different time series. To calculate the derivative of a 
data point, we use the following approximation:

Dev(pi )=
(pi - pi - 1 )+ (pi + 1 - pi - 1 )/2

2
(5)

The use of the total step size as the limiting condition can 
improve flexibility during the matching process, but there is 
a problem of determining a limited step size for the profiles. 
In this study, the standard deviation is used to measure the 
fluctuation in the sequences in the datasets, and the limited 
step size L is determined accordingly.

The proposed approach determines whether it is necessary 
to provide a more relaxed step size limitation by measuring 
the fluctuation in the data points compared with the points at 
the same position. Let the original step size be the length of 
the series. The standard deviation of the points at the same 
position is calculated and recorded, and the difference be‐
tween the two paired points is compared with the standard 
deviation of the position. When the difference is small, the 
fluctuation is not sufficient to increase the step size. Other‐
wise, the original step size is increased by 1. Then, we iter‐
ate over the data points at each location to obtain the final 
step size L.

The calculation process for multiscale LDTW is summa‐
rized in Algorithm 1.
2)　Improved Spectral Clustering

Spectral clustering is becoming increasingly popular be‐
cause of its excellent performance for time-series clustering. 
The fundamental concept behind spectral clustering is the 
conversion of all of the power data into points in space. The 
edge that links the weights of these points between two 
spots separated by a long distance is lower.

To achieve the goal of clustering, the edge weight be‐
tween distinct subgraphs after cutting is as low as possible, 
and the edge weight sum within the subgraph is as high as 
possible by cutting the graph made of all data points [20]. In 
this study, a similarity matrix that is in line with the load 
profile characteristics is generated using multiscale LDTW, 
replacing the original distance metric. The steps of spectral 
clustering based on multiscale LDTW are as follows.

Step 1: create a graph G for a given set of samples con‐
taining n load profiles, with each series acting as a vertex on 
the graph. Calculate the multiscale LDTW distance between 
each sample.

Step 2: use multiscale LDTW as the distance measure fm 
to calculate the distance between each series to form the sim‐
ilarity matrix S.
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Construct the degree matrix D. Each diagonal element of 
D is the sum of the elements of each row of the associated 
similarity matrix S, and all other elements are 0.
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Algorithm 1: calculation process for multiscale LDTW

Input: sequences AB; limited step size L; distance matrix Dist formed by 
each combination of data points between the sequences calculated by (4)

Output: distance between sequences A and B calculated by multiscale 
LDTW

1. Let N be the length of the sequence

2. Let D[pqs]= (diff (p′q′ )) be the matrix recording the cumulative dis‐
tances computed during the matching process. p and q represent the 
positions of the data points matched by the current series A and B, re‐
spectively; diff records the accumulated distance to the current posi‐
tion; and (p′q′ ) is used to record the matching situation of the previ‐
ous step

3. Initialize D[110]= (Dist[110] (00))

4. Calculate D when p = 1 or q = 1 using (3)

5. for p = 1 to N do

6.   for q = 1 to N do

7.     for s = min(p,q) to 2N - 1 do

8.       Calculate D[p + 1q + 1s][0] by (3) and record the coordinate corre‐
sponding to the minimum value using D[p + 1q + 1s][1]

9.      end for

10.   end for

11. end for

12. MinStep = N, MaxStep = L

13. The smallest D[NNs][0] in the range from MinStep to MaxStep is the 
multiscale LDTW distance
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Calculate the Laplacian matrix L using S and D and nor‐
malize the Laplacian matrix to produce superior clustering 
results.

L =D
-

1
2 (D - S)D

-
1
2 (8)

Step 3: compute the eigenvectors of L and arrange the vec‐

tors in ascending order of eigenvalues to form the matrix H. 
To form a new matrix Yk ´ n, the first k eigenvectors are cho‐
sen. The row vector of matrix Y is used as the new feature 
of the original series to obtain the clustering result.

The flowchart of the proposed approach is shown in 
Fig. 2.

III. PERFORMANCE EVALUATION 

In this section, the proposed approach is evaluated with 
multiple high-resolution load profile datasets. And it is com‐
pared with popular approaches in terms of the effects of di‐
mensionality reduction and the similarity measures.

A. Descriptions of Datasets

In this study, multiple publicly available load datasets are 
used to evaluate the proposed approach. We choose the 
smart building energy dataset CU-BEMS [21] and select 
three datasets related to power loads in the University of Cal‐
ifornia time series archive [22] to evaluate the performance 
of the proposed approach. High-resolution data are measured 
every few seconds to 30 min [23]. The datasets used in this 
study have a sampling frequency ranging from 1 to 15 min. 
We evaluate the volatility of the datasets using the coeffi‐
cient of variation (CV). The CV of the power load data ex‐
ceeds 0.8. Therefore, each dataset has a high degree of vola‐
tility. The basic information of the datasets used in this 
study is summarized in Table I.

B. Performance Measures

This subsection introduces the performance measures used 
in this study. The effects of dimensionality reduction are 
evaluated using the average distinguished information (ADI). 
The Davies-Bouldin indicator (DBI) and validity index (VI) 

are used to measure the clustering effect. The DBI is a com‐
monly used indicator to measure the clustering effect. By 
comparing the similarity based on both distance and correla‐
tion, the VI considers whether the changes in the trends be‐
tween series are similar in a more thorough manner.

1) ADI [9]: ADI assesses the retention of the original se‐
quence features. Representation data with a larger ADI im‐
plying that the performance of an algorithm is better for 
maintaining distinct characteristics.

ADI =

1
M∑j = 1

L ∑
i = 1

M ( )yij - ȳNj

2

Ls

(9)

where yij is the element in a two-dimensional representation 
dataset Y; M is the total number of series; ȳNj is the mean of 
all the jth data of the series; and Ls is the length of each se‐
ries.

2) DBI [24]: DBI is commonly used to evaluate the with‐
in-cluster scatter and between-cluster separation.
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k∑i = 1
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i ¹ j

Si + Sj

Mij

(10)

where Xj is the jth data point in class i; Ai is the center of 
class i; Ti is the number of data points in class i; Ni is the 
number of data points in Ai; aki is the value of the kth attri‐
bute of the center point of class i; Si is the mean distance be‐
tween the samples in the ith class and their cluster centroids; 
and Mij is the distance between the ith class and the jth cluster 

Dynamic LTTB

Reassign the bucket length

Calculate distance feature dist(x,y)

Determine limited step size L

Match data points accordingly

Calculate Multiscale LDTW

Determine the feature points

Obtain new profiles

Dimension-reduced

dataset
Create similarity

matrix D

Perform

spectral clustering
Load profile 1

Load profile n

Load data

…

Multiscale LDTW

Fig. 2.　Flowchart of proposed approach.

TABLE I
BASIC INFORMATION OF DATASETS

Dataset

CU-BEMS

Computer

Powercons

Electric devices

Length

1440

720

144

96

Size of samples

101

241

176

1367

CV

1.42

0.83

1.06

1.23
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centroid. A smaller DBI indicates a better clustering effect.
3) VI [25]: VI considers whether the changes in the trends 

between series are similar by evaluating the similarity on the 
basis of both the distance and correlation. Furthermore, a 
change in the value of μ can alter the proportion of distance 
and correlation depending on the situation; normally, μ is 0.5.
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d(x)=
d̄i (x)

d̄0 (x)

r(x)=
r̄0 (x)
r̄i (x)

VI = μd(x)+ (1 - μ)r(x)

(11)

where d̄i (x) is the average value of the distances from all of 
the objects of the dataset to the corresponding clustering cen‐
ters; d̄0 (x) is the average distance between cluster centers; 
r̄i (x) is the average correlation between the consumption pro‐
files and the corresponding clustering centers; and r̄0 (x) is 
the average correlation between clustering centers.

C. Effects of Dimensionality Reduction

In this subsection, we analyze the effects of dimensionali‐
ty reduction from three aspects, compare the information re‐
tention and clustering quality after performing equally-
spaced sampling (ES), PAA, LTTB, and dynamic LTTB, and 
show the details of data processing through an example. We 
use different methods to reduce the dimensions of the four 
datasets with different lengths, and the resulting ADIs are 
listed in Table II. The ADIs of the dynamic LTTB are 0.16, 
0.13, and 0.06 higher than those of the other methods on av‐
erage. It can be observed that dynamic LTTB performs bet‐
ter than the other methods and can retain more original fea‐
tures.

Further, we cluster the dimensionless load profiles created 
by different methods as clustering targets and compare their 
clustering effects. In Table III, we consider a dimensionality 
reduction curve with a short length as an example to obtain 
the DBIs and VIs of the four datasets. Compared with direct 
clustering of the original data, DBI and VI only increase by 
0.13 and 0.05, respectively, when using dynamic LTTB, 
which are lower than those of the other methods.

To demonstrate the effects of different dimensionality re‐
duction methods more intuitively, we select a series in the 
Powercons dataset as an example to show the series ob‐
tained by different dimensionality reduction methods. The 
original series length decreases from 144 to 12. The results 
are shown in Fig. 3.

The sampling time of this dataset is 10 min. The green 
dotted line represents the division line for each bucket. From 
this example, we can observe the advantages of dynamic 
LTTB for dimensionality reduction. The results of ES can be 
considered as random selection, which is likely to miss key 
data features. The PAA uses the average value of the data in 

0 24 48 72 96 120 144
Sampling point

0 24 48 72 96 120 144
Sampling point

0 24 48 72 96 120 144
Sampling point

0 24 48 72 96 120 144
Sampling point

(a)

(b)

(c)

(d)

2

1
E

le
ct

ri
c 

p
o

w
er

(k
W

)

2

1

E
le

ct
ri

c 
p

o
w

er

(k
W

)

2

1

E
le

ct
ri

c 
p

o
w

er

(k
W

)

2

1

E
le

ct
ri

c 
p

o
w

er

(k
W

)

Original profile; Profile after dimensionality reduction

Fig. 3.　Example series from Powercons dataset showing effects of differ‐
ent dimensionality reduction methods. (a) ES. (b) PAA. (c) LTTB. (d) Dy‐
namic LTTB.

TABLE II
COMPARISON OF ADIS FOR DIFFERENT DIMENSIONALITY 

REDUCTION METHODS

Dataset

CU-BEMS

Computer

Powercons

Electric 
devices

New 
dimension

48

24

48

24

24

12

24

12

ADI

ES

0.72

0.71

0.18

0.13

0.24

0.20

0.19

0.22

PAA

0.78

0.69

0.22

0.20

0.30

0.26

0.25

0.17

LTTB

0.83

0.74

0.25

0.18

0.33

0.31

0.41

0.39

Dynamic LTTB

0.89

0.88

0.28

0.23

0.35

0.32

0.48

0.47

TABLE III
COMPARISON OF DBIS AND VIS OF FOUR DATASETS OBTAINED BY 

DIFFERENT DIMENSIONALITY REDUCTION METHODS

Dataset

CU-BEMS

Computer

Powercons

Electric devices

Index

DBI

VI

DBI

VI

DBI

VI

DBI

VI

Original 
data

0.74

0.11

2.52

0.29

1.51

0.74

3.31

0.48

ES

1.92

0.34

4.11

0.67

2.57

1.14

4.82

0.91

PAA

1.21

0.19

2.97

0.38

1.73

0.91

4.05

0.71

LTTB

1.06

0.16

2.89

0.30

1.69

0.93

3.48

0.63

Dynamic 
LTTB

0.78

0.13

2.77

0.26

1.63

0.87

3.41

0.56
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each bucket as a representative. If the data points in the 
bucket significantly fluctuate, the representative point may 
poorly describe the characteristics of the original series com‐
pared with the average. LTTB is more flexible in selecting 
representative points, but it does not perform well in cases 
where multiple key data points are located in the same buck‐
et. The dynamic LTTB considers the locations of potential 
key data points during the process of generating buckets and 
accordingly creates a flexible division. In the case of load 
profiles with large fluctuations and uncertain locations, the 
feature retention of the original sequence can be improved, 
which is conducive to the subsequent clustering.

D. Effects of Similarity Method

We use different similarity methods to cluster different da‐
tasets and compare their clustering performances and the 
matching relationships of data points. We perform clustering 
using the similarity matrix calculated by DTW, derivative dy‐
namic time warping (DDTW), LimitDTW, and multiscale 
LDTW and evaluate the clustering quality using DBI and 
VI. The results are presented in Table IV. The experiment re‐
sults demonstrate that the proposed multiscale LDTW 
achieves excellent performance during the clustering process 
for load profiles with different lengths. DTW is particularly 
prone to pathological alignment when the curves have large 
fluctuations; thus, the clustering quality is poor. Other meth‐
ods provide different solutions to this problem. Therefore, 
the results are generally better. Among these methods, DBI 
and VI of multiscale LDTW are 0.5 and 0.09 lower than 
those of DDTW on average, respectively, and 0.27 and 0.1 
lower than those of LimitDTW on average. Multiscale 
LDTW has better performance.

To demonstrate the improvement in data point matching 
with multiscale LDTW more clearly, we take the matching 
paths of two load profiles in the Powercons dataset obtained 
by DTW and multiscale LDTW. The sampling time of this 
dataset is 10 min. The calculated suitable step size for this 
example is 179. The connection relationships between the da‐
ta points are shown in Fig. 4. The diagram plots the two 
curves (series A and series B) on one coordinate system to 
represent the matching relationship of each data point. We 
can clearly observe an improvement in the situation where 
one point matches too many data points. Therefore, the prob‐

lem of pathological alignment is significantly alleviated. In 
addition, multiscale LDTW does not impose any restrictions 
on the specific matching range of a single data point. It only 
regulates the total length of the path via the computed maxi‐
mum step size, allowing for more flexible creation of the op‐
timal path during matching. Combining the above two 
points, it will result in more logical and accurate clustering 
results as well as typical load profiles.

The clustering results for the CU-BEMS dataset in Fig. 5 
are obtained using the proposed approach. The load profiles 
are divided into six clusters, where the gray curve represents 
the original curve and the red curve represents the typical 
curve of each cluster. 

According to the results, we can obtain the following char‐
acteristics of each cluster. There is a continuous power con‐
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Fig. 5.　Clustering results for CU-BEMS dataset with proposed approach. 
(a) Cluster 1. (b) Cluster 2. (c) Cluster 3. (d) Cluster 4. (e) Cluster 5. (f) 
Cluster 6.

TABLE IV
COMPARISON OF CLUSTERING QUALITY WITH DIFFERENT SIMILARITY 

METHODS

Dataset

CU-BEMS

Computer

Powercons

Electric devices

Index

DBI

VI

DBI

VI

DBI

VI

DBI

VI

DTW

1.52

0.26

3.43

0.41

2.18

1.31

3.97

0.77

DDTW

0.91

0.17

3.07

0.28

1.74

0.91

4.87

0.83

LimitDTW

1.03

0.21

2.96

0.29

1.95

0.98

3.73

0.72

Multiscale 
LDTW

0.78

0.13

2.77

0.26

1.63

0.87

3.41

0.56
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Fig. 4.　Connection relationships between data points obtained with DTW 
and multiscale LDTW. (a) DTW. (b) Multiscale LDTW.
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sumption peak from 08:00 to 20:00 in cluster 1, and it de‐
creases slightly at noon. The load of cluster 2 is very low 
for a long time. The peak periods of power consumption for 
cluster 3 are 08:00-12:00 and 13:00-16:00. The overall load 
level of cluster 4 is low, but the load from 06:00 to 20:00 is 
relatively high. The peak load of cluster 5 occurs from 00:00 
to 08:00 and from 16:00 to 24:00. The load of cluster 6 is 
maintained at a stable level. Compared with previous meth‐
ods, the proposed approach achieves a more accurate divi‐
sion. Each cluster has distinct characteristics considering the 
similarity between samples from multiple perspectives.

E. Computational Efficiency

In this subsection, we compare DTW, DDTW, and Limit‐
DTW with multiscale LDTW. The average time required to 
generate a similarity matrix using different methods for four 
different datasets is shown in Fig. 6. The average time of 
DDTW is longer because the calculation of the derivative 
takes more time, but the derivatives of the load profiles can 
provide an assessment of the similarity between the trends. 
LimitDTW is slightly faster than DTW because it reduces 
the search scope. Multiscale LDTW is more time-consuming 
than the other methods. Let the lengths of two sequences be 
M1 and N1, and let L1 be the maximum step size of the re‐
striction. Because the situations for different paths need to 
be considered, the time complexity of multiscale LDTW is 
O(L1 M1 N1 ), which is higher than that of DTW (O(M1 N1 )). 
Although the performance with respect to this aspect is un‐
satisfactory, the structure of multiscale LDTW is suitable for 
parallel computation. The calculations of different step sizes 
and the distances between different time series are indepen‐
dent and can be performed simultaneously.

IV. CONCLUSION 

This paper presents a high-resolution load profile cluster‐
ing approach based on dynamic LTTB and multiscale 
LDTW that improves the effects of feature extraction and 
clustering in the data with substantial fluctuations. The pro‐
posed dynamic LTTB can scan the possible positions of data 
points with key features and flexibly adjust the distribution 
of the buckets in each sequence. The proposed multiscale 
LDTW suppresses the pathological alignments of the data by 
limiting the overall step size of the matching between the da‐

ta points in sequences. The adjustable numerical and deriva‐
tive distances are combined for measurement. Compared 
with other popular methods, the proposed approach exhibits 
better accuracy for most datasets.

In future work, an efficient approach to DTW that can 
quickly determine the matching relationships between data 
points is worth studying.
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