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Abstract——To optimize the placement of soft open points 
(SOPs) in active distribution networks (ADNs), many aspects 
should be considered, including the adjustment of transmission 
power, integration of distributed generations (DGs), coordina‐
tion with conventional control methods, and maintenance of eco‐
nomic costs. To address this multi-objective planning problem, 
this study proposes a multi-stage coordinated robust optimiza‐
tion model for the SOP allocation in ADNs with photovoltaic 
(PV). First, two robust technical indices based on a robustness 
index are proposed to evaluate the operation conditions and ro‐
bust optimality of the solutions. Second, the proposed coordinat‐
ed allocation model aims to optimize the total cost, robust volt‐
age offset index, robust utilization index, and voltage collapse 
proximity index. Third, the optimization methods of the multi- 
and single-objective models are coordinated to solve the pro‐
posed multi-stage problem. Finally, the proposed model is imple‐
mented on an IEEE 33-node distribution system to verify its ef‐
fectiveness. Numerical results show that the proposed index can 
better reveal voltage offset conditions as well as the SOP utiliza‐
tion, and the proposed model outperforms conventional ones in 
terms of robustness of placement plans and total cost.

Index Terms——Multi-stage coordinated optimization alloca‐
tion, robustness index, soft open point (SOP), active distribu‐
tion network.

I. INTRODUCTION

RENEWABLE energy can effectively address the con‐
flict between growing load demands and environmental 

protection, and these topics have received growing attention 
in recent years [1], [2]. However, increased integration gener‐
ates problems for active distribution networks (ADNs), in‐
cluding bidirectional power flow, voltage rise, and power 

fluctuation. Soft open points (SOPs) are effective solutions 
to address these problems, whereby the power flow can be 
adjusted and a flexible connection among feeders can be re‐
alized [3]. Correspondingly, SOPs must be used both to opti‐
mize economic objectives such as reducing network loss and 
to meet technical requirements such as power supply reliabil‐
ity improvement and fluctuation suppression. SOPs are also 
required for coordinating with conventional control methods 
such as the switching of capacitor banks (CBs) and demand 
response (DR) to increase the integration of distributed gen‐
erations (DGs) and further reduce carbon emissions. There‐
fore, introducing a multi-objective coordinated optimization 
model is critical in determining the optimal locations and ca‐
pacities of SOPs in ADNs.

Numerous studies on the optimal targets of SOPs in 
ADNs have been conducted. References [4] - [6] optimized 
the total cost of a distribution network, and [7] - [10] intro‐
duced technical-oriented multi-objective optimization (that in‐
cluded power loss reduction, load unbalanced condition, and 
voltage profile improvement) to demonstrate the capabilities 
of SOPs in improving the operating conditions of ADNs. 
The objective function in [11] aimed to maximize the resto‐
ration of weighted loads based on networked microgrids 
formed by SOPs. However, these studies hardly considered 
the indices or targets related to the SOP utilization, which 
means that very few variables from the SOP model were 
used in the technical indices to measure whether the SOP uti‐
lization was reasonable. This research gap has resulted in 
lower active and reactive power regulation capacities and 
higher economic costs.

The outputs of renewable energy and load demand in 
ADNs are characterized by a certain degree of uncertainty. 
Provided that the optimization objectives are highly sensitive 
to the fluctuation of uncertainty factors, the effectiveness of 
the SOP planning is weakened. Previously, the generation of 
stochastic distribution functions, typical uncertainty scenari‐
os, or robust optimization was adopted to address uncertain 
variables. Monte Carlo simulations were conducted in [2] 
and [12] to produce several scenarios to imitate the uncer‐
tainty of load demand and DGs; historical data samples were 
used in [3], [8], and [13] to construct uncertain scenarios to 
represent stochastic behavior; and Weibull and beta distribu‐
tions were introduced in [14] to address uncertain factors. 
However, these methods are unsystematic and inaccurate for 
long-term allocation-related problems because it is difficult 
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to obtain the long-term fluctuation of uncertainty factors. 
Thus, the optimal solutions generated by these methods are 
not robust to uncertainty factors. Robust optimization is a de‐
sirable alternative for addressing uncertainties [15]. Two-
stage robust optimization (RO) models were adopted in [10], 
[16], and [17] to improve robust system security. However, 
this type of model is based on worst-case scenarios, which 
leads to over-conservative results [10]. Reference [9] em‐
ployed distributional RO to avoid over-conservative results. 
However, the solution of this model is complex and results 
in time-consuming computations.

For the solution method, the majority of existing multi-ob‐
jective optimization methods using SOPs typically model 
multiple objectives as a single target with a weighted sum, 
such as in [10], [18], [19]. However, establishing weight pa‐
rameters for practical engineering problems is subjective and 
oversimplified. Alternatively, multi-objective evolutionary al‐
gorithms (MOEAs) are effective at solving multi-objective 
optimization problems. References [20] - [23] adopted well-
known MOEAs such as non-dominated sorting genetic algo‐
rithm-II (NSGA-II), particle swarm optimization, ant colony 
optimization, and the Archimedes optimization algorithm to 
obtain optimized results. Reference [24] proposed a systemat‐
ic solving method for the maximum term constraint, which 
was combined with the ε constraint algorithm for multi-ob‐
jective optimization. However, these solution methods rarely 
consider robustness. The number of variables, convergence 
difficulties, and corresponding computational burden all in‐
crease exponentially when robust optimality is considered.

To address the weaknesses of previous studies, this paper 
proposes a multi-stage coordinated optimization model for 
the SOP allocation while considering economic, robust tech‐
nical, and voltage collapse proximity indices. The main con‐
tributions of this paper are summarized as follows.

1) New robust technical indices based on the quantitative 
robustness assessment method are proposed to evaluate the 
robust optimality of allocation results. These strengthen the 
effectiveness of the SOP allocation optimization strategy 
without requiring assumed probability distributions for uncer‐
tain variables.

2) A multi-stage SOP allocation optimization model is es‐
tablished to balance the tradeoff among the investment and 
operation costs, robust voltage offset index, robust SOP utili‐
zation index, and voltage collapse proximity index.

3) A coordinated multi-objective nonlinear model and sin‐
gle-objective linear model solution method are proposed to 
solve the multi-stage SOP allocation optimization model. 
Compared with conventional methods that consider single-
objective optimization or direct multi-objective optimization, 
the proposed model not only avoids the subjectivity of the 
single-objective model but also breaks through the computa‐
tional burden of direct multi-objective solvers, thereby allow‐
ing robustness to be considered.

The remainder of this paper is organized as follows. Sec‐
tion II presents the technical evaluation indices (robustness, 
robust voltage offset, robust SOP utilization, and voltage col‐
lapse proximity indices). Section III establishes the multi-
stage robust optimization model. Section IV describes the 
computational steps, and presents a flow of the proposed so‐

lution method. Section V presents case studies, and Section 
VI concludes this paper.

II. TECHNICAL EVALUATION INDICES

A. Quantitative Robustness Assessment

The uncertainty of the output and load demand of DGs un‐
der an ADN operation can deteriorate the performance of 
SOPs. In this paper, a novel robustness index is proposed to 
assess the sensitivity of an SOP plan when subjected to un‐
certain variables. The acceptable sensitivity region (ASR), 
which represents the maximum acceptable variation of the 
objective function value subjected to variations in specific 
uncertain parameters [25], is effective for sensitivity assess‐
ment. As illustrated in [25], the result of a larger ASR is a 
more robust solution.

Two variations of uncertainties (Dῶ1 and Dῶ2 in Fig. 1) 
and two objectives (f1 and f2 in Fig. 2) are adopted to im‐
prove the robustness assessment. Figure 1 illustrates an ASR 
and sensitive directions when uncertainties are affiliated with 
the objectives. Point 1 (P1) represents a case in which the 
variation in fi Dfi is smaller than the maximum acceptable 
variation Df  

imax. Point 2 (P2) represents a situation in which 
Dfi =Df  

imax. Point 3 (P3) represents a scenario in which Dfi >
Df  

imax. Correspondingly, Fig. 2 shows the range of Dfi de‐
rived from Dῶi. P1-P3 in Fig. 1 conform to P1-P3 of the Dfi 
range (Fig. 2), respectively. The smaller the range of Dfi, the 
more robust the solution is, because the same variation of 
uncertainties leads to a smaller change in the objective func‐
tion. However, for practical engineering problems, the ASR 
is always irregular and asymmetric, which means that obtain‐
ing the actual area of the ASR is difficult. Therefore, the sen‐
sitive direction si is used to evaluate the ASR quantitatively. 
For example, as illustrated in Fig. 1, the change rate of Dfi is 
the smallest in the s1 direction, which indicates that the ob‐
jective function is less sensitive to variations in uncertainty 
as compared with other directions. The change rate of Dfi is 
the largest in the s2 direction, indicating the most sensitive 
direction of the objective to variations in uncertainty.

To estimate the ASR for alleviating computational burden, 
the concept of a worst-case sensitivity region (WCSR) is in‐
troduced. WCSR is defined as the largest n-sphere within 
the ASR [25] in Fig. 3. No solution within the WCSR af‐
fects the feasibility of the SOP allocation decisions, and this 
robust assessment does not require presumed probability dis‐

ASR

s2

s1

P1

P2

P3

Δω2
~

Δω1
~

Original objective

 value

Δfi<Δfimax

Δfi>Δfimax

Δfi=Δfimax

Fig. 1.　ASR and sensitive directions.
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tributions for any uncertainty parameter.

Because of the symmetry of the WCSR, its radius RW can 
be used to represent multi-robust optimality against several 
uncertainties, which is expressed as:

min
Dῶ

RW (Dῶ)= ( )∑
n

Nu

||Dῶn

p

1
p

(1)

s.t.

max
i = 12Nf

|Dfi -Df0i | £ τ f
i (2)

Dfi = fi (x0u0w͂0 +Dῶ)- fi (x0u0w͂0 ) (3)

where Df0i is an acceptable deviation; Dῶ is the variation in 
uncertainty; fi (x0u0w͂0 ) is the nominal value of objective i, 
and x0, u0, and w͂0 are the nominal values of the decision, 
state, and uncertainty variables, respectively; p is a constant 
that defines RW as the Lp-norm; τ f

i  is the tolerance for an ac‐
ceptable deviation Df0i; Nu is the number of uncertainties; 
and Nf is the number of objective functions.

Although RW is effective at estimating the ASR, judging 
whether a solution is sufficiently robust using RW alone re‐
mains difficult. Therefore, a reference robust radius is intro‐
duced and determined using an acceptable uncertainty vec‐
tor. The robustness index FR is proposed to quantitatively 
evaluate the robust optimality of the SOP allocation deci‐
sions under multiple uncertainties.

FR =Rref /RW (4)

where Rref is the reference robust radius that represents the 
smallest acceptable radius. Therefore, any RW smaller than 
Rref should be considered insufficiently robust.

Incorporating the proposed robustness index in the optimi‐
zation model as an objective is straightforward but not per‐
fect. On one hand, an additional objective increases the com‐
putational burden and difficulty in convergence. On the oth‐
er hand, FR is closely related to other technical indices indi‐
vidually instead of collectively. Alternatively, this paper pro‐
poses the following indices to incorporate robustness assess‐
ment into different technical indices to maintain the number 
of objectives and directly correlate the robustness assessment 
with individual technical objectives.

B. Robust Voltage Offset Index

Based on the robustness index previously introduced, a ro‐
bust voltage offset index F R

offset is proposed to minimize the 
voltage fluctuations and optimize the operating conditions.

ì

í

î

ïïïï

ïïïï

F R
offset =FR Foffset

Foffset =∑
t = 1

T ∑
i = 1

Ωnode |

|
|
||
||

|
|
||
| U t

i

UN

- 1
(5)

where Foffset is the conventional voltage offset index; Ωnode is 
the number of nodes; UN is the rated voltage; U t

i  is the volt‐
age of node i at time t; and T is the number of time periods.

C. Robust SOP Utilization Index

Robust SOP utilization index F R
SOP is designed to maxi‐

mize the utilization of the planned SOP under the same allo‐
cation capacity, further reducing the total cost of the distribu‐
tion network.

ì

í

î

ï
ïï
ï
ï
ï

ï

ï
ïï
ï

ï

F R
SOP =FR FSOP

FSOP =∑
t = 1

T ∑
i = 1

Ωnode 1
nSOPSVSC

( (P t
iVSC1 )2 + (Qt

iVSC1 )2 +

)(P t
jVSC2 )2 + (Qt

jVSC2 )2

(6)

where FSOP is the normal SOP utilization index; P t
iVSC1, 

P t
jVSC2, Qt

iVSC1, and Qt
jVSC2 are the active and reactive power 

injections of voltage source converters (VSCs) 1 and 2 at 
nodes i and j at time t, respectively; nSOP is the number of 
VSC units in the SOP module; and SVSC is the capacity of a 
single VSC unit.

D. Voltage Collapse Proximity Index (VCPI)

Line-based voltage collapse proximity index VCPIl is ad‐
opted to assess the line voltage stability in failure scenarios 
based on the concept of maximum power transferable 
through a line [26]. Fvcpi can reveal the effects of an SOP on 
the voltage stability of a distribution network under fault 
conditions.

min Fvcpi = ∑
l = 1

Ωbranch

VCPIl (7)

s.t.

VCPIl =P r
l /P rmax

l =Qr
l /Q

rmax
l (8)

P1

P2

P3

f2

f1

∆f1max

∆f2max

Range of ∆fi on account

 of ∆ωi
~

Original objective

 value

Fig. 2.　Range of Dfi derived from Dῶi.

ASR

WCSR

Δω2
~

Δω1
~

Original objective
 value

The most sensitive
 direction

Fig. 3.　WCSR.
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ì

í

î

ï
ïï
ï

ï
ïï
ï
ï
ï

Prmax =
(V s )2

Z s

cos φ
4 cos2 ((ψ - φ)/2)

Qrmax =
(V s )2

Z s

sin φ
4 cos2 ((ψ - φ)/2)

(9)

where Ωbranch is the number of branches; P r
l  and Qr

l are the 
active and reactive power transferred to the receiving end 
though line l in fault scenarios, respectively; ψ and φ are the 
phase angles of the load and line impedance, respectively; 
Prmax and Qrmax are the maximum active and reactive power 

transferred at the receiving-end bus, respectively; Z s is the 
impedance of the sending-end bus; and V s is the voltage of 
the sending-end bus.

III. MULTI-STAGE ROBUST OPTIMIZATION MODEL 

A. Framework of Multi-stage Robust Optimization Model

A multi-stage robust optimization model of an SOP in a 
PV-penetrated distribution network is established, as shown 
in Fig. 4.

The first stage is the planning stage, in which the decision 
variables denote the capacity and locations of the SOP. This 
is the long-term stage that considers the annual investment 
cost. The second stage is the normal operation stage, in 
which the decision variables are the output power of the PV, 
drop-cut strategy of the CB, active and reactive power of the 
SOP, active power purchased from the upper substation, and 
other factors that simulate the actual working conditions of 
the ADNs. In the third stage, the voltage instability is consid‐
ered to derive from unexpected contingencies. In this paper, 
the VCPI is selected to assess the voltage stability, and an 
SOP coordinated with DR is implemented as a defensive 
control. The operation and contingency stages are short-term 
that consider the total cost, robust technical indices, and VC‐
PI.

B. Normal Scenarios

1) Compact Model
The first and second stages aim to minimize the invest‐

ment cost CI and operation cost CO and to optimize the ro‐
bust technical indices, thereby optimizing the operation con‐
ditions in normal scenarios. The specific objective functions 
are as follows:

min F1 ={CI +COF
R
offsetF

R
SOP } (10)

s.t.

g1 (x1y1 )= 0 (11)

h1 (x1y1 )£ 0 (12)

where F1 is the objective, which extends to (13) and (29) -
(31); x1 and y1 are the decision and dependent variables, re‐
spectively; g1 represents the equality constraints, which ex‐
tend to (1) - (6), (14) - (18), (24) - (26), and (32) - (36); and h1 
represents the inequality constraints, which extend to (19) -
(23), (27), (28), and (37).

2) Planning Stage
1) Objective function
The first stage aims to minimize investment costs. The 

specific objective functions are as follows:

min CI =CSOPI +CCBI (13)

① Investment cost of SOP
The investment cost of the SOP can be expressed as:

CSOPI =
r(1 + r)y

(1 + r)y - 1
∑

ijÎ nSOP

(cp xi + cp xj ) (14)

where r is the discount rate; y is the service life of the VSC; 
cp is the annual investment cost per kVA converter power of 
the VSC; and xi and xj are the power capacities of the two 
VSCs corresponding to the SOP.② Investment cost of CB

The investment cost of the CB can be expressed as:

CCBI =
r(1 + r)y

(1 + r)y - 1
∑
iÎ nCB

cCB xiCB (15)

where xi,CB is the power capacity of the CB installed at node 
i; and cCB is the annual investment cost per kVA of the CB.

2) Constraints① Constraints of the SOP
The SOP is installed between adjacent feeders in the 

ADNs, as shown in Fig. 5.

The SOP power equation at time t can be expressed as:

P t
iVSC1 +P t

jVSC2 +P Lt
iVSC1 +P Lt

jVSC2 = 0 (16)

P Lt
iVSC1 =AVSC1 (P t

iVSC1 )2 + (Qt
iVSC1 )2 (17)

Planning stage 

Objective

Investment cost

Decision variable

The capacity and 

     locations of SOP 

Operation stage 

Objectives

Operation cost

Decision variables

Robust voltage offset index

Robust SOP utilization index

Contingency stage

Objectives Decision variables

Capacity and 

  locations of SOP

Total cost

Voltage collapse 

    proximity index

Drop-cut strategy

Active and reactive 

   power of SOP
…

Load reduction 

  coefficient of DR

Long-term stage Short-term stage

of CB

Fig. 4.　Multi-stage robust optimization model of SOP.

AC

DC AC

DC

VSC i VSC j

Fig. 5.　Modeling of SOP.
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P Lt
jVSC2 =AVSC2 (P t

jVSC2 )2 + (Qt
jVSC2 )2 (18)

QVSC1min £Qt
VSC1 £QVSC1max (19)

QVSC2min £Qt
jVSC2 £QVSC2max (20)

(P t
i )2 + (Qt

i )
2 £ nsopSVSC (21)

(P t
j )2 + (Qt

j )
2 £ nsopSVSC (22)

where P t
i, P

t
j, Q

t
i, and Qt

j are the active and reactive power in‐
jections of nodes i and j in the ADNs, respectively; P Lt

iVSC1 
and P Lt

jVSC2 are the power losses of VSCs 1 and 2 at nodes i 
and j, respectively; AVSC1 and AVSC2 are the power loss coeffi‐
cients; and QVSC1min, QVSC1max, QVSC2min, and QVSC2max are the 
minimum and maximum reactive power injections of VSC1 
and VSC2, respectively.

Equation (16) represents the active power balance of the 
SOP; (17) and (18) are the power-loss equations of the VSC; 
(19) and (20) represent the reactive power injection con‐
straints of the SOP; and (21) and (22) represent the capacity 
constraints of the VSC.
② Upper limits of VSC units

0 £ nsop £ nsopmax (23)

where nsopmax is the upper limit of the number of VSC units 
of the SOP.
③ Linearized DistFlow equations
The following power flow equations should be satis‐

fied [27]:

ì

í

î

ï

ï
ïïï
ï

ï

ï

ï

ï
ï
ïï
ï

ï

ï

∑
iÎ u( j)

(Pijt - P Lt
ij )+P t

j = ∑
kÎ ν( j)

P t
jk

∑
iÎ u( j)

(Qijt -QLt
ij )+Qt

j = ∑
kÎ ν( j)

Qt
jk

P t
j =P t

jPV +P t
jVSC2 -P t

jLoad

Qt
j =Qt

jPV +Qt
jVSC2 +Qt

jCB -Qt
jLoad

(24)

U t
j =U t

i - (rij Pijt + xijQijt )/UN (25)

ì
í
î

ïï

ïï

P Lt
ij = rij (P

2
ijt +Q2

ijt )/U
2
N

QLt
ij = xij (P

2
ijt +Q2

ijt )/U
2
N

(26)

where rij is the resistance value of branch ij; xij is the reac‐
tance value of branch ij; iÎ u( j) represents that node i is sub‐
ordinate to the set u(j) of parent nodes connected to node j; 
kÎ v( j) represents that node k is subordinate to the set v(j) 
of child nodes connected to node j; Pijt and Qijt are the ac‐
tive and reactive power on branch ij at time t, respectively; 
P Lt

ij  and QLt
ij  are the active and reactive power losses on 

branch ij, respectively; P t
j and Qt

j are the active and reactive 
power injections into node j, respectively (node j is selected 
in this case as a substitute for other nodes, excluding the bal‐
anced one); P t

jPV and Qt
jPV are the active and reactive power 

injections of distributed power supply PV, respectively; 
P t

jLoad and Qt
jLoad are the active and reactive power injections 

of the load, respectively; Qt
jCB is the reactive power of the 

CB; U t
j  is the voltage of node j at time t; and UN is the sys‐

tem-rated voltage.

④ Network operation constraints
The node voltage and branch active power must satisfy 

the following constraints to ensure safe operation of the sys‐
tem:

ì
í
î

ïï
ïï

Ujmin £U t
j £Ujmax

0 £Pijt £Pijmax

(27)

where Ujmin and Ujmax are the minimum and maximum node 
voltages, respectively; Pijt is the active power of branch ij; 
and Pijmax is the maximum branch active power.
⑤ CB switching constraints

ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïï
ï

ï

ï

ï

Qt
jCB = niCBQCB

step 

niCB £ xiCB

BCB
it QCB

step £ ||Qt + 1
jCB -Qt

jCB £BCB
it QCB

step xiCB

∑
t = 1

T - 1

BCB
it £BCB max

(28)

where niCB is the number of CBs in operation; QCB
step  is the 

capacity of the CB per unit; BCB
it  is the binary variable if the 

CB is in operation, in which case BCB
it = 1; otherwise, BCB

it = 0; 
and BCB max is the maximum switching times of the CB.
3) Normal Operation Stage

The operation cost includes the power exchange cost, SOP 
operation cost, loss cost of the VSC converter, CB drop-cut 
cost, network loss, and emission cost. The technical indices 
include the robust offset voltage index and robust SOP utili‐
zation index.

1) Objective function

min CO =CSOPO +CCBO +Closs1 +Closs2 +CE (29)

min F R
offset (30)

min
1

F R
SOP

(31)

① SOP operation cost

CSOPO = α ∑
ijÎ nSOP

pscSOPISijSOP Dy (32)

where α is the annual SOP operation cost coefficient; cSOP,I 
is the investment cost of the SOP per apparent power; Dy is 
the number of days in a year adopted to convert the daily 
cost into the annual cost; and Si,j,SOP is the capacity of the 
SOP on branch ij.
② CB drop-cut cost

CCBO =∑
tÎ T
∑

ijÎΩline

cCBO BCB
it (33)

where cCB,O is the CB drop-cut cost.
③ Network loss cost

Closs1 =∑
tÎ T
∑

ijÎΩline

closs1 rij Dy (P 2
ijt +Q2

ijt )/U
2
N (34)

where closs1 is the daily network loss cost.
④ Converter loss cost

Closs2 =∑
tÎ T
∑

ijÎΩline

closs2 (P Lt
iVSC1 +P Lt

jVSC2 )Dy (35)

where closs2 is the daily converter loss cost.
⑤ Emission cost
Because the PV does not generate carbon emissions, the 
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carbon cost in this study is generated by the upper grid.

CE =∑
t = 1

T

ηcemis Psubt Dy (36)

where cemis is the daily emission cost; Psub,t is the active pow‐
er obtained from the upper substation; and η is the carbon 
emission intensity per kWh for the upper substation.

2) Constraints
In addition, to satisfy constraints (16)-(28), PV generation 

constraints must also be satisfied.

ì
í
î

ïï
ïï

0 £P t
jPV £P max

jPV

Qt
jPV =P t

jPV tan φPV

(37)

where P max
jPV is the maximum available active power of the 

PV units; and φPV is the power factor angle of the PV.

C. Contingency Scenarios

1) Compact Model
With unexpected contingencies in ADNs, the voltage col‐

lapse proximity index is a major index for assessing the volt‐
age stability. In this case, the DR and SOP are used to en‐
sure voltage stability. Accordingly, the objectives of the con‐
tingency scenario stage can be expressed as:

min F2 ={FvcpiCtotal } (38)

Ctotal =CDR +CSOPI +CSOPO +Closs1 +Closs2 +CE (39)

s.t.

g2 (x2y2 )= 0 (40)

h2 (x2y2 )£ 0 (41)

where F2 is the objective, which extends to (7)-(9) and (39); 
x2 and y2 are the decision and dependent variables, respec‐
tively; g2 denotes the equality constraints, which extend to 
(16)-(18), (39), (42)-(44), and (46)-(48); and h2 denotes the 
inequality constraints, which extend to (19)-(23), (27), (28), 
and (37).
2) Contingency Stage

1) Objective function
The load reduction cost is expressed as:

CDR =∑
t = 1

T ∑
iÎADR

cDR P t
jLoad λit (42)

where cDR is the load-cut cost per kWh; λit is the load reduc‐
tion coefficient; and ADR is the node set of the DR.

2) Constraints
In addition to constraints (16) - (23), (27), (28), and (37), 

the DR constraints must also be satisfied.
① DR constraints

{DP t
j = λit P

t
jLoad

DQt
j = λitQ

t
jLoad

(43)

ì
í
î

ïï

ïï

P t
jLoadDR =P t

jLoad -DPit

Qt
jLoadDR =Qt

jLoad -DQit

(44)

λmin £ λit £ λmax (45)

where DP t
j and DQt

j are the active and reactive power reduc‐
tions, respectively; λmin and λmax are the minimum and maxi‐

mum load reduction coefficients, respectively; and P t
jLoadDR 

and Qt
jLoadDR are the active and reactive power injections of 

load following load reduction, respectively.
② New linearized DistFlow equations

ì

í

î

ï

ï
ïïï
ï

ï

ï

ï

ï
ï
ïï
ï

ï

ï

∑
iÎ u( j)

(Pijts - P Lts
ij )+P ts

j = ∑
kÎ ν( j)

P ts
jk

∑
iÎ u( j)

(Qijts -QLts
ij )+Qts

j = ∑
kÎ ν( j)

Qts
jk

P ts
j =P ts

jPV +P ts
jVSC2 -P ts

jLoadDR

Qts
j =Qts

jPV +Qts
jVSC2 +Qts

jCB -Qts
jLoadDR

(46)

U ts
j =U ts

i - (rij Pijts + xijQijts )/UN (47)

ì
í
î

ïï

ïï

P Lts
ij = rij (P

2
ijts +Q2

ijts )/U 2
N

QLts
ij = xij (P

2
ijts +Q2

ijts )/U 2
N

(48)

IV. COMPUTATIONAL STEPS 

The single-objective model optimization method (Cplex 
[28] in this paper) and multi-objective model optimization 
method (NSGA-II [29] in this paper) are coordinated to 
solve this multi-stage optimization problem. A computational 
flow of the proposed method is shown in Fig. 6. The compu‐
tational steps are as follows.

A. Planning Stage (Main Program Solved by NSGA-II)

Step 1: initialization. After the algorithm parameters are 
set, the first generation of the population is initialized, in‐
cluding decision variables for the SOP, CB installation, and 
output power of the PV.

Step 2: coordination of planning and contingency stages. 
The method used in this step involves contingency determi‐
nation. Power flow calculations are conducted to determine 
whether contingencies occur in the ADNs. Provided no con‐
tingency occurs, we can proceed to Step 3. Otherwise, defen‐
sive controls should be implemented and the subroutine 
should be booted (Step 9).

Step 3: objective calculation. The total cost and robust 
technical indices are calculated to optimize the capacities 
and sites of SOPs.

Step 4: individual update. Identify and renew the best indi‐
viduals of the present generation, including non-dominated 
sorting, crowding distance and fitness calculation, selection, 
crossover, and mutation implemented by NSGA-II.

Step 5: coordination of planning and operation stage. The 
method for this step is as follows: either reaching the maxi‐
mum number of iterations or finding no other new non-domi‐
nated solution in a predefined number of successive itera‐
tions to determine the evaluation condition for booting the 
operation-stage subroutine. Otherwise, proceed to the next it‐
eration.

Step 6: update the optimization capacity and sites of SOP. 
The fuzzy membership function is adopted to determine the 
optimal capacity and sites of the SOP. After the conditions 
for Step 5 are met, the main procedure terminates and the 
optimization for the operation stage commences (Step 7) 
with the optimal capacity and sites of the SOP imported.
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B. Operation Stage (Solved by Cplex)

Step 7: determine the feasible region. The feasible region 
is formed by constraints (1) - (6), (14) - (24), (26) - (28), and 
(32)-(37).

Step 8: update the CB drop-cut strategy and SOP timing 
change. The CB drop-cut strategy and the active and reac‐
tive power support from the SOP are optimized by Cplex.

C. Contingency Stage (Solved by NSGA-II)

Step 9: generate a new population. The first generation of 
population in the planning stage is overridden by the deci‐
sion variables for the SOP, the DR (enabled when the volt‐
age exceeds the threshold), and the output power of the PV 
following contingency determination.

Step 10: objective calculation. The total cost and VCPI 
are calculated to optimize the capacity and sites of the SOP 
as well as the load reduction coefficient.

Step 11: termination criteria. The procedure terminates 
when the termination criteria of Cplex or NSGA-II are satis‐
fied.

V. CASE STUDIES

A. Modified IEEE 33-node Distribution System

The modified IEEE 33-node distribution system is illustrat‐
ed in Fig. 7. The system parameters can be found in [30]. 
The unit capacity of each VSC is 50 kVA, and the power 
loss coefficient of the VSC is 0.02 [13]. The capacity of the 
PV converter is 800 kVA [7], the voltage limits are [0.95, 

1.05]p.u., and the network loss cost is 0.5 $/kWh [13]. The 
maximum number of installed VSCs in each ADN is as‐
sumed to be 10 units. The candidate installation locations of 
the SOP units are the tie-line switches, which are connected 
between the buses (i. e., (8) - (21), (9) - (15), (12) - (22), (18) -
(33), and (25) - (29)) [4], as shown in Fig. 7. The candidate 
locations of CBs are buses 24 and 30. Each CB installation 
node is equipped with 10 groups of capacitors, each with a 
capacity of 50 kvar, and the maximum switching times are 5 
per day. The demand response load shedding nodes are 7, 
10, 13, 17, and 23, with a load shedding factor ranging from 
0 to 0.2. The DR load shedding price is 1 $/kWh, and the 
candidate locations for the five PVs are shown in Fig. 7.

B. Numerical Results and Discussion

For a detailed analysis and discussion, the robust SOP uti‐
lization index is converted to its reciprocal, 1/F R

SOP. The 
smaller the value of all objectives, the more optimal the re‐

CB

1

2

3 4 5 6 7

8

9
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30 31 32
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SOP

SOP

SOP
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Fig. 7.　Modified IEEE 33-node distribution system.
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sults are.
1)　Simulation Results and Comparison Study of Normal 
Stage

A Pareto front with 10 robust Pareto optimal solutions of 
the proposed method is shown in Fig. 8. The fuzzy member‐
ship function [31] is used to select the final optimal solu‐
tion, as illustrated in Table I.

The capacities of the SOP of the final optimal solution are 
shown in Table II.

Three cases are selected to investigate the effects of SOPs 
and CB on voltage stability and network loss.

1) Case 1: PV-penetrated ADNs without SOPs or CB in‐
stallation.

2) Case 2: PV-penetrated ADNs with CB installation only.
3) Case 3: PV-penetrated ADNs with SOPs and CB instal‐

lation.
Figure 9 shows the voltage profiles for the three cases. 

Case 3 has the smallest voltage offset and fluctuation range 
as compared with the other cases, where the fluctuation 
range is [0.955, 1.01]p. u.. This finding indicates that the 
SOP can provide a certain amount of reactive power, which 
can be coordinated with the CB to support the voltage of the 
ADNs and significantly improve the voltage profile.

Table III presents the loss costs for the three cases. As can 
be observed, Case 3 reduced the network loss by 12.4% as 
compared with Case 2 and by 29.3% as compared with Case 
1, revealing that the SOP improved the power profile among 
feeders and decreased the network loss. Compared with the 
single reactive optimization measure (i.e., the CB in this pa‐
per) in Case 2, Case 3 adds the active power regulation of 
the SOP to improve the power profile, thus minimizing the 
network loss further onwards.

Table IV illustrates a comparison of emission costs for the 
three cases derived from power purchase from the upper 
grid. Case 1 has the highest emission cost as compared with 
Cases 2 and 3. This result is mostly due to the existence of 
fewer active control methods and the higher uncertainty of 
the PV output in Case 1. This results in more power purpur‐
chase and emission costs, indicating that the coordinated al‐
location of the SOP and CB could reduce carbon emissions 
by helping DGs integrate and decrease power purchase.
2)　Comparison of Contingency Stages

This paper presumes that branch 32-33 and branch 3-23 
have contingencies in the modified IEEE 33-node system, as 
shown in Fig. 10. Three cases are selected to investigate the 
effects of SOP and DR allocation on voltage stability when 
a contingency occurs.

1) Case 4: ADNs with only DR allocation to avoid volt‐
age instability.

1.20
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1.45
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1.55

1
/F

S
O

P

5.8 6.0 6.2 6.4 6.6 6.8 7.0 7.2

RFoffset

CI+CO ($105)

R

($6.121×105, 0.06836, 1.338)

Fig. 8.　Pareto front with 10 robust Pareto optimal solutions of proposed 
method.

TABLE I
VALUES OF INDICES OF FINAL OPTIMAL SOLUTION

CI +CO ($)

612101.97

F R
offset

0.07

1/F R
SOP

1.34

F R
SOP (%)

74.74

TABLE II
CAPACITIES OF SOP OF FINAL OPTIMAL SOLUTION

Location

12-22

8-21

9-15

18-33

25-29

Capacity (kVA)

100

100

100

150

100

0 5 10 15 20 25 30 35

Node No.

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

1.01

1.02

V
 (

p
.u

.)

The maximum voltage for Case 1; The minimum voltage for Case 1

The maximum voltage for Case 2; The minimum voltage for Case 2
The maximum voltage for Case 3; The minimum voltage for Case 3

Fig. 9.　Voltage profiles for three cases.

TABLE III
LOSS COSTS FOR THREE CASES

Case

1

2

3

Loss cost ($)

146150.171

117982.442

103317.219
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2) Case 5: ADNs with only SOP allocation to avoid volt‐
age instability.

3) Case 6: ADNs with coordinated SOP and DR allocation 
to avoid voltage instability.

The Pareto optimal solutions for the three cases are com‐
pared in Fig. 11. The fuzzy membership function [31] was 
used to select the final optimal solution, as listed in Table V. 
The SOP capacities of the three cases are shown in Table 
VI. The load DR situations of the three cases are listed in 
Table VII.

As shown in Tables V and VI, although Case 6 allocates a 
greater number of SOPs than Case 5, the cost for Case 6 ex‐

hibites a 23% reduction, and the VCPI has a 15.8% reduc‐
tion compared with Case 5, indicating that coordinated allo‐
cation of an SOP and DR has better economic performance 
and voltage stability than installing only one SOP. Case 4 
has a lower cost than Case 6 due to the absence of SOPs. 
The bus VCPI of Case 4 is higher than that of Case 6, mean‐
ing that Case 4 is more prone to voltage collapse under 
worse contingencies. Figure 12 also indicates that Case 4 
has a greater voltage fluctuation range compared with Case 
6. In addition, the network loss of Case 6 is $135250, where‐
as that of Case 4 is $451590. Table VII reveals that less 
load reduction is required after an SOP is introduced into the 
ADNs. Therefore, the coordinated allocation of the SOP and 
DR could effectively reduce network loss and improve the 
voltage profile under contingencies.

C. Comparison Study of Effects of Robustness Index

Two cases are selected to investigate the effects of the ro‐
bustness index.

1) Case 7: Foffset and FSOP are used to evaluate the perfor‐

TABLE V
INDEX VALUES OF CONTINGENCY STAGE OF THREE CASES

Case

4

5

6

VCPI

0.3463

0.3339

0.2812

Cost ($)

337500

475000

365700

0 10 155 20 25 30 35

Node

1.00

Case 4

Case 6

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.01

V
 (

p
.u

.)

Fig. 12.　Comparison of voltage profile for Cases 4 and 6.
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Fig. 11.　Comparison of Pareto optimal solutions for three cases.

TABLE IV
EMISSION COSTS FOR THREE CASES

Case

4

5

6

Emission cost ($)

597610

595420

595360
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Fig. 10.　Modified IEEE 33-node distribution network of contingency stage.

TABLE VI
SOP CAPACITIES OF THREE CASES

Location

12-22

8-21

9-15

18-33

25-29

Capacity (kVA)

Case 4 Case 5

100

150

100

100

300

Case 6

50

200

150

150

300

TABLE VII
LOAD DR SITUATIONS OF THREE CASES

Location

7

10

13

17

23

λist

Case 4

0.101

0.123

0.093

0.155

0.155

Case 5 Case 6

0.092

0.110

0.093

0.070

0.113
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mance of the normal operation stage.
2) Case 8: F R

offset and F R
SOP are used to evaluate the perfor‐

mance of the normal operation stage.
The Pareto optimal solutions for Cases 7 and 8 are com‐

pared in Fig. 13. Although the value of the robust index 
might not be strictly optimal, the robust optimality of the ro‐
bust Pareto solution can be improved against the uncertain‐
ties of load demand and PV, making the optimal allocation 
results of the SOP and CB more effective.

In addition, a robustness analysis does not require assump‐
tions about the probability distribution of uncertain vari‐
ables, which reduces the adverse effects of uncertainties. Un‐
der practical operating conditions, the fluctuations of the PV 
and load deviate from the set value of the planning scenari‐
os. With a typical solution on the Pareto fronts as an exam‐
ple and based on the assumption that w͂n has an error of 
±0.2, Foffset worsenes from 0.10 to 0.84, and the SOP utiliza‐
tion becomes increasingly inadequate from 57.9% to 51.2% 
in Case 7. By contrast, F R

offset increases from 0.10 to 0.79, 
whereas the SOP utilization decreases from 72.1% to 71.3% 
in Case 8, indicating that the proposed quantitative robust‐
ness assessment could make the objective function less sensi‐
tive and more optimal to variations in uncertainty.

D. Comparison Study of Effects of SOP Utilization Index

Two cases are selected to investigate the effects of the 
SOP utilization index.

1) Case 9: F R
offset and cost are used to determine the opti‐

mal allocated SOP capacity without considering F R
SOP.

2) Case 10: F R
offset, F

R
SOP, and cost are used to determine the 

optimal allocated SOP capacity.
The fuzzy membership function [31] is used to select the 

final optimal solution of the two cases, the index values for 
which could be found in Table VIII. The SOP capacities of 
the two cases are listed in Table IX. As shown in Table VIII, 
the SOP utilization in Case 10 is 19.57% higher than that of 
Case 9, whereas the cost and robust voltage offset index de‐
crease by 7.84% and 50%, respectively, after F R

SOP is consid‐
ered. Table IX shows that the capacity of the SOP planning 
for Case 9 is less than that of Case 10, resulting in a worse 
power adjustment ability and in turn increasing network loss 

and voltage fluctuation. Thus, the comparison study reveals 
that the robust SOP utilization index could effectively im‐
prove both the SOP utilization and the operation level while 
reducing the total cost.

VI. CONCLUSION

This paper proposes a multi-stage coordinated optimiza‐
tion for the SOP allocation in ADNs with PV based on ro‐
bust technical indices to enhance the effectiveness and ro‐
bust optimality of the solutions and the SOP utilization. The 
applicability of the proposed model is verified through case 
studies. The major conclusions are as follows.

1) The proposed quantitative robustness assessment meth‐
od could effectively improve the robust optimality and effec‐
tiveness of allocation results without requiring assumed prob‐
ability distributions for uncertain variables.

2) When introducing a robust SOP utilization index, the 
proposed model could improve the SOP utilization (e.g., by 
19.57%) and operation conditions (e. g., voltage offset de‐
creased by 50%) while reducing the investment and opera‐
tion costs (e.g., by 7.84%).

3) The proposed multi-stage optimization framework and 
corresponding computational method demonstrated that the 
introduction of an SOP could adjust the transmitted power 
and effectively decrease network loss (e.g., by 29.3% com‐
pared with no SOP or CB installation), further improving the 
economy of ADNs. In addition, case studies prove that an 
SOP can provide reactive power to support the voltage of 
ADNs in coordination with the CB, thereby enhancing volt‐
age quality. Furthermore, when contingencies occurred, the 
SOP could reduce both the load demand and voltage col‐
lapse risk (e. g., by 18.8% compared with only DR alloca‐
tion). Thus, the proposed multi-stage allocation model is 
more comprehensive and sophisticated than the conventional 
models.
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