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Robust State Estimation of Active Distribution 
Networks with Multi-source Measurements

Zhelin Liu, Peng Li, Chengshan Wang, Hao Yu, Haoran Ji, Wei Xi, and Jianzhong Wu

Abstract——The volatile and intermittent nature of distributed 
generators (DGs) in active distribution networks (ADNs) in‐
creases the uncertainty of operating states. The introduction of 
distribution phasor measurement units (D-PMUs) enhances the 
monitoring level. The trade-offs of computational performance 
and robustness of state estimation in monitoring the network 
states are of great significance for ADNs with D-PMUs and 
DGs. This paper proposes a second-order cone programming 
(SOCP) based robust state estimation (RSE) method consider‐
ing multi-source measurements. Firstly, a linearized state esti‐
mation model related to the SOCP state variables is formulated. 
The phase angle measurements of D-PMUs are converted to 
equivalent power measurements. Then, a revised SOCP-based 
RSE method with the weighted least absolute value estimator is 
proposed to enhance the convergence and bad data identifica‐
tion. Multi-time slots of D-PMU measurements are utilized to 
improve the estimation accuracy of RSE. Finally, the effective‐
ness of the proposed method is illustrated in the modified IEEE 
33-node and IEEE 123-node systems.

Index Terms——Active distribution network ADN, robust state es‐
timation (RSE), second-order cone programming (SOCP), multi-
source measurement, bad data identification.

NOMENCLATURE

A. Sets

L Set of all lines
li Set of nodes connected to node i
lini Set of upstream nodes connected to node i
lout

i Set of downstream nodes connected to node i
N Set of all nodes
R Set of nodes with nodal current injection 

magnitude measurement (NCIMM)
Ã Set of phases, Ã= {ABC}

B. Indices

d Index of multi-time slots of distribution pha‐
sor measurement units (D-PMUs)

i, j, f Indices of nodes 

ij Index of lines

m Index of supervisory control and data acqui‐
sition (SCADA) and advanced metering in‐
frastructure (AMI) measurements

p Index of phases

r Index of nodes with NCIMM
s, c Indices of nodes connected to node r
y Index of D-PMU measurements

C. Variables

θ p
i Voltage phase angle in phase p at node i

K l, Ll Line related state variables
K m, Lm NCIMM related state variables
K p

ij , L
p
ij Line related state variables in phase p of line 

ij

K p
sc, L

p
sc NCIMM related state variables in phase p be‐

tween nodes s and c
t Estimation time
U p

i Voltage magnitude in phase p at node i

V Nodal voltage related state variable
V p

i Nodal voltage related state variable in phase 
p at node i

x Second-order cone programming (SOCP) 
state variables

z[t], w[t], r[t] Calculation measurement values, calculation 
weights, and residuals of multi-source mea‐
surements at estimation time t

D. Parameters

λl, λm Weights of SOCP state variables
bp

ij Susceptance in phase p of line ij

bpsh
ij Shunt susceptance in phase p of line ij

bp
i Sum of susceptance and shunt susceptance 

of connected lines in phase p at node i

D Coefficient of multiple time slots of D-PMU 
measurements

g p
ij Conductance in phase p of line ij

g p
i Sum of conductance of connected lines in 
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phase p at node i

M Total number of SCADA and AMI measure‐
ments

N Total number of nodes
N L Total number of lines
T Sampling interval of D-PMU measurements
Y Total number of D-PMU measurements
Y U, Y I, Y injI Number of nodal voltage, line current, and 

nodal current injection magnitude measure‐
ments of D-PMUs

E. Superscript

m Measurement values of SCADA and AMI
mP, mPI Measurement values of D-PMUs
P, Q Active and reactive power

U, I Voltage and current magnitudes
UP, Uθ Standard deviations of voltage magnitude 

and phase angle measurements of D-PMUs
IP, Iθ Standard deviations of current magnitude 

and phase angle measurements of D-PMUs
true True values
se State estimation values

I. INTRODUCTION 

WITH the integration of advanced measurement and 
communication technologies, the informatization of 

active distribution networks (ADNs) is constantly upgrading 
[1], [2]. The deployment of novel measurement equipment 
represented by distribution phasor measurement units (D-
PMUs) [3], [4] facilitates the perception level of ADNs. 
Compared with the conventional measurements from supervi‐
sory control and data acquisition (SCADA) [5] and ad‐
vanced metering infrastructure (AMI) [6], D-PMUs provide 
time-synchronized measurement data with higher sampling 
rates and accuracy [7]. The high-resolution D-PMU measure‐
ments make it possible to monitor and track the rapid fluctu‐
ations of distribution power flow caused by the volatile and 
intermittent power of distributed generators (DGs) [8], [9].

To realize the real-time monitoring and dispatching of 
ADNs, state estimation of distribution network is carried out 
to best approximate the operating states with the available 
measurements [10]. Owing to the higher costs, D-PMU mea‐
surements are installed in part of critical nodes of ADNs 
[11], which will coexist with SCADA and AMI measure‐
ments for a long time in future. State estimation considering 
the above-mentioned multi-source measurements has become 
a trend in ADNs [12], [13]. A hybrid state estimator is de‐
signed in [14] to incorporate the slow-rate SCADA as well 
as the fast-rate PMU measurements. Reference [15] trans‐
forms the hybrid state estimation problem into a multi-stage 
state estimation to mitigate the computational burden. To fur‐
ther cope with the computational burden and data quality 
challenges brought by the multi-source measurements, the in‐
dices of computation time and robustness to bad measure‐
ments of state estimation are of primary concern.

Aimed at accelerating the computational process of state 
estimation, the weighted least squares (WLS) estimator has 
been widely utilized as the objective function [10], [15]. An 
equality-constrained WLS method was developed in [16]. 
The fast decoupled state estimator [17], complex state vari‐
able based estimator [18], and distributed state estimator 
[19] were proposed respectively to improve the computation‐
al efficiency. Due to the non-convex and nonlinear relation 
between the multi-source measurements and state variables, 
the Gauss-Newton method is extensively employed in the it‐
erative procedure [20]. However, due to the existence of gra‐
dient descent solution [21], the Gauss-Newton method is sen‐
sitive to the initial guess and exists convergence issues.

Although the performance of D-PMUs is improved, the is‐
sues of D-PMUs in practical networks would occur due to 
the sudden sensing errors, data loss, and time synchroniza‐
tion errors. The typical bad data ratio of PMU in practical 
networks is reported to range from 10% to 17% [22]. To mit‐
igate the negative impact of bad measurements on state esti‐
mation, robust state estimation (RSE) methods such as the 
M-estimator [23] and exponential objective function estima‐
tor [24] are developed to enhance the robustness against bad 
data in multi-source measurements. The weighted least abso‐
lute value (WLAV) estimator is one of the M-estimator, and 
the objective function of the WLAV estimator is a linear 
function of measurement residuals. The interior point meth‐
od was adopted to solve the WLAV problem in [25]. Refer‐
ence [26] proposed a PMU-based linear programming meth‐
od. Reference [27] developed an iteratively reweighted least-
squares implementation to solve the WLAV state estimation. 
Different RSE methods were implemented in [28] and [29] 
to mitigate the effects of leverage points in measurements. A 
state estimator that remains robust against both measure‐
ments and parameter errors was proposed in [30]. Compared 
with the WLS method, RSE methods exhibit the advantage 
of rejecting bad data during the estimation process, without 
additional post-estimation bad data identification. However, 
RSE methods considering the nonlinear multi-source mea‐
surements are relatively computationally expensive.

Recently, with the need for fast and reliable global conver‐
gence of state estimation, convex programming methods 
present excellent performance over Gauss-Newton methods 
[31]. Convex relaxation approaches were proposed for solv‐
ing optimal power flow problems originally [32], [33]. Refer‐
ences [34] and [35] proposed semidefinite programming 
(SDP) based state estimation methods to solve the noncon‐
vexity and guarantee convergence. In contrast to SDP meth‐
ods, the second-order cone programming (SOCP) method 
constructs the second-order cone constraints and it is free 
from the complicated rank-1 constraints [36]. Thus, the 
SOCP method has higher computational efficiency, which 
has been utilized in optimal operation [37], supply restora‐
tion [38], and other scenarios of ADNs. Reference [39] pro‐
posed an RSE method for integrated electricity-heat systems.

Currently, due to the introduction of D-PMUs, the SOCP 
methods considering the multi-source measurements in 
ADNs are not fully considered. In addition, bad data fre‐
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quently exist in the multi-source measurements, and the bad 
data identification may affect the estimation accuracy and 
computational efficiency. It is necessary to balance the per‐
formance indices including estimation accuracy, computation‐
al efficiency, and bad data identification. Oriented to the 
ADNs with D-PMUs and DGs, this paper proposes an 

SOCP-based RSE method considering the multi-source mea‐
surements in ADNs. The proposed method aims to combine 
the benefits of the robust estimation method in bad data iden‐
tification and the SOCP method in estimation performance. 
The overall framework of the proposed method is shown in 
Fig. 1.

The main contributions of this paper are summarized as 
follows.

1) A linearized multi-source measurement model related to 
the SOCP state variables is formulated. Various types of 
multi-source measurements in ADNs are thoroughly consid‐
ered, including the nodal current injection phasor measure‐
ments of D-PMUs. To enhance the applicability of the SOCP 
methods, the phase angle measurements of D-PMUs are con‐
verted to equivalent power measurements.

2) With the introduction of nodal current injection phasor 
measurements, the revised SOCP-based RSE method is pro‐
posed to enhance the robustness to bad measurement data. 
The WLAV estimator is selected as the objective function of 
RSE. The nodal current injection magnitude measurement 
(NCIMM) related state variables are added to the SOCP 
state variables. The second-order conic constraints are intro‐
duced into the RSE problem, and the effectiveness is veri‐
fied by the estimation results. The robustness to the single 
and multiple bad measurement data of the proposed method 
is corroborated.

3) Considering the differences in accuracy and time scale 
of the multi-source measurements, the multiple time slots of 
D-PMU measurements are utilized to improve the estimation 
accuracy. The temporal correlation of D-PMU measurements 
is tackled in response to sudden bad measurement data.

The remainder of this paper is organized as follows. Sec‐
tion II builds the linearized measurement model for the 
SOCP-based state estimation. In Section III, the revised 
SOCP-based RSE method considering the multi-source mea‐
surements is elaborated. Case studies are conducted in Sec‐
tion IV to verify the effectiveness of the proposed method. 
Finally, Section V concludes this paper.

II. LINEARIZED MEASUREMENT MODEL FOR SOCP-BASED 
STATE ESTIMATION 

The linearized measurement model is a prerequisite for 
the SOCP-based state estimation. In this section, state vari‐
ables of the SOCP-based state estimation are introduced. 
The linearized multi-source measurement model related to 
the SOCP state variables is formulated.

A. State Variables of SOCP-based State Estimation

Distinct from the state variables composed of nodal volt‐
age magnitudes and phase angles which are utilized by the 
Gauss-Newton method, the SOCP state variables are defined 
as:

x =[V    K l    Ll    K m    Lm ]T (1)

where V = (V p
i ); K l = (K p

ij ); Ll = (Lp
ij ); K m = (K p

sc ); and 
Lm = (Lp

sc ).
For each node i in phase p, the nodal voltage related state 

variable V p
i  is expressed as:

V p
i =

(U p
i )2

2
(2)

For each line connecting nodes i and j in phase p, the line 
related state variables K p

ij  and Lp
ij are expressed as:

K p
ij =U p

i U p
j cos(θ p

i - θ
p
j ) (3)

Lp
ij =U p

i U p
j sin(θ p

i - θ
p
j ) (4)

For node r with NCIMM which has more than two con‐
necting nodes, the NCIMM related state variables K p

sc and 
Lp

sc are expressed as:

K p
sc =U p

s U p
c cos(θ p

s - θ
p
c ) (5)

Lp
sc =U p

s U p
c sin(θ p

s - θ
p
c ) (6)

Proposed SOCP method

Measurements

SCADA measurements

AMI measurements

WLS

Index

Objective function
WLAV

Gauss-Newton method

Linearized

objective function

Measurement
conversion

Multiple time slots of
D-PMU measurements

Zero injection nodes 

Auxilary state variables

Conic
constraints

Linearized

measurement

constraints

Linearized zero-

injection constraints

Rotating conic

constraints

Nonlinear

objective function

Nonlinear

measurement

constraints

Nonlinear zero-

injection constraints

Robustness (bad

data identification)

Computational

efficiency and

estimation accuracy

Fig. 1.　Overall framework of proposed method.
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B. Measurement Equations of SCADA and AMI

The considered multi-source measurements in this paper 
include the fast-rate D-PMU measurements and the slow-rate 
SCADA and AMI measurements. The differences in measure‐
ment error and time scale of the multi-source measurement 
equipment are reflected in the estimation weight parameter. 
With the introduced state variables in Section II-A, the lin‐

earized multi-source measurement equations are constructed. 
The original measurement values and standard deviations ob‐
tained from the metering instruments are partially converted 
to the calculation measurement values and calculation 
weights, respectively. To simplify the description of measure‐
ment values, residuals, calculation weights, and the standard 
deviations of the multi-source measurements in ADNs, Table I 
summarizes the multi-source measurement types and variables.

1) Nodal Active and Reactive Power Injection Measurements
The nodal power injection measurements can be linearly 

expressed in terms of the SOCP state variables without extra 
transformation. The linearized measurement equations are ex‐
pressed as:

P m
ip[ t ] =-∑

fÎ lini

( 2 g p
fiV

p
i - g p

fi K
p
fi + bp

fi L
p
fi )- ∑

jÎ lout
i

( 2 g p
ijV

p
i -

g p
ij K

p
ij - bp

ij L
p
ij )+ r P

ip[ t ] (7)

Qm
ip[ t ] =-∑

fÎ lini

é

ë

ê
êê
ê ù

û

ú
úú
ú- 2 ( )bp

fi +
bpsh

fi

2
V p

i + bp
fi K

p
fi + g p

fi L
p
fi -

∑
jÎ lout

i

é

ë

ê
êê
ê ù

û

ú
úú
ú- 2 ( )bp

ij +
bpsh

ij

2
V p

i + bp
ij K

p
ij - g p

ij L
p
ij + r Q

ip[ t ] (8)

The calculation weights of the nodal power injection mea‐
surements are expressed as:

wP
ip[ t ] = 1

(σ P
ip )2 (9)

wQ
ip[ t ] = 1

(σ Q
ip )2 (10)

2) Line Power Measurements
Since the line related state variables are expressed as the 

relationship between the sending-end node and the receiving-
end node, the measurement equations of the sending-end and 
receiving-end measurements are different, which will be il‐
lustrated, respectively. The measurements of line ij are 
shown in Fig. 2.

1) Sending-end active and reactive power measurements
Similar to the nodal power injection measurements, the 

linearized measurement equations of the sending-end power 
measurements are expressed as:

P m
ijp[ t ] = 2 g p

ijV
p

i - g p
ij K

p
ij - bp

ij L
p
ij + r P

ijp[ t ] (11)

Qm
ijp[ t ] =- 2 (bp

ij +
bpsh

ij

2 )V p
i + bp

ij K
p
ij - g p

ij L
p
ij + r Q

ijp[ t ] (12)

The calculation weights of the sending-end power mea‐
surements are expressed as:

wP
ijp[ t ] = 1

(σ P
ijp )2 (13)

wQ
ijp[ t ] = 1

(σ Q
ijp )2 (14)

2) Receiving-end active and reactive power measurements
The linearized measurement equations of the receiving-

end power measurements are described as:

TABLE I
MULTI-SOURCE MEASUREMENT TYPES AND VARIABLES

Measurement type

Nodal active and reactive power injection 
measurements in phase p at node i

Line sending-end/receiving-end active and 
reactive power measurements in phase p of line ij

Nodal voltage magnitude measurements in phase 
p at node i

Line sending-end/receiving-end current magnitude 
measurements in phase p of line ij

NCIMMs in phase p at node i

Nodal voltage phase angle measurements in phase 
p at node i

Line sending-end/receiving-end current phase 
angle measurements in phase p of line ij

Nodal current injection phase angle measurements 
in phase p at node i

Category

AMI

SCADA

SCADA

D-PMU

SCADA

D-PMU

D-PMU

D-PMU

D-PMU

D-PMU

Measurement value at 
time t and t + dT

P m
ip[ t ], Qm

ip[ t ]

P m
ijp[ t ], P m

jip[ t ],
Qm

ijp[ t ], Qm
jip[ t ]

U m
ip[ t ]

U mP
ip [ t + dT ]

I m
ijp[ t ], I m

jip[ t ]

I mP
ijp [ t + dT ] , I mP

jip [ t + dT ]

I mP
ip [ t + dT ]

θmP
ip [ t + dT ]

θmP
ijp[ t + dT ], θmP

jip[ t + dT ]

θmPI
ip [ t + dT ]

Residual at time t

r P
ip[ t ], r Q

ip[ t ]

r P
ijp[ t ], r P

jip[ t ], 
r Q

ijp[ t ], r Q
jip[ t ]

r U
ip[ t ]

r I
ijp[ t ], r I

jip[ t ]

Calculation 
weight at time t

wP
ip[ t ], wQ

ip[ t ]

wP
ijp[ ]t , wP

jip[ ]t ,

 wQ
ijp[ ]t , wQ

jip[ ]t

wU
ip[ t ]

wI
ijp[ t ], wI

jip[ t ]

Standard 
deviation

σ P
ip, σ

Q
ip

σ P
ijp, σ P

jip,

σQ
ijp, σQ

jip

σU
ip

σUP
ip

σ I
ijp, σ

I
jip

σ IP
ijp, σ

IP
jip

σ IP
ip

σUθ
ip

σ Iθ
ijp, σ

Iθ
jip

σ Iθ
ip

 Pij,p
m

Qij,p
m  Pji,p

m
Qji,p

m

 Iji,p
m Iij,p

m

bij
p,sh

2

bij
p,sh

2

i j

gij+jbij
p p

Fig. 2.　Measurements of line ij.
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P m
jip[ t ] = 2 g p

ijV
p

j - g p
ij K

p
ij + bp

ij L
p
ij + r P

jip[ t ] (15)

Qm
jip[ t ] =- 2 (bp

ij +
bpsh

ij

2 )V p
j + bp

ij K
p
ij + g p

ij L
p
ij + r Q

jip[ t ] (16)

The calculation weights of the receiving-end power mea‐
surements are expressed as:

wP
jip [t]=

1
(σ P

jip )2 (17)

wQ
jip [t]=

1
(σ Q

jip )2 (18)

3) Nodal Voltage Magnitude Measurements
The nodal voltage magnitude measurements are nonlinear‐

ly expressed in terms of the SOCP state variables. To con‐
struct the linearized relationship of the nodal voltage magni‐
tude measurements, the squared voltage magnitude measure‐
ment value is chosen as the calculation measurement value, 
which is denoted as:

(U m
ip [t])2 = 2 V p

i + r U
ip [t] (19)

The calculation weight of the calculation measurement val‐
ue (U m

ip [t])2 is related to that of the original measurement val‐
ue U m

ip [t] based on the error propagation theory [40]:

wU
ip [t]=

1
4(U m

ip [t]σ U
ip )2 (20)

4) Line Current Magnitude Measurements
1) Sending-end current magnitude measurements
Similar to the nodal voltage magnitude measurements, the 

squared current magnitude measurement values are chosen 
as the calculation measurement values. The linearized mea‐
surement equation and calculation weight of the sending-end 
current magnitude measurements are expressed as:

(I m
ijp [t])2 = 2

é

ë

ê
êê
ê
ê
ê
(g p

ij )2 + (bp
ij +

bpsh
ij

2 ) 2ù

û

ú
úú
ú
ú
ú
V p

i + 2 ((g p
ij )2 +

(bp
ij )

2 )V p
j - 2

é

ë

ê
êê
ê(g p

ij )2 + (bp
ij +

bpsh
ij

2 )bp
ij

ù

û

ú
úú
ú K p

ij +

g p
ij b

psh
ij Lp

ij + r I
ijp [t] (21)

wI
ijp [t]=

1
4(I m

ijp [t]σ I
ijp )2 (22)

2) Receiving-end current magnitude measurements

(I m
jip [t])2 = 2

é

ë

ê
êê
ê
ê
ê
(g p

ij )2 + (bp
ij +

bpsh
ij

2 ) 2ù

û

ú
úú
ú
ú
ú
V p

j + 2 ((g p
ij )2 +

(bp
ij )

2 )V p
i - 2

é

ë

ê
êê
ê(g p

ij )2 + (bp
ij +

bpsh
ij

2 )bp
ij

ù

û

ú
úú
ú K p

ij -

g p
ij b

psh
ij Lp

ij + r I
jip [t] (23)

wI
jip [t]=

1
4(I m

jip [t]σ I
jip )2 (24)

C. Measurement Equations of D-PMUs

Since the sampling rate of D-PMU measurements is signif‐
icantly higher than the change in the operating state, multi-
time slots of D-PMU measurements are utilized in this pa‐
per. The temporal correlation of D-PMU measurements is 
considered, which is aimed to improve the robustness to sud‐
den bad measurement data in state estimation.

For each D-PMU measurement y at the estimation time t, 
the utilized D-PMU measurements are extended from time t -
DT to time t +DT, which is expressed as:

z P
y [t]=[z P

y [t -DT]        

z P
y [t - T]    z P

y [t]    z P
y [t + T]        z P

y [t +DT]] (25)

w P
y [t]=[wP

y [t -DT]        

wP
y [t - T]    wP

y [t]    wP
y [t + T]        wP

y [t +DT]] (26)

r P
y [t]=[r P

y [t -DT]        

r P
y [t - T]    r P

y [t]    r P
y [t + T]        r P

y [t +DT]] (27)

where D is an adjustable parameter to verify the validity on 
the improvement of estimation accuracy.

The installed D-PMU measurement types in ADNs consist 
of nodal voltage phasor measurements, line current phasor 
measurements, and nodal current injection phasor measure‐
ments. The magnitude measurements of D-PMUs can be lin‐
early related to the SOCP state variables. However, the 
phase angle measurements of D-PMUs are still nonlinearly 
related to the SOCP state variables. To tackle the nonlineari‐
ty, the phase angle measurements of D-PMUs are converted 
to the corresponding line power measurements or nodal pow‐
er injection measurements.
1)　Nodal Voltage Magnitude Measurements of D-PMUs

Similar to the nodal voltage magnitude measurements in 
Section II-B, the linearized measurement equations of nodal 
voltage magnitude measurements of D-PMUs are extended. 
The variable t in (19) is replaced by t + dT, where d =-D 
-D + 1D - 1D. The linearized measurement equation 
and calculation weight of the nodal voltage magnitude mea‐
surements of D-PMUs are expressed as:

z P
y [t + dT]= (U mP

ip [t + dT])2 = 2 V p
i + r P

y [t + dT] (28)

wP
y [t + dT]=

1
4(U mP

ip [t + dT]σ UP
ip )2 (29)

where the D-PMU measurement y relates to the nodal volt‐
age magnitude measurements in phase p at node i.
2)　Line Current Magnitude Measurements of D-PMUs

Similar to the line current magnitude measurements in 
Section II-B and the nodal voltage magnitude measurements 
of D-PMUs, the linearized measurement equation and calcu‐
lation weight of the line current magnitude measurements of 
D-PMUs are no longer illustrated, which is similar to 
(21)-(24).
3)　NCIMMs of D-PMUs

With the introduction of the NCIMMs of D-PMUs, the 
NCIMM related state variables are considered in this subsec‐
tion. The linearized measurement equation and calculation 
weight of the nodal current injection magnitude measure‐
ments of D-PMUs are expressed as:
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z P
y [t + dT]= (I mP

ip [t + dT])2 = 2 [(g p
i )2 + (bp

i )2 ]V p
i -

2∑
fÎ lini

[(g p
i g p

fi + bp
i bp

fi )K
p
fi + (bp

i g p
fi - g p

i bp
fi )L

p
fi ]-

2∑
jÎ lout

i

[(g p
i g p

ij + bp
i bp

ij )K
p
ij - (bp

i g p
ij - g p

i bp
ij )L

p
ij ]+

2∑
jÎ li

[(g p
ij )2 + (bp

ij )
2 ]V p

j +

2∑
sÎ li
∑

cÎ lic > s

[(g p
is g p

ic + bp
isb

p
ic )K p

sc -

(bp
is g p

ic - g p
isb

p
ic )Lp

sc ]+ r P
y [t + dT] (30)

wP
y [t + dT]=

1
4(I mP

ip [t + dT]σ IP
ip )2 (31)

where g p
i =∑

jÎ li

g p
ij; and bp

i =∑
jÎ li

(bp
ij + bpsh

ij /2).

4)　Equivalent Active Power Measurements of D-PMUs
The equivalent active power measurements of D-PMUs in‐

clude the sending-end active power measurements, receiving-
end active power measurements, and nodal active power in‐
jection measurements. The equivalent active power measure‐
ments of D-PMUs are expressed as the correlation of related 
nodal voltage phasor measurements and current phasor mea‐
surements. The measurement value Pme[ t + dT ] and calcula‐
tion weight wP

y[ t + dT ] of the equivalent active power mea‐

surements of D-PMUs are stated as:

z P
y [t + dT]=Pme [t + dT]=U mP [t + dT]I mP [t + dT]×

cos(θmP [t + dT]- θmPI [t + dT]) (32)

wP
y [t + dT]=

1
(σPUM )2 + (σPIM )2 + (σPUθ )2 + (σPIθ )2 (33)

σPUM = I mP [t + dT]cos(θmP [t + dT]- θmPI [t + dT])σUP (34)

σPIM =U mP [t + dT]cos(θmP [t + dT]- θmPI [t + dT])σ IP (35)

σPUθ =-U mP [t + dT]I mP [t + dT]sin(θmP [t + dT]- θmPI [t + dT])σUθ

(36)

σPIθ =U mP [t + dT]I mP [t + dT]sin(θmP [t + dT]- θmPI [t + dT])σ Iθ

(37)

The measurement variables concerning the specific equiva‐
lent measurement types of D-PMUs are listed in Table II.

The linearized measurement equations of the equivalent 
active power measurements of D-PMUs are similar to (7), 
(11), and (15), which are not illustrated here.

5)　Equivalent Reactive Power Measurements of D-PMUs
Similar to the equivalent active power measurements of D-

PMUs, the measurement value Qme [t + dT] and calculation 
weight wP

y [t + dT] of the equivalent reactive power measure‐
ments of D-PMUs are expressed as:

z P
y [t + dT]=Qme [t + dT]=U mP [t + dT]I mP [t + dT]×

sin(θmP [t + dT]- θmPI [t + dT]) (38)

wP
y [t + dT]=

1
(σQUM )2 + (σQIM )2 + (σQUθ )2 + (σQIθ )2 (39)

σQUM = I mP [t + dT]sin(θmP [t + dT]- θmPI [t + dT])σUP (40)

σQIM =U mP [t + dT]sin(θmP [t + dT]- θmPI [t + dT])σ IP (41)

σQUθ =U mP [t + dT]I mP [t + dT]cos(θmP [t + dT]- θmPI [t + dT])σUθ

(42)

σQIθ =-U mP [t + dT]I mP [t + dT]cos(θmP [t + dT]- θmPI [t + dT])σ Iθ

(43)

The linearized measurement equations of the equivalent re‐
active power measurements of D-PMUs are similar to (8), 
(12), and (16), which are not illustrated here.

D. Measurement Equations of Zero Injection Nodes

For any zero injection node i without any loads and DGs, 
the zero injection constraints at node i in phase p are con‐
structed as:

-∑
fÎ lini

( 2 g p
fiV

p
i - g p

fi K
p
fi + bp

fi L
p
fi )-

∑
jÎ lout

i

( 2 g p
ijV

p
i - g p

ij K
p
ij - bp

ij L
p
ij )= 0 (44)
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V p
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ij K
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ij - g p

ij L
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ij = 0 (45)

III. REVISED SOCP-BASED RSE METHOD 

To combine the benefits of the WLAV estimation method 
in bad data identification and the SOCP method in estima‐
tion performance, a revised SOCP-based RSE method is pro‐
posed in this section.

A. Modeling of WLAV-based SOCP Method

The WLAV-based state estimation model considering the 
multi-source measurements in ADNs is formulated as:

ì

í

î

ïïïï

ïïïï

min
x

 J(x)=wT [t] | r[t] |
s.t. z[t]=Hx + r[t]

       Cx = 0

(46)

z[t]=[z SA
1 [t]    z SA

2 [t]        
z SA

m [t]        z SA
M [t]    z P

1 [t]    z P
2 [t]        z P

y [t]        z P
Y [t]]T

(47)

w[t]=[wSA
1 [t]    wSA

2 [t]        wSA
m [t]      

wSA
M [t]    w P

1 [t]    w P
2 [t]        w P

y [t]        w P
Y [t]]T (48)

TABLE II
MEASUREMENT VARIABLES CONCERNING EQUIVALENT MEASUREMENT 

TYPES OF D-PMUS

Equivalent measurement type of 
D-PMUs

Equivalent sending-end active and 
reactive power measurements

Equivalent receiving-end active and 
reactive power measurements

Equivalent nodal active and reactive 
power injection measurements

Variable of D-PMUs

Pme

P me
ijp

P me
jip

P me
ip

Qme

Qme
ijp

Qme
jip

Qme
ip

U mP

U mP
ip

U mP
jp

U mP
ip

I mP

I mP
ijp

I mP
jip

I mP
ip

θmP

θmP
ip

θmP
jp

θmP
ip

θmPI

θmP
ijp

θmP
jip

θmPI
ip
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r[t]=[r SA
1 [t]    r SA

2 [t]        r SA
m [t]        

r SA
M [t]  r P

1 [t]  r P
2 [t]    r P

y [t]    r P
Y [t]]T (49)

where z[t] is constituted by (7), (8), (11), (12), (15), (16), 
(19), (21), (23), (28), (30), (32), and (38); w[t] is constituted 
by (9), (10), (13), (14), (17), (18), (20), (22), (24), (29), 
(31), (33), and (39); H is the compact matrix form of linear‐
ized measurement equations constituted by (7), (8), (11), 
(12), (15), (16), (19), (21), and (23); and C is the compact 
matrix form of (44) and (45).

To alleviate the nonconvexity caused by the absolute val‐
ue variable | r |, the auxiliary variables u and v are introduced 
as:

ì

í

î

ï
ïï
ï

ï
ïï
ï

u =
|| r - r
2

v =
|| r + r
2

(50)

The equivalent model of (46) is transformed into:

ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïï
ï

ï

min
x

 J(x)=wT [t](u + v)

s.t. z[t]=Hx + v - u

Cx = 0
u ³ 0
v ³ 0

(51)

Since the number of the SOCP state variables is larger 
than that of state variables in the traditional Gauss-Newton 
method 2N considering D-PMUs, it may lead to the unob‐
servability of RSE. To solve the unobservability problem, 
the second-order cone constraints are introduced into the 
WLAV problem.

The equality constraints (52) and (53) are satisfied be‐
tween the SOCP state variables.

(K p
ij )2 + (Lp

ij )
2 = 2V p

i V p
j     "ijÎL"pÎÃ (52)

(K p
sc )2 + (Lp

sc )2 = 2V p
s V p

c     sÎ lrcÎ lrc > s"rÎR"pÎÃ
(53)

The above equality constraints are relaxed into the rotat‐
ing second-order cone constraints:

(K p
ij )2 + (Lp

ij )
2 £ 2V p

i V p
j     "ijÎL"pÎÃ (54)

(K p
sc )2 + (Lp

sc )2 £ 2V p
s V p

c     sÎ lrcÎ lrc > s"rÎR"pÎÃ
(55)

To make the second-order cone constraints close to the 
equality constraints (52) and (53), the term -(λl (K l )T +
λm (K m )T ) is added to the objective function. Then, the mod‐
el of the SOCP-based RSE method is transformed into:

ì

í

î

ï

ï

ï
ïï
ï
ï

ï

ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

ï

min
x

 J(x)=-(λl (K l )T+λm (K m )T )+wT [t](u+v)

s.t. z[t]=Hx+v-u

Cx=0
(K p

ij )2+(Lp
ij )

2£2V p
i V p

j      "ijÎL"pÎÃ
(K p

sc )2+(Lp
sc )2£2V p

s V p
c     sÎ lrcÎ lrc>s"rÎR"pÎÃ

u³0
v³0

(56)

B. Observability of SOCP-based RSE Method

The number of the multi-source measurements in the 
Gauss-Newton method is M GN = M + Y = M + 2(Y U + Y I + Y injI ). 
With the introduced equivalent power measurements, the 
number of the multi-source measurements in the SOCP meth‐
od is M SOCP =M + Y U + 3Y I + 3Y injI. Compared with the Gauss-
Newton method, the number M SOCP is increased by Y I + Y injI -
Y U. In addition, the second-order cone constraints make the 
equivalent measurements increase by N L + Y injI. Compared 
with the Gauss-Newton method, the variation of the number 
of the multi-source measurements is Y I + 2Y injI - Y U +N L. For 
radial distribution networks, N L =N - 1; thus, the variation of 
the number of the multi-source measurements between the 
Gauss-Newton method and the SOCP method is Y I + 2Y injI -
Y U +N - 1.

The number of state variables in the Gauss-Newton meth‐
od nGN is 2N considering D-PMUs. However, with the intro‐
duction of auxiliary state variables, the number of state vari‐
ables in the SOCP method nSOCP reaches N + 2N L + 2Y injI =
3N + 2Y injI - 2. Compared with the Gauss-Newton method, 
the number of state variables is increased by N + 2Y injI - 2.

Since Y I is larger than Y U, the variation of the number of 
the multi-source measurements Y I + 2Y injI - Y U +N - 1 is larg‐
er than the variation of the number of state variables N +
2Y injI - 2. It indicates that the introduction of measurement 
conversion and second-order cone constraints ensures the ob‐
servability of the SOCP-based RSE.

C. Solution of SOCP-based RSE Method

To solve the above SOCP-based RSE problem, the interi‐
or-point algorithm is utilized where the dual problem of the 
primal problem (56) is formulated [41]. The interior-point al‐
gorithm solver deals with the primal optimal solution and 
the dual optimal solution simultaneously. Then, the optimal 
primal-dual solution will be obtained by given termination 
tolerance, which is usually selected as the gap of the objec‐
tive function between the primal problem and the dual prob‐
lem.

In this paper, the RSE problem (56) is solved by the opti‐
mization software MOSEK [42]. The estimation values of 
the SOCP state variables x are obtained, and the estimation 
results are recovered to the original voltage magnitudes and 
phase angles.
1)　Estimation Values of Nodal Voltage Magnitudes

For any node i, the estimation value of nodal voltage mag‐
nitude U p

i  can be obtained from the SOCP state variable V p
i  

as:

U p
i = 2 V p

i
(57) 

2)　Estimation Values of Nodal Voltage Phase Angles
The estimation values of nodal voltage phase angles at the 

source node in phases A, B, and C are set equal to 
0  -2π/3  and  2π/3, respectively. For any line connecting 
nodes i and j, the estimation values of nodal voltage phase 
angles satisfy the following relationship:

θ p
j = θ

p
i - arctan

Lp
ij

K p
ij

(58)

Starting from the source node, the voltage phase angles of 
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all other nodes can be obtained by using the breadth-first 
search algorithm or the depth-first search algorithm.

D. Implementation of SOCP-based RSE Method

Figure 3 depicts the flowchart of the proposed SOCP-
based RSE method.

Due to the mutual decoupling between phases of the sec‐
ond-order cone constraints (54) and (55), the proposed RSE 
method is applicable to multi-phase balanced networks and 
multi-phase decoupled unbalanced networks, and the unbal‐
ance of loads can be treated.

IV. CASE STUDIES AND ANALYSIS 

In this section, the effectiveness of the proposed SOCP-
based RSE method considering multi-source measurements 
is verified in the modified IEEE 33-node and 123-node sys‐
tems. The proposed method is programmed using C++ and 
solved by MOSEK. The numerical experiments are carried 
out on a computer with an Intel Xeon CPU E5-2650 v2 pro‐
cessor running at 2.60 GHz and 20 GB of RAM.

A. Modified IEEE 33-node System

The topology and multi-source measurement configuration 
of the modified IEEE 33-node system is presented in Fig. 4, 
of which the rated voltage level is 12.66 kV. Nodes 2, 3, 
and 6 are modified as zero injection nodes, which represent 
the switching stations in practical networks.

To simulate the multi-source measurement data, their true 
values are obtained by the distribution power flow analysis. 
Then, the Gaussian distributed measurement noises are add‐
ed to the true values. The standard deviations of the multi-
source measurements are listed in Table III.

For the magnitude measurements of D-PMUs, SCADA, 
and AMI, the measurement value satisfies:

zmea = z true(1 + e) (59)

where zmea and z true are the measurement value and true val‐
ue, respectively; and e is the added measurement noise. 

For the phase angle measurements of D-PMUs, the mea‐
surement value satisfies:

zmea = z true + e (60)

B. Estimation Accuracy and Convergence Analysis

To assess the estimation accuracy, convergence, and com‐
putation time of the proposed method, 250 Monte Carlo sim‐
ulations are performed, and the total time of state estimation 
T tot is listed. The following four indices are utilized to assess 
the estimation accuracy.

1) Average relative errors of nodal voltage magnitudes U re

U re =
1
N∑iÎN

|

|

|
||
|
|
||

|

|
||
|
|
| U se

i -U true
i

U true
i

(61)

2) Average absolute errors of nodal voltage phase an‐
gles θae

θae =
1
N∑iÎN ||θ se

i - θ true
i (62)

3) Average relative errors of nodal power injections E re

E re =
1

2N∑iÎN( )|

|

|
||
|
|
||

|

|
||
|
|
| P se

i -P true
i

P true
i

+
|

|

|
||
|
|
||

|

|
||
|
|
| Qse

i -Qtrue
i

Qtrue
i

(63)

4) Average absolute errors of nodal power injections Eae

Eae =
1

2N∑iÎN( )|| P se
i -P true

i + ||Qse
i -Qtrue

i (64)

The solution of the proposed SOCP-based RSE method 
(WLAV-SOCP) is compared with the WLS-based Gauss-
Newton (WLS-GN) method and the WLAV-based Gauss-

Input network topology, line parameters, and

multi-source measurement configuration of ADNs

Determine SOCP state variables based on all nodes,

all lines, and NCIMM related nodes

Obtain calculation measurement values and calculation

weights of multi-source measurements at estimation time

Construct linearized multi-source measurement equations

related to SOCP state variables; construct linearized

zero injection constraints related to SOCP state variables

Execute WLAV- and SOCP-based RSE

Recover solution of SOCP state variables to original

node voltage magnitude and phase angle

Output RSE solution

Start

End

Fig. 3.　Flowchart of proposed SOCP-based RSE method.

Nodal voltage magnitude (SCADA); Line current magnitude (SCADA);

Nodal voltage phasor (D-PWU)Line power (SCADA);

Line current phasor (D-PWU); Nodal current injection phasor (D-PWU);

zi�zero injection nodes

1 8765432 9 10 11 12 13 14 15 16 17 18

19 20 21 22

23 24 25 26 27 28 29 30 31 32 33

zizi zi

Fig. 4.　Topology and multi-source measurement configuration of modified 
IEEE 33-node system.

TABLE III
STANDARD DEVIATIONS OF MULTI-SOURCE MEASUREMENTS

Measurement type

Magnitude measurements of D-PMUs

Phase angle measurements of D-PMUs

Measurements of SCADA

Measurements of AMI

Standard deviation of 
measurement errors

0.1%

0.01°

1%

5%
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Newton (WLAV-GN) method in [27]. The weights of the 
SOCP state variables λl and λm are set to be 10-4 and 10-2, re‐
spectively. The termination tolerance of the WLS-GN and 
WLAV-GN methods is set to be 10-5 per unit, while that of 
the WLAV-SOCP method is set to be 10-8 per unit. The max‐
imum iteration number is set to be 100 to ensure the conver‐
gence of state estimation. Simulation scenarios with different 
multi-source measurement configurations are implemented to 
verify the estimation performance of the proposed method.
1)　Multi-source Measurements Without D-PMUs

To evaluate the second-order cone relaxations on the esti‐
mation performance, the D-PMU measurements in Fig. 4 are 
not considered, that is, only the conventional SCADA and 
AMI measurements are taken into consideration. Except the 
source node 1 and the zero injection nodes, all other nodes 
are equipped with AMI measurements.

The results in Table IV show the estimation accuracy and 
total computation time of the three methods. With the intro‐
duced second-order cone relaxations, the estimation errors of 
the WLAV-SOCP method are slighter than those of the WLS-
GN method and the WLAV-GN method, but are still at the 
same error level. The total computation time of the WLAV-
SOCP method is between that of the WLS-GN method and 
the WLAV-GN method. Because of the linear objective func‐
tion in the WLAV-GN method, its computation time is the 
longest. The iteration number to achieve convergence of the 
WLAV-GN method is analyzed in Table V, where different 
maximum iteration numbers are assigned, respectively. 

The results show that when the maximum iteration num‐
ber is 50, 11 times of the WLAV-GN estimation are not con‐
vergent with the termination tolerance of 10-5. All the state 
estimations are convergent with the maximum iteration num‐
ber 100. In contrast, the proposed WLAV-SOCP method 
achieves the estimation convergence rate of 100%.
2)　Multi-source Measurements Considering D-PMUs

The multi-source measurements considering the D-PMU 
measurements in Fig. 4 are analyzed, in which the impact of 
measurement conversion of D-PMUs is tested. To verify the 
effectiveness of the NCIMM related state variables, the nod‐

al current injection phasor measurements are distributed at 
nodes 24 and 30. Except for nodes 1, 2, 3, 6, 24, and 30, all 
other nodes are equipped with AMI measurements. The mea‐
surement redundancy is 1.909. The estimation results of dif‐
ferent state estimation methods considering D-PMUs are 
shown in Table VI.

The estimation results in Table VI reveal that compared 
with the utilization of original D-PMU measurement values 
in the WLS-GN and WLAV-GN methods, the measurement 
conversion in the WLAV-SOCP method facilitates the imple‐
mentation of the SOCP methods. The estimation accuracy in 
the nodal voltage phase angles of the WLAV-SOCP method 
is improved. The total computation time of the proposed 
WLAV-SOCP method with D-PMU measurements is close to 
the WLAV-GN method.

Different coefficients of multi-time slots of D-PMUs, i.e., 
D, are considered to improve the estimation accuracy of the 
WLAV-SOCP method. The results in Table VII and Fig. 5 
show that as the coefficient D increases to 1, the estimation 
errors of nodal voltage magnitudes reduce to 0.0250%, 
which outperform the other two methods. Meanwhile, the 
computation time of the WLAV-SOCP method increases 
with the coefficient D. The results in Table VII further indi‐
cate that due to the relatively small number of D-PMUs, the 
impact of multi-time slots of D-PMU measurements on the 
estimation errors of nodal power injections is not obvious. 
Thus, we consider configuring more D-PMUs in the network.

TABLE IV
COMPARISON OF STATE ESTIMATION RESULTS WITHOUT D-PMUS

Method

WLS-GN

WLAV-GN

WLAV-SOCP

U re (%)

0.5767

0.4804

0.7018

θae (°)

0.0141

0.0143

0.0165

E re (%)

6.5740

6.4795

7.0577

Eae (kW)

1.5878

1.4744

1.8151

T tot (s)

6.106

15.280

11.337

Note: total computation time T tot refers to total time of 250 simulations.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
Bus No.

0.01

0.03

0.05

0.07

0.09

0.11

0.13

0.15 WLS-GN;

WLAV-GN;

WLAV-SOCP (D=0);

WLAV-SOCP (D=1);

WLAV-SOCP (D=2)

WLAV-SOCP (D=3)

U
re

 (
%

)

Fig. 5.　Estimation errors of nodal voltage magnitudes.

TABLE V
CONVERGENCE OF WLAV-GN METHOD

The maximum iteration number

25

50

100

Non-converge state estimation number

75

11

0

TABLE VI
COMPARISON OF ESTIMATION RESULTS OF DIFFERENT STATE ESTIMATION 

METHODS CONSIDERING D-PMUS

Method

WLS-GN

WLAV-GN

WLAV-SOCP

U re (%)

0.1138

0.0356

0.0482

θae (°)

0.0241

0.0044

0.0032

E re (%)

4.7592

4.9222

4.3695

Eae (kW)

0.9786

0.9918

1.0682

T tot (s)

7.255

10.289

13.155

TABLE VII
WLAV-SOCP BASED STATE ESTIMATION RESULTS WITH DIFFERENT 

COEFFICIENTS OF MULTI-TIME SLOTS OF D-PMUS

D

0

1

2

3

U re (%)

0.0482

0.0250

0.0196

0.0164

θae (°)

0.0032

0.0030

0.0030

0.0029

E re (%)

4.3695

4.1702

4.1419

4.0774

Eae (kW)

1.0682

1.0260

1.0130

1.0098

T tot (s)

13.155

23.223

27.157

33.121
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3)　More D-PMUs in Multi-source Measurements
Based on the multi-source measurement configurations in 

Fig. 4, more D-PMU and SCADA measurements are config‐
ured, as shown in Fig. 6. The measurement redundancy is 
2.485. The estimation results of different state estimation 
methods are shown in Table VIII and Fig. 7.

The results show that when the coefficient D is 0, the esti‐
mation errors of nodal voltage phase angles and nodal power 
injections outperform the other two methods. When the coef‐
ficient D increases to 1, the estimation errors of nodal volt‐
age magnitudes are also superior to other methods. With the 
increase of coefficient D, the estimation errors of nodal pow‐
er injections show a certain reduction.

C. Robustness to Bad Data Analysis

The bad measurement data are simulated by adding rela‐
tively large Gaussian distributed errors to the corresponding 
true values. The relatively large measurement error is usual‐
ly set to be larger than 5 times the normal measurement stan‐
dard deviation. The estimation results of the WLAV-SOCP 
method are intended to illustrate the robustness to bad mea‐

surement data.
1)　Single Bad Measurement Data

Single bad measurement data is set in each state estima‐
tion, and all the bad measurement data are distributed at dif‐
ferent nodes or lines. The multi-source measurement configu‐
rations are still based on Fig. 6. A total of 250 Monto Carol 
simulations are performed. No extra post-estimation bad data 
identification is processed in all three methods.

The results in Table IX indicate that without the post-esti‐
mation bad data processing, the estimation accuracy of the 
WLS-GN method is evidently larger than that of the WLAV-
based estimators. In contrast, the WLAV-based estimators in‐
cluding the WLAV-GN method and the WLAV-SOCP meth‐
od exhibit the property of automatic bad data rejection.

With the utilization of multi-time slots of D-PMU mea‐
surements, the proposed WLAV-SOCP method can identify 
and correct the bad measurement resulting from the failure 
of network communication or sudden abnormal measure‐
ment. By comparing the results in Table VIII and Table IX, 
the estimation accuracy considering the single bad measure‐
ment data is close to the scenario where there is no bad mea‐
surement. It can be extended to the bad measurement scenar‐
io where more than one non-conforming bad data measure‐
ment, which is not described here.
2)　Multiple Conforming Bad Measurement Data

To describe the effectiveness of the proposed method, the 
measurement scenarios including multiple conforming bad 
measurement data are described as follows.

Case 1: the sending-end current magnitude measurement 
value of D-PMUs in the line connecting nodes 5 and 6 (D-I-
5-6) increases from 121.6582 A to 133.6582 A, and the re‐
ceiving-end active power measurement value in the line con‐
necting nodes 6 and 7 (P-6-7) decreases from -364.4283 kW 
to -437.6068 kW.

Case 2: the sending-end current magnitude measurement 
value of D-PMUs in the line connecting nodes 1 and 2 (D-I-
1-2) increases from 197.2925 A to 237.0729 A, and the send‐
ing-end active power measurement value in the line connect‐
ing nodes 1 and 2 (P-1-2) increases from 1219.3742 kW to 
1445.9194 kW.

Case 3: the sending-end current magnitude measurement 
value of D-PMUs in the line connecting nodes 2 and 3 (D-I-
2-3) decreases from 179.4144 A to 161.2107 A, and the 
sending-end current magnitude measurement value of D-

TABLE IX
COMPARISON OF STATE ESTIMATION RESULTS WITH SINGLE BAD

MEASUREMENT DATA

Method

WLS-GN

WLAV-GN

WLAV-SOCP (D = 0)

WLAV-SOCP (D = 1)

WLAV-SOCP (D = 2)

WLAV-SOCP (D = 3)

U re (%)

0.1819

0.0284

0.0467

0.0240

0.0175

0.0143

θae (°)

0.0367

0.0036

0.0030

0.0024

0.0023

0.0023

E re (%)

7.3114

6.4462

4.2436

3.0135

2.9268

2.8468

Eae (kW)

1.4029

1.1113

0.8702

0.6759

0.6640

0.6474

T tot (s)

7.983

11.208

16.725

30.080

36.001

44.488

1 8765432 9 10 11 12 13 14 15 16 17 18

19 20 21 22

23 24 25 26 27 28 29 30 31 32 33

zizi zi

Nodal voltage magnitude (SCADA); Line current magnitude (SCADA);

Nodal voltage phasor (D-PWU)Line power (SCADA);

Line current phasor (D-PWU); Nodal current injection phasor (D-PWU);

zi�zero injection nodes

Fig. 6.　 Structure of modified IEEE 33-node system with more D-PMU 
and SCADA measurements.

TABLE VIII
COMPARISON OF STATE ESTIMATION RESULTS WITH DIFFERENT METHODS

Method

WLS-GN

WLAV-GN

WLAV-SOCP (D = 0)

WLAV-SOCP (D = 1)

WLAV-SOCP (D = 2)

WLAV-SOCP (D = 3)

U re (%)

0.0761

0.0264

0.0445

0.0235

0.0171

0.0140

θae (°)

0.0185

0.0036

0.0023

0.0021

0.0020

0.0020

E re (%)

3.7151

4.3458

3.0662

2.8532

2.7498

2.6853

Eae (kW)

0.7167

0.8069

0.6711

0.6352

0.6223

0.6096

T tot (s)

7.276

10.781

15.689

28.526

35.066

44.029

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
Bus No.

0.01

0.03

0.05

0.07

0.09

0.11 WLS-GN;

WLAV-GN;

WLAV-SOCP (D=0);

WLAV-SOCP (D=1);

WLAV-SOCP (D=2)

WLAV-SOCP (D=3)

U
re

 (
%

)

Fig. 7.　Estimation errors of nodal voltage magnitudes with different meth‐
ods.
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PMUs in the line connecting nodes 2 and 19 (D-I-2-19) in‐
creases from 18.0837 A to 36.1718 A, and the sending-end 
active power measurement value in the line connecting 
nodes 3-23 (P-3-23) decreases from 313.1989 kW to 

205.8947 kW.
The coefficient of multi-time slots of D-PMU measure‐

ments D in the WLAV-SOCP method is set to be 1. The com‐
parison of bad data identification results is shown in Table X.

It can be observed from the results in Case 1, the WLAV-
GN method and the proposed WLAV-SOCP method can 
identify the conforming bad measurement data. However, in 
Case 2 and Case 3, the WLAV-GN method cannot identify 
the conforming bad measurement data. With the multiple 
time slots of D-PMU measurements, the WLAV-SOCP meth‐
od identifies the sudden conforming bad measurement data 
in all three cases. Therefore, the robustness to multiple con‐
forming bad measurement data of the proposed method is 
verified.

D. Estimation Performance in Larger-scale Distribution Net‐
works

To verify the effectiveness of the proposed method in larg‐
er-scale distribution networks, the modified IEEE 123-node 
system is adopted. The topology of the modified IEEE 123-
node system is presented in Fig. 8. 

The mutual impedances between phases are ignored and 
the measurement redundancy is 1.651. To assess the estima‐
tion accuracy and bad data identification of the proposed 
method, 100 Monte Carlo simulations are performed. The 

multi-source measurement scenario considering D-PMU mea‐
surements in Fig. 8 is analyzed, and the state estimation re‐
sults of different methods without bad measurement data are 
shown in Table XI.

The state estimation results in Table XI indicate that when 
the coefficient of multi-time slots of D-PMUs D is 1, the es‐
timation errors of nodal voltage magnitudes reduce to 
0.0155%, which is competitive with the other two methods. 
In addition, with the increase of coefficient D, the estimation 
errors in nodal power injections show a certain reduction.

Similar to the bad measurement data scenarios in Section 
IV-C, to illustrate the robustness to bad measurement data of 
the proposed method, three bad measurement data are set in 
each state estimation and all the bad measurement data are 
distributed at different nodes or lines. The state estimation re‐
sults of different methods with three bad measurement data 
are shown in Table XII.

The above estimation results indicate that with the utiliza‐
tion of multiple time slots of D-PMU measurements, the pro‐
posed WLAV-SOCP method can identify the bad measure‐
ment data in the multi-source measurements. Although the 
proposed method takes a relatively long computation time, 
the computation time of single state estimation is still less 
than 1 s, which is within the acceptable range.

TABLE X
COMPARISON OF STATE ESTIMATION RESULTS WITH MULTIPLE CONFORMING BAD MEASUREMENT DATA

Value

Measurement

True

Estimation

WLS-GN

WLAV-GN

Proposed WLAV-SOCP

Case 1

D-I-5-6 (A)

121.7011,
133.6582,
121.6516 

121.6582

126.1285

121.6582

121.6348

P-6-7 (kW)

-437.6068

-364.4283

-382.4433

-364.6023

-364.2590

Case 2

D-I-1-2 (A)

197.6049,
197.0091,
237.0729 

197.2925

221.8963

200.7107

197.2085

P-1-2 (kW)

1445.9194

1219.3742

1404.0266

1242.6048

1219.3627

Case 3

D-I-2-3 (A)

179.3481,
161.2107,
179.3418 

179.4144

161.9103

161.8424

179.2867

D-I-2-19 (A)

18.0776,
36.1718,
18.0744 

18.0837

36.0962

36.1718

18.0782

P-3-23 (kW)

205.8947

313.1989

207.8455

199.2292

312.2099
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Fig. 8.　Topology of modified IEEE 123-node system.

TABLE XI
COMPARISON OF STATE ESTIMATION RESULTS WITHOUT BAD 
MEASUREMENT DATA FOR MODIFIED IEEE 123-NODE SYSTEM

Method

WLS-GN

WLAV-GN

WLAV-SOCP (D = 0)

WLAV-SOCP (D = 1)

WLAV-SOCP (D = 2)

WLAV-SOCP (D = 3)

U re (%)

0.0133

0.0158

0.0255

0.0155

0.0099

0.0076

θae (°)

0.0015

0.0019

0.0026

0.0015

0.0009

0.0008

E re (%)

0.3876

0.3063

0.6218

0.3765

0.3335

0.3154

Eae (kW)

0.0926

0.0738

0.1556

0.0963

0.0861

0.0817

T tot (s)

23.439

27.327

43.345

69.403

87.773

110.373

Note: total computation time Ttot refers to total time of 100 simulations.
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V. CONCLUSION 

An SOCP-based RSE method considering the multi-source 
measurements in ADNs is proposed in this paper. The meth‐
od incorporates measurement data consisting of D-PMUs, 
SCADA, and AMI. A linearized estimation model of multi-
source measurements related to the SOCP state variables is 
formulated. The phase angle measurements of D-PMUs are 
converted to the equivalent power measurements. The re‐
vised SOCP-based WLAV method transforms the non-con‐
vex problem into the convex problem and is carried out to 
improve the estimation accuracy and convergence of state es‐
timation. Estimation results in the modified IEEE 33-node 
and IEEE 123-node systems indicate that with the multiple 
time slots of D-PMU measurements, the trade-off between 
the estimation accuracy and computational efficiency of the 
proposed method is realized. The robustness to the single 
bad measurement data and the multiple conforming bad mea‐
surement data of the proposed method is verified.
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