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Abstract——Generalized short circuit ratio (gSCR) for grid 
strength assessment of multi-infeed high-voltage direct current 
(MIDC) systems is a rigorous theoretical extension of the tradi‐
tional SCR, which enables SCR to be extended to MIDC sys‐
tems. However, gSCR is originally based on the assumption of 
homogeneous MIDC systems, in which all high-voltage direct 
current (HVDC) converters have an identical control configura‐
tion, thus presenting challenges to applications of gSCR to inho‐
mogeneous MIDC systems. To weaken this assumption, this pa‐
per applies matrix perturbation theory to explore the possibility 
of utilization of gSCR into inhomogeneous MIDC systems. Re‐
sults of numerical experiments show that in inhomogeneous 
MIDC systems, the previously proposed gSCR can still be used 
without modification. However, critical gSCR (CgSCR) must be 
redefined by considering the characteristics of control configu‐
rations of HVDC converter. Accordingly, the difference between 
gSCR and redefined CgSCR can effectively quantify the perti‐
nent AC grid strength in terms of the static-voltage stability 
margin. The performance of the proposed method is demon‐
strated in a triple-infeed inhomogeneous line commutated con‐
verter based high-voltage direct current (LCC-HVDC) system.

Index Terms——Generalized short circuit ratio (gSCR), multi-
infeed high-voltage direct current system, modal perturbation, 
static-voltage stability.

I. INTRODUCTION 

MULTIPLE line commutated converter based high-volt‐
age direct current (LCC-HVDC) inverters connected 

to a common receiving end in proximity are defined as 
multi-infeed DC (MIDC) systems [1]. In MIDC systems, 
static-voltage instability issues may arise when the AC grid 
strength is insufficient to support a decrease in grid voltage 

through the integration of more LCC-HVDC inverters 
[2], [3].

AC grid strength plays a fundamental role in static-volt‐
age stability. In addition, a simple measure known as the 
short circuit ratio (SCR) has long been used to quantify the 
grid strength in single-infeed LCC-HVDC (SIDC) systems. 
Specifically, the stability margin can be estimated entirely by 
calculating the SCR and critical SCR (CSCR), with 
CSCR ≈ 2 in various SIDC systems [4]. To assess the grid 
strength of MIDC systems, several SCR-based methods that 
consider the interactions between HVDC inverters have been 
proposed [5]-[8]. These methods can be divided into two cat‐
egories: empirical indices including the multi-infeed interac‐
tive SCR (MISCR) [5] and multi-infeed SCR (MSCR) [6] 
and theoretical indices including generalized effective SCR 
(GESCR) [7] and generalized SCR (gSCR) [8]. The advan‐
tage of empirical indices is that their calculation formulas 
are simple. However, they lack theoretical justification due 
to their empirical reasoning when the critical values of these 
indices vary in different power systems. Theoretical indices, 
e.g., GESCR, are theoretically proposed based on characteris‐
tic analysis of the Jacobian matrix. However, the calculation 
formula of GESCR is considerably more complicated be‐
cause it depends on detailed system operation data. In addi‐
tion, the critical GESCR is fixed at 1, which is significantly 
different from that of the SCR. Thus, the considerable expe‐
rience derived from using SCR cannot be simply adapted to 
the application of GESCR.

Compared with the aforementioned indices, gSCR main‐
tains a simple calculation formula with a fixed critical gSCR 
(CgSCR), i.e., CgSCR = CSCR ≈ 2, in various MIDC systems. 
This is because it is originally proposed based on a theoreti‐
cal analysis of the relationship between SCR and static-volt‐
age stability in SIDC systems and by extending the results 
to MIDC systems [8]. This enables the gSCR to be used in 
the same manner as that of the SCR. In particular, the stabili‐
ty margin of MIDC systems can be entirely focused on the 
gSCR and CgSCR. However, the gSCR is original based on 
the assumption of homogeneous MIDC systems, where all 
HVDC converters have identical control configurations, thus 
limiting their applications to more general cases.

This letter extends the application of gSCR to inhomoge‐
neous MIDC systems for grid strength assessment through 
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mode perturbation theory, which shows that the gSCR can 
remain valid without modification by deriving an approxi‐
mate relationship between the gSCR defined for homoge‐
neous MIDC systems and the singularity point of the Jacobi‐
an matrix. However, the CgSCR must consider the equiva‐
lent characteristic of a weighted sum of HVDC converter 
control configurations.

II. PROBLEM STATEMENT 

A. Static-voltage Stability Analysis for MIDC Systems

The linearized power flow equations at the converter side 
of an MIDC system consisting of HVDC1-HVDCn are 
shown in Fig. 1, where Paci and Qaci (i = 1, 2,  n) are the 
active and reactive power injected into the inverter-end AC 
bus by HVDC and AC system, respectively; Pdi and Ii are 
the DC power and current, respectively; Qdi is the reactive 
power of the HVDC together with the compensation capaci‐
tor; Ui is the AC voltage; ξi is the voltage angle of voltage 
source E; θ is the angle of line impedance Zi or Zij; and bci 
is the reactive power compensation capacitor. The control 
mode is constant current-constant angle or constant power-
constant extinction angle, which can be represented as [9]:

[ΔPd ΔP ΔQ]T = JMIDC [ΔId Δδ ΔU/U]T (1)

where ΔPd, ΔP, and ΔQ are the vectors representing the per‐
turbations of the DC power and active and reactive power at 
each converter-side AC bus, respectively; ΔId, Δδ, and ΔU/U 
are the vectors representing the perturbations of the DC cur‐
rent, voltage angle, and AC voltage percentage at each con‐
verter-side AC bus, respectively; and JMIDC is the Jacobian 
matrix.

The boundary condition for static-voltage stability in 
MIDC systems can be represented by the determinant of 
JMIDC equal to zero, i.e., the saddle-node bifurcation.

det(JMIDC )= 0 (2)

In the planning studies [4], [8], the boundary condition in 
(2) can be simplified under the rated operating conditions, 
i.e., Ui = UN = 1 p.u. and Pi = PNi (i = 1, 2 , n).
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det(JMIDC )= det(Jsys )= 0

Jsys = diag(Ti )+ J -1
eq - Jeq

Jeq =-diag-1 (PNi )B

Ti = 2cK(c)/{1 - 1/[(cos γ)/c - 1]}+ 2ωBcU
2

c = XId / 2KU

(3)

where PNi is the rated power injection into the AC grid 
from the ith converter; B is the node susceptance matrix; Jeq 
is a weighted node susceptance matrix; Ti is the control pa‐
rameter of the ith converter; K(c) is the function of c; Id is 
the DC current; γ is the extinction angle; K is the ratio of 
the transformer; U is the voltage magnitude; X is the commu‐
tation reactance; Bc is the reactive power compensation ca‐
pacitor; and ω is the angular velocity. More details can be 
found in [8].

B. Challenge for Grid Strength Assessment Based on gSCR

For a homogeneous MIDC system, the converters of all 
HVDC ties have the same control configuration. Thus, pa‐
rameter Ti in (3) is an identical constant, i. e., T = T1 =
T2 == Ti == Tn. Jsys can be rewritten as:

Jsys0 = TIn + J -1
eq - Jeq (4)

where In is an n ´ n identity matrix.
After (4) is eigen-decomposed, the boundary condition in 

(3) can be further represented as [8]:

det(Jsys0 )= ∏
i = 1,2,,n

(T + λ-1
i - λi ) = 0 (5)

where T + λ-1
i - λi and λi (0 < λ1 £ £ λi £ £ λn) are the ei‐

genvalues of Jsys0 and Jeq, respectively; and λi is defined as 
the gSCR such that the voltage stability margin of MIDC 
systems is quantified by the minimum eigenvalue of Jeq. 

Equation (5) is the product of the eigenvalues of Jsys0, and 
each eigenvalue of Jsys0 can represent an equivalent SIDC 
system for static-voltage stability analysis [8]. Because the 
stability of MIDC system depends primarily on the mini‐
mum eigenvalue of Jsys0 or the equivalent SIDC system with 
λ1, the boundary condition in (5) can be simplified as:

T + λ-1
i - λi = 0 (6)

   This considerably reduces the burden of voltage stability 
analysis with the calculation of the determinant of JMIDC. In 
addition, CgSCR is defined as the critical value of gSCR 
that corresponds to the boundary condition in (6) and is rep‐
resented by (7). In [4], CgSCR is found to be approximately 
equal to 2 (the same value as CSCR in SIDC systems), 
which overcomes the bottleneck of ambiguity of critical val‐
ues in the applications of SCR-based methods in MIDC sys‐
tems [5], [6].

CgSCR = T/2 + T 2 /4 + 1 (7)

where CgSCR is the positive root of (6) with a single vari‐
able λi.

Note that gSCR can be analytically derived from the as‐
sumption that each Ti in (3) is equal in homogeneous MIDC 
systems. However, this assumption is false in inhomoge‐
neous MIDC systems, which limits the application of gSCR 
to inhomogeneous MIDC systems.
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Fig. 1.　MIDC system consisting of HVDC1-HVDCn.
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III. GRID STRENGTH ASSESSMENT 

SCR-based methods can be used to evaluate the stability 
margin of MIDC systems by focusing on the grid characteris‐
tics, i. e., network structure and parameters. For example, 
Section II introduces the concept of gSCR for quantitative 
analysis of the stability of homogeneous MIDC systems, 
where gSCR is the eigenvalue of the weighted node suscep‐
tance matrix Jeq. However, in practice, inhomogeneous 
MIDC systems, i. e., T1 ¹ T2 ¹ ¹ Ti ¹ ¹ Tn, must also be 
investigated, and the method described in Section II is not 
applicable in these scenarios. To address this issue, the mode 
perturbation theory in [10] is employed to determine the rela‐
tionship between the stability of MIDC systems (reflected by 
the minimum eigenvalue of Jsys) and gSCR.

The following lemma provides the mathematical founda‐
tion for our proposed method.

Lemma 1 (Theorem 2.3 [10]): let λi be a simple eigenval‐
ue of matrix A with right and left eigenvectors x and y, and 
let A + E be a perturbation of A. Then, a unique eigenvalue 
~
λ i of A + E can be derived as:

~
λ i =

yT (A + E)x
yT x

+ O( E
2
) (8)

where O( E
2
) is the second-order small quality of E.

Remark 1: let δ = |λ1 - λi| (i = 2, 3,  n) Y T AX, and ε be 
the distance between the minimum eigenvalue λ1 and the oth‐
er eigenvalues λi (i = 2, 3,  n) of A, the Jordan canonical 
form of A, and the upper bound of  Y  E  X , respective‐

ly. If E is so small that 16nε2 /δ2 < 1, 
~
λ 1 is located uniquely 

on a Gerschgorin disk centered at yT (A + E)x/(yT x) with the 
radius bounded by 4nε2 /δ (as can be observed in the proof 
of Theorem 2.3 [10]).

The minimum eigenvalue of Jsys for inhomogeneous sys‐
tems can be derived by perturbing the minimum eigenvalue 
of Jsys for homogeneous systems based on Lemma 1, which 
is summed in the following theorem.

Theorem 1: condition ①: the minimum eigenvalue of Jsys 
for inhomogeneous systems can be approximated as (9); con‐
dition ②: the boundary condition det(Jsys )= 0 can be simpli‐
fied as (10).

λmin (Jsys )=μT
1 (diag(Ti )+ J -1

eq - Jeq )v1 =∑
j = 1

n

μ1,jv1,jTj + λ1 - λ
-1
1 (9)

λmin (Jsys )=∑
j = 1

n

μ1,jv1,jTj + λ1 - λ
-1
1 = 0 (10)

where μ1,j and v1,j are the j th elements of the left and right ei‐
genvectors μ1 and v1 of λ1, respectively. In addition,  

∑
j = 1

n

μ1,jv1,j = 1 and μ1,jv1,j > 0 [8].

Proof: diag(Ti )+ J -1
eq - Jeq can be considered as a perturba‐

tion of Jsys0 whose eigenvectors are the same as those of Jeq. 
Therefore, it follows from Lemma 1 that its minimum eigen‐
value can be approximated by μT

1 (diag(Ti )+ J -1
eq - Jeq )v1, i.e., 

condition ① is satisfied. In addition, because the determi‐
nant of a matrix is equal to the product of its eigenvalues, 
condition ② is also satisfied. This concludes the proof.

Remark 2: the distance between converter control parame‐
ters is generally smaller than the distance between λi in prev‐
alent MIDC systems [4]. This means that the corresponding 
ε and δ in Theorem 1 satisfy the condition 16nε2 /δ2 < 1 in 
Remark 1, and the approximation error of Theorem 1 is 
bounded by 4nε2 /δ2 » 0. Moreover, if 16nε2 /δ2 < 1 is not satis‐
fied, (9) is still a good approximation in inhomogeneous sys‐
tems. This can be illustrated by the cases described in Sec‐
tion IV, where ε » 0.2δ and 16nε2 /δ2 » 1.92.

Equation (10) shows that the boundary condition for both 
homogeneous and inhomogeneous MIDC systems in (3) can 
be unified into (9), i. e., replacing Ti by T in (9) yields (6). 
Therefore, if gSCR = λ1, and a modified CgSCR* in (11) is re‐
defined for inhomogeneous systems, the voltage is stable if 
gSCR > CgSCR* and the voltage stability boundary can be ap‐
proximated by the curve of gSCR = CgSCR*.

Similar to (7) for the homogeneous system, it follows 
from (10) that the CgSCR* for the inhomogeneous MIDC 
system can be defined as:

CgSCR* = T * /2 + T 2
* /4 + 1 (11)

where CgSCR* is the positive root of (10) with a single λ1 

variable; and T * =∑
j = 1

n

μ1,jv1,jTj is the weighted sum of Ti of all 

HVDC converters in the MIDC systems.
It should be noted that T* is, in essence, an equivalent 

HVDC control parameter in the corresponding SIDC system 
whose CSCR = CgSCR*, and the extreme value of T * is deter‐

mined by the existing Ti in the MIDC system.

IV. NUMERICAL STUDIES 

In this section, the effectiveness of gSCR and CgSCR* in 
(11) for grid strength assessment of inhomogeneous MIDC 
systems is demonstrated in an inhomogeneous triple-infeed 
HVDC system. The benchmark model proposed by CIGRE 
in 1991 [5] is applied, where the corresponding control con‐
figuration T = 1.5. To highlight the inhomogeneity, when the 
commutation reactance, power-factor angle, and transformer 
ratio of the benchmark model are changed, three HVDC in‐
verters with different control parameters Ti, e. g., T1 = 1.24, 
T2 = 1.5, T3 = 1.75, are constructed. In addition, in the tri‐
ple-infeed system [8], the Thevenin equivalent reactance is 
set to be z1 = 1/1.5  p.u., z2 = z3 = 1/3  p.u., and z12 = z13 = z23 = 
1/1.5  p.u..

First, we must choose to verify the applicability of gSCR 
and CgSCR* to assess grid strength in terms of static-voltage 
stability margin. When PN2 increases and PN1 and PN3 remain 
constant, the gSCR and CgSCR* can be evaluated. The 
changes in gSCR and CgSCR* with PN2 are shown in Fig. 2. 
The figure shows that gSCR decreases and CgSCR* tends to 
remain constant as PN2 increases. Thus, the static-voltage sta‐
bility margin, quantified by the distance between gSCR and 
CgSCR*, decreases as PN2 increases. When PN2 increases to 
Pdmax such that the determinant of JMIDC in (2) is equal to ze‐
ro, gSCR coincides with CgSCR*. This indicates that a static- 
voltage stability limit occurs and thus the stability margin is 
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equal to zero.

The curves with different gSCR values (2.0, 2.1, and 
CgSCR*) are shown in Fig. 3, where the circles denote the 
static-voltage stability boundary (JMIDC in (1) is singular). To 
draw the curves, the rated power injections PN1, PN2, and PN3 
from the three HVDC ties are set up as follows: PN3 main‐
tains 1 p.u., PN2 varies from 1 to 1.4 p.u., and PN1 changes 
to make JMIDC singular or to have gSCR coincide but with 
different values. Figure 4 shows that the static-voltage stabili‐
ty boundary and curve with gSCR = CgSCR* are very close. 
In particular, the largest relative error between the points on 
the static-voltage stability boundary and those on the curve 
with gSCR = CgSCR* is only 0.41% when PN1 is fixed and 
when different PN2 in the curves are compared. In summary, 
the voltage-stability boundary can be well approximated by 
the curve of gSCR = CgSCR*. In addition, a larger gSCR val‐
ue indicates a larger stability margin because the curve with 
a larger gSCR is closer to the origin point than those with a 
smaller gSCR.

The relative error between CgSCR* and gSCR at the stabil‐
ity boundary is further analyzed when the inhomogeneity lev‐
el in the HVDC inverters changes in the system. The inho‐
mogeneous level is quantified by the standard deviation of 
control parameters Ti  (i = 1, 2, 3) of the three HVDC invert‐
ers. Table I presents the largest percentage errors and stan‐
dard deviations of Ti when T1 and T3 change while T2 re‐
mains constant, which shows that the approximation error of 
the stability boundary when using CgSCR* is insensitive to 
the changes of the control parameters. This is because the 
largest percentage error is small even when T1 = 1.0439 and 
T3 = 1.9245 are significantly different from the benchmark 
model with T = 1.5  (ε » 0.2δ).

To further validate the proposed method using the numeri‐
cal calculation presented in the previous sections, dynamic 
simulations are also performed using the PSCAD/EMTDC 
program. For this purpose, a dual-converter multi-infeed sys‐
tem shown in Fig. 1 is used to verify the effectiveness of the 
gSCR. The CIGRE benchmark model and corresponding mo‐
dified model are located at two buses with CgSCR values of 
approximately 2.1 and 1.8 in the SIDC system, respectively. 
The two HVDC links are connected to the same AC network 
with a gSCR of approximately 1.9, which is the approximate 
critical value of the static-voltage stability. The active power 
of the inverters finally collapses if we continue to increase 
the DC current after 2 s, as shown in Fig. 4. This means that 
the dual-converter multi-infeed system is now located in the 
unstable operational region, and the value of CgSCR is be‐
tween those of the two SIDC systems.

III. CONCLUSION 

Modal perturbation theory is used to extend the applica‐
tion of the gSCR previously defined for homogeneous MIDC 
systems to inhomogeneous MIDC systems. The letter demon‐
strates that the difference between the gSCR and a modified 
CgSCR* can effectively assess the grid strength of an inhomo‐
geneous HVDC in terms of the static-voltage stability mar‐
gin. In addition, the proposed CgSCR* represent a promising 
means of estimating the static-voltage stability limit with var‐
ious HVDC control parameters, which is a topic for a future 
study.
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